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ABSTRACT
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empirical test, the rejection of which we interpret as evidence of taste-based discrimination. In doing so,
we provide a theoretical foundation via which the wage structure effect in the decomposition of wage
distributions can be interpreted as evidence of taste-based discrimination. We provide a proof of concept
application using Census and NLSY-79 data, which suggests taste-based discrimination at work against
Black male workers in several broad occupation categories.
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1. INTRODUCTION

While it is well established that economic outcomes for observationally identical individuals can differ
based on their group identity, it is significantly harder to determine the reason for these disparate out-
comes. Discrimination is one possible explanation. At a broad level, economists characterize discrimi-
nation as either statistical (outcomes differ because of differences in information) or taste-based (bias or
animus towards one group drives outcome differences). While both forms of discrimination are prob-
lematic, taste-based discrimination is particularly pernicious because, unlike statistical discrimination, it
is unresponsive to information. Establishing the form of discrimination is important both for account-
ability and to devise corrective policies.

Consider, for instance, the differences in the wage distributions for Black andWhite workers of identical
age and educationwhowork the same jobs in the same location. Suppose that, despite being observation-
ally identical, White workers have higher average wages. Is such a wage gap the result of discrimination?
Not necessarily. Even if Black andWhiteworkers have the same average productivities, their productivity
distributions need not be identical. Thus, if wages were a nonlinear function of the workers’ productiv-
ities, wage gaps can arise even without any discrimination. Suppose instead, we assume that the entire
productivity distributions of both groups were identical. Then, the wage gap must be the result of some
formof discrimination but it is possible to infer the type? Clearly, taste-based discrimination can result in
wage gaps. But so can statistical discrimination. If employers receive different signals for each group, the
posterior distributions of perceived productivities (via these signals) for the employers can differ across
groups. Once again, if wages are nonlinear functions of perceived productivities, wage gaps can arise.

In this paper, we propose a general model of statistical discrimination in the labor market and theoreti-
cally characterize the set of wage distributions that are consistent with this model. This is the set of wage
distributions that can theoretically be explained by statistical discrimination alone. If a pair of observed
wage distributions does not lie in this set then, not only can we conclude that discrimination is present
but, we have also uncovered evidence of taste-based discrimination. This theoretical characterization
in turn yields a nonparametric test for statistical discrimination, rejections of which we interpret as evi-
dence of taste-based discrimination. A strength of this approach is that it can be applied to commonly
available cross-sectional data (such as Census data) and it provides a framework for interpreting when
the “unexplained” part of a wage distribution decomposition is evidence of discrimination in general,
and taste-based discrimination in particular. Our empirical application in this paper shows evidence of
taste-based discrimination against Black workers in certain occupations.

Our model is in the spirit of Phelps (1972). There are two groups whose productivity distributions dif-
fer. The group identity is observable to employers, but productivities are not. Instead, employers learn
about the workers’ productivity from signals whose distributions may vary across the groups. For ex-
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ample, these signals could be the information that employers receive from the job screening process that
includes interviews, tests, curricula vitae, data-drive software etc. Signal realizations induce posterior
productivity distributions (via Bayes’ rule) and, in particular, these can be used to compute posterior es-
timates (themean of the productivity conditional on the signal realization) of the unobserved productiv-
ity. Therefore, each group’s signal generates a distribution over posterior productivity estimates. Wages
are then determined via a strictly increasing, continuous function of the posterior productivity estimate
that, importantly, does not depend on the group. The combination of assumptions make our model
more general than others in the literature: we do not require the productivity distributions or statistical
experiments to be Gaussian and we allow for nonlinear wage functions to capture imperfectly competi-
tive labor markets. Our theory aims to characterize the pairs of wage distributions that are rationalizable
by this model under different assumptions about the set of permissible productivity distributions.

We first consider the baseline case where we assume that both groups have equalmean productivities but,
apart from this, the distributions can differ arbitrarily. We show that a necessary and sufficient condition
for a pair of wage distributions to be rationalizable under this assumption of equal mean productivities
is that neither wage distribution strictly first-order stochastically dominates the other. Thus, if wages
are ordered by strict first-order stochastic dominance, then they cannot be explained by statistical dis-
crimination alone. Importantly, this key insight applies to other, non-labor market contexts. It might
be particularly useful for audit and correspondence studies (as long as the outcome variable of interest
is non-binary) where it is assumed that both groups are identical on average but the type of discrimina-
tion is nonetheless typically hard to pin down.1 Our result says that researchers in this space can uncover
taste-based discrimination by simply testing for strict first-order stochastic dominance.

Under non-experimental contexts, holding mean productivity constant is a bigger challenge. We argue
that an immediate consequence of our baseline result is a characterization of rationalizable wage distri-
butions assuming that one group has a weakly higher mean productivity: the wage distribution for the
group with lower mean productivity should not be strictly first-order stochastically dominant (we call
this the “ordered means” case). In the empirical application of this paper, we take this result to the data
while using education as a proxy for productivity (controlling for other covariates). If we observe that the
wage distribution of the group with lower mean productivity (less education) strictly first-order stochas-
tically dominates the wage distribution of the group with higher mean productivity (more education),
we interpret this as evidence of taste-based discrimination. We emphasize that, while it is well known that
simply observing mean wage differentials is not enough to conclude the type of discrimination, we show
that we can learn something about the type of discrimination by comparing the entire distributions of

1As Bertrand and Duflo (2017) observe: “while field experiments have been overall successful at documenting that discrim-
ination exists, they have (with a few exceptions) struggled with linking the patterns of discrimination to a specific theory.”
An excellent example of applying our test in audit study settings with continuous outcome variables is Ayalew, Manian, and
Sheth (2023) who examine bias in scoring entrepreneurship competitions.
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wages.

Our empirical application employs recent econometric advancements in distributional decompositions.
Specifically, we use the method of Chernozhukov, Fernández-Val, and Melly (2013) to test whether the
wage distribution of Black workers is strictly first-order stochastically dominated by the counterfactual
wage distribution generated by assuming that the wages for Black workers are determined by the same
wage setting process as those ofWhite workers (in language familiar to labor economists, this is the “wage
structure” effect). In words, this compares the observed wage distribution for Black workers with what
they would receive if they were treated as White; we conclude taste-based discrimination is present if
these distributions are ordered by strict first-order stochastic dominance. We test the ordered means case
in two distinct ways using two different data sets. We first implement wage distribution decompositions
on publicly available Census data by creating samples where Black workers havemore years of education
than White workers. As mentioned above, the assumption here is that more educated Black workers
are more productive on average. We then use NLSY-79 panel data that allows us to decompose wage
distributions while conditioning on past wages and occupations. Here, the ordered means assumption
is satisfied if there was discrimination in determining last period wages. In other words, ordered means
is only violated if, in the previous period, Black workers were paid more thanWhite workers of the same
expected productivity (we view such “reverse discrimination” to be unlikely). We find evidence that the
wage structure effect exhibits strict first-order stochastic dominance in several occupations (although not
always).

One of themain contributions of our paper is that it provides a theoretical lens to interpret the decompo-
sitions of wages. Wage decompositions in labor economics have a rich history, starting with the seminal
work of Kitagawa (1955), Oaxaca (1973) and Blinder (1973) who developed the framework to under-
stand whether differences in outcomes were the result of differing characteristics or differential returns
to characteristics across groups. The “unexplained portion” of the Kitagawa–Oaxaca–Blinder decompo-
sition has long been aNorth Star for labor economists aiming to quantify the amount of discrimination.2

This strand of the literature has largely evolved in parallel to the work that aims to determine the type
of discrimination.3,4 Our novel theory combined with empirical advances made possible by DiNardo,

2Early influential papers that use and build on this approach include Juhn,Murphy, and Pierce (1993) and Altonji and Blank
(1999). The recentwork ofBohren,Hull, and Imas (2022) providesmore nuance onhow to interpret the unexplainedportion
and introduces the ideas of “direct” and “systemic” discrimination.
3The classicway to test for taste-based discrimination is to usewhat are known as “outcome tests” (in the spirit of Becker, 1957,
1993). These tests require the researcher to have access to not just to the decision (whether or not a loan is granted, a driver is
searched by a police officer, etc) but also the post-decision result (whether or not the loan is repaid, contraband is found on
the driver, etc). This requires devising empirical strategies to identify the post-decision results ofmarginal cases ormodels that
provide a systematic relationship between the average and marginal post-decision result. See, for instance, Knowles, Persico,
and Todd (2001), Anwar and Fang (2006), Arnold, Dobbie, and Yang (2018) and Canay, Mogstad, andMountjoy (2023).
4Tests for statistical discrimination are typically based on how decision makers update their behavior in response to informa-
tion (a classic example is Altonji and Pierret, 2001). Recently, Bohren, Imas, and Rosenberg (2019) conduct an experiment
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Fortin, and Lemieux (1996) and Chernozhukov, Fernández-Val, and Melly (2013) help these literatures
speak to each other by providing a way of interpreting the unexplained portion of the wage decomposi-
tion through the lens of the two dominantmodels of discrimination in labor economics. Our theoretical
insight is that the comparison of wage distributions is informative but that of mean wages is less so.

The penultimate section of the paper extends the theory in several directions. Notably, we examine the
case where we do not assume average productivities are ordered. We derive a tight lower bound on the
average productivity differences required to rationalize a given pair of wage distributions with statistical
discrimination alone. Wediscuss how this bound canbe used to uncover evidence for taste-based discrim-
ination. We then argue that deriving a similar bound for percentage differences in average productivities
is not possible unless we make further assumptions about the relationship between productivities and
wages.

2. THE MODEL

This section presents our model of statistical discrimination that can be thought of as a non-parametric
generalization of the model of Phelps (1972).

There are two groups—1 and 2—ofworkers; examples include female andmale, Black andWhite, junior
and senior, or disabled and able bodied. In the theoretical results, we do not take a stand on which of
these two groups is advantaged/disadvantaged, if any.

We observe two wage distributions G1 and G2, with Gi(w) ∈ [0, 1] being the fraction of workers in
group i ∈ {1, 2} who are paid a wage of w ≥ 0 or less.5 We assume that the wage distributions are
bounded, that is,Gi(w) = 1 for somew > 0 , i = 1, 2.

The questionwe address is: underwhat conditions are the observedwage distributions rationalized by (or
consistent with) a general model of statistical discrimination? As we shall see, the answer provides a test
of taste-based discrimination, in that, whenever the wage distributions are not rationalizable, statistical
discrimination alone cannot explain the data, but taste-based discrimination can. In statistical terms, our
null hypothesis is that the data is consistent with statistical discrimination alone (which includes the case
of no discrimination), and we are interested in rejecting the null hypothesis. The answer to the above
question underpins our statistical test. We interpret a rejection of the null hypothesis as evidence of
taste-based discrimination and we demonstrate the validity of this interpretation. We now present the
aforementioned model in detail, starting with the productivity distributions.

in which they can control the precision and dynamics of information. This allows them to differentiate between whether
disparate outcomes are the result of (correct or incorrect) beliefs or preferences of the decision makers.
5Throughout, all distributions are right-continuous and have limits on the left.
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Productivity distributions: Workers differ in their (true) productivities, with θi ∈ R+ denoting the
productivity of a worker in group i ∈ {1, 2}, and Hi its (cumulative) distribution. The productivity
refers to the marginal product of a worker and is thus measured in the same unit as wages (US dollars in
our empirical application).

We hypothesize a set Ĥ of pairs of productivity distributions (H1, H2) and derive the testable implica-
tions of ourmodel assuming that the productivity distributions (H1, H2) belong to Ĥ. Throughout, we
assume that every pair of productivity distributions (H1, H2) ∈ Ĥ are supported on a subset of some
bounded interval [0, θ] =: Θ. Different assumptions imposed on the set Ĥ may have different testable
implications. As an example, in our baseline model below, we assume that Ĥ is the set of all pairs of
productivity distributions that have equal means but can otherwise differ. As another example, we as-
sume that Ĥ contains all pairs of distributions, whose means differ by at most d > 0. The validity of the
hypothesized set Ĥmust be argued, either empirically or theoretically.

Information: Employers do not directly observe the productivities of workers, but receive informative
signals (from CVs, reference letters, interviews, tests, data-driven software etc.). Employers then form
an expectation of the productivity of workers and pay them accordingly: wages are strictly increasing in
expected productivity. Since wages only depend on the expected productivity, we assume that the signals
employers receive are posterior estimates of the productivity. This is without loss of generality.

More precisely, a signal (Si, πi) for group i ∈ {1, 2} consists of a set of signal realizations Si = Θ

and a joint distribution πi over Θ × Si, whose marginal distribution overΘ is the (prior) productivity
distributionHi. We denote the marginal distribution of πi over Si by Fi. We assume that the posterior
estimate Eπi

[θi | si] of the productivity satisfies

si = Eπi
[θi | si],

for all si in the support of Fi. In words, the signal realization si is an accurate estimate of the true pro-
ductivity θi. As mentioned, this is without loss of generality, as we can always relabel signals to guarantee
that they are accurate in the above sense. In what follows, we slightly abuse notation and write θi for the
posterior estimate (the signal realization).

It is well known that Fi is a distribution of posterior estimates arising from some signal if, and only if,
the prior distributionHi is amean-preserving spread of the posterior distribution Fi, which we denote
by Fi <2 Hi (where the notation reflects second-order stochastic dominance). Formally, the mean-
preserving spread condition requires that∫ θ

0

Hi(θi)dθi ≥
∫ θ

0

Fi(θi)dθi for all θ ∈ [0, θ], with equality at θ = θ.
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Note that the requirement of equality at θi = θ is the same as ensuring that Hi and Fi have the same
mean.6

We stress that the above formulation subsumes all possible signaling technologies. In particular, this
includes the common formulation (as in Phelps, 1972; Aigner and Cain, 1977) of modeling signals as
si = θi + εi, where εi is a noise term whose distribution (typically assumed to be normal) can depend
on the group i and possibly the productivity θi as well.

Moreover, it is worth highlighting that we do not take a stand on the source of these signals. In particular,
we can allow for employers to design different screening practices for each group. We simply require
employers to be Bayesian with accurate beliefs (but we discuss the possibility of inaccurate beliefs and
non-Bayesian updating below).

Wage function: If an employer estimates the productivity of a worker to be θ, they pay the worker
W (θ), where the wage functionW : R+ → R+ is continuous and strictly increasing.7 LetW be the set
of continuous and strictly increasing functions with both domain and range beingR+. As with the set of
productivity distributions, we hypothesize a set of wage functions Ŵ . As an example, employersmay pay
workers a fixed fraction of their expected productivities, in which case Ŵ is the set of linear functions.

It is worth making a few comments about the wage functions. First, the wage functions do not depend
on the group identity. It is in this sense that our model captures statistical, but not taste-based, discrim-
ination. Second, the labor economics literature frequently assumes perfectly competitive labor markets.
In our notation, this amounts to assuming Ŵ = {Wid} whereWid(θ) = θ. As will become clear from
our results below, a strength of our framework is that we require no such restrictive assumptions and
we can accommodate imperfectly competitive labor markets (via the reduced form wage function) quite
generally.

Induced wage distributions: The distributionFi over posterior estimates induces the wage distribution
Gi via thewage functionW . Formally, for both i ∈ {1, 2},Gi(w) is themeasure of the set {θ : W (θ) ≤
w} according to Fi, that is, Gi(w) = Fi(W

−1(w)) for w ∈ [W (0),W (θ)], Gi(w) = 0 for w <

W (0) andGi(w) = 1 forw > W (θ).8 Note that, even though the wage function does not depend on
group identity, the wage distributionsG1 andG2 may differ across groups for the simple reason that the
distributions of posterior estimates F1 and F2 may differ.

Rationalizability: We say that the observed wage distributionsG1 andG2 are rationalizable (given Ĥ,
Ŵ) if there exist (i) productivity distributions (H1, H2) ∈ Ĥ, (ii) distributions of posterior estimatesFi

6Integration by parts implies that the mean satisfies
∫ θ

0
θidFi(θi) = θiFi(θi)|θ0 −

∫ θ

0
Fi(θi)dθi = θ −

∫ θ

0
Fi(θi)dθi.

7We could additionally assume thatW (θ) ≤ θ (workers are paid less than their marginal product) and no result in the paper
changes. While this is a natural assumption, we do not require it so choose not to impose it.
8We defineW−1 as the inverse ofW on the domain [W (0),W (θ)].
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that satisfy Fi <2 Hi for i ∈ {1, 2}, and (iii) a wage functionW ∈ Ŵ , such that these jointly induce
the observed wage distributions.

Beforemoving on to the analysis, we discuss themodel and the question it addresses. Ourmodel is in the
spirit of the seminal models of Phelps (1972) and Aigner andCain (1977). Phelps considers two popula-
tions whose productivities are drawn from a normal distribution. Signals are also normally distributed,
differ across groups, and the wage function is linear in the posterior estimate. If themeans of the produc-
tivity distributions for both groups are the same, then the Phelps’ model implies that the average wage
for both groups is the same (because the posterior distributionmust have the samemean as the prior, and
the wage function is linear). In this case, there is no discrimination at the group level even though the
wage distributions differ (so there is individual level discrimination). Aigner and Cain (1977) observe it
is possible to generate discrimination at the group level via more general wage functions even when the
productivity distributions for both groups are identical. In their model, wages depend both on themean
and the variance of the posterior belief. In the normal learning environment, the posterior variance is the
same for all signal realizations so they model the wage as just the difference between the posterior mean
and somemultiple of the (signal independent) variance of the posterior belief. Hence, different normally
distributed signals can generate distinct mean wages.

Ourmodel ismore general than these seminal papers (andmost of the literature) in thatwe donot assume
that the productivity distributions areGaussian and precisely knownby the analyst (they instead lie in set
Ĥ), and we allow for unrestricted (not necessarily Gaussian) signals. Moreover, we do not restrict wages
to be linear in the posterior estimate.9 That said, unlikeAigner andCain (1977), wages in ourmodel only
depend on the mean of the posterior distribution, but not on the variance. This choice is deliberate: our
model is very general andour assumptionsbalance this generality againstmeaningful testable implications
that can be taken to the data. As we discuss in Section 6, allowing wages to depend on both the mean
and the variance makes the testable implications of our model vacuous, even when relatively restrictive
assumptions are imposed on Ĥ (equal mean productivities) and Ŵ (wages that are affine in the posterior
mean and variance).

Similar to Phelps (1972) and Aigner and Cain (1977), we do not model the underlying reason that pro-
ductivities differ across groups. In this sense, we differ from papers like Coate and Loury (1993) whose
primary purpose is to explain how stereotypes (that assume the disadvantaged group has lowermean pro-
ductivity) can be self-fulfilling. Note that we can accommodate self-fulfilling stereotypes against group
1 in our model by hypothesizing the set Ĥ = {(H1, H2) |EH1 [θ1] ≤ EH2 [θ2]}.

9There is one recent paper, Chambers and Echenique (2021), that also uses an information design approach but their model
andquestion are very different fromours. In theirmodel, workers have skills, firms learn about these skills via signals, optimally
match workers to tasks and pay the worker the value they generate. They characterize properties of the information structure
such that every signal leads to the same expected wages. They also establish a relation with the production technology.
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Our main theoretical aim is to fully characterize the set of rationalizable pairs of wage distributions un-
der different assumptions on Ĥ and Ŵ . This separates our analysis from most theoretical papers on
discrimination that aim to derive the main implications of their models, but do not provide a complete
characterizationof the testable implications. In this sense, our analysis is closer to the theoretical literature
on decision theory and revealed preference.

3. CHARACTERIZING RATIONALIZABLE WAGE DISTRIBUTIONS

In this section, we derive the main theoretical results. We begin with a baseline result that assumes both
groups have equal mean productivities and establish its economic implications. We then generalize to a
setting where wemake the weaker assumption that one group has weakly higher mean productivity than
the other: this generalization is the basis of our empirical test.

3.1. BASELINE RESULT: EQUAL MEAN PRODUCTIVITIES

As we have emphasized earlier, the key novelty of our framework is that we allow for (arbitrary) non-
Gaussian priors, signals and nonlinear wages. In this subsection, we isolate the implications of these
modeling features by assuming that both groups have equal mean productivities but, apart from this, we
impose no further restrictions. In other words, we characterize how the wage distributions can differ due
to a combination of statistical discrimination and nonlinear wages for two groups that are identical on
average. We weaken this assumption in subsequent sections.

We define
H= := {(H1, H2) |EH1 [θ1] = EH2 [θ2]}

to be the set of productivity distribution pairs that have equal means. Note that, barring the equal means
requirement, the productivity distributions can differ arbitrarily.10 Formally, we characterize the set of
rationalizable wage distributions given that the productivity distributions lie in the setH= but the wage
function is unrestricted (that is, we take Ŵ = W).

Despite the equal means assumption, the model is very general as the signals and the wage function are
unrestricted. Given this generality, the first natural question to ask is: is there any pair of wage distribu-
tions that is not rationalizable (givenH=,W)? To this point, note that our model allows the posterior
estimate distribution of group 1 to be a strict mean-preserving spread of group 2, in which case a strictly
convex wage functionW will generate higher mean wages for group 1.11 In other words, differences in
mean wages (a wage gap) can arise purely via statistical discrimination, even though both groups have
equal mean productivities. So, to find inconsistent distributions, we need to consider higher moments

10Distributions can be discrete, continuous or a mixture of the two.
11The mean-preserving spread is strict when F2 <2 F1 and F2 ̸= F1.
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of the wage distribution. In fact, as we now argue, we need to consider all moments via the following
order.

The wage distributionGi strictly first-order stochastically dominates the wage distributionGj , which we
denoteGi ≻1 Gj , ifGi(w) ≤ Gj(w) for allw ∈ R+, with the inequality strict for somew.

Now, suppose that the wage distribution of group i strictly first-order stochastically dominates that of
group j. We argue that these distributions are not rationalizable. By contradiction, assume that these dis-
tributions are rationalizable (givenH=,W). This implies that there exist posterior estimate distributions
Fi and Fj , and a wage functionW , such that

Fi(θ) = Gi(W (θ)) ≤ Gj(W (θ)) = Fj(θ) for all θ ∈ [0, θ],

with the inequality strict for some θ, that is, Fi ≻1 Fj . It follows that Fi has a strictly higher mean
thanFj , which is a contradiction sinceFi andFj aremean-preserving contractions of some productivity
distributions (Hi, Hj) ∈ H=, which have the same mean.

The above argument shows that a necessary condition for a pair of wage distributions to be rationalizable
(givenH=,W) is that neither strictly first-order stochastically dominates the other. Our first result shows
that this condition is also sufficient.

THEOREM 1.Wage distributionsG1 andG2 are rationalizable (givenH=,W) if, and only if, neitherG1

norG2 strictly first-order stochastically dominates the other.

The remainder of this subsection discusses Theorem 1. We first observe that, in terms of the testable
implications, our model has in-build redundant generality. This redundancy has economic implications.
We use

H̃≡ := {(H1, H2) ∈ H= | (H1, H2) are both supported on two points {0, θ̃}with θ̃ ∈ (0,∞)}

to denote the subset ofH= containing the pairs of distributions with the same binary support. Note that
(H1, H2) ∈ H̃≡ implies thatH1 = H2, since their means and binary supports are the same.

Take any distribution Hi, and let H̃i be the (discrete) distribution supported on {0, θ̃} such that the
support ofHi is a subset of [0, θ̃] and both distributions have equal means: EHi

[θi] = EH̃i
[θi]. Now,

observe that every mean-preserving contraction Fi of Hi is also a mean-preserving contraction of H̃i.
This is because H̃i is the distribution that is the “most spread” (in that all the mass is at both end points
of the interval 0 and θ̃) amongst all distributions with mean EHi

[θi] that are supported on a subset of
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[0, θ̃]. Consequently,

{(F1, F2) |F1 <2 H1, F2 <2 H2 and (H1, H2) ∈ H̃≡} =

{(F1, F2) |F1 <2 H1, F2 <2 H2 and (H1, H2) ∈ H=}.

DenotingH≡ := {(H1, H2) |H1 = H2} to be the set of all pairs of identical productivity distributions
(with not necessarily binary support), the above equality then implies that

{(F1, F2) |F1 <2 H1, F2 <2 H2 and (H1, H2) ∈ H≡} =

{(F1, F2) |F1 <2 H1, F2 <2 H2 and (H1, H2) ∈ H=},

because H̃≡ ⊂ H≡ ⊂ H=. This shows is that the set of rationalizablewage distributions given (H= ,W)

is the same as the set of rationalizable wage distributions given (H≡),W). In words, the testable impli-
cations of ourmodel are the samewhether we assume equal mean productivities or identical productivity
distributions.

THEOREM 1 (CONTINUED). The following statements are equivalent.

(i) Wage distributionsG1 andG2 are rationalizable (givenH= ,W).

(ii) NeitherG1 norG2 strictly first-order stochastically dominates the other.

(iii) Wage distributionsG1 andG2 are rationalizable (givenH≡ ,W).

It has been argued that, for the distributions of certain traits, men and women have the same mean, but
the former have a higher variance. This is sometimes referred to as the “variability hypothesis” and is used
to explain differential outcomes. The third statement of Theorem 1 implies that any two wage distribu-
tions that are not ordered by strict first-order stochastic dominance, no matter how different, could have
resulted from statistical discrimination on identical populations. In other words, allowing for different
variances of the productivity distributions does not lead to more permissive testable implications. That
is, in our setting, the variability hypothesis has no added explanatory power!

The redundant generality inourmodel canbe rephrased in an additionalway. Observe that, given anypair
of productivity distributions (H1, H2) ∈ H=, every pair of mean-preserving contractions, F1 <2 H1

and F2 <2 H2 also belong to the setH=, that is (F1, F2) ∈ H=. This is simply because F1 and F2 have
the same means andH= contains every pair of distributions whose means are equal. Consequently,

H= = {(F1, F2) |F1 <2 H1, F2 <2 H2 and (H1, H2) ∈ H=}.
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This equality of sets has an important economic implication. It says that we cannot distinguish a model
where employers have the prior beliefs (F1, F2) and perfectly observe the productivity of workers from a
model where employers have the prior beliefs (H1, H2) and form the posterior beliefs (F1, F2) via infor-
mative signals.

We say that twowage distributionsG1 andG2 are rationalizable without signal discrimination (given Ĥ,
Ŵ) if there exist (i) productivity distributions (H1, H2) ∈ Ĥ, (ii) perfectly informative signals (F1 =

H1, F2 = H2) and (iii) a wage function W ∈ Ŵ , such that these jointly induce the observed wage
distributions.12 The above argument implies the following result.

THEOREM 1 (CONTINUED). The following statements are equivalent.

(i) Wage distributionsG1 andG2 are rationalizable (givenH= ,W).

(ii) NeitherG1 norG2 strictly first-order stochastically dominates the other.

(iii) Wage distributionsG1 andG2 are rationalizable (givenH≡ ,W).

(iv) Wage distributionsG1 andG2 are rationalizable without signal discrimination (givenH= ,W).

Statement (iv) says that, when condition (ii) holds, we cannot conclude that discrimination in either signal
informativeness or wage payments is present. In other words, when wage distributions are not ordered by
strict first-order stochastic dominance, it is possible that the wage differences arise simply from heteroge-
neous populations (with identical mean productivities) whose wages are determined in a group-neutral
way by employers who perfectly observe productivities. Thus Theorem 1 implies that, when condition
(ii) is rejected in the data, we can not only conclude that discrimination is present, we can also conclude
that discrimination cannot be statistical alone! It is important to note that this claim only applies to the
wages. We naturally cannot exclude the possibility that the heterogenous populations are themselves the
product of past statistical or taste-based discrimination.

A version of this insight also holds in settings where, unlike wages, outcomes are binary. An example is
the setting of correspondence studies inwhich researchers sendfictitiousCVs to employers and record the
rates at which employers do or do not call back for interviews (the binary outcome). Differential inter-
view callback rates are typically interpreted as evidence of discrimination (an additional statistical versus
taste-based conclusion is usually not made). But consider the following situation. Suppose that the pro-
ductivity of a worker is firm-specific and each firm can correctly assess the productivity of a worker with
a given CV and group identity. Identical CVs from both groups may, however, correspond to different

12Note that it would be equally natural to assume that employers do not perfectly observe productivities, but learn about them
via a single group-independent signal. The statement of our result applies verbatim with this definition of “rationalizability
without signal discrimination.”
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firm-specific productivities. One possible reason is that universities have differential admission policies
across groups and so the same educational qualification might nonetheless imply different skills. Aggre-
gating across firms, the productivity distribution of one group might differ from the other group, even
conditional on a given CV. If firms only call back for interviews those applicants whose productivities
are above a threshold, the callback rates for both groups might differ even if the aggregate productivity
distributions have the same mean. In other words, differential callback rates might occur even if both
groups have the same average productivity and the employers can perfectly observe productivities.

Formally, it is easy to show that, given any two callback rates that lie strictly between 0 and 1, it is possi-
ble to construct two productivity distributions that have the samemean and a single group independent
cutoff such that the mass of workers from each group above the cutoff are exactly the callback rates.13

Thus, it is theoretically possible that the differential callback rates found inmany correspondence studies
evidence no discrimination (in our sense) whatsoever! One way to view this insight is that it formalizes
critiques made by Heckman (1998) and Neumark (2012). An alternate implication is that, for audit
or correspondence studies with non-binary outcomes (like wages), testing for strict first-order stochastic
dominance allows the researcher to conclude not just that discrimination is present but also that discrim-
ination is not statistical alone.

3.2. ORDERED MEAN PRODUCTIVITIES

While assuming equalmeanproductivities is a natural starting point for a theoretical study ondiscrimina-
tion, it is a restrictive assumption if one wants to take the theory to the data, as we do. In this subsection,
we weaken this assumption and show that Theorem 1 extends immediately to an environment where we
assume mean productivities to be ordered. We first present the result formally and then discuss why this
generalization is helpful for empirical applications.

We define
H≥ := {(H1, H2) |EH1 [θ1] ≥ EH2 [θ2]}

to be the set of productivity distributionpairs inwhich themeanproductivity of group1 isweakly greater
than that of group 2. SinceH≥ ⊃ H=, this is a weaker assumption than the one imposed in Theorem 1.
The following result follows immediately.

THEOREM 2. The following statements are equivalent.

(i) Wage distributionsG1 andG2 are rationalizable (givenH≥ ,W).

(ii) G2 does not strictly first-order stochastically dominateG1.

13A formal statement is in an older version (Deb and Renou, 2022) of this paper.
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(iii) Wage distributionsG1 andG2 are rationalizable without signal discrimination (givenH≥ ,W).

The discussion in the next paragraph serves as a proof of the equivalence of statements (i) and (ii). The
equivalence of statement (iii) follows from the identical argument that showed the equivalence of the
analogous statement (iv) of Theorem 1. Naturally, since productivity distributions can have unequal
means, there is no natural analogue of statement (iii) of Theorem 1.

SupposeG2 ≻1 G1. If the distributions are rationalizable, then the argument preceding (the first state-
ment of) Theorem 1 implies that, for anyW ∈ W , the resulting distributions F1(θ1) = G1(W (θ1)),
F2(θ2) = G2(W (θ2)) of posterior estimates satisfyEF1 [θ1] < EF2 [θ2]. This is a contradiction since ev-
ery pair (H1, H2) that satisfiesFi <2 Hi has meanEFi

[θi] = EHi
[θi] for i ∈ {1, 2}, and so (H1, H2) /∈

H≥. IfG1 andG2 are not ordered by strict first-order stochastic dominance, then Theorem 1 shows that
these wage distributions are rationalizable (given H= , W) and so also rationalizable (given H≥ , W).
Lastly, if G1 ≻1 G2, then we can rationalize the data with the (perfectly competitive) wage function
W (θ) = θ and (F1, F2) = (H1, H2) = (G1, G2).

In the next section, we derive and implement an empirical test for discrimination based on Theorem 2.
For this test to be informative, we need to ensure that the ordered mean productivity assumptionH≥ is
satisfied in our empirical application. For this reason, Theorem 2 is a better candidate than Theorem 1
to take to the data because it is hard to ensure that mean productivities are exactly equal, even with fine
controls. Conversely, as mentioned earlier, there are reasons to believe that, due to discrimination (for
instance in acquiring education), the disadvantaged group might be positively selected for a given vector
of covariates. It is also possible to stack the deck in favor of the disadvantaged group (to ensure they have
higher mean productivity) by, for instance, comparing more-educated workers from the disadvantaged
group with less-educated workers from the advantage group (while, of course, controlling for everything
else). The ordered means assumption would only be invalid under the unlikely situation that the advan-
taged group has higher average productivity despite having lower education.

Asmentioned earlier, the null hypothesis of our empirical application is that wage distributions are ratio-
nalizable (givenH≥,W) and we interpret rejections of the null as evidence of taste-based discrimination.
Naturally, if wage distributions are not rationalizable, it means that the combination of assumptions of
the model are rejected by the data. One assumption of the model is that the wage function is group
independent. If wages are group dependent—that is, wages for group 1, 2 are determined by poten-
tially different functions W1,W2—then every pair of wage distributions are rationalizable with group-
dependent wage functions (given eitherH≥ ,W orH≥ ,W). Group dependent wages can be thought
of as taste-based discrimination (following Becker, 1957) because two workers with identical expected
productivities in the eyes of the employer are paid differently. Interpreting G2 ≻1 G1 as taste-based
discrimination in this sense would not always be correct if there existed pairs of wage distributions that
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were not rationalizable by group-dependent wage functions.

Another assumption of themodel is that employers are Bayesianwith accurate beliefs. Bayesian updating
is not needed for our results. Any updating rule, which satisfies the property that the expectation of
posterior beliefs is the prior belief, induces the same testable implications. In addition, Theorem 2 allows
for some belief inaccuracy. Indeed, rationalizing the observed wages does not involve finding the true
beliefs of employers, it merely requires that there is one instance of the model that is consistent with
the observed wages. Thus, a rejection of condition (ii) of Theorem 2 implies that we are rejecting the
possibility of any prior belief (and signal) that assigns higher mean productivity to the disadvantaged
group. Thus, employers can have inaccurate beliefs as long as the mean productivities remain correctly
ordered. We are thus also labeling, as taste-based discrimination, beliefs that are so inaccurate that they
assign lower mean productivity to the disadvantaged group. Ultimately, as in common in the literature
(see Bohren, Haggag, Imas, and Pope, 2023), we cannot distinguish using basic wage data whether wage
differences are the result of group-dependent wage functions or very inaccurate beliefs.

It is also possible that employers deliberately use different methods to screen candidates of both groups.
For instance, theymay interview candidates of one group in person and the other online leading to differ-
entially informative signals. Since we do not model the source of the signals, we will label such deliberate
differential treatment as statistical discrimination. In otherwords, even if thewage distributions are ratio-
nalizable, it is nonetheless possible that candidates from both groups are treated differently by employers.
Whenwage distributions are not rationalizable, we are detecting taste-based discrimination (in the above
sense), over and above potential discrimination in the signal choice.

Lastly, it is possible that wage distributions are not rationalizable because employers determine wages not
just on the basis of posteriormeans but also on the basis of highermoments of the posterior distribution.
As we discuss in our concluding remarks, this is a possibility that can never be ruled out in a model this
general. One could impose enough structure on priors, signals and the relationship between wages and
higher moments of the posterior distribution to ensure that the model has nontrivial testable implica-
tions. But, this would not insure the analysis from the criticism that non-rationalizability is interpreted
incorrectly because the true model of the world is more general than that of the econometrician.

4. EMPIRICAL APPLICATION

In this section, we describe how Theorem 2 yields a simple empirical test to uncover taste-based discrim-
ination on commonly available cross-sectional data. We first describe the methodology and then apply
our test to Census and NLSY-79 data.

It is worth presenting a high levelmotivation for our approach before we provide specific details. There is

14



a tradition in labor economics of using the Kitagawa-Oaxaca-Blinder decomposition to determine both
the presence of discrimination and tomeasure itsmagnitude. AsGuryan andCharles (2013) explain, this
method “separates differences in average wages, for example, into the part that is explained by differences
in characteristics (e.g., education), the part that is explained by differences in returns to those charac-
teristics (e.g., returns to education) and unexplained differences. Many in this literature have called the
unexplained differences, or both the unexplained and the differences in returns, the result of discrimina-
tion.”

We follow this tradition with one notable difference: we decompose the differences in wages at all quan-
tiles of the distributions.14 Indeed, a key insight of our theory is that we need to compare the entire wage
distributions, and not only the average wages, if we want to test whether statistical discrimination alone
can rationalize the data. Ideally, we would like to decompose the wage distributions into the part that is
explained by differences in (prior) mean productivities and the part that is not, so that we can apply our
strict first-order stochastic dominance test to the latter part. Unfortunately, we do not observe individ-
ual productivities. We instead observe individual characteristics which are commonly used as proxies for
productivities. We decompose the wage distributions with respect to these characteristics.

In standard decompositions, researchers have to be careful to make sure that they do not control for
too little (omitted variables) or too much. As Guryan and Charles (2013) explain: “the variables the re-
searcher controls for might themselves be affected by discrimination. Controlling for such variables can
cause the unexplained differences to understate the role that discrimination in general plays in determin-
ing wage gaps.” By contrast, controlling for too much is less of an issue for our test. To start with, we are
only interested in detecting taste-based discrimination, and not in measuring its magnitude. In addition,
even if the variables we control for have been affected by discrimination, we can use this to our advantage.
For instance, if we think there is discrimination in education, this implies that, on average, Black workers
(having to overcomemore barriers) will be of higher ability compared to similarly educatedWhite work-
ers. Any such positive selectionmakes the assumption of Theorem 2more likely to be true. In fact, we go
one step further. We compare Black workers with more schooling to lesser educated White workers. If
the wages ofWhite workers still strictly first-order stochastically dominate those of Black workers, then a
conclusion that taste-based discrimination is present is invalid only if we believe thatWhite workers with
less schooling are more productive on average.

4.1. THE METHODOLOGY

Wecompare thewage distributions for Black (group 1) andWhite (group 2)workers within a given occu-
pation. The assumption here is that wages in a given occupation are governed by a single wage function

14Recall that the distribution G2 first-order stochastically dominates the distribution G1 if, and only if, all quantiles of G2

are higher than the respective quantiles ofG1.
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and the different characteristics of workers affect their expected productivity (and hence their wage). Our
goal is to test Theorem 2: that is, under the assumption that Black workers are more productive on aver-
age, we want to test whether the wage distributionG2 ofWhite workers strictly first-order stochastically
dominates the wage distributionG1 of Black workers. Recall that, ifG2 ≻1 G1, then the wage distribu-
tions cannot be the result of statistical discrimination alone. Thus, our null hypothesis is that statistical
discrimination alone rationalizes the data, and we are interested in rejecting the null. We interpret the
rejection of the null as evidence of taste-based discrimination.

There are two difficulties to overcome. The first is that we do not observe the true wage distributions
G1 and G2; we observe empirical samples, instead. The second is to ensure we can apply Theorem 2,
which requires Black workers to be more productive on average. Indeed, since we do not observe the
true productivity distributions of the workers, we cannot directly control for that assumption and we,
instead, need to find an indirect way.

The first difficulty is easily dealt with. We can test whether G2 ≻1 G1 by Kolmogorov-Smirnov-type
tests. This is equivalent to testing whetherG2 first-order stochastically dominatesG1 but not vice versa.
Examples of such tests can be found inMcFadden (1989) and Barrett and Donald (2003).

The second difficulty is more challenging. To overcome this, we assume that unobserved individual pro-
ductivities are correlated with the individual characteristics we observe. Now, since the distributions of
individual characteristics in any occupation vary between Black andWhite workers, we employ a version
of the KOB decomposition to adjust for the differences in characteristics and then test for first-order
stochastic dominance. More precisely, we first compute the (counterfactual) distribution Ĝ1 of wages
for Black workers that we would have observed had they faced the wage setting process ofWhite workers
that is, had employers perceived them to beWhite. This counterfactual distribution captures both poten-
tial statistical discrimination (via the different signals for each group) and taste-based discrimination. We
then test the null hypothesis of Ĝ1 �1 G1: if the null is rejected, statistical discrimination alone cannot
explain the difference between the observed wage distribution G1 and the counterfactual distribution
Ĝ1.

Formally, letX be a vector of observable individual characteristics such as years of schooling, age and state
of residence. LetGi(·|X) be the observed distribution of wages conditional on characteristicsX andF ◦

i

the joint probability over expected productivity (in the eyes of the employer) and individual character-
istics. The notation overloads are deliberately made to obviate the introduction of new notation. We
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perform the following decomposition:

G1(w)−G2(w) =

∫
G1(w|X)dF ◦

1 (X)−
∫

G2(w|X)dF ◦
2 (X),

=

[∫
G1(w|X)dF ◦

1 (X)−
∫

G2(w|X)dF ◦
1 (X)

]
+

[∫
G2(w|X)dF ◦

1 (X)−
∫

G2(w|X)dF ◦
2 (X)

]
,

=
[
G1(w)− Ĝ1(w)

]
+
[
Ĝ1(w)−G2(w)

]
,

(1)

where Ĝ1(w) :=
∫
G2(w|X)dF ◦

1 (X) and the integrals are taken with respect to the marginal distri-
butions over characteristics. A recent interpretation of this decomposition is provided by Bohren, Hull,
and Imas (2022). They interpret the term on the leftG1(w) − G2(w) as total discrimination, the first
term on the rightG1(w)−Ĝ1(w) as direct discrimination and the final term Ĝ1(w)−G2(w) as systemic
discrimination. Total discrimination compounds the differential treatment of Black andWhite workers
before entering the job market (for instance, due to barriers in educational attainment) with the differ-
ential treatment after entering the job market. We are interested in the direct discrimination term, that
is, the comparison ofG1 and Ĝ1. The comparison is analogous to a correspondence study since we com-
pare the wages of Black workers with the wages they would have obtained had they been treated asWhite
workers (but retaining their individual characteristics). Conceptually, it is similar to exposing employers
to resumes which differ only in names.

To compute the counterfactual distribution Ĝ1, we follow the method of Chernozhukov, Fernández-
Val, and Melly (2013). In a nutshell, this consists of estimating the marginal F ◦

i (X) over individual
characteristics from the empirical distribution and the conditionalGi(·|X) from either distribution or
quantile regressions. We then testwhether Ĝ1 ≻1 G1, which the approachofChernozhukov, Fernández-
Val, and Melly (2013) permits. Importantly, their method allows us to make statistical inference on the
entire distributions, which is needed to test for first-order stochastic dominance.

Now, suppose we conclude that Ĝ1 ≻1 G1. We can then infer that the wage distributions cannot be
rationalized by statistical discrimination alone if∫

EF ◦
1
[θ1|X]dF ◦

1 (X) ≥
∫

EF ◦
2
[θ2|X]dF ◦

1 (X).

For instance, this hypothesis is satisfied whenever the productivity distribution θi is independent of race
i, conditional on characteristicsX . It is, however, weaker. The assumption allows for the expected pro-
ductivity EF ◦

1
[θ1|X] ≥ EF ◦

2
[θ2|X] of Black workers to be higher for some individual characteristicsX

and lower for others. Economic theories support both scenarios. On the one hand, barriers to entry into
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the labormarket and obtaining education suggest that Blackworkers are positively selected into the labor
market (which is our belief). While we are not aware of empirical evidence supporting positive selection
of Blackworkers, Ashraf, Bandiera,Minni, andQuintas-Martınez (2022) document thatwomen are pos-
itively selected into the labor market (and that women are more comparatively productive than men in
countrieswhere female labor force participation is lower). On the other hand, classic theories of statistical
discrimination (such as Coate and Loury, 1993) argue that Black workers may under-invest in produc-
tive skills and consequently make stereotypes self-fulfilling. To deal with this latter hypothesis, we also
compare Black workers with more schooling to White workers with less; here, it is significantly harder
(and, in our view, implausible) to argue that more educated Black workers have lowermean productivity.

We end this subsection with a brief discussion on the choice of the covariatesX that should be included
in the computation of the counterfactual distribution Ĝ1. We suggest including as many covariates as
necessary, subject to data and computational limitations, tomake the orderedmeans assumption as plau-
sible as possible. It is not essential that the employers observe all the variables inX when setting wages.
Employers may not observe certain covariates, but may observe other informative signals (unobserved by
the analyst) that are correlated with the unobserved variables inX . In other words, since the signals em-
ployers observe may be arbitrarily correlated with the the individual characteristics the analyst observes,
it makes no differences to the empirical analysis whether we assume that employers observe the individ-
ual covariatesX we use or not. A similar observation appears in Altonji and Pierret (2001) who employ
NLSY-79 data and use Armed Forces Qualification Test (AFQT) scores, among other controls, to proxy
the information employers obtain over time. We explicitly make this remark because one of our robust-
ness checks uses NLSY-79 data and we include AFQT scores and past wages—variables that may not be
observed by employers—as controls.

4.2. EVIDENCE OF TASTE-BASED DISCRIMINATION

We apply our test on two datasets. We conduct our main analysis with Census data. While these data
have limitations, this serves as a proof of concept of how our test can be applied on commonly used and
publicly available large datasets. We conduct an additional robustness check using NLSY-79 data and
exploit the fact that it is a panel.

We begin by describing the sample construction. In each dataset, we focus on the wages of prime-aged
men to avoid the typical selection issues associated with female labor force participation.15

15Examining wage distributions by race is also subject to selection as labor force participation is substantially lower for Black
compared to White male workers. Since our test requires mean productivities to be ordered, the interpretation of our test
results would only be invalid if selection is such that the more educated Black workers who participate in the labor force are,
on average, less productive than their less educated White counterparts. This is contrary to the more reasonable assumption
that the least productive Black men stay out of the labor force which is selection that works in favor of our ordered means
requirement.
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4.2.1. The data

Census: We use the American Community Survey (ACS) for the years 2007-2021 that contains all
households and persons from the 1% sample. We restrict the data to men aged 30-55 years (to capture
their prime labor market years) and to those who are employed, working full time (50-52 weeks), and
working for a wage. The main income measure we use is the INCWAGE variable capturing “Wage and
Salary Income.”

Because thewagedistributiondecompositionmethodofChernozhukov, Fernández-Val, andMelly (2013)
that we employ is not completely non-parametric, we conduct our analysis at the occupation level. This
allows for more flexibility of the wage functions across occupations (compared to using the full sample
with occupation controls). We create eleven general categories of occupation status from the four digit
codes (2010 basis) available in the Census.16 The 11 groups are: (1) Management, Business, and Finan-
cial, (2) Professional, (3) Service, (4) Sales and related, (5)Office and administrative support, (6) Farming,
fishing, and forestry, (7) Construction and extraction, (8) Installation, maintenance, and repair, (9) Pro-
duction, (10) Transportation, and material, and (11) Armed forces occupations.

Race is measured from the self reported race category in the census. We also use data on age, census
year, census region and highest grade attained; the latter is used to create samples with ordered means.
Specifically, we consider the sample of White workers with a high school degree and Black workers who
have attended somecollege orpossess an associate’s degree. Themore educatedBlackworkers are assumed
to have highermeanproductivity. It is, of course, possible to consider other types of sampleswith ordered
means such asWhite and Black workers without and with high school diplomas or possessing bachelor’s
and master’s degrees respectively. Our choice was governed by at least two reasons. First, compared to
the two options in the previous sentence, our samples constitute a larger proportion of the data. Second,
Census data does not have information on the university attended. Consequently, it would be hard to
control for the very heterogeneous quality of college education were we to compare White and Black
workers with bachelor’s and master’s degrees respectively.

NLSY-79: From the NLSY-79 we restrict our sample to men who worked full time (52 weeks) in 1998
and 2000 and who reported positive wages in those years. We selected those years as individuals in the
NLSY-79were between the ages of 14-22 at the time of their first interview in 1979. Hence, in 2000 these
individuals were in the age range of 35-43, which were their prime labor market years. The main wage
variable we use from the NLSY-79 is about the respondent’s “amount of wages, salary, and tips” in the
past year (so survey year 2000 relates to wages in 1999, etc.).

In addition to variables capturing occupation in 2000 and 1998 (3 digit CPS 1980 codes), we also have
the highest grade completed (as of calendar year 2000), and the AFQT percentile score (all respondents

16This is based on the Census occupation classification available here.

19

https://www2.census.gov/programs-surveys/cps/methodology/Occupation%20Codes.pdf


took the AFQT in 1981 and we use the 2006 revised percentiles of this measure from the data).

4.2.2. Results

The one sentence summary of our results is that, across several broad occupation categories, the wage
distribution of Black workers is strictly first-order stochastically dominated by the counterfactual distri-
bution of wages they would receive were they to be treated as White despite Black workers having higher
educational attainment by construction.17 We interpret this as suggestive evidence of taste-based discrim-
ination via the lens of Theorem 2.

Before turning to the results from the quantile decomposition, we first present some descriptive and easy
to visualize evidence. A strength of our test is that such visual evidence is straightforward for researchers
and policy makers to generate. They can simply plot the wage distributions within well defined cells.
As long as we are convinced that the assumption of equal or ordered means (depending on whether we
are testing Theorem 1 or 2) is satisfied, a strict first-order stochastic dominance ordering can provide
suggestive evidence of discrimination in general and taste-based discrimination in particular.

In Figure 1, we plot the distribution of wages of Black workers with some college or an associates’ de-
gree and White workers who have just a high school degree in two out of the eleven broad occupation
groups mentioned above. Panel 1a shows the distribution of wages in jobs related to sales (such as retail
salespersons, insurance sales agents, etc.) and Panel 1b shows the distribution of wages in jobs related to
production (such asmetal workers, painters, woodworkers, etc.). Panel 1a is visually stark: despite having
lower years of schooling, White workers’ wages clearly appear to strictly first-order stochastically domi-
nate the wages of Black workers. The evidence in Panel 1b is less clear. We use a Kolmogorov-Smirnov
(KS) test statistic to confirm these visual tests. For sales, the KS statistic for the null that White workers’
wages first-order stochastically dominate those of Black workers is 0 (p-value of 1), while the KS statis-
tic for the null that Black workers’ wages first-order stochastically dominate those of White workers is
-0.10 (p-value 0). Hence, we cannot reject the former but can reject the latter. This demonstrates strict
first-order stochastic dominance. For production, the KS statistic for the null thatWhite workers’ wages
first-order stochastically dominate those of Black workers is 0.01 (p-value of 0.14), while the KS statistic
for the null that Black workers’ wages first-order stochastically dominate those ofWhite workers is -0.04
(p-value 0). Thus, the evidence is similar, but as the figure suggests, it is less stark.

While these descriptive graphs are informative, it is possible that these wage distributions are the result of
different distributions of (non-educational) characteristics amongst Black and White workers. To hold
these other characteristics constant, we turn to our main specification: the quantile decomposition dis-

17It is not the case that some college or associate’s degrees are an overall negative signal for employers. In the Appendix, we
show thatwages of Blackworkerswith some college or associate’s degrees first order stochastically dominate thewages of Black
workers with just a high school degree.
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Figure 1: Descriptive Evidence with OrderedMeans

(a) Sales (b) Production

Data is fromtheACS2007-2021. Menaged30-55,working full time (52weeks). Blackworkerswith somecollege or associate’s
degrees andWhite workers with high school degrees.

cussed earlier using the methodology of Chernozhukov, Fernández-Val, and Melly (2013). We conduct
the decomposition for the same two broad occupation categories above—“Sales” and “Production”—
separately (and recall that in each case Black workers have some college or an associate’s degree andWhite
workers have a high-school diploma) with the following rich set of controls: census region of residence (9
regions), age, age squared, dummies for finer occupation controls (these are themost detailed occupation
codes available in the ACS), and Census year.18

Figures 2 and 3 display the results for both occupation categories. Each figure contains four panels: in
each panel, quantiles are on the x-axis and differences between the log annual wages of Black workers and
White workers are on the y-axis. Note that an equivalent way of stating that the wage distribution for a
group strictly first-order stochastically dominates the other is that the wages for the first group are weakly
higher than the second at all quantiles and strictly higher at some. Formally, Gi ≻1 Gj is equivalent
to G−1

i (q) ≥ G−1
j (q) for all q ∈ [0, 1] with the inequality strict for at least one q.19 For the decom-

positions, we use the default settings of the CDECO command in Stata: estimation is based on linear
quantile regressions based onKoenker and Bassett (1978), hundred bootstrap replications are performed
for inference, and both pointwise and uniform confidence intervals at 95% are constructed.

The top left panel plots the difference in wages at each quantile of the wage distribution; this is the total
discrimination we described above (that is,G−1

1 − G−1
2 ). The top right panel is the share of that differ-

18For a sense of these finer occupation categories, the following are the top three finer occupations within each broader occu-
pation category. Within “Sales”: 1) First line supervisors of sales agents, 2) Sales representatives, 3) Retail salespersons. Within
“Production”: 1) First line supervisors of production, 2) Other production workers, 3) Welders.
19We defineG−1

i (q) = inf{w ∈ [0, w] | Gi(w) ≥ q} since the wage distributions need not be strictly increasing.
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Figure 2: Quantile Decompositions: Sales

Data is from the ACS 2007-2021. Men aged 30-55, working full time (52 weeks), and working for wages. White workers have
high school degree, Black workers have some college or associate’s degrees. CDECOState command based onChernozhukov,
Fernández-Val, andMelly (2013). Controls include age, age-squared, Census region, 2010 occupation codes, andCensus year.
95% confidence bands.

Figure 3: Quantile Decompositions: Production

Data is from the ACS 2007-2021. Men aged 30-55, working full time (52 weeks), and working for wages. White workers have
high school degree, Black workers have some college or associate’s degrees. CDECOState command based onChernozhukov,
Fernández-Val, andMelly (2013). Controls include age, age-squared, Census region, 2010 occupation codes, andCensus year.
95% confidence bands.
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ence attributed to the different characteristics of Black andWhite workers, the aforementioned systemic
discrimination (that is, Ĝ−1

1 −G−1
2 ). Themain panel of interest for us is the bottom left panel which cap-

tures the direct discrimination (that is,G−1
1 − Ĝ−1

1 ). The bottom right panel in each figure summarizes
these different pieces of the decomposition; to summarize, this is the equivalent quantile decomposition
analogue of distribution decomposition (1).

In Figure 2, observe that the wage structure effect (bottom left panel labeled “Coefficients”) is signif-
icantly less than 0 at all quantiles of the wage distribution. That is, Black workers are paid less at all
quantiles of the wage distribution relative to the counterfactual wages they would receive were they to
be treated as White. In other words, if we were to believe that conditioning on the above mentioned
observables, while fixing the education of Black workers to be higher than that ofWhite workers, the av-
erage productivity of Blackworkers is at least as high asWhiteworkers, then this is evidence of taste-based
discrimination in sales based occupations. The same is not true in Figure 3. Once we factor in workers’
characteristics in production occupations, the wage structure effect (the bottom left panel) is not below
zero at all quantiles. Hence, we cannot conclude that there is strict first-order stochastic dominance. In-
tuitively these results resonate. In occupations such as sales, there are likely customer interactions and
other aspects that might be subject to one’s tastes and prejudices. In production occupations like weld-
ing and woodworking, perhaps the scope for taste-based discrimination is less (although, we stress again
that not finding strict first-order stochastic dominance does not imply the absence of discrimination).

In the Appendix, we provide the decompositions for all the remaining broad occupation categories and
the results are intuitive. We find evidence of strict first-order stochastic dominance in occupations where
the scope for subjective evaluationsmight be higher (like professional occupations ormanagement related
jobs). In occupations like farming or the service sector where compensation structures might be less
discretionary, it makes sense that taste-based discrimination plays a less significant role.

We end this section with a description of our results from the NLSY-79. This data set is not contem-
porary, is smaller than the Census but has the advantage of being a panel. This allows us to control on
past wages and occupations. These controls allow us to compare Black and White workers who worked
the same job in the previous period at the samewage. If there was no discrimination the previous period
wages, two employees of each group who are paid the same must have the same expected productivity
(since we assume that wages only depend on expected productivities). Conversely, if employers had en-
gaged in discrimination against Black workers in the previous period, we expect Black workers to bemore
productive than White workers for them to have been paid the same wage. The remaining possibility
is that Black workers have a lower expected productivity, but got paid the same as White workers (with
higher mean productivity) in the previous period. Wemight expect this if we think there is strong bias in
the opposite direction or forces like affirmative action at play. However, if this were the case, we would
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not expect a reversal of this pattern within one period.

Figure 4: Quantile Decompositions: Wage Structure Effects from the NLSY

Data is from the NLSY-79. Wages recorded in calendar year 2000 for men working full time (52 weeks). CDECO State com-
mand based on Chernozhukov, Fernández-Val, andMelly (2013). Only wage structure effect (coefficient plot fromCDECO)
is displayed. All estimates control for highest grade completed, age, and age-squared. In addition, the top left panel controls
for AFQT percentile scores, top right panel controls for dummies for occupation in 2000, bottom left controls for wages in
1998, and the bottom right controls for all of these as well as dummies for occupation in 1998. The first three panels clearly
show that White workers’ wages strictly first-order stochastically dominate those of Black workers. For the full specification
estimate, the KS statistic p-values for the null that White workers’ wages FOSD Black workers’ wages is 0.66 and the p-values
for Black workers’ wages FOSDWhite workers’ wages is 0.03.

Figure 4 only displays the wage structure effect (which is required to conclude Ĝ1 ≻1 G1) under in-
creasingly stringent controls; all figures control for highest grade completed, age, and age-squared. The
bottom right figure displays the full specification that controls not only for past wages and occupations
but also AFQT scores. Strict first-order stochastic dominance is clearly visible in all plots; in the bot-
tom right plot Ĝ−1

1 andG−1
1 are not significantly different at low quantiles but at high quantiles Ĝ−1

1 is
significantly higher. The KS statistic p-values confirm the visual evidence.

5. EXTENDING THE THEORY

In this section, we generalize the results in Section 3 along several directions. We first impose natural
shape restrictions on the set of permissible wage functions and derive stronger testable implications on
the set of wage distribution pairs. We then characterize the set of rationalizable wage distribution pairs
when we do not assume mean productivities are ordered. We show how these results can be inverted
to derive bounds on the productivity differences required to rationalize the wage distributions. In all
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characterizations of rationalizable wage functions in this section, analogues of statement (iv) and (iii) of
Theorems 1 and 2 respectively, apply. We do not explicitly state these for brevity.

5.1. CONCAVE AND CONVEX WAGES

The results from Section 3 allow for arbitrary wage functions. There might be settings where there is
natural structure on the wage functions. Imposing such structure has the advantage of strengthening
the testable implications of the model.

Motivatedby increasing inequalities in income, onenatural assumption to impose is thatwages are convex
in the expected productivity of the worker. We denote

Wconv := {W ∈ W |W is strictly convex}

to be the set of strictly increasing and strictly convex (and therefore continuous) functions.20 Likewise,
we useWconc to denote the set of strictly increasing and strictly concave functions.

We say that wage distributionGi dominates distributionGj in the strict concave order, if∫ w

0

M(w)dGi(w) >

∫ w

0

M(w)dGj(w)

for every strictly increasing, strictly concave functionM : R+ → R+. This order is closely related to
themean-preserving spread order<2. The latter implies second-order stochastic dominance but not vice
versa since second-order stochastic dominance does not require equal means. The strict concave order
implies strict second-order stochastic dominance, but does not require both distributions to have equal
means. The strict convex order can be analogously defined when the above inequality holds for all strictly
increasing, strictly convex functionM : R+ → R+.

We derive a version of Theorem 1 assuming wages are convex.

THEOREM 3.Wage distributionsG1 andG2 are rationalizable (givenH= ,Wconv) if, and only if, neither
G1 norG2 dominates the other in the strict concave order.

This result can also be used to derive the analogous version of Theorem 2 for the case of ordered means.
If we were to instead assume wage functions were concave, the statement would be verbatim withWconc

replacingWconv and the strict convex order replacing the strict concave order.

IfGi ≻1 Gj , thenGi also dominates distributionGj in both the strict concave and convex orders. Thus,

20The only possible point of discontinuity is at 0, but strict convexity and strictmonotonicity guarantees that there is no jump
at 0.
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Theorem 3 shows that the testable implications are stronger under the assumption of convex wages but,
once again, they take a form that is easy to take to the data. There are well-known tests for higher orders
of stochastic dominance developed in the econometrics literature (once again, see Barrett and Donald,
2003).

5.2. NON-ORDERED MEANS

All of the above results required mean productivities to be either equal or ordered. Instead, suppose we
assume that

H|1−2|≤d := {(H1, H2) | |EH1 [θ1]− EH2 [θ2]| ≤ d},

that is, both groups have productivity distributionswhosemean differs by atmost d ∈ R+. Additionally,
we assume

WL1 := {W ∈ W | |W (θ)−W (θ′)| ≤ |θ − θ′| for all θ, θ′ ∈ R+} ,

that is, wage functions are 1-Lipschitz. This technical restriction imposes some discipline on the wage
function, that is, it ties changes in wages with changes in productivities. It is weaker than assuming that
wage functions are differentiable with slope less than 1.

We now characterize wage distributions that are rationalizable under these assumptions.

THEOREM 4.Wage distributions G1 and G2 are rationalizable (givenH|1−2|≤d , WL1) if, and only if,
either

(i) the wage gap is less than d, that is, |EG1 [w]− EG2 [w]| ≤ d, or

(ii) neitherG1 norG2 strictly first-order stochastically dominates the other.

As Theorem 1 shows, if wages are not ordered by first-order stochastic dominance, they can be ratio-
nalized with equal mean productivities. Consequently, they will be rationalized (givenH|1−2|≤d ,WL1)
for any d ≥ 0; the additional restriction on the wage functionWL1 ⊂ W does not affect Theorem 1
(the older version Deb and Renou, 2022 has a formal statement of this). So the real contribution of
Theorem 4 is the first condition (i). This shows that the wage gap can be a useful statistic to test for
the presence of taste-based discrimination, but only when the wage distributions are ordered by strict
first-order stochastic dominance.

An issuewith applying the result inTheorem4 to data is that the researcher has to choose the appropriate
mean productivity difference d to test for. However, the statement of this theorem can be inverted to
show that the wage gap is a tight lower bound for mean productivity differences required to rationalize
the wage distributions. In other words, if we want statistical discrimination alone to rationalize the data,
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the wage gap is the smallest difference in productivity means required, whenever one wage distribution
first-order stochastically dominates the other.

THEOREM 4 (CONTINUED). Suppose G2 ≻1 G1. Then, there exist (H1, F1, H2, F2,W ) that jointly
induceG1,G2 such thatW ∈ WL1 andEH2 [θ]− EH1 [θ] = EG2 [w]− EG1 [w].

Moreover, every (H1, F1, H2, F2,W ) with W ∈ WL1, that jointly induce G1, G2 satisfy EH2 [θ] −
EH1 [θ] ≥ EG2 [w]− EG1 [w].

In words, this result states that every (H1, F1, H2, F2,W ) withW ∈ WL1 that induce wage distribu-
tionsG2 ≻1 G1 have the feature that the differences in mean productivities is at least the wage gap, and
that this bound is tight. Thus, the wage gap is a useful measure of the minimum productivity difference
required for statistical discrimination alone to rationalize the wage distributions. The data can be used
to contextualize this bound and, in a sense, we already conduct such an exercise in Section 4.2.

To see this, let us revisit our empirical application. Compare prime aged (30-55) Black and White full
time working males in sales with high school degrees. Controlling for their characteristics,21 the mean
gap in wages is−11, 807USD (Black workers earn less). So, if we want statistical discrimination alone to
explain the data, we need the mean productivities to differ by at least this wage gap. To put this number
in perspective, let us compare Black workers with high-school degrees to Black workers with associate’s
degrees in sales jobs. The difference in mean wages between these two groups is −4329 USD (workers
with associate’s degrees make more). This says that, absent taste-based discrimination, the difference in
mean productivity between White and Black high-school educated workers corresponds to more than
two additional years of schooling for Black workers.

Instead of bounding absolute productivity differences, one could also try to bound percentage produc-
tivity differences. Formally, for α ∈ (0, 1), let

H1/2≥α := {(H1, H2) |EH1 [θ1] ≥ αEH2 [θ2]},

denote the set of productivity distributionpairs such that group1’smeanproductivity is at least a fraction
α of that of group 2. As with Theorem 4, one could first characterize the set of rationalizable wage
distributions and then invert result to derive the bound. Unfortunately, there is too little structure in the
model to bound percentage differences.

THEOREM 5. SupposeG1(0) = G2(0) = 0. Then, for every α ∈ (0, 1), every pair of wage distributions
is rationalizable (givenH1/2≥α ,WL1).

21All wage gaps in this paragraph control for age, age-squared, Census region, 2010 occupation codes, and Census year.
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This result states that, for any fractionα, every pair of wage distributions are rationalizable with produc-
tivity distributions whose means are within a fraction α of each other. Loosely speaking, this is because
we can consider wage functions that are very flat for lowwages but have slope one for higher wages. With
such a wage function, absolute differences in higher wages correspond to absolute differences in produc-
tivities but because the values of the latter are high, the percentage difference betweenmeanproductivities
becomes small. The additional assumptionG1(0) = G2(0) = 0 is trivially satisfied in any application
since we restrict attention to working adults and no one works for zero wages.

6. CONCLUDING REMARKS

In this paper, we developed a simple but general framework that lends itself to testing for taste-based
discrimination in widely available cross-sectional wage data. We view our contributions to be several.
First, unlike a bulk of the literature, our modeling choices allow for unrestricted signals and can flexi-
bly capture imperfectly competitive labor markets. Despite this generality, the testable implications of
the model are easy to describe and test. We demonstrate how an ordered means assumption can be vali-
dated on either cross sectional or panel data by comparing less educatedWhite workers tomore educated
Black workers or by conditioning on past wages and occupations respectively. Our theoretical results
provide a lens through which the decompositions of wage distributions can be used to uncover evidence
of discrimination in general and taste-based discrimination in particular. Our empirical results document
stark patterns inUSCensus data: controlling for observables, the wages of Black workers are strictly first-
order stochastically dominated by those of White workers across occupations. This provides suggestive
evidence of taste-based discrimination against Black workers in US labor markets. Finally, we demon-
strate the flexibility of our framework by deriving the testable implications of themodel under difference
assumptions on the set of permissible productivity distribution pairs and wage functions.

We end the paper by discussing a few remaining assumptions of the model and suggest some directions
for future research. Throughout, we assumed that there were two groups. One could, in principle, test
whether the wage distributions for three ormore groups—eachwith their own productivity distribution
and signal but with there being a common wage function—are rationalizable. Considering more than
two groups leads to stronger testable implications. Indeed, in the Online Appendix, we generalize The-
orem 1 and show that wage distributions from n ≥ 2 groups are rationalizable (givenH= defined for n
groups andW) if, and only if, we cannot find two subsets of the groups and convex combinations of their
wage distributions that are ordered by strict first-order stochastic dominance. It is similarly possible to
generalize Theorem 2 by, for instance, comparing a disadvantaged group with higher mean productivity
against multiple (comparatively) advantaged groups.

A critical assumption in our model is that wages only depend on the posterior mean which is, of course,
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an assumption that is commonly made when assuming perfectly competitive labor markets.22 With that
said, one could allow wages to depend on higher moments of the posterior distribution inferred by em-
ployers upon observing a signal realization. Indeed, the seminal work of Aigner and Cain (1977) allows
wages to depend on both the mean and the variance of the posterior. We show, in the Online Appendix,
that such additionally generality renders vacuous the testable implications of our model. Specifically,
even if wages are linear in the mean and variance of the posterior, every pair of wage distributions can be
rationalized under the assumption of equal mean productivities.

While we considered many combinations of assumptions on the sets of productivity distributions and
wage functions, there are of course other restrictions that one could impose based on the context. For
instance, information or estimates about labor market competition may allow the researcher to bound
slopes of the wage function. This in turn, could allow the researcher to infer bounds onmean productiv-
ity differences (absolute or percentage) required to rationalize the wage distributions absent taste-based
discrimination. We demonstrate how to do so in the Online Appendix.

Lastly, our empirical application demonstrated (by comparing less educated White workers to more ed-
ucated Black workers) how the data can validate assumptions on the set Ĥ of productivity distributions
(in this case, Ĥ = H≥). Our approach can be adapted to richer data sets where there may be additional
information about worker productivity. In a sense, the robustness check we conduct using NLSY-79
data does precisely this by exploiting the panel data structure to control for past wages and occupations.
But this of course, does not employ the full richness of the panel as we only use information in one pre-
vious period. To do so, we would need to introduce dynamics into our framework which is something
we hope to do in future research.

22This assumption also requires that productivities are one dimensional. This too can be relaxed although once again, the
testable restrictions of the model become vacuous without additional structure.
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A. PROOF OF THEOREM 1

In the text, we already proved the equivalence of statements (i), (iii) and (iv). We also argued that if the
wage distributions G1 and G2 are rationalizable with (H=,W), then neither G1 nor G2 strictly first-
order stochastically dominates the other. That is, we showed that statement (i) implies statement (ii). We
now prove the converse. Throughout, when we use the indices i and j, we assume that i ∈ {1, 2} and
j ∈ {1, 2} \ {i}.

We start with a preliminary observation about strict first-order dominance. It is well-known thatGi first-
order stochastically dominatesGj if, and only if,∫ w

0

M(w)dGi(w) ≥
∫ w

0

M(w)dGj(w),

for all (not necessarily strictly) increasing (and not necessarily continuous) functionsM : R+ → R+ (see
Chapter 1 of Shaked and Shanthikumar, 2007).23 In addition, it is easy to see thatGi strictly first-order
stochastically dominates Gj if, and only if, Gi first-order stochastically dominates Gj and is not first-
order stochastically dominated by Gj . It follows immediately that Gi strictly first-order stochastically
dominatesGj if, and only if, ∫ w

0

M(w)dGi(w) ≥
∫ w

0

M(w)dGj(w),

for all increasing functionsM : R+ → R+ with a strict inequality for someM . The following lemma is
an immediate consequence.

LEMMA 1. SupposeGi ̸= Gj andGi �1 Gj . Then there exists a strictly increasing and continuous function
M such that ∫ w

0

M(w)dGi(w) <

∫ w

0

M(w)dGj(w).

PROOF OF LEMMA 1. SinceGi �1 Gj , either there exists an increasing function M̂ : R+ → R+ such
that ∫ w

0

M̂(w)dGi(w) <

∫ w

0

M̂(w)dGj(w),

23Since the distributions G1 and G2 are supported on a subset of [0, w], the expectation of these functions always exist.
Further, there is no loss in taking the domain and range ofM to beR+ as opposed toR.
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or for all increasing functions M̂ : R+ → R+,∫ w

0

M̂(w)dGi(w) =

∫ w

0

M̂(w)dGj(w).

The latter case is equivalent toGi = Gj , sincewe can choose M̂ to be the indicator of the intervals (w,w]
for all w ∈ [0, w) (recall thatGi(w) = Gj(w) = 1 andGi(0) = Gj(0)). SinceGi ̸= Gj , the former
must therefore hold. Since the inequality is strict, we can approximate the increasing function M̂ by a
strictly increasing and continuous functionM : R+ → R+ such that the inequality remains strict (this
can be done constructively). This completes the proof. �

We now complete the proof of Theorem 1 by showing statement (ii) implies statement (i). IfG1 = G2,
we can just takeW (θ) = θ along with Fi = Hi. So henceforth, we assumeG1 ̸= G2.

SinceG1 �1 G2 andG2 �1 G1, Lemma 1 implies there exist strictly increasing and continuous func-
tionsM ′ : R+ → R+ andM ′′ : R+ → R+ such that∫ w

0

M ′(w)dG1(w) >

∫ w

0

M ′(w)dG2(w) and∫ w

0

M ′′(w)dG1(w) <

∫ w

0

M ′′(w)dG2(w).

Therefore, by the intermediate value theorem, there exists an α ∈ (0, 1) such that∫ w

0

[αM ′(w) + (1− α)M ′′(w)]dG1(w) =

∫ w

0

[αM ′(w) + (1− α)M ′′(w)]dG2(w).

We denote M := αM ′ + (1 − α)M ′′. Since, affine transformations of M will not affect the above
equation, we can, without loss of generality, assume thatM(0) = 0

Define θ := M−1(w). Take a continuous, strictly increasing function W : R+ → R+ that satisfies
W (θ) := M−1(θ) for θ ∈ [0, θ] and define Fi(θ) := Gi(W (θ)). Clearly, Fi is a well-defined distribu-
tion.

Finally, observe that

∫ θ

0

θdF1(θ) =

∫ w

0

M(w)dG1(w) =

∫ w

0

M(w)dG2(w) =

∫ θ

0

θdF2(θ)

where the first and last equalities follow from the change of variable θ = M(w) and the fact that
Fi(M(w)) = Gi(w) by construction. TakingHi = Fi completes the proof.
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A remark is in order. While this proof is non-constructive, it is possible to show (as we do in the older
version Deb and Renou, 2022) that there always exists a piece-wise linear 1-Lipschitz wage function,
which rationalizes the wage distributions.

B. PROOF OF THEOREM 2

This result was proved in the body of the paper.

C. PROOF OF THEOREM 3

(Only if.) The proof is by contradiction. Suppose that the wage distributions G1 and G2 are rational-
izable (givenH= ,Wconv) and yetGi dominatesGj in the strict concave order (i ̸= j). Since the wage
distributions are rationalizable, there exists a strictly increasing, strictly convex wage functionW , distri-
butions (F1, F2) such that Gk(w) = Fk(W

−1(w)) for all w ∈ [0, w] and priors (H1, H2) such that
EH1 [θ] = EH2 [θ] and Fk <2 Hk for k ∈ {1, 2}.

SinceW is strictly increasing and strictly convex,W−1 is strictly increasing and strictly concave. To see
the latter, choose (w,w′) ∈ [0, w]2 withw ̸= w′. From the strict convexity ofW , we have that

αW (W−1(w)) + (1− α)W (W−1(w′)) > W (αW−1(w) + (1− α)W−1(w′)).

for all α ∈ (0, 1). SinceW−1 is strictly increasing, it follows that

W−1
(
αW (W−1(w)) + (1− α)W (W−1(w′))

)
> W−1

(
W (αW−1(w) + (1− α)W−1(w′))

)
,

which is equivalent to

W−1(αw + (1− α)w′) > αW−1(w) + (1− α)W−1(w′),

as required.

Finally, since we have assumedG1 andG2 are rationalizable, we have that∫ w

0

W−1(w)dGi(w) =

∫ θ

0

θdFi(θ) =

∫ θ

0

θdHi(θ) =

∫ θ

0

θdHj(θ) =

∫ θ

0

θdFj(θ) =

∫ w

0

W−1(w)dGj(w),

which is the required contradiction sinceGi dominatesGj in the strict concave order.

(If.) The argument is almost identical to the part of the proof of Theorem 1 showing statement (ii)
implies statement (i). Since neither G1 nor G2 dominates the other in the strict concave order, there
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exists a strictly increasing, strictly concave functionM such that∫ w

0

M(w)dG1(w) =

∫ w

0

M(w)dG2(w).

Since, affine transformations ofM will not affect the above equation, we can, without loss of generality,
assume thatM(0) = 0 andM(w) = θ.

Define θ := M−1(w). Take a strictly increasing and strictly convex function W : R+ → R+ that
satisfiesW (θ) := M−1(θ) for θ ∈ [0, θ] and define Fi(θ) := Gi(W (θ)). Clearly, Fi is a well-defined
distribution.

Finally, observe that

∫ θ

0

θdF1(θ) =

∫ w

0

M(w)dG1(w) =

∫ w

0

M(w)dG2(w) =

∫ θ

0

θdF2(θ)

where the first and last equalities follow from the change of variable θ = M(w) and the fact that
Fi(M(w)) = Gi(w) by construction. TakingHi = Fi completes the proof.

D. PROOF OF THEOREM 4

We prove the first statement of Theorem 4. The restated version of the theorem follows immediately
from the argument below.

(Only if.) Suppose the given wage distributionsG1 andG2 are induced bymodel primitivesH1,H2,F1,
F2 andW where |EHi

[θ]− EHj
[θ]| ≤ d.

Since the wage function is Lipschitz continuous, it is differentiable almost everywhere. Therefore, for
each group i ∈ {1, 2}, we can write

EGi
[w] = [wGi(w)]

w
0 −

∫ w

0

Gi(w)dw

= w −
∫ θ

0

W ′(θ)Fi(θ)dθ,

where the second equality follows by a change of variable fromw to θ.

In light of Theorem 1, we only need to consider the case where Gi ≻1 Gj for some i ∈ {1, 2} and

33



j ∈ {1, 2} \ {i}. In this case, the above equation implies that

EGi
[w]− EGj

[w] =

∫ θ

0

W ′(θ)[Fj(θ)− Fi(θ)]dθ

≤
∫ θ

0

[Fj(θ)− Fi(θ)]dθ

= EFi
[θ]− EFj

[θ]

= EHi
[θ]− EHj

[θ]

≤ d,

where the first inequality follows from the fact thatW is 1-Lipschitz andFj(θ) ≥ Fi(θ) (sinceGj(θ) ≥
Gi(θ)). As required, this shows that twowage distributions (ordered by strict first-order stochastic dom-
inance) are rationalizable (givenH|1−2|≤d ,WL1) only if the wage gap is less than d.

(If.) Once again, in light of Theorem 1, we only need to consider the case whereGi ≻1 Gj for i ∈ {1, 2}
and j ∈ {1, 2} \ {i} and the wage gap satisfies |EGi

[w]− EGj
[w]| ≤ d.

These wage distributions are induced by Hi = Fi = Gi along with W (θ) = θ and these chosen
productivity distributions satisfy |EHi

[θ]− EHj
[θ]| = |EGi

[w]− EGj
[w]| ≤ d as required.

E. PROOF OF THEOREM 5

Wewill construct awage function such that distributionofposterior estimates obtained satisfiesEF1 [θ] >

αEF2 [θ]. We then takeHi = Fi.

Since G1(0) = G2(0) = 0 (and cumulative distributions are right continuous), there exists a small
enough w̃ > 0 such that

1−G1(w)

1−G2(w)
> α for all w ≤ w̃.

This in turn implies that ∫ w̃

0
[1−G1(w)]dw∫ w̃

0
[1−G2(w)]dw

> α.

Now take a ε ∈ (0, 1) and consider the following wage function

Wε(θ) =

{
εθ when θ ∈ [0, w̃/ε],

w̃ +
(
θ − w̃

ε

)
when θ > w̃/ε.

Note that, by construction, it is 1-Lipschitz.
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With this wage function, the ratios of the mean productivities becomes

EF1 [θ]

EF2 [θ]
=

∫ θ

0
θdF1(θ)∫ θ

0
θdF2(θ)

=

∫ θ

0
[1− F1(θ)]dθ∫ θ

0
[1− F2(θ)]dθ

=
1
ε

∫ w̃

0
[1−G1(w)]dw +

∫ w

w̃
[1−G1(w)]dw

1
ε

∫ w̃

0
[1−G2(w)]dw +

∫ w

w̃
[1−G2(w)]dw

=

∫ w̃

0
[1−G1(w)]dw + ε

∫ w

w̃
[1−G1(w)]dw∫ w̃

0
[1−G2(w)]dw + ε

∫ w

w̃
[1−G2(w)]dw

.

Since
∫ w̃
0 [1−G1(w)]dw∫ w̃
0 [1−G2(w)]dw

> α, we can find small enough ε such that

∫ w̃

0
[1−G1(w)]dw + ε

∫ w

w̃
[1−G1(w)]dw∫ w̃

0
[1−G2(w)]dw + ε

∫ w

w̃
[1−G2(w)]dw

=
EF1 [θ]

EF2 [θ]
> α

which completes the proof becauseWε is the requisite wage function.
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F. WAGE DISTRIBUTION DECOMPOSITIONS OF OTHER OCCUPATION CATE-
GORIES

Figure 5: Black workers’ wages

Data is from the ACS 2007-2021. Men aged 30-55, working full time (52 weeks), and working for wages.

36



Figure 6: Quantile Decompositions: Management, Business, and Financial Occupations

Data is from the ACS 2007-2021. Men aged 30-55, working full time (52 weeks), and working for wages. White workers have
high school degree, Black workers have some college or associate’s degrees. CDECOState command based onChernozhukov,
Fernández-Val, andMelly (2013). Controls include age, age-squared, Census region, 2010 occupation codes, andCensus year.
95% confidence bands.

Figure 7: Quantile Decompositions: Professional Occupations

Data is from the ACS 2007-2021. Men aged 30-55, working full time (52 weeks), and working for wages. White workers have
high school degree, Black workers have some college or associate’s degrees. CDECOState command based onChernozhukov,
Fernández-Val, andMelly (2013). Controls include age, age-squared, Census region, 2010 occupation codes, andCensus year.
95% confidence bands.
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Figure 8: Quantile Decompositions: Service

Data is from the ACS 2007-2021. Men aged 30-55, working full time (52 weeks), and working for wages. White workers have
high school degree, Black workers have some college or associate’s degrees. CDECOState command based onChernozhukov,
Fernández-Val, andMelly (2013). Controls include age, age-squared, Census region, 2010 occupation codes, andCensus year.
95% confidence bands.

Figure 9: Quantile Decompositions: Office and Admin Support

Data is from the ACS 2007-2021. Men aged 30-55, working full time (52 weeks), and working for wages. White workers have
high school degree, Black workers have some college or associate’s degrees. CDECOState command based onChernozhukov,
Fernández-Val, andMelly (2013). Controls include age, age-squared, Census region, 2010 occupation codes, andCensus year.
95% confidence bands.
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Figure 10: Quantile Decompositions: Farming, Fishing, and Forestry

Data is from the ACS 2007-2021. Men aged 30-55, working full time (52 weeks), and working for wages. White workers have
high school degree, Black workers have some college or associate’s degrees. CDECOState command based onChernozhukov,
Fernández-Val, andMelly (2013). Controls include age, age-squared, Census region, 2010 occupation codes, andCensus year.
95% confidence bands.

Figure 11: Quantile Decompositions: Construction and Extraction Occupations

Data is from the ACS 2007-2021. Men aged 30-55, working full time (52 weeks), and working for wages. White workers have
high school degree, Black workers have some college or associate’s degrees. CDECOState command based onChernozhukov,
Fernández-Val, andMelly (2013). Controls include age, age-squared, Census region, and Census year. 95% confidence bands.
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Figure 12: Quantile Decompositions: Installation, Maintenance, and Repair

Data is from the ACS 2007-2021. Men aged 30-55, working full time (52 weeks), and working for wages. White workers have
high school degree, Black workers have some college or associate’s degrees. CDECOState command based onChernozhukov,
Fernández-Val, andMelly (2013). Controls include age, age-squared, Census region, 2010 occupation codes, andCensus year.
95% confidence bands.

Figure 13: Quantile Decompositions: Transportation andMaterial Moving

Data is from the ACS 2007-2021. Men aged 30-55, working full time (52 weeks), and working for wages. White workers have
high school degree, Black workers have some college or associate’s degrees. CDECOState command based onChernozhukov,
Fernández-Val, andMelly (2013). Controls include age, age-squared, Census region, 2010 occupation codes, andCensus year.
95% confidence bands.
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G. ONLINE APPENDIX

G.1. HIGHER MOMENTS

In themain text, we assumed that the wage is a strictly increasing function of the posterior mean produc-
tivity alone. We now show that if wages were to depend on highermoments of the posterior productivity
distribution, then all wage distributions are rationalizable.

Once again, we overload notation but the meaning should be clear. Let Wα(µ, σ
2) = µ − ασ2 with

α ≥ 0 be a wage function that assigns a wage based on both the posterior mean productivity µ and the
posterior variance σ2. Note thatWα is a linear function of the posterior mean and variance, is increasing
in the former and decreasing in the latter. We define

Wµ,σ2 := {Wα | α ≥ 0}

to be the set of all such wage functions. Rationalizability (givenH=,Wµ,σ2) is defined as before, except
it is no longer sufficient to simply consider the distribution of posteriormean productivitiesFi (since the
variance matters too).

We now show that meaningful testable implications of the model disappear even with this limited class
of wage functions that are an affine function of only the posterior mean and variance. This shows that a
general (non-Gaussian) version of themodel of Aigner andCain (1977) is not refutable. In the following
result, a nontrivial wage distribution is one that does not have mass 1 on the highest wagew = w.

THEOREM 6. Every pair of nontrivial wage distributions (G1, G2) is rationalizable (givenH= ,Wµ,σ2).

PROOF. If neitherG1 norG2 strictly first-order stochastically dominates the other, then the result fol-
lows from Theorem 1. So, assume thatGi ≻1 Gj for i ̸= j and henceEGi

[w] > EGj
[w].

To ease notation, we normalize the wages to be distributed in [0, 1]. (This is without loss of generality
sincewe can consider the re-scaled values ŵ := w/w and the re-scaleddistribution Ĝk, givenby Ĝk(ŵ) =

Gk(w × ŵ) for k ∈ {1, 2}.)

In what follows, we construct a wage functionWα ∈ Wµ,σ2 that rationalizes the wage distributions.

Take an α ≥ 0. For allw ∈ [0, 1], let θα(w) ∈ [0, 1] be the greatest solution to

w = θ − αθ(1− θ).

Note that the right-hand side of the above equation is continuous in θ, and takes values 0 and 1 at θ = 0
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and θ = 1 respectively. Thus, a greatest solution θα(w) ∈ [0, 1] exists. Moreover, except when w = 0,
the above equation has a unique solution since the right side is strictly increasing whenever its value is
strictly greater than 0. Then, note that θα(w) is strictly increasing inw. Finally, observe that θα(w) ≥ w

and limα→∞ θα(w) = 1.

Let Θ = [0, 1]. Define the prior distribution Hα
j of group j to be the Bernoulli distribution (so sup-

ported on {0, 1}) such that the probability of [θ = 1] is
∫ 1

0
θα(w)dGj(w). Consider the signal (Sj, πj)

where Sj = [0, 1] and πj is a joint distribution overΘ× Sj such that

(i) the marginal distribution of πj overΘ is the priorHα
j ,

(ii) the marginal distribution over Sj isGj ,

(iii) the posterior distribution upon observing any sj ∈ [0, 1] is a Bernoulli distribution with the
probability of [θ = 1] being θα(sj).

Observe that this is a valid signal because the average of the posterior distributions
∫ 1

0
θα(sj)dGj(sj)

assigns the same probability to [θ = 1] as the prior. Observe also that, by construction, the prior distri-
butionHα

j , the signal (Sj, πj) and the wage functionWα induce the wage distributionGj .

For group i, we assume that the signal is perfectly informative and that the prior distributionHi is Gi.
Note that since the experiment is perfectly informative, the posterior variance is always zero so thewage at
any signal realization is simply the posterior estimate. Clearly, the priorHi, a perfectly informative signal
(Sj, πj) and the wage functionWα induce the wage distributionGi.

It remains to argue that we can choose α such that

EHα
j
[θ] = EHi

[θ].

By construction, we have:

EHα
j
[θ] =

∫
θα(w)dGj(w) ≥ EGj

[w],

lim
α→+∞

EHα
j
[θ] = 1,

EHi
[θ] = EGi

[w] > EGj
[w].

Since EGi
[w] < 1 (as distribution Gi is nontrivial), there exists a requisite α ≥ 0. This completes the

proof. �

We end this section by noting that it is possible to show an analogous result if we instead assume α ≤ 0.
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Our choice of α ≥ 0 is motivated by Aigner and Cain (1977) and is natural if employers are risk averse.
If we instead allow α ∈ R to be either positive or negative, then all distributions (including those that
are not nontrivial) can be rationalized with equal mean productivities.

G.2. MULTIPLE GROUPS

In the main text, we have restricted our attention to two groups. The purpose of this section is to extend
Theorem 1 to n groups. To ease the arguments in this and the next section, we assume that all wage
distributions are finitely supported. Without loss of generality, we assume that the support is included
inW = {0, 1, 2, . . . , L}. (In empirical applications, wages are supported on finitely many rationals and
we can always redefine them to be supported on finitely many integers.)

Let I = {1, . . . , n} be the set of groups. We use gi,ℓ to denote the probability that group i receives wage
ℓ andGi,ℓ to denote the cumulative probability, that is,Gi,ℓ is the probability that wages are less than or
equal to ℓ.

We once again assume that all groups have the samemean productivity andwe denote this using the same
notation

H= := {(H1, H2, . . . , Hn) |EH1 [θ1] = EH2 [θ2] = · · · = EH2 [θn]}.

As with Theorem 1, we consider unrestricted wage functions in the setW .

Theorem 1 generalizes to n ≥ 2 groups as follows.

THEOREM 7. The wage distributions (G1, . . . , Gn) supported on a subset ofW are rationalizable (given
H=,W) if, and only if, there do not exist nonempty subsets I∩I ′ = ∅, I∪I ′ = I andweights β ∈ ∆|I|−1,
β′ ∈ ∆|I′|−1 such that ∑

i∈I

βiGi ≻1

∑
i′∈I′

βi′Gi′ .

In words, this condition states that we cannot find two subsets of the groups and convex combinations of their
wage distributions that are ordered by strict first-order stochastic dominance.

PROOF. Since we have assumedwage distributions are discrete, we can rewrite the definition of rational-
izability in terms of a system of equalities and inequalities. We then use a version of the Farkas lemma to
take the alternative and the latter yields the requisite characterization.

Given any strictly increasing wage function W ∈ W , there exists a unique θℓ such that W (θℓ) = ℓ.
Thus, to rationalize the wage distributions (Gi)i∈I , we need to find a vector θ = (θ0, . . . , θℓ, . . . , θL)
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with 0 ≤ θℓ < θℓ+1 such that the mean productivities

L∑
ℓ=0

θℓgi,ℓ =
L∑

ℓ=0

θℓgj,ℓ, (2)

of all groups (i, j) ∈ I × I are equal. In other words, the wage distributions are rationalizable if, and
only if, there is a solution to the above equations as then we can chooseW (θℓ) = ℓ, Fi(θℓ) = Gi,ℓ and
Hi = Fi for all i ∈ I and 0 ≤ ℓ ≤ L to rationalize the wage distributions.

We now rewrite rationalizability conditions as a linear system of equalities and inequalities. To do so, we
define two matrices. The matrixA is

A =


g1,0 − g2,0 . . . g1,ℓ − g2,ℓ . . . g1,L − g2,L

g2,0 − g3,0 . . . g2,ℓ − g3,ℓ . . . g2,L − g3,L
...

...
...

...
...

gn−1,0 − gn,0 . . . gn−1,ℓ − gn,ℓ . . . gn−1,L − gn,L


and the matrixC is

C =


−1 1 0 . . . . . . 0

0 −1 1 . . . . . . 0
...

...
...

...
...

...
0 0 . . . . . . −1 1

 .

The matrixA has n− 1 rows and L+ 1 columns. The matrixC has L rows and L+ 1 columns. Wage
distributions (Gi)i∈I are rationalizable (givenH=,W) iff we can find a solution to the system

A · θ = 0 andC · θ ≫ 0.

The first constraint captures the equal mean productivity requirement (2) and the second constraint
captures the requirement that θℓ < θℓ+1 for ℓ ∈ {0, . . . , L− 1}. Note that we do not need to include a
constraint that ensures θ ≥ 0 since if we find a solution θ, we can also find a positive solution by adding
a large enough positive constant to θ.

A general version of the Farkas lemma (see Theorem 1.6.1 in Stoer andWitzgall, 1970) states that either
there exists θ that satisfiesA · θ = 0 andC · θ ≫ 0 or there exists a solution (α,γ) to

α · A+ γ · C = 0,
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where α = (α1, . . . , αn−1), γ = (γ0, . . . , γL−1) are row vectors of dimension n − 1, L respectively
and γ > 0 (that is, all coordinates are nonnegative with at least one positive).

The vector equation of the alternativeα · A+ γ · C = 0 can be written in the scalar form

n−1∑
i=1

αi(gi,ℓ − gi+1,ℓ) + (γℓ−1 − γℓ) = 0,

for all 0 ≤ ℓ ≤ L− 1. (With the normalization, γ−1 = 0.)

If we sum up these equations from 0 to 0 ≤ ℓ̄ ≤ L− 1, we get

n−1∑
i=1

αi(Gi,ℓ̄ −Gi+1,ℓ̄) +
ℓ̄∑

ℓ=0

(γℓ−1 − γℓ) =
n−1∑
i=1

αi(Gi,ℓ̄ −Gi+1,ℓ̄)− γℓ̄ = 0. (3)

Thus, the equationα ·A+γ ·C = 0 of the alternative is equivalent to (3) holding for all 0 ≤ ℓ̄ ≤ L−1.

Further, since γ > 0, a solution to the alternative exists iff there existsα such that

n−1∑
i=1

αi(Gi,ℓ −Gi+1,ℓ) ≥ 0, (4)

for all 0 ≤ ℓ ≤ L − 1 with at least one strict inequality. To see this, observe that if the there was anα

satisfying the above system of inequalities, we could simply set γℓ =
∑n−1

i=1 αi(Gi,ℓ − Gi+1,ℓ) and this
would satisfy γ > 0.

For a given ℓ, condition (4) can be rewritten as

n∑
i=1

(αi − αi−1)Gi,ℓ ≥ 0, (5)

with the convention thatα0 = αn = 0. Thus, a necessary and sufficient condition forwage distributions
(G1, . . . , Gn) to be rationalizable (given H=,W) is that there does not exist α that satisfies (5) for all
0 ≤ ℓ ≤ L− 1 with at least one strict inequality. We now show that this condition is equivalent to the
condition in the statement of the theorem.

First, suppose thewagedistributions (G1, . . . , Gn) cannotbe rationalizable (givenH=,W). This implies
that there existsα that satisfies (5) for all 0 ≤ ℓ ≤ L − 1 with at least one strict inequality. Now since∑n

i=1(αi−αi−1) = αn−α0 = 0, theαi−αi−1 terms cannot all be negative or positive andmoreover,
they cannot all be zero since condition (4) has to hold strictly for at least one ℓ.
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Without loss, let the groups be labeled such that there is a 1 < n̄ < n for whichαi−αi−1 ≥ 0 for i ≤ n̄

and αi − αi−1 < 0 for i > n̄. We can rewrite inequality (5) as

n̄∑
i=1

(αi − αi−1)Gi,ℓ ≥
n∑

j=n̄+1

(αj−1 − αj)Gj,ℓ. (6)

Observe that 0 <
∑n̄

i=1(αi − αi−1) = αn̄ =
∑n

j=n̄+1(αj−1 − αj). Define

βi =

{
(αi − αi−1)/αn̄ if i ≤ n̄,

(αi−1 − αi)/αn̄ if i > n̄

and observe that (β1, . . . , βn̄) and (βn̄+1, . . . , βn) are n̄ and n− n̄+1 dimensional probability vectors.
Thus, because (6) holds for all 0 ≤ ℓ ≤ L− 1with at least one strict inequality, we get that

n̄∑
i=1

βiGi ≻1

n∑
j=n̄+1

βjGj.

Conversely, suppose, without loss, that for some 1 < n̄ < n, we have

n̄∑
i=1

βiGi ≻1

n∑
j=n̄+1

βjGj.

for some (β1, . . . , βn̄) ∈ ∆n̄−1, (βn̄, . . . , βn) ∈ ∆n−n̄−1. Define

α1 = β1, α2 = β1 + β2, . . . , αn̄ = β1 + · · ·+ βn̄ = 1 and

αn̄+1 = 1− βn̄+1, αn̄+2 = 1− (βn̄+1 + βn̄+2), . . . , αn−1 = 1− (βn̄+1 + · · ·+ βn−1) = βn

and observe that this implies that (6) holds for all 0 ≤ ℓ ≤ L−1with at least one strict inequality. Thus,
these wage distributions cannot be rationalized (givenH=,W). �

It is also possible to derive an analogue of Theorem 2. Here, we assume that there are non-empty disjoint
subsets (I1, . . . , Im) of I with∪m

j=1Ij = I and that the set of productivity distribution is given by

{(H1, H2, . . . , Hn) |EHj
[θj] ≥ EHj′

[θj′ ]when j ∈ Ik, j
′ ∈ Ik′ , k < k′ and EHj

[θj] = EHj′
[θj′ ]when k = k′}.

We omit the statement for brevity.
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G.3. RATIONALIZATION WHEN THE SLOPE OF THE WAGE FUNCTION IS BOUNDED

In the setting of Theorem 5, we restricted attention to 1-Lipschitz wage functions, which imposes an
upper bound on the slope of the wage functions. However, no lower bound was imposed. This made
it possible for arbitrarily large changes in expected productivities to induce arbitrarily small changes in
wages paid – a fact we exploit in the proof. The purpose of this section is to extend the analysis to wage
functions, whose slopes take values in an interval [a, b] ⊂ R++. The lower and upper bounds may
be taken from the literature for instance, from Mincerian wage equation estimates. As in the previous
section, we assume (to simplify arguments) that all wage distributions are finitely supported on a subset
ofW.

Specifically, we assume that the wage functions are strictly increasing and Lipschitz continuous with a
modulus of continuity in [a, b]. We denote the set of such wage functions byWLab ⊂ W . Therefore,
wherever differentiable, W ′(θ) ∈ [a, b] for all θ ∈ R+, W ∈ WLab. Throughout this section, we
repeatedly use the following two observations.

Observation 1: When x, x′, y, y′, α ≥ 0, the fraction

αx+ x′

αy + y′
=

x
y
(αy + y′) + y′

(
x′

y′
− x

y

)
αy + y′

=
x

y
+

y′
(

x′

y′
− x

y

)
αy + y′

is increasing in α if x
y
> x′

y′
and decreasing in α if x

y
< x′

y′
.

Observation 2: When x, x′, y, y′ ≥ 0, then

x

y
≥ (resp., ≤)

x+ x′

y + y′
⇐⇒ x

y
≥ (resp.,≤)

x

y
+

y′
(

x′

y′
− x

y

)
y + y′

⇐⇒ x

y
≥ (resp.,≤)

x′

y′
.

We first argue that, because wages are discrete, it is without loss to restrict attention to piecewise linear
wage functions.

LEMMA 2. Consider two wage distributions G1 and G2 supported on a subset ofW and a wage function
W ∈ WLab. LetF1 andF2 be the distributions over posterior estimates induced by this wage function, that
is, Fi(θ) = Gi(W (θ)).

Then, there exists a piecewise-linear wage function Ŵ ∈ WLab that has kink points in W such that this
wage function also induces distributions over posterior estimates F1 and F2, that is, Fi(θ) = Gi(Ŵ (θ)).

PROOF. Let {θ0, . . . , θL} = {W−1(0), . . . ,W−1(L)} be the pre-image of the wage functionW .
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Consider the function

Ŵ (θ) =


θ−θ0
θ1−θ0

if θ ∈ [θ0, θ1),

1 + θ−θ1
θ2−θ1

if θ ∈ [θ1, θ2),
...

...
L− 1 + θ−θL−1

θL−θL−1
if θ ∈ [θL−1,∞).

Note that this function has the feature that Ŵ (θℓ) = ℓ for all 0 ≤ ℓ ≤ L.

We now argue that that Ŵ ∈ WLab. It is clearly continuous by construction. Now, observe that for any
0 ≤ ℓ ≤ L− 1 and (θ′, θ) ∈ [θℓ, θℓ+1]

2 with θ′ > θ, we have

Ŵ (θ′)− Ŵ (θ)

θ′ − θ
=

Ŵ (θℓ+1)− Ŵ (θℓ)

θℓ+1 − θℓ
=

W (θℓ+1)−W (θℓ)

θℓ+1 − θℓ
∈ [a, b]

where the first equality follows from the piecewise linearity of Ŵ and the value of rightmost expression
is in [a, b] becauseW ∈ WLab.

Now take any θ < θ′ such that θ ∈ [θℓ, θℓ+1] and θ′ ∈ [θℓ′ , θℓ′+1]where 0 ≤ ℓ < ℓ′ ≤ L− 1. We then
have

Ŵ (θ′)− Ŵ (θ)

θ′ − θ
=

Ŵ (θ′)− Ŵ (θℓ′) + Ŵ (θℓ′)− Ŵ (θℓ′−1) + · · ·+ Ŵ (θℓ+1)− Ŵ (θ)

θ′ − θℓ′ + θℓ′ − θℓ′−1 + · · ·+ θℓ+1 − θ

∈

[
min

ℓ≤k≤ℓ′

{
Ŵ (θk+1)− Ŵ (θk)

θk+1 − θk

}
, max
ℓ≤k≤ℓ′

{
Ŵ (θk+1)− Ŵ (θk)

θk+1 − θk

}]
⊆ [a, b].

The second line follows fromtwo facts. Thefirst is that Ŵ (θ′)−Ŵ (θℓ′ )
θ′−θℓ′

=
Ŵ (θℓ′+1)−Ŵ (θℓ′ )

θℓ′+1−θℓ
and Ŵ (θℓ+1)−Ŵ (θ)

θℓ+1−θ
=

Ŵ (θℓ+1)−Ŵ (θℓ)

θℓ+1−θℓ
because of the piecewise-linearity of Ŵ . The second is that the value of the fraction x+x′

y+y′

with x, x′, y, y′ ≥ 0 lies between min
{

x
y
, x

′

y′

}
and max

{
x
y
, x

′

y′

}
(because of Observation 2).

The proof of the lemma is completed by the observation that the distributions of posterior estimates
F1 and F2 obtained by inverting G1 and G2 are the same under eitherW or Ŵ since, by construction
W (θℓ) = Ŵ (θℓ) = ℓ for all 0 ≤ ℓ ≤ L. �

A direct implication of the lemma is that it is without loss of generality to restrict attention to piecewise
linear wage functions. Note that, ifW is piecewise linear, so itW−1. Moreover, the set of kink points of
W−1 is a subset ofW and the slope ofW−1 between any ℓ, ℓ+ 1 ∈ W (which is simplyW−1(ℓ+ 1)−
W−1(ℓ)) lies in the interval [1/b, 1/a].
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We useM to denote the set of strictly increasing, piecewise-linear continuous functions (the notation
captures thatM isW upside down) whose finite kink points are a subset ofW and whose slope at every
differentiable point lies between [1/b, 1/a]. EachM ∈ M takes the form

M(w) =


α0w + κ if 0 ≤ w ≤ 1,

α1(w − 1) +M(1) if 1 < w ≤ 2,
...

...
αL−1(w − (L− 1)) +M(L− 1) ifw > L− 1


where all αi ∈ [1/b, 1/a] and κ ≥ 0.

Our aim is to bound the ratio
EH1 [θ]

EH2 [θ]
=

EF1 [θ]

EF2 [θ]
.

For anyM ∈ M, this ratio equals

EF1 [θ]

EF2 [θ]
=

∫M(L)

0
[1− F1(θ)]dθ∫M(L)

0
[1− F2(θ)]dθ

=

∫ L

0
[1−G1(w)]M

′(w)dw∫ L

0
[1−G2(w)]M ′(w)dw

=

∑L−1
ℓ=0 αℓ[1−G1(ℓ)]∑L−1
ℓ=0 αℓ[1−G2(ℓ)]

.

Thus, the bounds for EH1
[θ]

EH2
[θ]

are

[
min

α0,...,αL−1∈[ 1b ,
1
a ]

∑L−1
ℓ=0 αℓ[1−G1(ℓ)]∑L−1
ℓ=0 αℓ[1−G2(ℓ)]

, max
α0,...,αL−1∈[ 1b ,

1
a ]

∑L−1
ℓ=0 αℓ[1−G1(ℓ)]∑L−1
ℓ=0 αℓ[1−G2(ℓ)]

]
.

In what follows, we describe how to derive the values for these bounds. Specifically, we solve

max
α0,...,αL−1∈[ 1b ,

1
a ]

∑L−1
ℓ=0 αℓ[1−G1(ℓ)]∑L−1
ℓ=0 αℓ[1−G2(ℓ)]

. (7)

The value of the lower bound can be derived analogously. The maximization problem (1) is essentially a
knapsackproblemas the following two lemmata show. Weuse the convention that 1−Ĝ1(ℓ)

1−Ĝ2(ℓ)
= 0whenever

both the numerator and denominator are 0.

LEMMA 3. There is a solution (α∗
0, . . . , α

∗
L−1) to (7) where every α∗

ℓ ∈ {1
b
, 1
a
}. In words, the slopes of each

linear piece takes either the maximum or minimum possible value.
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PROOF. Suppose the solution has some α∗
ℓ ∈

(
1
b
, 1
a

)
. Then, fromObservation 1, if

1−G1(ℓ)

1−G2(ℓ)
≥

∑
ℓ′ ̸=ℓ α

∗
ℓ′ [1−G1(ℓ

′)]∑
ℓ′ ̸=ℓ α

∗
ℓ′ [1−G2(ℓ′)]

the value of the objective function in (7) will weakly increase if we set α∗
ℓ = 1

a
. Conversely if the above

inequality is reversed, the value of the objective function in (7) will weakly increase if we setα∗
ℓ =

1
b
. �

Now, sort the series {
1−G1(0)

1−G2(0)
,
1−G1(1)

1−G2(1)
, . . . ,

1−G1(L− 1)

1−G2(L− 1)

}
in increasing order and denote this sorted series by{

1− Ĝ1(0)

1− Ĝ2(0)
,
1− Ĝ1(1)

1− Ĝ2(1)
, . . . ,

1− Ĝ1(L− 1)

1− Ĝ2(L− 1)

}
.

In other words, 1−Ĝ1(ℓ)

1−Ĝ2(ℓ)
is the (ℓ + 1)th highest value in the series

{
1−G1(0)
1−G2(0)

, 1−G1(1)
1−G2(1)

, . . . , 1−G1(L−1)
1−G2(L−1)

}
.

Note that the value of the objective in the solution to the problem

max
α0,...,αL−1∈[ 1b ,

1
a ]

∑L−1
ℓ=0 αℓ[1− Ĝ1(ℓ)]∑L−1
ℓ=0 αℓ[1− Ĝ2(ℓ)]

(8)

is identical to (7).

LEMMA 4. There is a solution to (8)where there is a cutoff index ℓ̂ such thatα∗
ℓ =

1
b
for ℓ ≤ ℓ̂ andα∗

ℓ =
1
a

for ℓ > ℓ̂.

PROOF. FromLemma 3, there is a solution inwhich everyα∗
k ∈ {1

b
, 1
a
} for 0 ≤ k ≤ L−1. So suppose,

for contradiction, that there exist ℓ < ℓ′ such that α∗
ℓ =

1
a
and α∗

ℓ′ =
1
b
. Clearly, it must be the case that

1− Ĝ1(ℓ)

1− Ĝ2(ℓ)
≥

∑
k ̸=ℓ α

∗
k[1− Ĝ1(k)]∑

k ̸=ℓ α
∗
k[1− Ĝ2(k)]

as, otherwise, Observation 1 implies that α∗
ℓ = 1

a
would not be a solution to (8). It then follows from

Observation 2 that:
1− Ĝ1(ℓ)

1− Ĝ2(ℓ)
≥

∑L−1
k=0 α

∗
k[1− Ĝ1(k)]∑L−1

k=0 α
∗
k[1− Ĝ2(k)]

.
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In turn, this implies that

1− Ĝ1(ℓ
′)

1− Ĝ2(ℓ′)
≥ 1− Ĝ1(ℓ)

1− Ĝ2(ℓ)
≥

∑L−1
k=0 α

∗
k[1− Ĝ1(k)]∑L−1

k=0 α
∗
k[1− Ĝ2(k)]

≥
∑L−1

k ̸=ℓ′ α
∗
k[1− Ĝ1(k)]∑L−1

k ̸=ℓ′ α
∗
k[1− Ĝ2(k)]

where the first inequality is a consequence of the fact that 1−Ĝ1(·)
1−Ĝ2(·)

is sorted in increasing order and, the
second and third inequalities are a consequence of Observation 2.

Finally, the above inequality implies that the value of the objective function in (8) is weakly increasing in
αℓ′ (fixing all α∗

k with k ̸= ℓ′) so α∗
ℓ′ =

1
a
must also be a solution to (8).

This in turn implies that there is a solution to (8) with the requisite cutoff ℓ̂ in the statement of the
lemma. �

The previous two lemmas yield a simple algorithm to determine the solution to (7).

Algorithm:

1. Sort the series
{

1−G1(0)
1−G2(0)

, 1−G1(1)
1−G2(1)

, . . . , 1−G1(L−1)
1−G2(L−1)

}
in increasing order and set up optimization

problem (8).

2. Evaluate the objective in (8) for all cutoffs ℓ̂ described in Lemma 3. The cutoff that maximizes the
value of the objective yields solution to (8).

This algorithm is computationally inexpensive: the time complexities of the first and second steps are
O(L log(L)) andO(L) respectively.
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