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Discrimination via Symmetric Auctions†

By Rahul Deb and Mallesh M. Pai*

Discrimination (for instance, along the lines of race or gender) is 
often prohibited in auctions. This is legally enforced by preventing 
the seller from explicitly biasing the rules in favor of bidders from 
certain groups (for example, by subsidizing their bids). In this paper, 
we study the efficacy of this policy in the context of a single object: 
independent private value setting with heterogeneous bidders. We 
show that restricting the seller to using an anonymous, sealed bid 
auction format (or, simply, a symmetric auction) imposes virtually 
no restriction on her ability to discriminate. Our results highlight 
that the discrepancy between the superficial impartiality of the auc-
tion rules and the resulting fairness of the outcome can be extreme. 
(JEL D44, D82)

Consider an auctioneer selling a single object to (ex ante heterogeneous) buy-
ers whose private values are drawn from independent but, possibly different, 

distributions. Now suppose this seller is restricted to choosing a symmetric sealed 
bid auction format (henceforth, referred to simply as a symmetric auction). These 
are auctions in which buyers submit sealed bids (of a single number), the highest 
bid wins (subject to being greater than a reservation bid), and the payments are 
determined as an anonymous function of the bids. To what extent can the seller 
favor some bidders over others by designing an auction in this class? In particular, 
can he favor ex ante disadvantaged bidders (or “level the playing field”) under this 
constraint? In this paper, we characterize the range of outcomes that a seller can 
achieve with symmetric auctions. In doing so, we show that symmetry by itself is a 
very unrestrictive constraint, and we discuss the implications of this for policy.

Formally, we characterize the set of (incentive compatible) direct mechanisms 
for which there exists a symmetric auction implementation. Here, implementation 
implies that there exists a symmetric auction format that has an equilibrium with 
the same ex post allocation (the winner is the same at all value profiles) and interim 
payments (the expected payment by all values of each buyer is the same). It is 
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straightforward to argue that, in order to implement the same ex post allocation, 
the allocation rule of the direct mechanism essentially pins down the equilibrium 
bidding function (up to monotone transformations) that must arise in the symmetric 
auction implementation. Loosely speaking, this is because the bidder that receives 
the good in the direct mechanism at each profile of values must make the highest 
bid in the corresponding symmetric auction. The bidding function and the distri-
bution over values then determines a distinct distribution over equilibrium bids for 
each buyer. The main technical challenge is to show the existence of an anonymous 
payment rule that, in equilibrium, yields the same expected payments as the direct 
mechanism. Note that an anonymous payment can yield different expected payments 
across buyers for the same bid. This is because expectations are taken with respect to 
the opponents’ equilibrium bid distributions (which differ across buyers).1

Our main insight is stark: restricting the seller to using a symmetric auction 
imposes virtually no restriction on her ability to achieve discriminatory outcomes. 
This is demonstrated by the main result (Theorems 1 and 2), which is a complete 
characterization of the set of implementable direct mechanisms. We show that 
almost any hierarchical mechanism (defined formally in Section III) has a symmet-
ric implementation. Hierarchical mechanisms are a large class that contain virtually 
all mechanisms that arise in applied mechanism design (such as the efficient, rev-
enue maximizing mechanism, etc.). Motivated by this, we argue that real limits on 
the seller’s ability to discriminate can only be imposed by further restricting the set 
of auctions that he can choose from. We discuss a few such restrictions that are easy 
to describe and enforce in practice.

There are at least two ways to think about the underlying mechanics of our result. 
First, observe that revenue equivalence does not hold with heterogeneous bidders 
and, additionally, a symmetric auction may have asymmetric equilibria. The asym-
metry sustains itself in equilibrium; even though the ex post payments do not depend 
on the bidders’ identities, the expected (interim) payment for the same bid might 
differ across bidders. This is because bidders take expectations over the bids of their 
competitors, and in an asymmetric equilibrium, the distribution of competing bids 
differs across bidders. This intuition is well known and is the reason why first and 
second-price auctions yield different revenues (Kirkegaard 2012). Our insight is that 
when the seller has full freedom to design the symmetric auction, he can choose one 
that has the desired (asymmetric) equilibrium.

A second intuition may be useful for readers familiar with the literature on full 
surplus extraction. There, agents’ values are correlated and Crémer and McLean 
(1988) show that, under certain conditions, the principal can extract the entire sur-
plus in expectation. The result is surprising as even though the agents’ values are 
private, the principal does not need to provide any information rents for the revela-
tion of their private information. Essentially, the principal offers each agent a menu 
of bets on the realized values of the other agents, from which she must pick one. 
Since the values are correlated, an agent’s beliefs about the conditional distribution 

1 Mathematically, the exercise can be described as follows. Suppose for each ​i  ∈  { 1,  …  , n}​ , we are given a 
function ​​p​ i​ 

d​​ : ​​B​i​​​ → ℝ and a distribution over ​​B​i​​  ⊂  ℝ​. When is it possible to find a function p : ​​ℝ​​ n​​ → ​​ℝ​​ n​​ that is 
permutation invariant such that for all ​i​ and ​​b​i​​  ∈ ​ B​i​​​ , we have ​​p​ i​ d​ (​b​i​​)  = ​ E​​b​−i​​​​  ​p​i​​ (​b​i​​ , ​b​−i​​)​? 
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of other agents’ values differ based on her own realized value. The side bets are 
designed so that, for every value, each agent pays in expectation (taken over the 
distribution of her opponents’ values) her full expected surplus when she picks the 
bet corresponding to truthful reporting. Further, given her conditional beliefs over 
other agents’ values, all other bets offer net negative expected surplus. The insight 
is akin to “proper scoring rules,” which can be used to truthfully elicit an agent’s 
beliefs about a stochastic event. By contrast, in our model, values are independently 
distributed. However, since bidders are heterogeneous, intuitively, a bidder’s iden-
tity is “correlated” with the values of other bidders. This allows us to construct an 
analogous menu of bets (within the class of symmetric auctions), which undo the 
constraints imposed by symmetry.2

The focus of this paper is motivated by real world policies. Auctioneers may not 
be allowed to use formats that are not symmetric as discrimination is often banned. 
For example, states such as California and Michigan have explicitly changed their 
laws (Proposition 209 and Proposal 2, respectively) to prohibit favored treatment in 
government procurement on the basis of race, sex, or ethnicity. One reason for such 
policies is that auction designs that explicitly favor some groups (such as minorities, 
women, veterans, etc.) have been successfully challenged in court (for example, 
in the prominent US Supreme Court case Adarand Constructors v. Pena 1995). As 
a practical matter, the main policy response has been to suggest that auctioneers, 
especially governments/public bodies, be constrained to using anonymous auction 
designs. While this is a natural candidate for a policy, its efficacy is not understood. 
This is especially relevant for practice today, as auction designers often have access 
to, and the ability to analyze, rich data from past auctions to guide their format 
design.

Why might an auctioneer want to use a format that is not symmetric? One rea-
son is revenue maximization: the direct mechanism corresponding to the Myerson 
(1981) optimal auction with heterogeneous bidders is discriminatory. There are sev-
eral notable instances where it has been suggested that revenue maximization and 
symmetry of the auction form are fundamentally incompatible desiderata.3 Some 
argue that this observation justifies the removal of legal hurdles that prevent discrim-
ination. In the context of international trade, McAfee and McMillan (1989) used the 
theory of optimal auctions to show that explicitly discriminating amongst suppliers 
can reduce the costs of procurement. Their aim was to provide an argument against 
the 1981 Agreement on Government Procurement (in the General Agreement on 
Tariffs and Trade (GATT)), which set out rules to ensure that domestic and interna-
tional suppliers were treated equally.4 Similarly, Ayres and Cramton (1996) suggest 
that, in government license auctions, subsidizing minority owned or local businesses 
may actually result in more revenue to the government.5 We show that, at least from 

2 We further flesh out the connection to Crémer and McLean (1988) in the discussion that follows a formal 
description of the symmetric payment rule in Section II. 

3 For instance, in Riley and Samuelson (1981), the authors state, “An optimal auction extends the asymmetry 
of the buyer roles to the allocation rule itself. The assignment of the good and the appropriate buyer payment will 
depend not only on the list of offers, but also on the identities of the buyers who submit the bids. In short, an optimal 
auction under asymmetric conditions violates the principle of buyer anonymity.” 

4 Such an agreement is also currently present in the World Trade Organization, which has replaced the GATT. 
5 Corns and Schotter (1999) experimentally test these arguments. 
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a theoretical perspective, such goals can be achieved without explicit discrimination 
by the auctioneer (Corollary 2).

That being said, there are limits to what the seller can achieve: Corollary 3 qualita-
tively describes the set of unimplementable direct mechanisms.6 While non-generic 
(Corollary 1), these exceptions are economically interesting.7 An example is the 
seller facing one (disadvantaged) weak and one strong buyer where the former has 
the same distribution as the latter with the support shifted down. Suppose the seller 
wanted to run an “efficient” auction that corrects for the difference. An “ideal” 
affirmative action policy would be to run a second-price auction where the bid of 
the weaker buyer was subsidized by a value equal to the difference in the (lower 
bound) of the supports. While such a format is clearly discriminatory, it follows 
from Corollary 3 that there is no other symmetric auction that can yield the same 
outcome.

Finally, we show that certain simple policies (which are easy to implement and 
enforce) in addition to symmetry can introduce real constraints on the seller. One 
restriction that we analyze is the prohibition of the seller from either charging or 
subsidizing losers in the auction (Proposition 1). In the online Appendix, we exam-
ine the effects of requiring the payment rule to have other desirable properties such 
as continuity or monotonicity in the bids. These are all features of most auctions 
actually employed in practice. We show that each of these additional requirements 
impose meaningful restrictions on the seller; in particular, she can no longer always 
maximize revenue.

Alternatively, practical constraints may restrict the seller. For instance, even 
though the symmetric implementations we construct are individually rational in an 
interim sense, they need not be individually rational in an ex post sense. Requiring 
a bidder to sometimes make a very large payment (for some bid realizations) may 
not be feasible in practice since bidders might be budget constrained or could sim-
ply refuse to pay. Once again, the online Appendix shows that when the seller is 
restricted to using a symmetric auction that is ex post individually rational, she may 
not be able to maximize revenue.

A. Related Literature

Our demonstration of the flexibility of symmetric auctions can be viewed as sim-
ilar to the revelation principle. The revelation principle states that restricting the 
seller to direct mechanisms is without loss of generality. Analogously, our character-
ization shows that restricting the auctioneer to symmetric auction formats does not 
prevent him from achieving a wide variety of discriminatory goals. In this regard, 
our results are also similar in spirit to the recent work of Manelli and Vincent (2010) 
and Gershkov et al. (2013). These authors show that, in the independent private 
values model, any incentive compatible and individually rational outcome that can 

6 Allocations in nonimplementable mechanisms are to the buyer whose value has the highest “statistical rank” 
(the cumulative distribution evaluated at that value). 

7 The statistical rank is sometimes used as a criterion in college admissions. For instance, the “Texas Top 10” 
program guarantees admission to the University of Texas to any Texan high school student in the top ten percent 
of their class. 
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be achieved in Bayes-Nash equilibrium can also be achieved (in expectation) in 
dominant strategies. Thus, as with the case of dominant strategy implementation, 
the requirement of symmetric implementation is not restrictive in and of itself.

In a recent work, Azrieli and Jain (2015) consider a general mechanism design 
environment (which allows for interdependent values and correlated types) and, like 
us, characterize the set of direct mechanisms that have symmetric indirect imple-
mentations. The main difference is that they do not restrict the set of indirect mech-
anisms that the designer can employ. In the independent value auction environment 
we consider, implementation would be trivial if the seller were allowed to use such 
abstract mechanisms.8 Our main insight is that the seller need not resort to such 
abstract mechanisms as she is essentially unconstrained even when restricted to the 
commonly employed class of symmetric sealed bid auctions. Moreover, additional 
constraints (such as continuity or monotonicity of the payments) on sealed bid auc-
tions are easy to describe and enforce. Our results also have practical relevance as 
the legality of mechanisms that require bidders to explicitly reveal their identities 
can be easily challenged in court.

Finally, our paper is also related to the literature in market design that explicitly 
considers fairness. For example, several of the prominent matching mechanisms 
(for instance, for the deferred acceptance and Boston mechanisms, see Roth and 
Sotomayor 1992) and allocation mechanisms (for the random priority mechanism, 
see Abdulkadiroğlu and Sönmez 1998, and for the probabilistic serial mechanism, 
see Bogomolnaia and Moulin 2001) proposed for use in practice are anonymous. 
Even among anonymous designs, other notions of fairness such as the “equal treat-
ment of equals” (two agents making the same reports receive the same allocations) 
and “envy-freeness” (each agent prefers her allocation to that of any other agent) are 
imposed in addition. Additionally, in the market design for school choice, the fact 
that existing designs can be “gamed” has been deemed unfair, since different socio-
economic groups may have varying abilities to game the system—see, for example, 
Pathak and Sönmez (2008), Abdulkadiroğlu et al. (2006). Similarly, some business 
schools have changed their course allocation procedures to ones that explicitly guar-
antee fairness (Budish 2011), motivated by the demonstrated unfairness of existing 
systems (Budish and Cantillon 2010).

I.  The Model

We consider an independent private value auction setting. A set ​N  =  { 1, 2,  … , n}​ 
of risk-neutral buyers or bidders (used interchangeably) compete for a single indi-
visible object.9 Buyer ​i  ∈  N​ draws a value ​​v​i​​  ∈ ​ V​i​​  ≡  [ ​​ v 

¯
 ​​i​​ , ​​

_ v ​​i​​ ]​ independently 
from a distribution ​​F​i​​​. We assume that ​​F​i​​​ is twice continuously differentiable with 

8 Consider a simple example: there are two bidders, ​i​ and ​j​ , and the seller would like to discriminate against 
the latter. The seller announces a mechanism in which the bidders are asked to announce both their identity and 
their value for the good, after which the buyer reporting ​i​ is favored. Bidders can always be incentivized to reveal 
their identity truthfully as misreports can be detected in equilibrium (both would have reported the same identity) 
and punished. Incentives to report values truthfully can be provided as usual. Further, this mechanism is symmetric 
since a permutation of messages would lead to the same permutation of outcomes. 

9 Equivalently, our model could be considered as a procurement setting where a firm or government wants a 
single project to be completed and solicits quotes from contractors, each of whom has an independent private cost. 
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corresponding density ​​f​i​​​ which is strictly positive throughout the support ​[ ​​ v _ ​​i​​ , ​​
_ v ​​i​​ ]​. 

Note that both ​​V​i​​​ and ​​F​i​​​ can be different across ​i​ , so we allow for ex ante heterogenous 
bidders. We denote ​V  ≡ ​ ×​j∈N​​ ​V​j​​​ and ​​V​−i​​  ≡ ​ ×​j≠i​​ ​V​j​​​ , with ​v  ∈  V​ and ​​v​−i​​  ∈ ​ V​−i​​​  
denoting typical elements of these sets. As with values, we use the notation 
​F  ≡ ​ ∏ j∈N​ ​​ ​F​j​​​ and ​​F​−i​​  ≡ ​ ∏ j≠i​ ​​ ​F​j​​​. We will use similar notation for other vectors 
and vector-valued functions throughout the paper.

A direct mechanism asks bidders to report their values, and uses these reports to 
determine allocations and payments. Allocations are determined via an ordered list 
of functions:

(Direct Allocation)

	​​ a​​ d​​  = ​​ (​a​ 1​ 
d​, … , ​a​ n​ 

d​)​​  where ​​ a​ i​ 
d​​ : V → [0, 1] and ​​ ∑ 

i=1
​ 

n

  ​​​ ​​a​ i​ 
d​​(v) ≤ 1.

Here, ​​a​ i​ d​ (v)​ is the probability that bidder ​i​ wins the auction when the profile of 
reported types is ​v​. The inequality above reflects the fact that the seller has a sin-
gle unit to sell, so the probability of allocating it cannot exceed 1 at any profile ​v​. 
Additionally, this allows for the possibility that the seller may choose to withhold 
the good. Similarly, payments are determined via an ordered list of functions:

(Direct Payment)   ​​   p​​ d​​  = ​​ (​p​ 1​ 
d​, … , ​p​ n​ 

d​)​​  where ​​ p​ i​ 
d​​ : V → ℝ.

Here, ​​p​ i​ d​ (v)​ is the payment made by bidder ​i​ when the profile of reported types is ​v​. 
Note that, when it is positive, this is a transfer to the seller, and, when it is negative, 
it is a subsidy from the seller. In addition, the bidder may be required to make pay-
ments even when she does not receive the object.

Values are private; that is, buyers do not know the realized valuations of other 
bidders. Hence, each bidder’s expected utility from participating in this mechanism 
is determined by her expected allocation and payment. For a given direct mecha-
nism ​​(​a​​ d​ , ​p​​ d​)​​ , we define interim allocations and payments to be the expected allo-
cations and payments conditioned on truthful reporting by all the bidders. Formally, 
these are given by

​(Interim Allocation)    ​   a​ i​ d​ (​v​i​​)  ≡ ​ ∫ ​V​−i​​
​ 

 
 ​​ ​ a​ i​ d​ (​v​i​​ , ​v​−i​​)d ​F​−i​​ (​v​−i​​)​ 

and

​(Interim Payment)	 ​ p​ i​ d​ (​v​i​​)  ≡ ​ ∫ ​V​−i​​
​ 

 
 ​​ ​ p​ i​ d​ (​v​i​​ , ​v​−i​​)d ​F​−i​​ (​v​−i​​)​.

For simplicity, we deliberately abuse notation by denoting interim allocations using 
the same symbol; the difference is determined by whether the argument is a single 
value or a value profile.

We make the additional standard assumption that the bidders are risk neutral and 
that their utilities are quasi-linear in the transfers. Conditional on truthful reporting 
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by the other bidders, the interim expected utility for bidder ​i​ with value ​​v​i​​​ who 
announces a value ​​v​ i​ ′ ​​ is simply

(Bidder Utility)	​ ​v​i​​ ​a​ i​ d​ (​v​ i​ ′ ​) − ​p​ i​ d​ (​v​ i​ ′ ​).​

A mechanism ​​(​a​​ d​ , ​p​​ d​)​​ is said to be (Bayesian) incentive compatible or simply IC if 
reporting truthfully is a Bayes-Nash equilibrium, i.e.,

(IC) ​ ​v​i​​ ​a​ i​ d​ (​v​i​​) − ​p​ i​ d​ (​v​i​​)  ≥ ​ v​i​​ ​a​ i​ d​ (​v​ i​ ′ ​)  − ​ p​ i​ d​ (​v​ i​ ′ ​)  ∀ i  ∈  N,  ∀ ​v​i​​ , ​v​ i​ ′ ​  ∈ ​ V​i​​ .​

Myerson (1981) showed that incentive compatibility implies that the allocation rule ​​
a​​ d​​ pins down the payments ​​p​​ d​​ up to constants ​​c​i​​  ∈  ℝ​; that is,

(Payoff Equivalence)  ​  ​p​ i​ d​ (​v​i​​)  = ​ v​i​​ ​a​ i​ d​ (​v​i​​) − ​∫ ​​ v 
¯
 ​​i​​
​ 
​v​i​​
​​ ​a​ i​ d​ (w) dw  + ​ c​i​​ .​

Additionally, a mechanism is said to be individually rational or simply IR if truthful 
reporting leads to a nonnegative payoff, or

(IR)	​ ​v​i​​ ​a​ i​ d​ (​v​i​​)  − ​ p​ i​ d​ (​v​i​​)  ≥  0  ∀  ​v​i​​  ∈ ​ V​i​​ .​

A. Symmetric Auctions

We define a symmetric auction as a game with three properties: buyers simul-
taneously submit real numbers called bids; the winner is the highest bidder over a 
given reservation bid (ties are broken uniformly); and payments are determined via 
an anonymous payment function. This is an indirect sealed bid auction mechanism 
with the additional restriction that allocations and payments depend only on the 
profile of bids and not the identity of the bidders. Formally, in a symmetric auction, 
each bidder ​i​ chooses a bid ​​b​i​​  ∈  ℝ​ , and allocations and payments are determined 
by functions ​​a​​ s​​ : ​​ℝ​​ n​​ → [0, 1] and  ​​p​​ s​​ : ​​ℝ​​ n​​ → ℝ, respectively. Bidder ​i​’s allocation or 
simply her probability of winning the item is given by

(Symmetric Auction Allocation)

	​ ​a​​ s​​(​b​i​​, ​b​−i​​)​  = ​
{

​
​  1 _____________  # {  j  ∈  N  :  ​b​j​​  = ​ b​i​​ }

 ​
​ 

when  ​b​i​​  ≥  max { ​b​−i​​, r},​    
0
​ 

otherwise,
  ​​ ​

where ​r​ is the reservation bid. As with the values, we use ​b​ and ​​b​−i​​​ to denote the 
vector of all bids and the vector of all bids except that of bidder ​i​ , respectively.

Bidder ​i​’s payment is given by

(Symmetric Auction Payment)     ​     ​p​​ s​​(​b​i​​, ​b​−i​​)​, ​

where ​​p​​ s​​ is invariant to permutations of ​​b​−i​​​ but can depend on the underlying distri-
bution of values ​(​F​1​​ ,  … , ​F​n​​)​. Notice that, since the allocation and payment rules do 
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not depend on the identity of the bidders, we only need a single function, as opposed 
to lists of functions, to define these mechanisms. Most commonly used auction for-
mats, such as first-price, second-price, and all-pay auctions are symmetric in this 
sense.

In a symmetric auction, a pure strategy (henceforth, referred to simply as a strat-
egy) for a bidder ​i​ is a mapping

(Buyer Strategy)	​​ σ​i​​​ : ​​V​i​​​  →  ℝ,

that specifies the bid corresponding to each possible value. A profile of strategies ​
σ  =  (​σ​1​​ ,  … , ​σ​n​​)​ constitutes a (Bayesian Nash) equilibrium of the symmetric auc-
tion ​(​a​​ s​ , ​p​​ s​)​ if each buyer’s strategy is a best response to the strategies of other buy-
ers. Formally, this requires that, for all ​i  ∈  N​ and ​​v​i​​  ∈ ​ V​i​​​ , we have

	​ ​σ​i​​ (​v​i​​)  ∈  ​ arg max​​ 
b∈ℝ

​ ​ ​ ∫ ​V​−i​​
​ 

 
 ​​ ​ [​v​i​​ ​a​​ s​​(b, ​σ​−i​​ (​v​−i​​))​  − ​ p​​ s​​(b, ​σ​−i​​ (​v​−i​​))​]​ d ​F​−i​​ (​v​−i​​).​

As we discussed in the introduction, we restrict attention to this particular for-
mat as it is legal (it maintains buyer privacy by ensuring that they are not forced 
to reveal their identities via their bids); it allows for flexible design of the payment 
rules; and commonly used auctions fall in this class. However, a weakness is that 
we require common knowledge of the underlying value distributions so that, in 
particular, (unlike a second-price auction) bidders can compute their equilibrium 
bid. That said, this requirement is imposed in almost all auction theory and, in 
particular, is necessary for buyers to calculate equilibrium bids even in standard 
first-price auctions.

We say that an IC and IR direct mechanism ​​(​a​​ d​ , ​p​​ d​)​​ is implemented by a symmet-
ric auction ​​(​a​​ s​ , ​p​​ s​)​​ if there is a pure strategy equilibrium in undominated strategies 
of the latter mechanism that yields the same allocation and expected payment as the 
former. Specifically, we say that a direct mechanism is implementable if there exists 
an undominated equilibrium strategy profile ​σ​ such that, for all ​v  ∈  V​,10

(1A)	​​ a​ i​ d​ (v)  = ​ a​​ s​​(​σ​i​​ (​v​i​​), ​σ​−i​​ (​v​−i​​))​​

and

(1B)	​​ p​ i​ d​ (​v​i​​)  = ​ ∫ ​V​−i​​
​ 

 
 ​​ ​ p​​ s​​(​σ​i​​ (​v​i​​), ​σ​−i​​ (​v​−i​​))​ d ​F​−i​​ (​v​−i​​)​.

In this notion of implementability, we require the equilibrium allocation of the sym-
metric auction to be identical to the direct mechanism for each profile of values but 
the payments to be equal in expectation. Additionally, note that we only require the 

10 We use the additional restriction of undominated equilibrium strategies to ensure that our symmetric imple-
mentation is not based on “implausible” buyer behavior. 
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conditions above to hold for one equilibrium of the symmetric auction. Hence, this 
is a “partial implementation” criterion.11

More generally, we say that an IC and IR direct mechanism ​​(​a​​ d​ , ​p​​ d​)​​ is imple-
mentable if there exists a symmetric auction ​​(​a​​ s​ , ​p​​ s​)​​ that implements it (almost sure 
and interim implementability are defined analogously). Our main goal is to show 
that restriction to a symmetric auction format does not constrain the seller, and we 
do so by explicitly characterizing the set of IC and IR direct mechanisms that are 
implementable.12 To make the exposition cleaner, we have deliberately defined 
implementation only in terms of pure strategies for the bidders. This restriction does 
not affect any of the results in the paper. We show in the Appendix that allowing for 
mixed strategies does not expand the set of implementable mechanisms (or the set 
of implementable mechanisms subject to the additional conditions in Proposition 1 
and in the online Appendix).

We also refer to two additional weaker implementation criteria. The first is 
almost sure implementation, which requires (1) to hold almost surely (over 
the distribution of buyer values). In other words, according to this criterion, 
the allocations and interim payments are the same except at a measure zero set 
of values. The second is interim implementation, which requires the alloca-
tion rule (as with the payment) to be implemented in an expected sense or that 
​​a​ i​ d​ (​v​i​​)  = ​ ∫ ​V​−i​​​ 

 
 ​​ ​ a​​ s​​(​σ​i​​ (​v​i​​), ​σ​−i​​ (​v​−i​​))​ d ​F​−i​​ (​v​−i​​)​. The recent work on the equivalence 

of Bayesian and dominant strategy implementability (Manelli and Vincent 2010, 
Gershkov et al. 2013) uses an even weaker notion that instead requires the expected 
utilities (as opposed to interim allocations and payments separately) of the agents 
to be the same.

II.  Example: Implementing the Optimal Auction with Two Buyers

In this section, we explain our approach by describing a symmetric implemen-
tation of the revenue maximizing auction when there are two buyers. As we men-
tioned in the introduction, this is a natural example to demonstrate our techniques 
as the optimal direct mechanism is discriminatory and it has long been thought that 
there may not exist a symmetric implementation of the optimal auction. To simplify 
the example, we additionally assume that the distributions of both buyers satisfy 
the increasing virtual value property. Formally, this condition requires that, for each 
buyer ​i  ∈  N​ , the virtual value

(Virtual Value)	​ ​ϕ​i​​ (​v​i​​)  = ​ v​i​​ − ​ 1 − ​F​i​​ (​v​i​​) _ ​f​i​​ (​v​i​​)
  ​​

is increasing in ​​v​i​​​. An implication is that ​​ϕ​ i​ −1​​ is a single valued function.

11 Given the fact that we allow for very general value distributions, it is perhaps unrealistic to expect a sym-
metric auction implementation to have a unique equilibrium. Note that even standard formats like the first or sec-
ond-price auction can have multiple equilibria. This is because our setting is more general than even the fairly 
unrestrictive conditions required for uniqueness in first-price auctions (Lebrun 2006), and we do not require bidders 
to bid below their value (Kaplan and Zamir 2015). 

12 Since the additional requirement of IR only involves changing the payment rules by a constant, our characteri-
zation results can also be viewed as simply characterizing the set of IC direct mechanisms which are implementable. 
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We denote the allocation and payment rule of the optimal auction by ​(​a​​ ∗​ , ​p​​ ∗​)​. 
Recall that in the optimal auction, bidders announce their values and the mechanism 
awards the good to the bidder who has the highest positive virtual value (it is without 
loss to assume that ties are broken equally). Hence, when bidders draw their values 
from different distributions, this direct mechanism is not symmetric, as the alloca-
tion rule depends on the bidder specific value distribution.

A natural way to attempt a symmetric implementation of the optimal auction is to 
construct a payment rule such that it is an equilibrium for both bidders to bid their 
virtual values. The auction could then allocate the good to the higher bid and have a 
reservation bid of 0. We denote the set of virtual values of bidder ​i​ by

	​ ​B​i​​  ≡ ​ [​ϕ​i​​ (​​ v _ ​​i​​), ​ϕ​i​​ (​​
_ v ​​i​​)]​.​

The distribution ​​F​i​​​ over ​​V​i​​​ induces a distribution ​​G​i​​​ over the set ​​B​i​​​ of virtual values.
We claim that the optimal auction can be implemented if we can construct a pay-

ment rule ​​p​​ s​​ that satisfies

	​ ​p​ i​ ∗​ (​v​i​​)  = ​ ∫ ​B​j​​​ 
 
 ​​  ​p​​ s​​(​ϕ​i​​ (​v​i​​), ​b​j​​)​ d ​G​j​​ (​b​j​​)   for i  ≠  j and all ​v​i​​  ∈ ​ V​i​​.​

This is simply a restatement of the implementability requirement where equilibrium 
strategies of bidding the virtual value have been substituted in. This claim is easy 
to see:

	 (i)	 Suppose that buyer ​i​ with value ​​v​i​​​ bids ​​b​i​​  ∈ ​ B​i​​​ but ​​b​i​​  ≠ ​ ϕ​i​​ (​v​i​​)​. This is 
equivalent to her reporting a value ​​ϕ​ i​ −1​ (​b​i​​)  ≠ ​ v​i​​​ in the direct mechanism 
​(​a​​ ∗​ , ​p​​ ∗​)​ , which yields a lower payoff because the optimal auction is IC.

	 (ii)	 Suppose that buyer ​i​ with value ​​v​i​​​ bids ​​b​i​​  ∉ ​ B​i​​​. This can be detected with 
positive probability by the auctioneer when the other bidder is bidding truth-
fully. This is because there will be a positive measure of bids ​​b​j​​​ such that 
​(​b​i​​ , ​b​j​​)  ∉  (​B​1​​ × ​B​2​​) ∪ (​B​2​​ × ​B​1​​)​. Such off-equilibrium bids can be discour-
aged by making the payments high enough at these bids.

We now construct such a symmetric payment rule. Since it is easy to discourage 
bids that lie outside the support of the virtual values, the payment rule is delib-
erately defined only for equilibrium bid profiles ​(​b​i​​ , ​b​j​​)  ∈  (​B​1​​ × ​B​2​​) ∪ (​B​2​​ × ​B​1​​)​.  
We separately construct the payment for bids that lie in the supports of only one and 
both virtual value distributions, respectively. In equilibrium, bids ​​b​i​​  ∈ ​ B​i​​ \ ​B​j​​​ are 
made only by buyer ​i​. Hence, for such bids, we can simply define the payment rule 
to be the interim payment from the optimal auction or

	​ ​p​​ s​ (​b​i​​ , ​b​j​​)  = ​ p​ i​ ∗​ (​ϕ​ i​ −1​ (​b​i​​))  when   ​b​i​​  ∈ ​ B​i​​ \ ​B​j​​  and  ​b​j​​  ∈ ​ B​j​​ .​

To construct the payments for bids ​​b​i​​  ∈ ​ B​1​​ ∩ ​B​2​​​ that lie in the support of both 
virtual value distributions, we first observe that, for asymmetric buyers (​​F​1​​  ≠ ​ F​2​​​),  
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there exists a ​​b ̂ ​  ∈  ℝ​ such that ​​G​1​​ (​b ̂ ​)  ≠ ​ G​2​​ (​b ̂ ​)​. In other words, different value 
distributions yield different virtual values distributions. Consider the payment rule

(2)	​ ​p​​ s​ (​b​i​​ , ​b​j​​)  = ​
{

​
​p​​ u​ (​b​i​​)​ 

 if  ​b​j​​  ≥ ​ b ̂ ​ and  ​b​j​​  ∈ ​ B​1​​ ∪ ​B​2​​ ​    
​p​​ l​ (​b​i​​)

​ 
 if  ​b​j​​  < ​ b ̂ ​ and  ​b​j​​  ∈ ​ B​1​​ ∪ ​B​2​​ ,

​​​

where

(3)  ​ ​  p​​ u​ (​b​i​​)  = ​  ​p​ 1​ ∗​ (​ϕ​ 1​ −1​ (​b​i​​)) ​G​1​​ (​b ̂ ​) − ​p​ 2​ ∗​ (​ϕ​ 2​ −1​ (​b​i​​)) ​G​2​​ (​b ̂ ​)
    _____________________________   

​G​1​​ (​b ̂ ​) − ​G​2​​ (​b ̂ ​)
  ​ 

	 ​ p​​ l​ (​b​i​​)  = ​  ​p​ 2​ ∗​ (​ϕ​ 2​ −1​ (​b​i​​)) [1 − ​G​2​​ (​b ̂ ​) ]  − ​p​ 1​ ∗​ (​ϕ​ 1​ −1​ (​b​i​​)) [1 − ​G​1​​ (​b ̂ ​) ]
    _______________________________________   

​G​1​​ (​b ̂ ​) − ​G​2​​ (​b ̂ ​)
  ​ .​

The amount a buyer pays ex post given this payment rule depends on both bids— 
her own and the opponent’s. More specifically, it depends on the exact amount of 
her bid, and whether or not her opponent’s bid is above or below ​​b ̂ ​​. A bidder ​i​ who 
bids ​​b​i​​​ pays an amount ​​p​​ u​ (​b​i​​)​ when her opponent bids higher than ​​b ̂ ​​ and an amount 
​​p​​ l​ (​b​i​​)​ when her opponent’s bid is lower than ​​b ̂ ​​.

Given the putative equilibrium bidding strategies, this particular auction exhib-
its a flavor of the side bets of Crémer and McLean (1988) that we alluded to in 
the introduction. Since the payment of a buyer also depends on whether or not her 
competitor bids above or below ​​b ̂ ​​ , her expected payment depends on the probability 
she assigns to her competitor bidding above and below ​​b ̂ ​​. Buyer ​1​ understands that 
she is competing against buyer ​2​ , and therefore assigns probabilities ​1 − ​G​2​​ (​b ̂ ​)​ and 
​​G​2​​ (​b ̂ ​)​ to each of these events, while buyer ​2​ assigns probabilities ​1 − ​G​1​​ (​b ̂ ​)​ and ​​
G​1​​ (​b ̂ ​)​. As a result, the expected payments of a buyer, for the same bid, differ accord-
ing to whether she is bidder ​1​ (and therefore taking expectations based on the fact 
that she is competing against bidder ​2​ , whose bid distribution is ​​G​2​​​) or bidder ​2​.

Further, note that the expected payment of a bidder ​i​ who bids ​​b​i​​  ∈ ​ B​1​​ ∩ ​B​2​​​ 
when bidder ​j​ bids ​​ϕ​j​​ (​v​j​​)​ for all ​​v​j​​  ∈ ​ V​j​​​ is

(4)	​ ​p​​ u​ (​b​i​​) [1 − ​G​j​​ (​b ̂ ​) ]  + ​p​​ l​ (​b​i​​) ​G​j​​ (​b ̂ ​)  = ​ p​ i​ ∗​ (​ϕ​ i​ −1​ (​b​i​​)),​

which is precisely the required payment for implementation.
Notice also that equation (4) can be used to derive the expressions for ​​

p​​ u​​ and ​​p​​ l​​. An equivalent matrix representation is the following system for 
​​b​i​​  ∈ ​ B​1​​ ∩ ​B​2​​​:

(5)	 ​​[​
​p​​ u​ (​b​i​​)​ 
​p​​ l​ (​b​i​​)

 ​]​  = ​
[
​
​p​ 1​ ∗​​(​ϕ​ 1​ −1​ (​b​i​​))​​  
​p​ 2​ ∗​​(​ϕ​ 2​ −1​ (​b​i​​))​

​
]
​,  where   = ​ [​

1 − ​G​2​​ (​b ̂ ​)
​ 

​G​2​​ (​b ̂ ​)
​  

1 − ​G​1​​ (​b ̂ ​)
​ 

​G​1​​ (​b ̂ ​)
​]​.​
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By definition, ​​G​1​​ (​b ̂ ​)  ≠ ​ G​2​​ (​b ̂ ​)​ implies that ​​ is a full rank matrix. Therefore (5) 
has a solution for all ​​b​i​​  ∈ ​ B​1​​ ∩ ​B​2​​​ , and ​​p​​ u​​ , ​​p​​ l​​ can be obtained by inverting ​​.  
Observe that this condition bears some resemblance to the full rank condition 
required by Crémer and McLean (1988) for full surplus extraction.

In summary, the symmetric payment rule that implements the optimal auction in 
this example is

 ​ ​p​​ s​ (​b​i​​ , ​b​j​​)  = ​

⎧

 
⎪
 ⎨ 

⎪
 

⎩

​

​p​​ u​ (​b​i​​)

​ 

 if  ​b​i​​  ∈ ​ B​1​​ ∩ ​B​2​​ ,  ​b​j​​  ≥ ​ b ̂ ​ and  ​b​j​​  ∈ ​ B​1​​ ∪ ​B​2​​ 

​      
​p​​ l​ (​b​i​​)​ 

 if  ​b​i​​  ∈ ​ B​1​​ ∩ ​B​2​​ ,  ​b​j​​  < ​ b ̂ ​ and  ​b​j​​  ∈ ​ B​1​​ ∪ ​B​2​​ ​      
​p​ 1​ ∗​ (​ϕ​ 1​ −1​ (​b​i​​))

​ 
 if  ​b​i​​  ∈ ​ B​1​​ \ ​B​2​​  and  ​b​j​​  ∈ ​ B​2​​ 

​    

​p​ 2​ ∗​ (​ϕ​ 2​ −1​ (​b​i​​))

​ 

 if  ​b​i​​  ∈ ​ B​2​​ \ ​B​1​​  and  ​b​j​​  ∈ ​ B​1​​ .

  ​​​

The following numerical example illustrates this construction.

Example 1: Consider a setting with two buyers. Buyer ​1​ has a value that is uni-
formly distributed over ​[ 2, 4 ]​ , while buyer ​2​’s value is uniformly distributed over ​
[ 1, 2 ]​. The seller wants to conduct a symmetric implementation of the optimal auc-
tion. In this setting, the virtual value of buyer 1 is ​​ϕ​1​​ (​v​1​​)  =  2 ​v​1​​ − 4​ , and the virtual 
value of buyer 2 is ​​ϕ​2​​ (​v​2​​)  =  2 ​v​2​​ − 2​. Therefore, buyer ​1​’s virtual value (bid) is 
uniformly distributed over ​​B​1​​  ≡  [ 0, 4 ]​ , while buyer ​2​’s is uniformly distributed 
over ​​B​2​​  ≡  [ 0, 2 ]​.

We begin by deriving the interim payments. These can be determined using 
(Payoff Equivalence) as follows:

​​p​ 1​ ∗​ (​v​1​​)�  = ​ v​1​​ ​a​ 1​ ∗​ (​v​1​​) − ​∫ 
2
​ 
​v​1​​
​​ ​a​ 1​ ∗​ (w) dw  = ​ v​1​​ ​min​ 

​
​
​
 ​  { ​v​1​​ − 2, 1} − ​∫ 

2
​ 
​v​1​​
​​ ​min​ 

​
​
​
 ​  { w − 2, 1}dw

	 = ​
⎧

 
⎪

 ⎨ 
⎪

 
⎩
​
​ ​v​ 1​ 

2​
 __ 2 ​ − 2

​ 
for ​v​1​​ ∈ [2, 3]

​  
​ 5 _ 2 ​
​ 

for ​v​1​​ ∈ (3, 4]
​​

and

   ​   p​ 2​ ∗​ (​v​2​​)  = ​ v​2​​ ​a​ 2​ ∗​ (​v​2​​) − ​∫ 
1
​ 
​v​2​​
​​ ​a​ 2​ h​ (w) dw 

	 = ​ v​2​​​[​ 
​v​2​​ − 1

 _ 
2
  ​]​ − ​∫ 

1
​ 
​v​2​​
​​​[​ 

w − 1 _ 
2
  ​]​ dw  = ​  ​v​ 2​ 

2​ − 1
 _ 

4
  ​   for  ​v​2​​  ∈  [ 1, 2 ] .​
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Interim payments expressed in terms of bids are

(6)	​​ p​ 1​ ∗​​(​ϕ​ 1​ −1​ (​b​1​​))​  = ​
⎧

 
⎪

 ⎨ 
⎪

 
⎩
​
​ ​b​ 1​ 2​ _ 8 ​ + ​b​1​​​ 

 for  ​b​1​​  ∈  [ 0, 2 ]
​  

​ 5 _ 2 ​
​ 

 for  ​b​1​​  ∈  (2, 4 ] 
​​​ 

and

(7)	​​ p​ 2​ ∗​​(​ϕ​ 1​ −1​ (​b​2​​))​  = ​  ​b​ 2​ 2​ _ 
16

 ​ + ​ ​b​2​​ _ 
4
 ​   for  ​b​2​​  ∈  [ 0, 2 ]​ .

Consider now ​​b ̂ ​  =  1​ , for which we have that ​​G​1​​ (​b ̂ ​)  = ​  1 _ 4 ​​ and ​​G​2​​ (​b ̂ ​)  = ​  1 _ 2 ​​. This 
choice of ​​b ̂ ​​ yields

	​ ​p​​ u​ (​b​i​​)  =  − ​ ​b​i​​ _ 
2
 ​   and  ​ p​​ l​ (​b​i​​)  = ​  5 ​b​i​​ _ 

2
  ​ + ​ ​b​ i​ 2​ _ 

4
 ​ ,​

from which we can define the symmetric payment rule for equilibrium bids:

​	 ​p​​ s​ (​b​i​​ , ​b​j​​)  = ​

⎧

 
⎪
 ⎨ 

⎪
 

⎩

​

− ​ ​b​i​​ _ 2 ​

​ 

 if  ​b​i​​  ∈  [ 0, 2 ]  and  ​b​j​​  ∈  [ 1, 4 ]

​    ​ 5 ​b​i​​ _ 2  ​ + ​ ​b​ i​ 2​ _ 4 ​​   if  ​b​i​​  ∈  [ 0, 2 ]  and  ​b​j​​  ∈  [ 0, 1)​    

​ 5 _ 2 ​

​ 

 if  ​b​i​​  ∈  (2, 4 ]  and  ​b​j​​  ∈  [ 0, 2 ] .

​​​

Finally, observe that this choice of ​​b ̂ ​​ implies that there are bids for which the winner 
could win the auction and, in addition, receive a subsidy (as ​​p​​ u​ ( · )  <  0​).

Our main result in the next section builds on the intuition in this example. The key 
difficulty in a symmetric implementation is that the same bid, when made by differ-
ent bidders, must lead to the appropriate, potentially different interim payments. For 
this to be the case, the payment rule needs to be designed in a way that utilizes the 
difference in the distribution of the equilibrium bids of each bidder. In this example, 
we simply had to charge different amounts depending on whether the opponent’s bid 
was above or below ​​b ̂ ​​. The proof of the main result contains the substantially harder 
generalization of this construction to ​n​ bidders.

III.  Implementation via Symmetric Auctions

In this section, we present and discuss the main result—a characterization of 
implementable IC and IR direct mechanisms. A constructive approach to determin-
ing whether a particular direct mechanism is implementable requires first the design 
of a symmetric auction and then a derivation of its equilibrium. However, deriving 
equilibria for a given symmetric auction can be a hard task. For instance, it is well 
known that it is difficult to obtain closed-form solutions for equilibrium bids in the 
first-price auction for arbitrary distributions. We simplify our task by showing that 



288	 American Economic Journal: microeconomics� february 2017

the set of implementable mechanisms is a subset of the set of hierarchical mecha-
nisms. This allows us to use an argument similar to that of the example in the pre-
vious section.

We begin by defining hierarchical allocation rules.13 These are generated by 
an ordered list ​I  = ​ (​I​1​​ ,  … , ​I​n​​)​​ of index functions that are nondecreasing mappings 
​​I​i​​​ : ​​V​i​​​ → ℝ for ​i  ∈  N​. A hierarchical allocation rule is generated from a given list of 
index functions ​I​ as follows

(Hierarchical Allocation)

    ​​a​ i​ h​​(v)​  = ​
{

​
​  1 _________________  # {  j  ∈  N  :  ​I​j​​ (​v​j​​)  = ​ I​i​​ (​v​i​​)}

 ​
​ 

 when  ​I​i​​ (​v​i​​)  ≥  max { ​I​−i​​ (​v​−i​​), 0}
​     

0
​ 

 otherwise.
 ​​  ​

Each buyer’s value is transformed into an index via the index function. The good 
is then allocated to the buyer with the highest positive index, and ties are broken 
equally. Restricting allocations to buyers with positive indices is essentially equiv-
alent to setting a reservation bid. Choosing a reserve of 0 for the index functions is 
without loss of generality, as all bids can always be moved up or down by a constant. 
In addition, note that index functions can be chosen so that allocations occur above 
different reservation values across the buyers.

A hierarchical mechanism ​(I, ​p​​ h​)​ is an IC and IR mechanism that consists of 
index functions ​I​ and payment functions ​​p​​ h​​. The allocation ​​a​​ h​​ is determined as 
shown above from the index functions. For the results that follow, we find it con-
venient to denote a hierarchical mechanism in terms of the index functions ​I​ as 
opposed to the allocation rule ​​a​​ h​​. If two lists of index functions ​I​ and ​​I ′ ​​ generate the 
same allocation rule ​​a​​ h​​ , then it must be that one is a monotone transformation of the 
other. Formally, if ​I​ and ​​I ′ ​​ generate the same allocation ​​a​​ h​​ , then there exists a mono-
tone function Γ : ℝ → ℝ such that ​​I​i​​ (​v​i​​)  =  Γ(​I​ i​ ′ ​ (​v​i​​))​ for all ​i​ and ​​v​i​​​. The particular 
choice of index functions that correspond to a given allocation ​​a​​ h​​ does not matter for 
the statement of any of our results.

Since the index functions are nondecreasing, having a higher value implies a 
weakly higher probability of winning. This implies that every hierarchical alloca-
tion rule ​​a​​ h​​ has associated IC transfers ​​p​​ h​​ (pinned down to constants) that yield a 
hierarchical mechanism. All mechanisms in applied mechanism design that we are 
aware of fall within the class of hierarchical mechanisms (we provide examples of 
nonhierarchical mechanisms below). In the efficient Vickrey auction, values serve 
as indices or ​​I​i​​ (​v​i​​)  = ​ v​i​​​ , and in the optimal auction (with increasing virtual val-
ues) the indices are given by the virtual values or ​​I​i​​ (​v​i​​)  = ​ ϕ​i​​ (​v​i​​)​. When the vir-
tual values are not increasing, the index functions are simply the “ironed” virtual 
value functions (Myerson 1981). Alternatively, suppose an auctioneer with affir-
mative action concerns wants to “subsidize” a historically disadvantaged bidder ​i​ 
over a bidder ​j​ where the latter has index ​​I​j​​ (​v​j​​)  = ​ v​j​​​. The index for bidder ​i​ could 

13 This term was introduced by Border (1991). 
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reflect either a flat subsidy ​​I​i​​ (​v​i​​)  = ​ v​i​​ + s​ (where ​s  >  0​) or a percentage subsidy 
​​I​i​​ (​v​i​​)  =  s ​v​i​​​ (where ​s  >  1​).

We show below that any implementable mechanism must effectively be a hier-
archical mechanism. This allows us to focus on this smaller class of mechanisms, 
which in turn simplifies the implementation task, as in the previous section. Since 
the allocation rule of a symmetric auction that implements a hierarchical mechanism 
must allocate the good to the bidder with the highest index, a natural assumption 
is to make equilibrium bids correspond to the index values. Then, constructing the 
symmetric implementation essentially boils down to finding a symmetric payment 
rule that yields the same interim payments. Given a hierarchical mechanism 
​(I, ​p​​ h​)​ , the distribution ​​F​i​​​ on the set of values ​​V​i​​​ induces a distribution ​​G​i​​​ on the set 
of indices or bids

(Bid Space)	​ ​B​i​​  ≡ ​ {​I​i​​ (​v​i​​) | ​v​i​​  ∈ ​ V​i​​}​.​

At times, we will slightly abuse notation and use ​​G​i​​​ as both a distribution and a 
measure. The meaning will be clear depending on whether the argument of ​​G​i​​​ is a 
real number or a set. The notation ​​G​i​​​ deliberately suppresses the dependence on the 
index function ​​I​i​​​; the meaning will always be clear from the context. Since index 
functions ​I​ are not necessarily strictly increasing, the induced distributions ​​G​i​​​ may 
have atoms. Additionally, notice that the set ​​B​i​​​ need not be an interval because the 
index functions ​I​ may be discontinuous.

A hierarchical allocation mechanism ​(I, ​p​​ h​)​ can be implemented if we can find a 
symmetric payment function ​​p​​ s​​ such that

(⋆)	​ ​p​ i​ h​ (​v​i​​)  = ​ ∫ ​B​−i​​
​ 

 
 ​​  ​ p​​ s​​(​I​i​​ (​v​i​​), ​b​−i​​)​ d ​G​−i​​ (​b​−i​​)   for all i  ∈  N and ​v​i​​  ∈ ​ V​i​​.​

If such a symmetric payment function exists, it follows that an equilibrium of the 
symmetric auction with this payment rule will involve each buyer ​i​ with value ​​v​i​​​ bid-
ding their index ​​I​i​​ (​v​i​​)​. By construction, such bids generate the required allocation.

The intuition is straightforward and identical to that of the example. Suppose that 
a bidder with value ​​v​i​​​ makes a bid ​​b​ i​ ′ ​  ∈ ​ B​i​​​ other than her index so ​​b​ i​ ′ ​  ≠ ​ I​i​​ (​v​i​​)​. Her 
corresponding allocation and payment would be identical to what she would get by 
reporting a value ​​v​ i​ ′ ​  ∈ ​ I​ i​ −1​ (​b​ i​ ′ ​)​ , resulting in lower utility as the direct mechanism 
​(I, ​p​​ h​)​ is IC.14 Off-equilibrium bids ​​b​ i​ ′ ​  ∉ ​ B​i​​​ , which lie outside the bid space, can be 
punished by requiring high expected payments at these bids.

We now present our main result as two separate theorems.

Theorem 1: Suppose that a direct revelation mechanism ​(​a​​ d​ , ​p​​ d​)​ is imple-
mentable. Then, there exists an implementable hierarchical mechanism ​(I, ​p​​ h​)​ such 
that its implementation is an almost sure implementation of ​(​a​​ d​ , ​p​​ d​)​.

14 Here, ​​I​ i​ −1​ ( · )​ is the correspondence defined by ​​I​ i​ −1​ (​b​i​​)  =  { ​v​i​​  ∈ ​ V​i​​ | ​I​i​​ (​v​i​​)  = ​ b​i​​ }​. 
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Theorem 1 says that it is essentially without loss to restrict attention to hierar-
chical mechanisms. It states that, for any implementable direct mechanism, there is 
an implementable hierarchical mechanism that almost surely has exactly the same 
allocation and payments. An implication is that, for any implementation of any non-
trivial objective, a principal can restrict attention to hierarchical mechanisms. This 
result is intuitive. Clearly, a nonhierarchical mechanism cannot have an implemen-
tation in pure strategies because, if so, the allocation rule could have been generated 
by an index rule with indices equal to the equilibrium bids in the symmetric auction. 
The Appendix contains the argument for mixed strategies.

Theorem 2 provides conditions that characterize the set of implementable hierar-
chical mechanisms.15

Theorem 2: A hierarchical mechanism ​(I, ​p​​ h​)​ is implementable if and only if, 
for any pair of distinct buyers ​i, j  ∈  N​ who have the same distribution of bids 
(​​G​i​​  = ​ G​j​​​), and any pair of values for these two buyers ​​v​i​​  ∈ ​ V​i​​ ,​ ​​v​j​​  ∈ ​ V​j​​​ satisfying ​​
I​i​​ (​v​i​​)  = ​ I​j​​ (​v​j​​)​ , we have that ​​p​ i​ h​ (​v​i​​)  = ​ p​ j​ h​ (​v​j​​)​.

We can decompose this into two parts:

	 (i)	 Whenever bid distributions ​​G​i​​​ differ across the buyers, the condition of the 
theorem is vacuously satisfied, and therefore, it is possible to construct a 
payment rule so that (​⋆​) is satisfied. When there are two bidders, a payment 
rule like the one in the previous section can be used to construct the imple-
mentation. The construction for more that two bidders is considerably more 
complicated and can be found in the Appendix.

	 (ii)	 When two buyers are such that the two induced bid distributions are the same, 
that is ​​G​i​​  = ​ G​j​​​ , then the interim payments must be the same for any two val-
ues (one for each buyer) that correspond to the same index. This is because it 
is no longer possible to generate different equilibrium expected payments for 
distinct buyers who make the same bid.

Player ​i​ uses the distribution ​​G​−i​​​ of other players’ bids to calculate her expected 
payment as a function of her bid. The construction in the Appendix shows that there 
is a way to exploit the differences in distributions ​​G​−i​​​ , such that for each bidder ​i​ , 
the expected payment when bidding ​​b​i​​​ is exactly the interim payment in the origi-
nal direct revelation mechanism corresponding to values ​​v​i​​​ satisfying ​​I​i​​ (​v​i​​)  = ​ b​i​​​.  
(The example in Section II demonstrates such a construction for the two bidder case.) 
Case (i) above says that any asymmetry in the direct mechanism can be undone as 
long as the bid distributions differ across buyers. Conversely, case (ii) says that dif-
ferences in the bid distributions are necessary to generate different interim payments 
for the same bids.

15 The theorem is actually slightly stronger. The conditions are also necessary and sufficient for (the weaker 
criterion of) interim implementability of a hierarchical mechanism. 
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The set of hierarchical mechanisms that do not satisfy the conditions above is 
small; in fact, the set of implementable mechanisms is generic in a topological 
sense, formalized below.

For each buyer ​i​ , the distribution ​​F​i​​​ defines a measure space on ​​V​i​​​. Consider the 
space of index functions for buyer ​i,​ as an ​​L​p​​​ space where ​1  ≤  p  ≤  ∞​. The space 
of index functions ​I  =  (​I​1​​ ,  … , ​I​n​​)​ is topologized with the product topology and 
denoted ​​. Since a finite product of complete normed vector spaces is a Baire space, 
standard topological notions of genericity are well defined. Recall that a property is 
said to be generically satisfied on a topological space if the set that does not satisfy 
it is a meager set (or conversely, the set that does satisfy it is a residual set). Further, 
recall that a set in a topological space is meager if it can be expressed as the union 
of countably many nowhere dense subsets in that space.

Corollary 1: Generically, on ​​ , ​​G​i​​  ≠ ​ G​j​​​ for every pair of buyers ​i​ and ​j​.16

The intuition and proof for this result are straightforward: two index functions that 
result in the same distribution over bids can be made different by slightly perturbing 
them. The fact that a large number of disparate objectives can be achieved either 
exactly or arbitrarily closely via a symmetric implementation is the main insight of 
this paper, and it is worth repeating its implications. A policy that simply forces an 
auctioneer to treat the bids of different buyers similarly need not imply fairness as 
it does not imply that the resulting outcomes are equal from an ex ante perspective. 
Careful auction design can allow the seller to achieve a wide variety of discrimi-
natory goals in environments where explicit favoritism is prohibited. In particular, 
counter to prevailing intuition,17 the following corollary points out that the seller 
can always maximize revenue.

Corollary 2: The optimal auction can be implemented.

It is worth stressing that the corollary above requires no hazard rate assumptions 
on the value distributions. When the distributions satisfy the increasing virtual value 
property, it is easy to show that if the bidders are asymmetric, the distribution over 
virtual values must also be different. When the virtual values are not increasing, then 
the proof of the corollary shows that if the distributions over the “ironed” virtual 
values are the same, then the condition of the theorem must be satisfied.

16 It is possible to restate this corollary to say instead that implementability is a generic property in the space 
of hierarchical mechanisms (instead of in the space of index functions that do not include payments). We have 
deliberately chosen not to do so to avoid the distracting technicalities inherent in defining the appropriate topology 
on the space of hierarchical mechanisms. The complications arise from the fact that the index functions restrict the 
payments (up to constants) via incentive compatibility, so we cannot simply employ a product topology over index 
functions and payments. 

17 For instance, in an influential paper, Cantillon (2008) conjectured that bidder asymmetries hurt the auctioneer 
in any anonymous mechanism after showing that this is not the case in the optimal auction. Corollary 2 answers this 
conjecture in the negative by showing that the optimal auction can be implemented by an anonymous mechanism. 
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IV.  The Limits to Implementability

The conditions in Theorem 2 were on the distributions of the bid space. The 
following corollary qualitatively describes the types of hierarchical allocation rules 
that cannot be implemented.

Corollary 3: Suppose that a hierarchical mechanism ​(I, ​p​​ h​)​ is not imple-
mentable. Then there must exist two distinct buyers ​j​ and ​​j ′ ​​ such that their index 
functions can be written 

	​ for i  =  j, ​j ′ ​ :   ​I​i​​ (​v​i​​)  =  Γ(​F​i​​ (​v​i​​)) for almost every  ​v​i​​  ∈ ​ V​i​​ ,​

for some nondecreasing function ​Γ( · )​.

The corollary above demonstrates that the only non-implementable hierarchical 
mechanisms are ones where there are two buyers whose indices corresponding to a 
value depend solely on the “statistical rank” of that value in the distribution of that 
buyer’s values.

First, note that Corollary 3 does not state that all mechanisms with this property 
are non-implementable, that is, this condition is necessary but not sufficient. For a 
mechanism to be non-implementable, two buyers with values that correspond to the 
same statistical rank must also need to make different interim payments (as men-
tioned in the remarks following Theorem 2). There are hierarchical mechanisms that 
satisfy the condition of Corollary 3 but have a symmetric auction implementation. 
For instance, in the efficient auction with ex ante identical bidders, the good is given 
to the bidder with the highest value (and hence statistical rank), but it can still be 
implemented by a symmetric, second-price auction.

The corollary above identifies exactly those hierarchical mechanisms for which 
the resulting distribution over indices is the same. In particular, two buyers have the 
same distribution over indices if and only if, for each buyer, the mapping from value 
to index depends solely on the statistical rank. Why? Since the distribution of indices 
are identical, this implies that the mass of values who bid below a given index is the 
same for each of these buyers. Also, hierarchical mechanisms have nondecreasing 
index rules (to satisfy IC). These two facts in conjunction imply that if the values of 
these two buyers have the same statistical rank, they must make the same bid.

Interestingly, there are real world examples (in non-auction contexts) where the 
statistical rank is a criterion that is utilized. A prominent such example is the “Texas 
Top 10” program, which guarantees admission to the University of Texas to any 
Texan high school student in the top 10 percent of their class. This policy was insti-
tuted after Texas outlawed explicit race-based affirmative action. While race-blind 
on the surface, this policy is well understood as a second best form of affirmative 
action, since relatively segregated neighborhoods imply that minority students are 
concentrated in some high schools.18

18 Chan and Eyster (2003); Fryer, Loury, and Yuret (2008) demonstrate the theoretical extent to which universi-
ties can achieve diversity goals via “race-blind” admission criteria. 
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The following two examples demonstrate why hierarchical mechanisms with 
allocation rules as in Corollary 3 may not be implementable. In the first example, 
the good is allocated randomly and in the second, the seller would like to subsidize 
one of the buyers.

Example 2: There are two buyers. Buyer ​1​ has a value uniformly distributed on ​
[0, 1 ]​. Buyer 2 has a value uniformly distributed on ​[0.5, 1 ]​. The seller assigns the 
good at random (with equal probability) to each of the two buyers irrespective of 
their value. Buyer ​1​ is never asked to pay anything, whereas buyer ​2​ is always asked 
to pay ​0.25​.

Notice that this mechanism is a hierarchical mechanism where each bidder’s 
index function is a constant nonnegative function, or, ​​I​1​​ (​v​1​​)  = ​ I​2​​ (​v​2​​)  ≥  0​ for all ​​
v​1​​  ∈  [ 0, 1 ]​ and ​​v​2​​  ∈  [0.5, 1 ]​. In terms of Corollary 3, ​Γ​ in this case is the con-
stant mapping. Here, the bid space just consists of a single point, and distributions 
​​G​1​​​ , ​​G​2​​​ are degenerate and therefore satisfy ​​G​1​​  = ​ G​2​​​. However, the payments dif-
fer. Therefore, this mechanism violates the conditions of Theorem 2. It follows that 
there is no symmetric implementation of this direct revelation mechanism.

Example 3: Consider an environment where there are two buyers. Buyer ​1​ has 
a value ​​v​1​​​ that is uniformly distributed on ​[ 0, 1 ]​. Buyer ​2​ has a value ​​v​2​​​, which is 
uniformly distributed on ​[ 1, 2 ]​.

Suppose that the seller would like to “subsidize” the bid of buyer ​1​ by a dol-
lar. Put differently, buyer ​2​ wins the good if and only if his value exceeds that of  
buyer ​1​ by ​1​. Therefore, for any ​​v​1​​  ∈  [ 0, 1 ]​ , the interim allocation probabilities 
are given by

	​ ​a​ 1​ h​ (​v​1​​)  = ​ a​ 2​ h​ (1 + ​v​1​​).​

The IC and IR payments are chosen to be such that the lowest type of both buyers 
for whom there is no probability of winning neither make payments nor are paid. 
This is clearly a hierarchical mechanism with index functions ​​I​1​​ (​v​1​​)  = ​ I​2​​ (​v​1​​ + 1)​ , 
where ​​I​1​​ ( · )​ is strictly increasing on the interval ​[ 0, 1 ]​. In terms of Corollary 3, ​Γ​ in 
this case is the identity mapping.

Observe that this implies that the distributions over the bid spaces are identical, 
since ​​G​1​​​ and ​​G​2​​​ are both ​U [ 0, 1 ]​. Moreover, incentive compatibility pins down pay-
ments, and therefore we have

	​ ​p​ 2​ h​ (​v​1​​ + 1)   = ​ p​ 1​ h​ (​v​1​​) + ​a​ 1​ h​ (​v​1​​).​

For all values ​​v​1​​  ∈  (0, 1 ]​ , therefore, the equation above implies that

	​ ​p​ 2​ h​ (​v​1​​ + 1)   ≠ ​ p​ 1​ h​ (​v​1​​).​

Since the interim payments differ for values that have the same index and the bid 
spaces have identical distributions, symmetric payments cannot be constructed to 
implement this mechanism.
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We end this example with a few remarks. First, observe that the argument above does  
not depend on the fact that the value distributions are uniform: the allocation rule 
would remain non-implementable (using the identical argument) with any other distri-
bution. What matters is the fact that the buyers have the same distributions with shifted 
supports and that the seller’s goal is to subsidize the weaker bidder to exactly make up 
the difference. Consequently, note that this mechanism could have been implemented 
if buyer 2’s value distribution was even slightly different than that of buyer 1 as this 
would imply that ​​G​1​​  ≠ ​ G​2​​​. Similarly, implementability could be restored if the seller 
changed the subsidy amount to any value that did not make up the exact difference.

A. Inactive Losers

Policymakers may want to prevent the seller from discriminating to an extent beyond 
the restrictions of Corollary 3. What then can be done? We argue that one avenue can 
be to impose certain simple restrictions in addition to symmetry on the auction format. 
Such additional restrictions can introduce real constraints on the seller. Importantly, 
such policies are easy to implement and enforce. In what follows, we describe the 
impact of one such possible restriction: the seller is prohibited from either charging 
or subsidizing losers in the auction. In the online Appendix, we consider instead 
requiring the payment rule to have properties such as continuity or monotonicity in  
the bids. We show that each of these additional requirements impose meaningful 
restrictions on the seller; in particular, she can no longer always maximize revenue.

An important property of first-price and second-price auctions is that losers nei-
ther make nor receive payments. With the notable exception of charity auctions (see, 
for instance, Goeree et al. 2005), most auctions conducted in the real world have 
this feature. It is often argued that requiring the loser to pay reduces participation, 
which is one of the reasons that all-pay auctions are seldom used in practice. Hence, 
this might be construed as a shortcoming of Theorem 2: the implementation that we 
construct may not have this property.

A hierarchical mechanism has a symmetric, inactive losers implementation 
​(​a​​ s​ , ​p​​ s​)​ if ​​p​​ s​ (​b​i​​ , ​b​j​​)  =  0​ whenever ​​b​i​​  < ​ b​j​​​. Note that such an implementation may 
sometimes require the winner to make payments that are greater than his value and 
thus may not be ex post IR (we consider the ex post IR requirement in Section 1.3 of 
online Appendix). We now state a condition that is necessary and sufficient for there 
to exist such an implementation. For simplicity and brevity, we restrict attention to 
the case of two bidders as this is sufficient to make our point.

Consider a hierarchical mechanism ​(I, ​p​​ h​)​ that induces distributions ​​G​1​​​ and ​​G​2​​​ 
on the set of bids. This mechanism satisfies the inactive losers condition if, for all 
​​b ̃ ​​ such that there is a constant ​α  >  0​ for which ​​G​1​​ (b)   =  α ​G​2​​ (b)​ for all ​b  ≤ ​ b ̃ ​​ , 
we have ​α ​p​ 1​ h​ (​v​1​​)  = ​ p​ 2​ h​ (​v​2​​)​ for all ​​v​i​​  ∈ ​ I​ i​ −1​ (​b ̃ ​)​.

The necessity of this condition for an inactive losers implementation is intuitive. 
Consider a bid ​​b ̃ ​​ for which ​​G​1​​ (b)   =  α ​G​2​​ (b)​ for all ​b  ≤ ​ b ̃ ​​. For any ​​v​i​​  ∈ ​ I​ i​ −1​ (​b ̃ ​)​ , 
the interim payments for any inactive losers implementation must satisfy

​​p​ 2​ h​ (​v​2​​)  = ​ ∫ ​b​1​​≤​b ̃ ​​ 
 
 ​​  ​ p​​ s​ (​b ̃ ​, ​b​1​​) d ​G​1​​ (​b​1​​)  = ​ ∫ ​b​2​​≤​b ̃ ​​ 

 
 ​​  ​ p​​ s​ (​b ̃ ​, ​b​2​​)α d ​G​2​​ (​b​2​​)  =  α ​p​ 1​ h​ (​v​1​​).​
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The next proposition argues that this condition is also sufficient. The sufficiency 
follows from a similar construction to that utilized in Theorem 2.

Proposition 1: Suppose that ​n  =  2​. An implementable hierarchical mechanism ​
(I, ​p​​ h​)​ has an inactive losers implementation if and only if the induced bid distribu-
tions ​​G​1​​​ and ​​G​2​​​ satisfy the inactive losers condition.

Proof:
We begin by showing necessity. Suppose the inactive losers condition does 

not hold. This implies that there is ​​b ̃ ​​ such that ​​G​1​​ (b)   =  α ​G​2​​ (b)​ for all ​b  ≤ ​ b ̃ ​​  
but ​α ​p​ 1​ h​ (​b ̃ ​)  ≠ ​ p​ 2​ h​ (​b ̃ ​)​. By observation it must be the case that ​​​ b _ ​​1​​  = ​​  b _ ​​2​​  = ​  b _ ​​.

If there is an inactive losers implementation ​p(​b​i​​ , ​b​j​​)​ , we have the following:

	​ ​p​ 2​ h​ (​b ̃ ​)  = ​ ∫ ​ b _ ​​ 
​b ̃ ​​​ p(​b ̃ ​, ​b ′ ​ ) d ​G​1​​ (​b ′ ​ )  =  α ​∫ ​ b _ ​​ 

​b ̃ ​​​ p(​b ̃ ​, ​b ′ ​) d ​G​2​​ (​b ′ ​)  =  α ​p​ 1​ h​ (​b ̃ ​)​,

which is a contradiction. Notice that the equation above follows from the fact that 
an inactive loser implementation by definition requires that the losing bidder make 
or receive no payments.

We now show sufficiency. We construct the payment rule for an arbitrary ​​b ̃ ​​ , for 
each of the two cases of the inactive losers condition.

Case 1: There is a ​min { ​​ b _ ​​1​​ , ​​ b _ ​​2​​ }  < ​ b​​ ∗​  < ​ b ̃ ​​ such that ​​ ​G​1​​ (​b ̃ ​)
 _ 

​G​2​​ (​b ̃ ​)
 ​  ≠ ​  ​G​1​​ (​b​​ ∗​)

 _ ​G​2​​ (​b​​ ∗​) ​​. This 
implies that the matrix

	​ ​[​
​G​1​​ (​b ̃ ​) − ​G​1​​ (​b​​ ∗​)

​ 
​G​1​​ (​b​​ ∗​)

​   
​G​2​​ (​b ̃ ​) − ​G​2​​ (​b​​ ∗​)

​ 
​G​2​​ (​b​​ ∗​)

​]​​

has full rank. This in turn means that following system of equations (8) with vari-
ables ​x​ , ​y​ has a solution:

(8)	​ ​ p​ 1​ h​ (​b ̃ ​)  =  x[ ​G​2​​ (​b ̃ ​) − ​G​2​​ (​b​​ ∗​) ]  + y ​G​2​​ (​b​​ ∗​)

	 ​ p​ 2​ h​ (​b ̃ ​)  =  x[ ​G​1​​ (​b ̃ ​) − ​G​1​​ (​b​​ ∗​) ]  + y ​G​1​​ (​b​​ ∗​).​

Finally, setting

	​ p(​b ̃ ​, ​b ′ ​)  = ​
⎧

 
⎪

 ⎨ 
⎪

 
⎩
​
x
​ 

 for  ​b​​ ∗​  ≤ ​ b ′ ​  < ​ b ̃ ​
​  y​   for  b′ < ​b​​ ∗​​  

0

​ 
 otherwise

 ​​​

results in the desired interim payments.

Case 2: There is a constant ​α  >  0​ such ​​G​1​​ (b)   =  α ​G​2​​ (b)​ for all 
​min { ​​ b _ ​​1​​ , ​​ b _ ​​2​​ }  ≤  b  ≤ ​ b ̃ ​​.
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In this case, the condition implies that ​α ​p​1​​ (​b ̃ ​)  = ​ p​2​​ (​b ̃ ​)​. We can simply set

	​ p(​b ̃ ​, ​b ′ ​)  = ​
{

​​ 
​p​2​​ (​b ̃ ​)

 _ 
​G​1​​ (​b ̃ ​)

 ​​   for ​b ′ ​  < ​ b ̃ ​​  
0
​ 

 otherwise.
 ​​​

Clearly, in both cases, the corresponding construction results in the desired 
interim payments and is an inactive losers implementation. ∎

We should point out that the inactive losers condition is generically satisfied in 
the sense of Corollary 1. Intuitively, this is because any mechanism that does not sat-
isfy it can be converted to one that does by slightly perturbing it at the lower bound 
of the support of the bid distribution. Put differently, almost all hierarchical mech-
anisms have an inactive losers implementation. A natural way to further restrict the 
seller would be to require that the winner, in addition, must always make a positive 
payment or, put differently, cannot receive subsidies (which is a feature of all com-
monly used formats). To see the impact of this, observe that it would require the sys-
tem of equations (8) in the construction above to have a positive solution. Intuitively, 
in this particular construction, a system that does not have a positive solution cannot 
to altered to one that does by minor alterations of the bid distribution.

That said, we now revisit Example 1 to show that the inactive losers condition is 
not economically vacuous in that it can be violated in the optimal auction.

Example 1 (Continued): Recall that buyer ​1​ has a value that is uniformly dis-
tributed over ​[ 2, 4 ]​ , while buyer ​2​’s value is uniformly distributed over ​[ 1, 2 ]​ 
and the seller wants to maximize revenue. The distributions of virtual values are ​​
G​1​​  ∼  U [ 0, 4 ]​ and ​​G​2​​  ∼  U [ 0, 2 ]​, respectively. Therefore, for any ​​b ̃ ​  ∈  [ 0, 2 ]​ , ​​
G​1​​ (b)   =  0.5 ​G​2​​ (b)​ for all ​b  ≤ ​ b ̃ ​​.

Now consider ​​b ̃ ​  =  2​. From (6) and (7), the interim payments at this bid are 
​​p​ 1​ ∗​​(​ϕ​ 1​ −1​ (2))​  = ​  5 _ 2 ​​ and ​​p​ 2​ ∗​​(​ϕ​ 2​ −1​ (2))​  = ​  3 _ 4 ​​. Note that the payment of buyer 1 is not 
twice that of buyer 2, so the inactive losers condition is not satisfied.

We end this section by observing that practical constraints (without additional 
explicit restrictions) may restrict the seller’s ability to discriminate. For instance, 
even though the symmetric implementations we construct are individually ratio-
nal in an interim sense, they need not be individually rational in an ex post sense. 
Requiring a bidder to sometimes make a very large payment (for some bid realiza-
tions) may not be feasible in practice since bidders might be budget constrained or 
could simply refuse to pay. Once again, the online Appendix shows that when the 
seller is restricted to using a symmetric auction that is is ex post individually ratio-
nal, she may not be able to maximize revenue.

V.  Concluding Remarks

In this paper, we have introduced the problem of policy design to prevent discrim-
ination in auctions. We have shown that, in theory, the current antidiscrimination 
policies in place are completely unrestrictive as symmetric auctions can implement 



Vol. 9 No. 1� 297Deb and Pai: Discrimination via Symmetric Auctions

virtually all possible seller goals. That said, we have argued that the government can 
meaningfully restrict sellers by placing additional, easy to enforce restrictions on 
the set of allowable formats.

We end with a few avenues for future research. Practical auctions often have rules 
that are “simple” to explain to bidders. Regulators could codify and require auction-
eers to use simple formats. Such a simplicity constraint could be an effective way to 
restrain sellers. Needless to say, one of the challenges in designing policies favoring 
simple auctions is a formal definition of simplicity.

Finally, auctions conducted in different contexts often have idiosyncratic “quirks” 
in the formats.19 Even among auctions that are based around the more standard for-
mats, the seller has freedom to choose supplementary details such as activity rules, 
bid qualification, etc. Can these be designed to achieve a discriminatory motive and, 
if so, how can this be detected by regulators?

For instance, in spectrum auctions, the seller decides how to split the bandwidth 
for sale. It is well understood that, in general, smaller bandwidths are substitutes for 
incumbents who already own a large amount of spectrum but are complements for 
new entrants (see, for instance, Binmore and Klemperer 2002). Thus, by his choice, 
the seller can implicitly favor certain companies. Klemperer (2002) has several 
accounts of sellers carefully exercising such design flexibility to favor new entrants 
to the local telecom market. While such motives may be justified, this flexibility 
can also be used by corrupt bureaucrats to favor preferred companies. Detection of 
such favoritism is important in countries with high levels of corruption such as India 
where there has been historical malpractice in government auctions (and, in partic-
ular, in the allocation of spectrum).

Appendix: Proofs from Section III

A. Proof of Theorem 1

Fix a direct revelation mechanism ​(​a​​ d​ , ​p​​ d​)​ , and suppose it has a symmetric imple-
mentation ​(​a​​ s​ , ​p​​ s​)​ where buyers use strategies ​σ​. We are left to construct a symmet-
rically implementable hierarchical mechanism with the desired property.

Pure Strategies.—First suppose the mechanism ​(​a​​ d​ , ​s​​ d​)​ has an implementation in 
pure strategies. In this case, note that the hierarchical mechanism defined as

	​  ​I​i​​ (​v​i​​)  = ​ σ​i​​ (​v​i​​),   ​p​ i​ h​ (​v​i​​)  = ​ p​ i​ d​ (​v​i​​),​

has a symmetric implementation that (exactly) implements the direct revelation 
mechanism.

Mixed Strategies.—So now suppose the implementation of the direct revela-
tion mechanism is in mixed strategies. Fix the symmetric auction game. A mixed 

19 An example of a nonstandard design used in practice is the eponymous Amsterdam auction, used for real 
estate sales there, which awards money to the highest losing bidder (Goeree and Offerman 2004). 
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strategy equilibrium in this setting is a mapping for each buyer ​i​ , ​​σ​i​​ : ​V​i​​  →  Δℝ,​ 
that is, buyer ​i​ with value ​​v​i​​​ randomizes over bids with probability measure ​​σ​i​​ (​v​i​​)​.

A little notation is useful. Given that buyer ​i​ ’s values are distributed according to ​​
F​i​​​ , and that when he has value ​​v​i​​​ , he randomizes over bids with measure ​​σ​i​​ (​v​i​​)​ , let ​​
G​ i​ r​​ denote the implied distribution over bids.

Let us denote by ​​​a ̆ ​​i​​ (​b​i​​)​ the interim winning probability of buyer ​i​ when he bids ​​
b​i​​​ , with associated interim payment ​​​p ̆ ​​i​​ (​b​i​​)​. Note that ​​​a ̆ ​​i​​ (​b​i​​)​ is nondecreasing in ​​b​i​​​ 
for all buyers ​i​.

The following observation shows that the bids over which different values of a 
given buyer randomize are disjoint and ordered.

Observation 1: For any buyer ​i​ and values ​​v​i​​  < ​ v​ i​ ′ ​​ , the support of the distribu-
tions of bids by these two values is completely ordered, i.e.,

	​ ​max​ 
​
​​ ​  { ​​a ̆ ​​i​​ (​b​i​​) : ​b​i​​  ∈  supp(​σ​i​​ (​v​i​​))}  ≤ ​ min​ 

​
​
​
 ​  { ​​a ̆ ​​i​​ (​b​i​​) : ​b​i​​  ∈  supp(​σ​i​​ (​v​ i​ ′ ​))}.​

Proof:
Firstly, note that if buyer ​i​ with value ​​v​i​​​ mixes over bids ​​b​i​​ < ​b​ i​ ′ ​​ with ​​​a ̆ ​​i​​ (​b​i​​) 

< ​​a ̆ ​​i​​ (​b​ i​ ′ ​  )​ , then he must be indifferent between these bids. Therefore, ​​​p ̆ ​​i​​ (​b​ i​ ′ ​) − ​​p ̆ ​​i​​ (​b​i​​) 
= ​ v​i​​ (​​a ̆ ​​i​​ (​b​ i​ ′ ​  ) − ​​a ̆ ​​i​​ (​b​i​​))​ , implying that ​​v​ i​ ′ ​​ cannot be indifferent between both these bids.

So now suppose buyer ​i​ with value ​​v​ i​ ′ ​  > ​ v​i​​​ has an equilibrium bid ​​b​ i​ ′′​​ with 
​​​a ̆ ​​i​​ (​b​ i​ ′′​ )  < ​​ a ̆ ​​i​​ (​b​ i​ ′ ​)​. Combining the equilibrium constraints that ​​v​i​​​ prefers to bid 
​​b​ i​ ′ ​​ than ​​b​ i​ ′′​​ and that ​​v​ i​ ′ ​​ prefers to bid ​​b​ i​ ′′​​ than ​​b​ i​ ′ ​​ , we have a contradiction. The obser-
vation follows. ∎

Observation 2: For any buyer ​i​ , the set of values ​​v​i​​  ∈ ​ V​i​​​ such that

	​ ∃ ​b​i​​ , ​b​ i​ ′ ​  ∈  supp(​σ​i​​ (​v​i​​)) : ​​a ̆ ​​i​​ (​b​i​​)  ≠ ​​ a ̆ ​​i​​ (​b​ i​ ′ ​)​

has ​​F​i​​​ measure ​0​.

Proof:
By Observation 1, we have that the support of distribution of bids for a given 

buyer is effectively disjoint. Therefore, at most a countable number of values for 
any buyer can have two bids with different interim probabilities of winning in their 
support, since the range of ​​​a ̆ ​​i​​ ( · )​ is ​[ 0, 1 ]​ and the reals can have an at most countable 
set of positive length intervals. Since ​​F​i​​​ is differentiable, the measure of a countable 
set of values is ​0​.

Finally consider the hierarchical mechanism ​(I, ​p​​ h​)​ constructed as follows. Fix a 
buyer ​i​. Some buyer types may be following properly mixed strategies. These can 
be separated into two parts.

	 (i)	 By Observation 2, there are an at most countable set of buyer types who random-
ize over different values which result in different probabilities of getting the 
good. For each of these values, define ​​I​i​​ (​v​i​​) = ​b​i​​​ for some ​​b​i​​ ∈ supp(​σ​i​​ (​v​i​​)), 
​with ​​p​ i​ h​ (​v​i​​)  = ​ ∫ ​b​−i​​​ 

 
 ​​ ​ p​​ s​ (​b​i​​ , ​b​−i​​) d ​G​ −i​ r  ​ (​b​−i​​).​
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	 (ii)	 Finally the remaining types for any buyer ​i​ can be partitioned into intervals, 
such that all types in each interval receive a constant probability of winning. 
Any randomization by any value in this interval must be such that for any 
two distinct bids ​​b​i​​  < ​ b​ i​ ′ ​ ,​ such that ​​b​i​​ , ​b​ i​ ′ ​  ∈  supp(​σ​i​​ (​v​i​​))​ , ​​​a ̆ ​​i​​ (​b​i​​)  = ​​ a ̆ ​​i​​ (​b​ i​ ′ ​)​. 
It follows that ​​​a ̆ ​​i​​ ( · )​ is constant on ​[ ​b​i​​ , ​b​ i​ ′ ​ ]​. This implies that there cannot be a 
positive measure of values of other buyers ​−i​ that submit bids in the interval ​
[ ​b​i​​ , ​b​ i​ ′ ​ ]​. For any value in each such interval, ​[ ​ v _ ​, ​ v ̅ ​]​ ,20 define ​​I​i​​ (v)   =  b​ for 
some ​b​ within the smallest interval within ​​∪​v∈[​ v _ ​, ​ v ̅ ​]​​ supp(​σ​i​​ (​v​i​​))​ which carries 
all the mass. Further, define ​​p​ i​ h​ (v)   = ​ p​ i​ d​ (v).​

For each remaining value ​​v​i​​​ , ​​σ​i​​ (​v​i​​)​ is a single point, and we define ​​I​i​​ (​v​i​​)  = ​ σ​i​​ (​v​i​​), ​
p​ i​ h​ (​v​i​​)  = ​ p​ i​ d​ (​v​i​​)​.

The hierarchical mechanism ​(I, ​p​​ h​)​ has a symmetric implementation by construc-
tion. Further, by construction, it achieves the same ex post allocation and interim 
payment almost surely (that is, for all buyer values other than the countable set of 
buyers in point (​i​) above). Therefore this implementation is an almost sure imple-
mentation of the original direct revelation mechanism. ∎

B. Proof of Theorem 2

Sufficiency.—At a high level, we generalize the ideas in our construction of the 
two bidder example in Section II. Recall that our goal is to construct a symmetric 
auction game that implements a hierarchical mechanism ​(I, ​p​​ h​)​ with corresponding 
allocation rule ​​a​​ h​​.

We construct a symmetric auction game that has a pure strategy Bayes-Nash 
equilibrium in which buyer ​i​ with value ​​v​i​​​ reports ​​I​i​​ (​v​i​​)​. By construction, therefore, 
the allocation of this mechanism equals ​​a​​ h​​. We are left to show that:

	 (i)	 as constructed, this auction game implements the desired payments ​​p​​ h​​;

	 (ii)	 for each buyer ​i​ , bidding according to ​​I​i​​ ( · )​ constitutes a Bayes-Nash equi-
librium of the construction auction.

Step 1: Preliminaries.—Our goal is to show that we can construct a symmetric ​​
p​​ s​ :  ​ℝ​​ n​  →  ℝ,​ such that

(A1)	​ ∀ i,  ∀ ​v​i​​  ∈ ​ V​i​​ , ​p​ i​ h​ (​v​i​​)  = ​ ∫ ​B​−i​​
​ 

 
 ​​  ​ p​​ s​​(​I​i​​ (​v​i​​), ​b​−i​​)​  d​G​−i​​ (​b​−i​​).​

In other words, we need to show that we can construct a ​​p​​ s​​ such that each buyer ​i​’s 
expected payment, in expectation over candidate equilibrium bids of other buyers, 
equals ​​p​ i​ h​ ( · )​.

20 Note that while this is written as a closed interval, the interval may be closed, open, or half open, half closed. 
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Step 2: Full Rank Events.—We say that an event ​E  ⊆ ​ ℝ​​ n−1​​ is symmetric if

		​  for every permutation ρ : { 1, 2, … , n − 1}  →  { 1, 2, … , n − 1},

		  (​b​1​​ , ​b​2​​ ,  … , ​b​n−1​​)  ∈  E  ⇒   (​b​ρ(1)​​ , ​b​ρ(2)​​ ,  … , ​b​ρ(n−1)​​)  ∈  E.​

We start with a simple observation.

Observation 3: Consider ​k  ≤  n​ symmetric events ​​E​1​​ , ​E​2​​, … , ​E​k​​  ⊆ ​ ℝ​​ n−1​​ and 
define the ​k × k​ matrix

	 ​  ≡ ​ [ ​G​−i​​ (​E​j​​) ]​ i, j=1
​ k  ​.​

If matrix ​​ is full rank, then there exists a symmetric payment rule ​​p​​ s​​ such that

(A2) ​ ∀ i  =  1, … , k,  ∀ ​v​i​​  ∈ ​ V​i​​ :  ​p​ i​ h​ (​v​i​​)  = ​ ∫ ​B​−i​​
​ 

 
 ​​  ​ p​​ s​ (​I​i​​ (​v​i​​), ​b​−i​​) d ​G​−i​​ (​b​−i​​).​

In particular, if ​k  =  n​ , then there exists a payment rule ​​p​​ s​​ that satisfies (A1).

Proof:
Define the payment rule this way: there are ​k​ numbers associated with each bid ​

b  ∈  ℝ​ , denote the ​j th​ number ​​π​j​​ (b)​. Suppose a bid ​b​ is made by a buyer, and 
other buyers make the profile of bids ​​b​−​​​. For each event ​​E​j​​​ that occurs among other 
buyers’ bids, i.e., ​​b​−​​  ∈ ​ E​j​​​ , the buyer is asked to pay ​​π​j​​ (b)​. Formally, the payment 
function is defined as

(A3)	​ ​p​​ s​ (b, ​b​−​​)  = ​  ∑ 
j=1

​ 
k

  ​​ ​π​j​​ (b) ​χ​{​b​−​​∈​E​j​​}​​ ,​

where ​χ​ is the characteristic function. Note that since each of the ​​E​j​​​’s are symmetric 
(by assumption), the payment rule defined thus is symmetric as well.

Given this definition of ​​p​​ s​​ , the expected payment made by buyer ​i​ bidding 
​​b​i​​  ∈ ​ B​i​​​ when all other buyers are bidding according to their candidate equilibrium 
strategies is

	​ ​ ∫ ​B​−i​​
​ 

 
 ​​ ​ p​​ s​ (​b​i​​ , ​b​−i​​) d ​G​−i​​ (​b​−i​​)

	     =  ​∫ ​B​−i​​
​ 

 
 ​​ ​ ( ​ ∑ 

j=1
​ 

k

  ​​ ​π​j​​ (​b​i​​) ​χ​{​b​−i​​∈​E​j​​}​​)​ d ​G​−i​​ (​b​−i​​)

	 =  ​ ∑ 
j=1

​ 
k

  ​​ ​π​j​​ (​b​i​​) ​G​−i​​ (​E​j​​).​
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By the full rank assumption, for any ​b  ∈  ℝ,​ there exists a solution ​π(b)   ∈ ​ ℝ​​ k​​ 
to the system of equations:

(A4)	  ​π(b)   = ​ p ̃ ​(b), 

	 where ​p ̃ ​(b)   = ​ [ ​​p ̃ ​​1​​ (b), … , ​​p ̃ ​​k​​ (b)  ]​​ T​ ; 

(A5)	 ​​ p ̃ ​​i​​ (b)   = ​ {​
​p​ i​ h​ (​I​ i​ −1​ (b))

​ 
if b  ∈ ​ B​i​​ ​   

​max​ i∈N​ ​ ​  {​​_ v ​​i​​ }
​ 

otherwise.
​​​

Therefore, the payment rule defined using ​π( · )​ that satisfies this system of equa-
tions satisfies (A2). When ​k  =  n​ , the constructed system satisfies (A1).

Theorem 3 shows that there always exist such events. ∎

Theorem 3: For any ​n  >  1​ and any ​k  ≤  n​ such that ​​G​1​​ , ​G​2​​ , … , ​G​k​​​ are all 
pairwise distinct, there exist symmetric events ​​E​1​​ , … ,  ​E​k​​  ⊆ ​ ℝ​​ n−1​​ such that the ​
(k × k)​ matrix ​  = ​ [ ​G​−i​​ (​E​j​​) ]​ i, j=1​ k ​​  has full rank.

A proof of the theorem is deferred to subsection F in this Appendix.

Step 3: Matching Payments.—First, consider the case where ​​G​i​​  ≠ ​ G​​i ′ ​​​​ for all 
​i ≠ ​ i ′ ​​. Then, by Theorem 3, there exist symmetric events ​​E​1​​ , ​E​2​​, … , ​E​n​​  ⊆ ​ ℝ​​ n−1​​ 
such that the ​n × n​ matrix ​ =  [ ​G​−i​​ (​E​j​​) ]​ is full rank. Therefore, by Observation 3, 
we can construct a symmetric payment rule ​​p​​ s​​ that matches the desired interim pay-
ment rule ​​p​​ h​​ when all buyers make their candidate equilibrium bids, i.e., satisfies (A1).

Now to consider the other case, i.e., there exist ​i, ​i ′ ​​ such that ​​G​i​​  = ​ G​​i ′ ​​​​. Note that 
if ​​G​i​​  = ​ G​​i ′ ​​​​ for some ​i  ≠ ​ i ′ ​​ , then ​​G​−i​​  = ​ G​−​i ′ ​​​​.

We define ​​N​U​​​ as the set of “distributionally unique buyers.” Formally, for any 
induced distribution over bids, ​G​ defines ​​N​G​​  =  { i  ∈  N  :  ​G​i​​  =  G}.​ Now we can 
define ​​N​U​​  = ​ ∪​i∈N​​​{min { ​N​​G​i​​​​ }}​​. In other words, ​​N​U​​​ is the largest subset of ​N​ such 
that for any distinct ​i, ​i ′ ​  ∈ ​ N​U​​​ , ​​G​i​​  ≠ ​ G​​i ′ ​​​​. Renumber the buyers so that the first ​| ​N​U​​ |​ 
buyers are distributionally unique. By Theorem 3, we can construct full row rank 
events for these buyers. We are then done, because by assumption, if ​​G​i​​  = ​ G​​i ′ ​​​​ we 
have that ​​p​ i​ h​ (​I​ i​ −1​ (b) )   = ​ p​ ​i ′ ​​ h ​ (​I​ ​i ′ ​​ −1​ (b) )​.

Step 4: Equilibrium.—We have already shown that if each buyer followed the 
candidate equilibrium strategy, the desired payment rule ​​p​​ h​​ is implemented. We are 
left to show that following the candidate strategy (i.e., that buyer ​i​ with value ​​v​i​​​ bids ​​
I​i​​ (​v​i​​)​) is a Bayes-Nash equilibrium of the game.

Consider buyer ​i​ , with value ​​v​i​​​. His candidate equilibrium bid is ​​b​i​​  = ​ I​i​​ (​v​i​​)​. Let 
us divide possible deviations into two types:

	 (i)	 buyer ​i​ bids ​​b​ i​ ′ ​  ∈ ​ B​i​​​;

	 (ii)	 buyer ​i​ bids ​​b​ i​ ′ ​  ∉  ​ B​i​​​.
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Since the original mechanism ​(​a​​ h​ , ​p​​ h​)​ is Bayes Incentive Compatible, it should 
be clear that deviations of type (​i​) cannot be profitable. If player ​i​ with value ​​v​i​​​ 
deviates to some other ​​b​ i​ ′ ​  = ​ I​i​​ (​v​ i​ ′ ​)​, then assuming all other players are playing their 
equilibrium strategies, player ​i​ will win the good with probability ​​a​ i​ h​ (​v​ i​ ′ ​)​ and make 
an expected payment of ​​p​ i​ h​ (​v​ i​ ′ ​)​. Incentive compatibility of the original direct revela-
tion mechanism guarantees that:

	​ ​v​i​​ ​a​ i​ h​ (​v​i​​) − ​p​ i​ h​ (​v​i​​)  ≥ ​ v​i​​ ​a​ i​ h​ (​v​ i​ ′ ​ ) − ​p​ i​ h​ (​v​ i​ ′ ​ ).​

By construction (A4, A5), deviations of type ​(ii)​ will require the buyer to make 
an expected payment of ​​max​ i∈N​ ​ ​  { ​​_ v ​​i​​ }​ and hence, such deviations cannot be profitable.

Therefore, our candidate equilibrium strategies constitute a Bayes-Nash equi-
librium of the symmetric auction game we constructed, concluding our proof of 
sufficiency. ∎

Necessity.—We now show that our condition is necessary for there to exist a sym-
metric implementation. Let us consider a hierarchical allocation rule with index 
functions ​​I​1​​ ,  … , ​I​n​​​ such that for buyers ​1​ and ​2​ , ​​G​1​​  = ​ G​2​​​.

Firstly, note that any other index function ​​I ′ ​​ that implements the same allocation 
rule must be a strictly monotone transform of ​I​. Therefore the resulting distributions 
will be such that ​​G​ 1​ ′ ​  = ​ G​ 2​ ′ ​​. It is therefore without loss to only check whether there 
exists an implementation corresponding to the “original” index rule ​I​.

Pick ​​v​1​​ , ​v​2​​​ such that ​​I​1​​ (​v​1​​)  = ​ I​2​​ (​v​2​​)​ , and ​​p​ 1​ h​ (​v​1​​)  ≠ ​ p​ 2​ h​ (​v​2​​)​. Note that ​​a​ 1​ h​ (​v​1​​) 
= ​ a​ 2​ h​ (​v​2​​)​ since ​​G​1​​  = ​ G​2​​  ⇒ ​ G​−1​​  = ​ G​−2​​​.

Recall that a symmetric implementation in pure strategies is a symmetric pay-
ment rule ​​p​​ s​​ , such that for all buyers ​i​ and all valuations ​​v​i​​​ in ​​V​i​​​ ,

​	​ p​ i​ 
h​(​v​i​​)  =  ​∫ ​B​−i​​

​ 
 
 ​​  ​ p​​ s​ (​I​i​​ (​v​i​​), ​b​−i​​) d ​G​−i​​ (​b​−i​​).​

​Since ​G​1​​  = ​ G​2​​, the product distributions ​G​−1​​ and ​G​−2​​ are also the same. Therefore, 
for any b,

	 ​ ∫ ​B​−1​​
​ 

 
 ​​ ​ p​​ s​ (b, ​b​−1​​) d ​G​−1​​ (​b​−1​​)  = ​ ∫ ​B​−2​​

​ 
 
 ​​ ​ p​​ s​ (b, ​b​−2​​) d ​G​−2​​ (​b​−2​​).​

For ​b  = ​ I​ 1​ −1​ (​v​1​​)  ​(= ​I​ 2​ −1​ (​v​2​​))​​ , we have the required contradiction.

Mixed Strategies.—We now argue that allowing for mixed strategies does not 
expand the set of implementable mechanisms.

Consider a mixed implementation such that the resulting distribution over bids of 
buyer ​i​ is ​​G​ i​ r​​. It follows from Observation 2 that ​​G​1​​  = ​ G​2​​​ implies ​​G​ 1​ r ​  = ​ G​ 2​ r ​​. As a 
result, ​​G​ −1​ r  ​  = ​ G​ −2​ r  ​​.

Suppose a hierarchical mechanism ​(I, ​p​​ h​)​ cannot be implemented in pure strate-
gies. Then without loss of generality, ​​G​1​​  = ​ G​2​​​ and there are values ​​v​1​​​ and ​​v​2​​​ such 
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that condition (ii) of Theorem 2 is violated. For interim implementation in mixed 
strategies, we must have that

	​ ​ a​ i​ h​ (​v​i​​)  = ​ ∫ ​B​i​​
​ 

 
 ​​ ​​a ̆ ​​i​​ (​b​i​​) d ​σ​i​​ (​v​i​​)(​b​i​​);

	 ​ p​ i​ h​ (​v​i​​)  = ​ ∫ ​B​i​​
​ 

 
 ​​ ​​p ̆ ​​i​​ (​b​i​​) d ​σ​i​​ (​v​i​​)(​b​i​​).​

Now suppose (without loss of generality) that there is a mixed strategy symmetric 
implementation of the case where ​​G​1​​ = ​G​2​​​ , ​​p​ 1​ h​ (​v​1​​) > ​p​ 2​ h​ (​v​2​​)​ and ​​I​1​​ (​v​1​​) = ​I​2​​ (​v​2​​)​.  
Then, buyer ​1​ with value ​​v​1​​​ , strictly prefers the strategy ​​σ​2​​ (​v​2​​)​ over ​​σ​1​​ (​v​1​​)​ (since ​​
a​ 1​ h​ (​v​1​​)  = ​ a​ 2​ h​ (​v​2​​)​ by assumption), contradicting the assumption that these strategies 
constitute an equilibrium. ∎

C. Proof of Corollary 1

For each buyer ​i​ , consider the index function ​​I​i​​​ as a point in the ​​L​1​​​ space (the 
same argument works with any ​​L​p​​​ norm) with respect to the measure space defined 
by measure ​​F​i​​​ on ​​V​i​​​. The space ​I​ is topologized by the product topology. Since this 
is finite product of complete normed vector spaces, it is a Baire space, and therefore 
standard topological notions of genericity are well defined.

To see the desired result, first note that by Corollary 3, the condition of Theorem 
2 is violated only if there exists a nondecreasing function ​Γ​ and bidders ​j, ​j ′ ​  ∈  N​ 
such that for any ​i  =  j, ​j ′ ​​ , ​​I​i​​ (​v​i​​)  =  Γ(​F​i​​ (​v​i​​))​ for almost all ​​v​i​​  ∈ ​ V​i​​​. Consider the 
set ​​E​S​​​ defined on sets ​S  ⊆  N​, which is a subset of the set of index rules, defined as:

	​ ​E​S​​  =  { I  :  for all i  ∈  S,  ​I​i​​ (​v​i​​)  =  Γ(​F​i​​ (​v​i​​))   almost everywhere}.​

We show that ​E  := ​ ∪​S⊂N​​ ​E​S​​​ is a meager set.
First note that ​E​ is closed since it is the finite union of closed sets. Each set ​​E​S​​​ is 

closed since the limit of any sequence of ​I​s that violates condition of Corollary 3 for 
the subset ​S​ will also violate this condition for ​S​.

Thus, if we can show that ​E​ has a nonempty interior, it will be nowhere dense and 
we are done. The following lemma delivers this result.

Lemma 1: Consider any hierarchical mechanism ​I  ∈  E​. Then, for any ​ϵ  >  0​ , 
there is an index rule ​​I ′ ​​ which satisfies condition ​(i)​ such that for each buyer ​i​ ,

	​​ ∫ ​V​i​​
​ 

 
 ​​ | ​I​i​​ (v)  − ​I​ i​ ′ ​ (v)  | d ​F​i​​ (v)   ≤  ϵ.​

Proof:
For any ϵ small, consider an increasing function ​​X​ j​ ϵ​ : ​V​j​​  →  [ 0, ϵ ]​ , such that 

​​F​j​​ ({ ​v​j​​ | ​X​ j​ ϵ​ (​v​j​​)  ≠  0})  ≠  0.​ Define ​​I​ j​ ′ ​  = ​ I​j​​ + ​X​ j​ ϵ​​. Clearly one can select ​​X​ j​ ϵ​​ for each ​
j​ such that ​​I ′ ​ ∉ E​. ∎
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D. Proof of Corollary 2

Recall from Myerson (1981) that if the function ​​ϕ​i​​ (​v​i​​)​ , defined as

	​ ​ϕ​i​​ (​v​i​​)  = ​ v​i​​ − ​ 1 − ​F​i​​ (​v​i​​) _ ​f​i​​ (​v​i​​)
  ​ ,​

is nondecreasing in ​​v​i​​​ , then the allocation rule for the optimal auction is defined 
by the hierarchical allocation rule with the index rule ​​ϕ​i​​​ for buyer ​i​. If ​​ϕ​i​​​ is not 
nondecreasing, then the optimal allocation rule is given by the “ironed” virtual 
value ​​​

_
 ϕ ​​i​​​. Let ​​G​i​​​ be the distribution over bids of buyer ​i​ induced by ​​​

_
 ϕ ​​i​​​.

The following simple lemma shows if two buyers (without loss of generality 1 
and 2) have the same distribution of (possibly ironed) virtual values, then the two 
buyers also have the same function mapping value into virtual value. Therefore, the 
hierarchical allocation rule implementing the optimal auction either induces differ-
ent distributions of virtual values, or if not, then this lemma shows it satisfies the 
condition of Theorem 2. The corollary follows.

Lemma 2: Suppose two buyers are such that ​​G​1​​  = ​ G​2​​​. Then ​​V​1​​  = ​ V​2​​​ and 
​​​
_
 ϕ ​​1​​  = ​​

_
 ϕ ​​2​​​.

Proof:
Define ​​v​i​​ (b)   = ​​

_
 ϕ ​​ i​ −1​ (b)​ for ​b  ∈ ​ B​1​​​. Since ​​​

_
 ϕ ​​i​​ ( · )​ need not be strictly increas-

ing, it follows that ​​​
_
 ϕ ​​ i​ −1​ ( · )​ is a correspondence. Define ​​​ v _ ​​i​​ (b)   =  inf ​​

_
 ϕ ​​ i​ −1​ (b)​ 

and ​​​_ v ​​i​​ (b)   =  sup ​​
_
 ϕ ​​ i​ −1​ (b)​.

Since ​​​
_
 ϕ ​​i​​​ is nondecreasing, it follows that

	​  ​G​i​​ (b)   = ​ F​i​​ (​​
_ v ​​i​​ (b)).​

There can be at most a countable number of pooling intervals in ​​​
_
 ϕ ​​i​​​ (see Myerson 

1981, section 6). Each of these pooling intervals correspond to an atom in ​​G​i​​​. We 
denote the set of atomic bids by ​​​i​​  ⊆ ​ B​i​​​ ; denote by ​​β​in​​​ the bid that corresponds to 
the ​nth​ atom in ​​G​i​​​ ; and the size of the atom is denoted by

	​  ​ς​in​​  = ​ F​i​​ (​​
_ v ​​i​​ (​β​in​​))  − ​F​i​​ (​​ v _ ​​i​​ (​β​in​​)).​

Since ​​​
_
 ϕ ​​i​​​ is differentiable everywhere else, therefore so is ​​v​i​​ ( · )​ whenever it is a 

singleton. For any ​b  ∈ ​ B​i​​ \ ​​i​​ ,​ differentiating we have that

	​  ​g​i​​ (b)   = ​ f​i​​ (​v​i​​ (b)) ​v​ i​ ′ ​ (b) .​
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For any ​b  ∈ ​ B​i​​ \ ​​i​​​ , we know that ​​ϕ​i​​ (​v​i​​ (b))  = ​​
_
 ϕ ​​i​​ (​v​i​​ (b) )​ , and therefore by the defi-

nition of ​​ϕ​i​​​

	​ ​ v​i​​ (b)  − ​ 1 − ​F​i​​ (​v​i​​ (b) )
  ___________ ​f​i​​ (​v​i​​ (b) )  ​  =  b

(A6)	 ⇒  ​ v​i​​ (b)  − ​ 1 − ​G​i​​ (b)
 _ ​g​i​​ (b)  ​ ​v​ i​ ′ ​ (b)  =  b.​

Observation 4: Consider any interval ​[ ​ b _ ​, ​
_
 b ​]​ in the support of ​G​ such that 

there are no atoms in this interval. Further, suppose ​​v​1​​ (​
_
 b ​)  = ​ v​2​​ (​

_
 b ​).​ Then, 

​​v​1​​ (b)   = ​ v​2​​ (b)​ for every ​b  ∈  [ ​ b _ ​, ​
_
 b ​]​.

Proof:
From (A6), we know that for each ​b  ∈  [ ​ b _ ​, ​

_
 b ​]​ , and ​i  =  1, 2​,

	​ ​ v​i​​ (b)  − ​ 1 − ​G​i​​ (b)
 _ ​g​i​​ (b)  ​ ​v​ i​ ′ ​ (b)   =  b

	 ⇒  ​ v​1​​ (b) ⪋  ​v​2​​ (b)   ⇔  ​v​ 1​ ′ ​ (b) ⪋ ​v​ 2​ ′ ​ (b) ,​

where the implication follows from the fact that ​​G​1​​  = ​ G​2​​​. Therefore, if 
​​v​1​​ (b)   ≠ ​ v​2​​ (b)​ for some ​b  ∈  [ ​ b _ ​, ​

_
 b ​]​ , it cannot be that ​​v​1​​ (​

_
 b ​)  = ​ v​2​​ (​

_
 b ​)​.

For any ​​β​in​​  ∈ ​ ​i​​​ , the “ironed” virtual value pools all buyers in ​[ ​​ v _ ​​i​​ (b) , ​​_ v ​​i​​ (b)  ]​. 
Therefore,

(A7)    ​​β​in​​   = ​ 
​∫ ​​ v _ ​​i​​(​β​in​​)​ 

​​_ v ​​i​​(​β​in​​)​​ ​ϕ​i​​ (v) ​f​i​​ (v) dv
  __________________   ​F​i​​ (​​

_ v ​​i​​ (​β​in​​))  − ​F​i​​ (​​ v _ ​​i​​ (​β​in​​))
 ​  

 	  = ​​  v _ ​​i​​ (​β​in​​) − (​​_ v ​​i​​ (​β​in​​) − ​​ v _ ​​i​​ (​β​in​​)) ​ 
1 − ​F​i​​ (​​

_ v ​​i​​ (​β​in​​))  __________________   ​F​i​​ (​​
_ v ​​i​​ (​β​in​​))  − ​F​i​​ (​​ v _ ​​i​​ (​β​in​​))

 ​  

 	  = ​​  v _ ​​i​​ (​β​in​​) − (​​_ v ​​i​​ (​β​in​​) − ​​ v _ ​​i​​ (​β​in​​)) ​ 
1 − ​G​i​​ (​β​in​​) _ ​ς​in​​ ​  .​

Since ​​G​1​​  = ​ G​2​​​ , both have the same (at most countable set of) atoms—we denote 
the set of atoms ​​ with generic element ​​β​n​​​ of “size” ​​ς​n​​​.

Observation 5: Consider any atom ​​β​n​​  ∈  ​ of size ​​ς​n​​​ , and suppose that 
​​​_ v ​​1​​ (​β​n​​)  = ​​ _ v ​​2​​ (​β​n​​)​. Then, we have that ​​​ v _ ​​1​​ (​β​n​​)  = ​​  v _ ​​2​​ (​β​n​​)​ , i.e., ​​v​1​​ (​β​n​​)  = ​ v​2​​ (​β​n​​)​.
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Proof:
By (A7), we have for ​i  =  1, 2​

	​​ β​n​​   = ​​  v _ ​​i​​ (​β​n​​) − (​​_ v ​​i​​ (​β​n​​) − ​​ v _ ​​i​​ (​β​n​​)) ​ 
1 − ​G​i​​ (​β​n​​) _ ​ς​n​​ ​ 

 	  = ​​  v _ ​​i​​ (​β​n​​)​(1 + ​ 1 − ​G​i​​ (​β​n​​) _ ​ς​n​​ ​ )​ − ​​_ v ​​i​​ (​β​n​​).​

Therefore, if ​​​_ v ​​1​​ (​β​n​​)  = ​​ _ v ​​2​​ (​β​n​​)​ , then ​​​ v _ ​​1​​ (​β​n​​)  = ​​  v _ ​​2​​ (​β​n​​).​
Finally, letting ​​

_
 b ​​ be the upper bound of the support of ​​G​1​​ (= ​ G​2​​)​ , note that by 

definition:

	​ ​v​1​​ (​
_
 b ​)  = ​ v​2​​ (​

_
 b ​)  = ​

_
 b ​.​

The fact that ​​v​1​​ ( · )  = ​ v​2​​ ( · )​ now follows from this initial condition and 
Observations 4 and 5. Therefore, ​​G​1​​  = ​ G​2​​  ⇒  ​​

_
 ϕ ​​1​​  = ​​

_
 ϕ ​​2​​​. ∎

E. Proof of Corollary 3

Without loss of generality, consider only buyers ​1​ and ​2​. Since the auction does 
not have a symmetric implementation, it must be the case that ​​G​1​​  = ​ G​2​​​. First, con-
sider the case that index functions ​​I​1​​​ and ​​I​2​​​ are continuous.

Suppose ​​v​1​​ , ​v​2​​​ are such that ​​F​1​​ (​v​1​​)  = ​ F​2​​ (​v​2​​)​, but ​​I​1​​ (​v​1​​)  > ​ I​2​​ (​v​2​​)​—if no such ​​
v​1​​ , ​v​2​​​ exists, we are done. Define

	​​ v​ 1​ ′ ​  = ​ max​ 
​
​​ ​  { v  ∈ ​ V​1​​  :  ​I​1​​ (v)   = ​ I​2​​ (​v​2​​)}.​

By continuity of ​​I​1​​​ , ​​v​ 1​ ′ ​​ exists. By monotonicity of ​​I​1​​​ , ​​v​ 1​ ′ ​  < ​ v​1​​​. By assumption, 
​​G​1​​ (​I​1​​ (​v​ 1​ ′ ​))   = ​ G​2​​ (​I​2​​ (​v​2​​)) .​ Combining, we have that

	​ ​F​1​​ (​v​1​​)  > ​ F​1​​ (​v​ 1​ ′ ​)  = ​ G​1​​ (​I​1​​ (​v​ 1​ ′ ​))   = ​ G​2​​ (​I​2​​ (​v​2​​))   ≥ ​ F​2​​ (​v​2​​),​

implying that ​​F​1​​ (​v​1​​)  > ​ F​2​​ (​v​2​​)​. This contradicts our assumption that ​​F​1​​ (​v​1​​) 
= ​ F​2​​ (​v​2​​)​.

Now suppose ​​I​1​​​ and ​​I​2​​​ are not necessarily continuous. The common support must 
lie on an at most countable collection of intervals and at most countable atoms. For 
any point in the interior of any interval in the support of ​​G​1​​ ,​ and any atom, the argu-
ment above shows that

	​ for i  =  1, 2 :   ​I​i​​ (​v​i​​)  =  Γ(​F​i​​ (​v​i​​)) ,​

for any ​v​ such that ​​I​1​​ (​v​1​​)​ is in the interior of an interval in the support of ​​G​1​​​ or an 
atom on ​​G​1​​​. This leaves only measure ​0​ end points of the intervals, of which there 
are an at most countable set. These correspond to discontinuities in the index rules, 
which are also at most countable. ​∎​
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F. Full Rank Events

A little more notation will be useful. We say that an event ​E  ⊆ ​ ℝ​​ n−1​​ is of type ​l​ 
if there exists a ​β  ∈  ℝ​ such that ​E​ is the event “​l​ randomly chosen buyers out of the ​
n − 1​ have bids of ​β​ or less.” For any number ​k,​ let ​[ k ]   ≡  { 1, 2, … , k}​. For any set ​
K​ , ​|K |   =  k​ , ​l  ≤  k,​ define

	​ ​(​K​ 
l
 ​)​  ≡  { X : X  ⊆  K,  | X |   =  l},​

that is, the set of all subsets of ​K​ of cardinality exactly ​l​.
By definition, if ​E​ is an event of type ​l​ with corresponding ​β​ , then

(A8)	​ ​G​−i​​ (E)   = ​  l !(n − 1 − l)  !
  _ (n − 1)  !  ​ ​  ∑ 
M∈​(​N\i​ 

l
  ​)​

​​​  ​ ∏ 
j∈M

​​​ ​G​j​​ (β) .​

We also allow for an event of type ​l​ to have a random cutoff ​​β ̃ ​  ∈  Δℝ​. This 
corresponds to the event that there are ​l​ randomly chosen buyers out of the ​n − 1​ 
and each of them has a bid less than an i.i.d. realization of the random variable ​​β ̃ ​​. 
Denote by ​​G​j​​ (​β ̃ ​)​ the probability that a draw according to ​​G​j​​​ is less than or equal to 
the random variable ​​β ̃ ​​.

Note that if we have an event ​E​ of type ​l​ with corresponding cutoff ​​β ̃ ​​ ,

(A9)	​ ​G​−i​​ (E)   = ​  l !(n − 1 − l)  !
  _ (n − 1)  !  ​ ​  ∑ 
M∈​(​N  \i​ 

l
  ​)​

​​​  ​ ∏ 
j∈M

​​​ ​G​j​​ (​β ̃ ​).​

Recall the theorem:

THEOREM 1: For any ​n  >  1​ and any ​k  ≤  n​ such that ​​G​1​​ , ​G​2​​ , … , ​G​k​​​ are all 
pairwise distinct, there exist symmetric events ​​E​1​​ , … , ​E​k​​  ⊆ ​ ℝ​​ n−1​​ such that the ​
(k × k)​ matrix ​  = ​ [ ​G​−i​​ (​E​j​​) ]​ i, j=1​ k ​​  has full rank.

Proof:
Fix the number of buyers ​n  >  1​. We will prove the lemma by induction on ​k​.

Base Case.—​k  =  2​. Since ​​G​1​​  ≠ ​ G​2​​​ , pick ​​β ​​ ⋆​  ∈  ℝ​ such that ​​G​1​​ (​β​​  ⋆​)  
≠ ​ G​2​​ (​β​​  ⋆​)​. Now pick ​​E​1​​​ to be an event of type ​1​ with cutoff ​​β ​​ ⋆​​ , and 
​​E​2​​  = ​ ℝ​​ n−1​ \ ​E​1​​​. The corresponding matrix ​​ is

	 ​  = ​
[
​
​  1 _ n − 1 ​ ​∑ i≠1​ ​​ ​G​i​​ (​β​​  ⋆​)

​ 
1 − ​  1 _ n − 1 ​ ​∑ i≠1​ ​​ ​G​i​​ (​β​​  ⋆​)

​    
​  1 _ n − 1 ​ ​∑ i≠2​ ​​ ​G​i​​ (​β​​  ⋆​)

​ 
1 − ​  1 _ n − 1 ​ ​∑ i≠2​ ​​ ​G​i​​ (​β​​  ⋆​)

​
]
​.​

By observation, this is full rank.
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Inductive Hypothesis.—Suppose this is true for all ​k  ≤ ​ k ̂ ​​ for some ​​k ̂ ​  <  n​.

Inductive Step.—We will show this is true for ​k  = ​ k ̂ ​ + 1​. By the inductive 
hypothesis, we have events ​​E​1​​ , … , ​E​​k ̂ ​​​  ⊆ ​ ℝ​​ n−1​​ such that

	​   = ​ [ ​G​−i​​ (​E​j​​) ]​ i, j=1​ ​k ̂ ​ ​   is full rank.​

We need to show that we can find a ​​E​​k ̂ ​+1​​​ such that

	​ ′  = ​ [ ​G​−i​​ (​E​j​​) ]​ i, j=1​ ​k ̂ ​+1 ​  is full rank.​

Note that since ​​ is full rank, there exists a unique row-vector ​α  ∈ ​ ℝ​​ ​k ̂ ​​​ such that:

	​ α  = ​ [​G​−(​k ̂ ​+1)​​ (​E​1​​), ​G​−(​k ̂ ​+1)​​ (​E​2​​), … , ​G​−(​k ̂ ​+1)​​ (​E​​k ̂ ​​​)]​​.

If it is not the case that

	​  ​ ∑ 
i=1

​ 
​k ̂ ​
 ​​ ​α​i​​  =  1​,

then we are already done. To see, this note that we can select ​​E​​k ̂ ​+1​​  = ​ ℝ​​ n−1​​. With 
this selection, ​′​ will be full rank, since ​​G​−i​​ (​ℝ​​ n−1​)  =  1​ for all ​i​ by definition, and 
therefore

	​​  ∑ 
i=1

​ 
​k ̂ ​
 ​​ ​α​i​​ ​G​−i​​ (​ℝ​​ n−1​)  ≠ ​ G​−(​k ̂ ​+1)​​ (​ℝ​​ n−1​)​.

We will now proceed to prove that there exists an event such that ​​M ′ ​​ is full rank. In 
particular, we will show that either ​​ℝ​​ n−1​​ suffices or there must exist an event of type ​
1​ to ​​k ̂ ​​. So suppose that for any event ​​E​​k ̂ ​+1​​​ of type ​1​ , the matrix ​′​ is not full rank. 
For any event of type ​1​ with corresponding cutoff ​β​ , by (A8)

	​​ G​−i​​​(​​E​​k ˆ ​+1​​​)  = ​​   1 _____ 
n − 1

 ​​ ​​  ∑ 
j=1, j≠i

​ 
n

  ​​​ ​​G​j​​​(β).

​Since by assumption no such event ​E​​k ̂ ​+1​​ results in a full rank matrix, we have that 
for all ​E​​k ̂ ​+1​​ of type 1 with corresponding β,

     ​    G​−(​k ̂ ​+1)​​ (​E​​k ̂ ​+1​​)  = ​  ∑ 
i=1

​ 
​k ̂ ​
 ​​ ​α​i​​ ​G​−i​​ (​E​​k ̂ ​+1​​)

	 ⇒  ∀β  ∈  ℝ,  ​G​(​k ̂ ​+1)​​(β)  = ​  ∑ 
i=1

​ 
​k ̂ ​
 ​​ ​α​i​​ ​G​i​​ (β).
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As notational shorthand, we will write this as

	 ​ G​​k ̂ ​+1​​  = ​  ∑ 
i=1

​ 
​k ̂ ​
 ​​ ​α​i​​ ​G​i​​ .​

Claim 1: Suppose ​​ l ̂ ​  ≤ ​ k ̂ ​​ is such that for all ​l  =  1, … , ​ l ̂ ​​ , selecting ​​E​​k ̂ ​+1​​​ from 
events of types ​1​ to ​​ l ̂ ​​ cannot make ​′​  full rank. Then, for all ​l  =  1, … , ​ l ̂ ​​ :

(A10)	 ​ (​G​​k ̂ ​+1​​)​​ l​  = ​  ∑ 
i=1

​ 
​k ̂ ​
 ​​ ​α​i​​ ​(​G​i​​)​​ l​ , 

and

(A11)  ​  ∑ 
M∈​(​[​k ̂ ​]​ 

l
  ​)​

​​​​(1 − ​ ∑ 
i∈M

​​​ ​α​i​​)​ ​ ∏ 
i∈M

​​​ ​G​i​​  = ​
(

​  ∑ 
M∈​(​[​k ̂ ​]​ 

l
  ​)​

​​​ ​ ∏ 
i∈M

​​​ ​G​i​​
)

​ − ​G​​k ̂ ​+1​​ ​  ∑ 
M∈​(​ [​k ̂ ​]​ 

l−1
​)​

​​​​(1 − ​ ∑ 
i∈M

​​​ ​α​i​​)​ ​ ∏ 
i∈M

​​​ ​G​i​​ .

Recall that (A10) is notational shorthand for

	​ ∀ ​β ̃ ​  ∈  Δℝ :  ​(​G​​k ̂ ​+1​​ (​β ̃ ​))​​ l​  = ​  ∑ 
i=1

​ 
​k ̂ ​
 ​​ ​α​i​​ ​(​G​i​​ (​β ̃ ​))​​ l​ .​

Proof of claim 1:
We prove this claim by induction on ​​ l ̂ ​​. While the base case ​​ l ̂ ​  =  1​ is true by 

observation, to build intuition we will now prove it for the case of ​​ l ̂ ​  =  2.​ Since by 
assumption no event of type ​2​ produces a full rank matrix, it must be that for every 
event ​E​ of type ​2​ ,

​	 ​ G​−(​k ̂ ​+1)​​(E)  = ​  ∑ 
i=1

​ 
​k ̂ ​
 ​​ ​α​i​​ ​G​−i​​ (E).​

​Substituting in from (A8), and canceling terms, we have

    ​      ∑ 
M∈​(​[k]​ 

2
 ​)​

​​​ ​ ∏ 
i∈M

​​​ ​G​i​​   = ​  ∑ 
q=1

​ 
​k ̂ ​
 ​​ ​ α​q​​​

(
​  ∑ 
M∈​(​[​k ̂ ​+1]\q​ 

2
  ​)​

​​​ ​ ∏ 
i∈M

​​​ ​G​i​​
)

​

	 = ​  ∑ 
q=1

​ 
​k ̂ ​
 ​​ ​ α​q​​​

⎛
 ⎜ 

⎝

​  ∑ 
M∈​(​[​k ̂ ​]\q​ 

2
  ​)​

​​​ ​ ∏ 
i∈M

​​​ ​G​i​​ + ​G​​k ̂ ​+1​​ ​  ∑ 
i=1,i≠q

​ 
​k ̂ ​
 ​ ​  ​G​i​​ 

⎞
 ⎟ 

⎠

​

	 = ​   ∑ 
M∈​(​[​k ̂ ​]​ 

2
 ​)​

​​​​(1 − ​ ∑ 
i∈M

​​​ ​α​i​​)​ ​ ∏ 
i∈M

​​​ ​G​i​​ + ​G​​k ̂ ​+1​​ ​ ∑ 
i=1

​ 
​k ̂ ​
 ​​ (1 − ​α​i​​) ​G​i​​ ,​

as​ ​∑ i=1​ ​k ̂ ​ ​​ ​ α​i​​  =  1​.
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By observation, therefore, we have (A11) for ​​ l ̂ ​  =  2​. Substituting in that 
​​∑ i​ ​​ ​α​i​​ ​G​i​​  = ​ G​​k ̂ ​+1​​​ , we have

 ​ � ​  ∑ 
M∈​(​[k]​ 

2
 ​)​

​​​ ​ ∏ 
i∈M

​​​ ​G​i​​  = ​   ∑ 
M∈​(​[​k ̂ ​]​ 

2
 ​)​

​​​​(1 − ​ ∑ 
i∈M

​​​ ​α​i​​)​ ​ ∏ 
i∈M

​​​ ​G​i​​ + ​(​ ∑ 
i=1

​ 
​k ̂ ​
 ​​ ​α​i​​ ​G​i​​)​ ​ ∑ 

i=1
​ 

​k ̂ ​
 ​​ ​G​i​​ − ​(​G​​k ̂ ​+1​​)​​ 2

​	 ⇒  0  = ​   ∑ 
M∈​(​[​k ̂ ​]​ 

2
 ​)​

​​​​(− ​ ∑ 
i∈M

​​​ ​α​i​​)​ ​ ∏ 
i∈M

​​​ ​G​i​​ + ​(​ ∑ 
i=1

​ 
​k ̂ ​
 ​​ ​α​i​​ ​G​i​​)​ ​ ∑ 

i=1
​ 

​k ̂ ​
 ​​ ​G​i​​ − ​(​G​​k ̂ ​+1​​)​​ 2​ .

Canceling terms, we have

	 0  = ​  ∑ 
i=1

​ 
​k ̂ ​
 ​​ ​α​i​​ ​(​G​i​​)​​ 2​ − ​(​G​​k ̂ ​+1​​)​​ 2​ 

	 ⇒  ​ (​G​​k ̂ ​+1​​)​​ 2​  = ​  ∑ 
i=1

​ 
​k ̂ ​
 ​​ ​α​i​​ ​(​G​i​​)​​ 2​ ,​

as desired.

For our inductive hypothesis, assume that (A10) and (A11) are true for all ​
l  ≤ ​  l ̂ ​ − 1​, and now suppose that no event of type ​​ l ̂ ​​ can make matrix ​′​ full rank. 
We are therefore left to show (A10) and (A11) for ​l  = ​  l ̂ ​​. It therefore must be that 
for any event ​E​ of type ​​ l ̂ ​,​

​	 ​ G​−(​k ̂ ​+1)​​(E)  = ​  ∑ 
i=1

​ 
​k ̂ ​
 ​​ ​α​i​​ ​G​−i​​ (E).​

​Substituting in from (A8), and canceling terms, we have

  ​    ∑ 
M∈​(​[k]​ 

​ l ̂ ​
 ​)​

​​​ ​ ∏ 
i∈M

​​​ ​G​i​​   = ​  ∑ 
q=1

​ 
​k ̂ ​
 ​​ ​ α​q​​​

(
​  ∑ 
M∈​(​[​k ̂ ​+1]\q​ 

​ l ̂ ​
 ​ )​

​​​ ​ ∏ 
i∈M

​​​ ​G​i​​

)
​

	 = ​  ∑ 
q=1

​ 
​k ̂ ​
 ​​ ​ α​q​​​

(
​  ∑ 
M∈​(​[​k ̂ ​]\q​ 

​ l ̂ ​
 ​ )​

​​​ ​ ∏ 
i∈M

​​​ ​G​i​​ + ​G​​k ̂ ​+1​​ ​  ∑ 
M∈​(​[​k ̂ ​]\q​ 

​ l ̂ ​−1
 ​)​

​​​ ​ ∏ 
i∈M

​​​ ​G​i​​

)
​

	   = ​   ∑ 
M∈​(​[​k ̂ ​]​ 

​ l ̂ ​
 ​)​

​​​​(1 − ​ ∑ 
i∈M

​​​ ​α​i​​)​ ​ ∏ 
i∈M

​​​ ​G​i​​ + ​G​​k ̂ ​+1​​ ​  ∑ 
M∈​(​ [​k ̂ ​]​ 

​ l ̂ ​−1
​)​

​​​ ​(1 − ​ ∑ 
i∈M

​​​ ​α​i​​)​ ​ ∏ 
i∈M

​​​ ​G​i​​ ,​

as ​∑ i=1​ ​k ̂ ​ ​​ ​ α​i​​  =  1.
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Therefore, we have (A11) as desired for ​​ l ̂ ​​. Rearranging, we have

​	​   ∑ 
M∈​(​[​k ̂ ​]​ 

​ l ̂ ​
 ​)​

​​​​( ​ ∑ 
i∈M

​​​ ​α​i​​)​ ​ ∏ 
i∈M

​​​ ​G​i​​ = ​G​​k ̂ ​+1​​ ​
(

​  ∑ 
M∈​(​ [​k ̂ ​]​ 

​ l ̂ ​−1
​)​

​​​ ​(1 − ​ ∑ 
i∈M

​​​ ​α​i​​)​ ​ ∏ 
i∈M

​​​ ​G​i​​
)

​ .​

Substituting the term in the parentheses on the right-hand side from (A11) for ​​ l ˆ ​​ − 1,

​ ​  ∑ 
M∈​(​[​k ̂ ​]​ 

​ l ˆ ​
 ​ )​

​​​​( ​ ∑ 
i∈M

​​​ ​α​i​​)​ ​ ∏ 
i∈M

​​​ ​G​i​​  = ​ G​​k ̂ ​+1​​​
(

 ​
(

​  ∑ 
M∈​(​ [​k ̂ ​]​ 

l−1 
​)​

​​​ ​ ∏ 
i∈M

​​​ ​G​i​​
)

​ − ​G​​k ̂ ​+1​​ ​  ∑ 
M∈​(​ [​k ̂ ​]​ 

l−2
​)​

​​​​(1 − ​ ∑ 
i∈M

​​​ ​α​i​​)​ ​ ∏ 
i∈M

​​​ ​G​i​​ 
)

​.​

Proceeding inductively and collecting terms, we have

​ ​  ∑ 
M∈​(​[​k ̂ ​]​ 

​ l ˆ ​
 ​ )​

​​​​( ​ ∑ 
i∈M

​​​ ​α​i​​)​ ​ ∏ 
i∈M

​​​ ​G​i​​  = ​ G​​k ̂ ​+1​​​​​
⎛
 ⎜ 

⎝

​ ∑ 
s=0

​ 
​ l ˆ ​−2

 ​​ (−1​)​​ s​(​G​​k ˆ ​+1​​​)​​ s​ ​  ∑ 
M∈​(​  [​k ̂ ​]​ 

​ l ˆ ​−1−s
​)​

​​​​ ∏ 
i∈M

​​​ ​G​i​​  + (−1​)​​ ​ l ˆ ​−1​(​G​​k ˆ ​+1​​​)​​ ​ l 
ˆ ​−1​

⎞
 ⎟ 

⎠

​​

 ⇒​ ​  ∑ 
M∈​(​[​k ̂ ​]​ 

​ l ˆ ​
 ​ )​

​​​​( ​ ∑ 
i∈M

​​​ ​α​i​​)​ ​ ∏ 
i∈M

​​​ ​G​i​​  =  (−1​)​​ ​ l ˆ ​−1​(​G​​k ˆ ​+1​​​)​​ ​ l 
ˆ ​​ + ​G​​k ̂ ​+1​​​  ​  ∑ 

M∈​(​ [​k ̂ ​]​ 
​ l ˆ ​−1

​)​

​​​​ ∏ 
i∈M

​​​ ​G​i​​

	​ + ​ G​​k ̂ ​+1​​​​​
⎛
 ⎜ 

⎝

​ ∑ 
s=1

​ 
​ l ˆ ​−2

 ​​ (−1​)​​ s​(​G​​k ˆ ​+1​​​)​​ s​ ​  ∑ 
M∈​(​  [​k ̂ ​]​ 

​ l ˆ ​−1−s
​)​

​​​​ ∏ 
i∈M

​​​ ​G​i​​ 
⎞
 ⎟ 

⎠

​​

 ⇒ 0 = ​(−1​)​​ ​ l ˆ ​−1​(​G​​k ˆ ​+1​​​)​​ ​ l 
ˆ ​​ +​​ ​  ∑ 

M∈​(​ [​k ̂ ​]​ 
​ l ˆ ​−1

​)​

​​​​​(​ ∑ 
i∈M

​​​​α​i​​ ​G​i​​)​​ ​ ∏ 
i∈M

​​​ ​G​i​​

	​ + ​ G​​k ̂ ​+1​​​​​
⎛
 ⎜ 

⎝

​ ∑ 
s=1

​ 
​ l ˆ ​−2

 ​​ (−1​)​​ s​(​G​​k ˆ ​+1​​​)​​ s​ ​  ∑ 
M∈​(​  [​k ̂ ​]​ 

​ l ˆ ​−1−s
​)​

​​​​ ∏ 
i∈M

​​​ ​G​i​​ 
⎞
 ⎟ 

⎠

​​

 ⇒ 0 = ​(−1​)​​ ​ l ˆ ​−1​(​G​​k ˆ ​+1​​​)​​ ​ l 
ˆ ​​ +​​ ​  ∑ 

M∈​(​ [​k ̂ ​]​ 
​ l ˆ ​−1

​)​

​​​​​(​ ∑ 
i∈M

​​​​α​i​​ ​G​i​​)​​ ​ ∏ 
i∈M

​​​ ​G​i​​ − (​​G​​k ˆ ​+1​​​​​)​​ 2​​​​  ∑ 
M∈​(​ [​k ̂ ​]​ 

​ l ˆ ​−2
​)​

​​​​​ ∏ 
i∈M

​​​ ​G​i​​​

	​ + ​ G​​k ̂ ​+1​​​​​
⎛
 ⎜ 

⎝

​ ∑ 
s=2

​ 
​ l ˆ ​−2

 ​​ (−1​)​​ s​(​G​​k ˆ ​+1​​​)​​ s​ ​  ∑ 
M∈​(​  [​k ̂ ​]​ 

​ l ˆ ​−1−s
​)​

​​​​ ∏ 
i∈M

​​​ ​G​i​​
⎞
 ⎟ 

⎠

​​.
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Substituting in from (A10) for l = 2

 ⇒ 0 = ​(−1​)​​ ​ l ˆ ​−1​(​G​​k ˆ ​+1​​​)​​ ​ l 
ˆ ​​ +​​ ​  ∑ 

M∈​(​ [​k ̂ ​]​ 
​ l ˆ ​−1

​)​

​​​​​(​ ∑ 
i∈M

​​​​α​i​​ ​G​i​​)​​ ​ ∏ 
i∈M

​​​ ​G​i​​ − ​​(​ ∑ 
i=1

​ 
​k ˆ ​

 ​​ ​ α​i​​(​G​i​​​)​​ 2​)​​​​  ∑ 
M∈​(​ [​k ̂ ​]​ 

​ l ˆ ​−2
​)​

​​​​​ ∏ 
i∈M

​​​ ​G​i​​​

	​ + ​ G​​k ̂ ​+1​​​​​
⎛
 ⎜ 

⎝

​ ∑ 
s=2

​ 
​ l ˆ ​−2

 ​​ (−1​)​​ s​(​G​​k ˆ ​+1​​​)​​ s​ ​  ∑ 
M∈​(​  [​k ̂ ​]​ 

​ l ˆ ​−1−s
​)​

​​​​ ∏ 
i∈M

​​​ ​G​i​​
⎞
 ⎟ 

⎠

​​.

Canceling terms

 ⇒ 0 = ​(−1​)​​ ​ l ˆ ​−1​(​G​​k ˆ ​+1​​​)​​ ​ l 
ˆ ​​ −​​ ​  ∑ 

M∈​(​ [​k ̂ ​]​ 
​ l ˆ ​−2

​)​

​​​​​(​ ∑ 
i∈M

​​​​α​i​​ (​G​i​​​)​​ 2​)​​ ​ ∏ 
i∈M

​​​ ​G​i​​ 

	​ + ​ G​​k ̂ ​+1​​​​​
⎛
 ⎜ 

⎝

​ ∑ 
s=2

​ 
​ l ˆ ​−2

 ​​ (−1​)​​ s​(​G​​k ˆ ​+1​​​)​​ s​ ​  ∑ 
M∈​(​  [​k ̂ ​]​ 

​ l ˆ ​−1−s
​)​

​​​​ ∏ 
i∈M

​​​ ​G​i​​
⎞
 ⎟ 

⎠

​​.

Continuing to open out the summation and cancel terms, we have, as desired,

	​ ​(​G​​k ̂ ​+1​​)​​ ​ l ̂ ​​  = ​  ∑ 
i=1

​ 
​k ̂ ​
 ​​ ​α​i​​ ​(​G​i​​)​​ ​ l ̂ ​​ .​

This concludes the proof of the claim. ∎

Having shown Claim 1, we now show that there exist an event of type ​1​ to ​​k ̂ ​​ such 
that the matrix ​′​ has full rank. To see this, assume the converse. Then, by (A10) 
we have that

	 ∀l = 1, … , ​​k ˆ ​​, ​​​(​G​​k ˆ ​+1​​)​​​ l​​ ​  = ​  ∑ 
i=1

​ 
​k ̂ ​
 ​​ ​α​i​​ ​(​G​i​​)​​ l​ ,​

and further, we know by our previous arguments that

	 1  = ​  ∑ 
i=1

​ 
​k ̂ ​
 ​​ ​α​i​​ .

We can rewrite these together as

	 ∀ l  =  0, … , ​k ̂ ​,    ​(​G​​k ̂ ​+1​​)​​ l​  = ​  ∑ 
i=1

​ 
​k ̂ ​
 ​​ ​α​i​​ ​(​G​i​​)​​ l​ .

We now have ​​k ̂ ​ + 1​ functional equations, but only ​​k ̂ ​​ variables (​α​). Since the distri-
butions are different, it should be intuitive that this system of equations cannot have 
a solution.
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Claim 2: Suppose the distributions ​​G​1​​​ to ​​G​​k ̂ ​+1​​​ are pairwise different. Then,

(A12)	​ ∃ ​β ̃ ​  ∈  Δℝ such that  ​G​1​​ (​β ̃ ​) to  ​G​​k ̂ ​+1​​ (​β ̃ ​) are all different.​

Proof:
Consider the subset of ​​ℝ​​ ​k ̂ ​+1​​ defined as

	 S  ≡ ​​ {(​a​1​​, ​a​2​​, … , ​a​​k ˆ ​+1​​) : ∃ ​β ̃ ​  ∈  Δℝ such that ​a​j​​ = ​G​j​​ (​β ̃ ​) for j = 1, … , ​k ˆ ​ + 1}​. ​

​Further, for every j, j′, define ​X​j, j′​​  ⊆ ​ ℝ​​ ​k ̂ ​+1​:

	 ​ X​j, j′​​  ≡  { (​a​1​​ , ​a​2​​ , … , ​a​​k ̂ ​+1​​) :  ​a​j​​  = ​ a​j′​​ }.​

Note that each ​​X​j, j′​​​ is a ​​k ̂ ​​ dimensional subspace of ​​ℝ​​ ​k ̂ ​+1​ .​
By definition ​S​ is convex. Since the distributions are pairwise different, for every ​

j, j​′ there exists ​β  ∈  ℝ​ such that ​​G​j​​ (β)   ≠ ​ G​j′​​ (β)​. Therefore, for each ​j, ​j ′ ​​ , ​S⊈ ​X​j, j′​​​.  
Further, note that ​X  ≡ ​ ⋃​j≠j′​​  ​X​j, j′​​​ is not convex, so ​S ⊈ X​ , and therefore we have our 
desired result.

Note that by Claim 2, possibly by adding a little weight on a low ​β​ such that ​​
G​j​​ (β)   =  0​ for all ​j​ , we have that there exists ​​β ̃ ​  ∈  Δℝ​ such that all ​​G​1​​ (​β ̃ ​)​ to 
​​G​​k ̂ ​+1​​ (​β ̃ ​)​ are pairwise different, and also different from ​1​.

Therefore, for this ​​β ̃ ​​ , there must exist a solution to:

	​ ∀ l  =  0, … , ​k ̂ ​, ​(​G​​k ̂ ​+1​​ (​β ̃ ​))​​ l​  = ​  ∑ 
i=1

​ 
​k ̂ ​
 ​​ ​α​i​​ ​(​G​i​​ (​β ̃ ​))​​ l​ .​

Taking the appropriate Farkas alternative, therefore, for the previous system to  
have a solution, here there must exist a nonzero solution ​ν  ∈ ​ ℝ​​ ​k ̂ ​+1​​ to:21

	​ ∀ i  =  1, … , ​k ̂ ​ + 1, ​ ∑ 
l=0

​ 
​k ̂ ​
 ​​ ​ν​l​​ ​(​G​i​​ (​β ̃ ​))​​ l​  =  0.​

But note that this suggests there are ​​k ̂ ​ + 1​ distinct roots of the ​​k ̂ ​​ degree polynomial

	​ ​ ∑ 
l=0

​ 
​k ̂ ​
 ​​ ​ν​l​​ ​x​​ l​ ,​

which is impossible. Therefore, there is no solution to:

	​ ∀ l  =  0, … , ​k ̂ ​, ​(​G​​k ̂ ​+1​​ (​β ̃ ​))​​ l​  = ​  ∑ 
i=1

​ 
​k ̂ ​
 ​​ ​α​i​​ ​(​G​i​​ (​β ̃ ​))​​ l​ ,​

concluding our proof. ∎

21 The Farkas lemma states that either the system ​Cx  =  d​ has a solution or ​yC  =  0​ , ​yd  >  0​ has a solution but 
never both. For the latter system to have no solution, it must be that for every nonzero ​y​ such that ​yC  =  0​ , it is the 
case that ​yd  =  0​. This is the version we stated. 
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