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APPENDIX A.1. GAPP AND GARP

In this section, we first state and explain Afriat’s Theorem. After that we cover a num-
ber of topics on GAPP and GARP and their relationship: augmented utility functions that
lead to both properties holding in a data set (Section A.1.2); demand predictions at out-of-
sample prices under GAPP and under GARP (Section A.1.3); and on reconciling differing
revealed preference relations under GAPP and GARP (Section A.1.4).

A.1.1. Afriat’s Theorem

Recall that, given a data set D = {(pt, xt)}T
t=1, a utility function Ũ : RL

+ → R is said to
rationalizeD if, for all t ∈ T, we have Ũ(xt) ≥ Ũ(x) for all x ∈

{
x ∈ RL

+ : pt · x ≤ pt · xt};
in other words, xt is the bundle that maximizes Ũ among all bundles that cost pt · xt or
less. Afriat’s Theorem characterizes those data sets that can be rationalized in this sense.
Below is the formal statement of Afriat’s Theorem along with some remarks that relate
this theorem to results in the paper.

Afriat’s Theorem (Afriat (1967)). Given a data set D = {(pt, xt)}T
t=1, the following are equiv-

alent:
(1) D can be rationalized by a locally nonsatiated utility function.
(2) D satisfies GARP.
(3) D can be rationalized by a strictly increasing, continuous, and concave utility function.

REMARK 1. That (1) implies (2) is clear, given the definition of GARP (see Section 2.2 in
the main paper). The substantive part of Afriat’s Theorem is the claim that (2) implies (3).
Standard proofs (see, for instance, Fostel, Scarf, and Todd (2004) or Quah (2014)) work by
showing that a consequence of GARP is that there exist numbers φt and λt > 0 (for all
t ∈ T) that solve the so-called Afriat inequalities

φt′ ≤ φt + λt pt · (xt′ − xt) for all t′ 6= t. (A.1)
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Once this is established, it is straightforward to show that

Ũ(x) = min
t∈T

{
φt + λt pt · (x− xt)

}
(A.2)

rationalizes D, with the utility of the observed consumption bundles satisfying Ũ(xt) =

φt. The function Ũ is the lower envelope of a finite number of strictly increasing affine
functions, and so it is strictly increasing, continuous, and concave. A remarkable feature
of this theorem is that while GARP follows simply from local nonsatiation of the utility
function, it is nonetheless sufficient to guarantee thatD is rationalized by a utility function
with significantly stronger properties. Our results Theorem 1 and Theorem 2 share this
feature.

REMARK 2. To be precise, GARP guarantees that there is preference % (i.e., a complete,
reflexive, and transitive binary relation) on X that extends the (potentially incomplete)
revealed preference relations �∗x and �∗x in the following sense: if xt′ �∗x xt, then xt′ %

xt and if xt′ �∗x xt then xt′ � xt. One could then proceed to show that, for any such
preference %, there is in turn a utility function Ũ that rationalizes D and extends % (from
X to RL

+) in the sense that Ũ(xt′) ≥ (>)Ũ(xt) if xt′ % (�)xt (see Quah (2014)). This has
implications on the inferences one could draw from the data. If xt′ 6�∗x xt (or if xt′ �∗x
xt but xt′ 6�∗x xt) then it is always possible to find a preference extending the revealed
preference relations such that xt � xt′ (or xt′ ∼ xt respectively).1 Therefore, xt′ �∗x (�∗x)xt

if and only if every locally nonsatiated utility function rationalizing D has the property
that Ũ(xt′) ≥ (>)Ũ(xt).

Similarly, we show in Proposition 2 that the revealed price preference relation contains
the most detailed information for welfare comparisons in our model.

REMARK 3. A feature of Afriat’s Theorem that is less often remarked upon is that in fact
Ũ, as given by (A.2), is well-defined, strictly increasing, continuous, and concave on the
domain RL, rather than just the positive orthant RL

+. Furthermore,

xt ∈ argmax
{x∈RL : pt·x≤pt·xt}

Ũ(x) for all t ∈ T. (A.3)

In other words, Ũ can be extended beyond the positive orthant and xt remains optimal
under Ũ in the set

{
x ∈ RL : pt · x ≤ pt · xt}. (Compare (A.3) with (3).) We utilize this

feature when we apply Afriat’s Theorem in our proof of Theorem 1.

1We use xt′ ∼ xt to mean that xt′ % xt and xt % xt′ .
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A.1.2. Models that satisfy both GAPP and GARP

Suppose that a data D = {(pt, xt)}T
t+1 is collected from a consumer who is maximizing

an augmented utility function of the form

U(x,−e) = h(Ũ(x),−e), (A.4)

where h is strictly increasing (in both its arguments) and Ũ : RL
+ → R is strictly increas-

ing. In this case, obviously the data set obeys GAPP, but it must also obey GARP, because
if xt maximizes U then xt also maximizes Ũ in the set {x ∈ RL

+ : pt · x ≤ pt · xt}. Thus
GAPP and GARP are not mutually exclusive properties and to say that a data set satis-
fies one is not to say that it violates the other; depending on the issue being studied, the
analyst could exploit GAPP, or GARP, or perhaps even both in conjunction.

An interesting question worth investigating is the characterization of those data sets D
generated by consumers who maximize an augmented utility function of the form (A.4).
Such a characterization must involve a property stronger than both GAPP and GARP;
indeed, related work that characterizes rationalization by weakly separable preferences
in the context of the constrained-maximization model (see Quah (2014)) suggests that ra-
tionalization by an augmented utility function of the form (A.4) will involve a property
strictly stronger than the combination of GAPP and GARP. A special case of (A.4) is, of
course, the quasilinear form, where U(x,−e) = Ũ(x)− e. In this case, a full characteriza-
tion is known and the rationalizing property is sometimes referred to as the strong law of
demand (see Brown and Calsamiglia (2007)); obviously the strong law of demand implies
both GAPP and GARP.

In our analysis of the Progresa data reported in Section 7.1, we find that 2061 out of 2488
houesholds pass GAPP (83%), 2375 households pass GARP (95%), and 35 households (a
bit more than 1%) fail both tests. Interestingly, 1983 households (80%) pass both GAPP
and GARP, which is suggestive (but not conclusive) evidence that a very large propor-
tion of households from the Progresa data could be rationalized by an augmented utility
function of the form (A.4).

A.1.3. Comparing demand predictions under GAPP and GARP

Suppose a data set D = {(pt, xt)}T
t=1 obeys GARP. Then we know from Afriat’s Theo-

rem that there is a utility function Ũ : RL
+ → R for which xt is constrained optimal, for

all t. What could this model tell us about the demand at some price p̂ that is not among
the observed prices? In this model, the predicted demand also depends on the level of
total expenditure on the observed goods. Suppose the expenditure is required to be some
w > 0; then the predicted demand will be those bundles x with p̂ · x = w that are com-
patible with the model when combined with D. By Afriat’s Theorem, this is means that x
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is a predicted demand if and only if the following conditions are satisfied: p̂ · x = w and
the data set D ∪ {( p̂, x)} obeys GARP.

Now suppose that D = {(pt, xt)}T
t=1 also obeys GAPP. Then we know it is also com-

patible with the augmented utility model and we could ask what the augmented utility
model would say about demand at the price p̂. This is equivalent to identifying bun-
dles x such that D ∪ {( p̂, x)} obeys GAPP. Since D ∪ {( p̂, x)} obeys GAPP if and only if
D∪ {( p̂, λx)} obeys GAPP for any λ > 0 (see Section 3.1), we know that the set of predicted
demands at p̂ forms a cone.

Not surprisingly, these two models will typically have different predictions, even at the
same expenditure level w > 0. To illustrate this, consider the following example.

Example A.1. Suppose D consists of the single observation p1 = (1, 1) and x1 = (1, 1).
What is the predicted demand at p̂ = (1/4, 3/2)? We study the predictions under the
constrained-optimization model, with and without imposing homotheticity on the utility
function, and the augmented utility model.

Consider first the constrained-optimization model. (a) Suppose that w < p̂ · x1 = 7/4;
the line of points/bundles incurring this level of expenditure is depicted by B′ in Figure
A.1a. In this case, any bundle with p̂ · x = w will not be revealed preferred to x1 and
so x can be any bundle in gray shaded area without violating GARP. (b) Now suppose
w ≥ p̂ · (0, 2) = 3; the bundles with p̂ · x = w is depicted as B′′′ in Figure A.1a. Then
if x · p̂ = w, we have x · p1 > 2. In other words, x1 will never be revealed preferred
to x. Once again, x can be any bundle in the red shaded area (that extends indefinitely
towards the north east) without GARP being violated. (c) Lastly, we turn to the case
where w ∈ [7/4, 3); a line with bundles satisfying this property is B′′. Then any bundle
satisfying p̂ · x = w will be revealed preferred to x1. So GARP requires that x1 is not
revealed preferred to x, that is, p1 · x > p1 · x1 = 2 and therefore, all bundles in the blue
shaded area will not violate GARP.

The shaded area in Figure A.1a gives the predicted demands at p̂ using GARP.

What happens to the predictions of the constrained-maximization model when the util-
ity function is required to be homothetic? It is well known that homothetic utility func-
tions generate demand that is linear in cones. Therefore, for any x ∈ R2

+, the data set
{(p1, x1), ( p̂, x)} can be rationalized (in the constrained-maximization sense) by a homo-
thetic utility function if and only if {(p1, x1), ( p̂, λx)} can also be rationalized in this sense,
for any λ > 0. In other words, as in the augmented utility model, the set of predicted de-
mands forms a cone.

The characterization of data sets that are constrained-optimal according to some ho-
mothetic preference is given in Varian (1983), where the precise condition is known as the
homothetic axiom of revealed preference or HARP, for short. In our simple case, to guarantee
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Suppose D consists of the single observation p1 = (1, 1) and x1 = (1, 1).
What is the predicted demand at p̂ = (1/4, 3/2) under GARP?

x1

x2

B1

b
x1

B′′′B′ B′′

1

(a) Counterfactuals using GARP

Suppose D consists of the single observation p1 = (1, 1) and x1 = (1, 1).
What is the predicted demand at p̂ = (1/4, 3/2) under HARP?

x1

x2

B1

b
x1

B̃

2

(b) Counterfactuals using HARP

Suppose D consists of the single observation p1 = (1, 1) and x1 = (1, 1).
What is the predicted demand at p̂ = (1/4, 3/2) under HARP?

x1

x2

B1

b
x1

B̂

3

(c) Counterfactuals using GAPP

FIGURE A.1. Counterfactuals with different consumption models

that {(p1, x1), ( p̂, λx)} satisfies HARP, we set w = p̂ · x1 and consider the bundles with
p̂ · x = w; the bundles at this expenditure level are depicted by B̃ in Figure A.1b. At this
expenditure level, GARP requires that x satisfies p1 · x > p1 · x1 and, for any such x, we
have {(p1, x1), ( p̂, λx)} satisfying HARP; in other words, the set of predicted demands is
the cone generated by these bundles of x. This cone is depicted by the shaded region in
Figure A.1b.

In the case of the augmented utility model, recall that if x satisfies p̂ · x = p1 · x1 = 2,
then {(p1, x1), ( p̂, x)} satisfies GAPP if and only if it satisfies GARP (see Proposition 1).
The budget line with the property that p̂ · x = 2 is B̂ in Figure A.1c and, in this case,
GARP (equivalently, GAPP) requires that p1 · x > p1 · x1 = 2. The shaded area gives the
predicted demands at p̂. Notice that the cone in this case contains the cone in Figure A.1b,
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which is consistent with the fact that HARP is a stronger property than GAPP. Further-
more, the predicted demands under GAPP is neither a subset nor a superset of that under
GARP, which is again unsurprising given that these two properties are not comparable.

A.1.4. Revealed preferences under GAPP and GARP

Both GARP and GAPP forbids the existences of strict cycles over revealed preference
relations: in the case of GARP, the revealed preference relation is defined over bundles
and in the case of GAPP it is defined over prices. It is entirely possible for these revealed
preference relations to disagree with each other; this occurrence should not be thought
of as strange, nor is it an indication that one model is better of worse compared to the
other. The two conclusions apply to different objects and either, or both, of them could be
interesting to the analyst.

To be precise, suppose that a data D = {(pt, xt)}T
t=1 is collected from a consumer who

is maximizing an augmented utility function of the form (A.4). Such a data set will obey
both GAPP and GARP. It is possible for the price pt to be strictly revealed preferred to ps

(whether directly or indirectly) and for the bundle xs to be revealed strictly preferred to
xt. If this occurs, is the agent better off in observation t or in observation s? The fact that
pt is revealed strictly preferred to ps means that

U(xt,−pt · xt) > U(xs,−ps · xs)

while the fact that xs is revealed strictly preferred to xt means that

Ũ(xt) < Ũ(xs).

In other words, the consumer’s augmented utility is higher in observation t than in ob-
servation s, even though her sub-utility on the observed bundles is lower in observation
t; these two phenomena are not mutually exclusive.

Another observation worth making is that it is sometimes possible to conclude that an
out-of-sample price p̂ is superior to some in-sample price pt1 observed in D, even though
one has no inkling what the demand will be at p̂. Indeed, p̂ is revealed preferred to
pt1 whenever p̂ · xt1 ≤ pt1 · xt1 (and, more generally, this relation between p̂ and some
other in-sample price pt can be extended via transitive closure). It follows that at the
(unobserved) optimal bundle at p̂, which we denote by x̂, we must have

U(x̂,− p̂ · x̂) ≥ U(xt1 ,− p̂ · xt1) > U(xt1 ,−pt1 · xt1).

This is true even though, as we know from Section A.1.3, the predicted demand at p̂
under the augmented utility model can be an arbitrarily small or large bundle. On the
other hand, without knowing the agent’s expenditure level at p̂, it is impossible to tell if
the sub-utility Ũ(x̂) is greater or lower than Ũ(xt1). Put another way, while GAPP may
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allow the observer to rank p̂ with pt1 , it is impossible to rank the subutility of the demand
bundle at these two observation using GARP, without some information or assumption
on the expenditure level at p̂.

Example A.2. Suppose D consists of two observations,

(pt1 , xt1) = ((2, 2), (2, 2)) and

(pt2 , xt2) = ((1, 1), (1, 1)).

It is straightforward to check that this data set can be generated by a consumer maximiz-
ing

U(x,−e) = Ũ(x)− f (e),

for strictly increasing functions Ũ and f . Clearly, pt2 is revealed preferred to pt1 and xt1

is revealed preferred to xt2 . In this case, the consumer’s augmented utility is higher at t2

compared to t1, even though her sub-utility on the observed goods is lower at t2 compared
to t1.

Now suppose the data consists of just the observation (pt1 , xt1). Obviously, we can still
conclude that the consumer prefers p̂ = (1, 1) to pt1 and derives greater augmented util-
ity from p̂ than from pt1 . However, nothing can be said about the consumer’s subutility
without further information on expenditure. If the expenditure is lower than the expen-
diture at t1, which is 8, then the subutility achieved at p̂ must be lower than the subutility
of x1 and if the expenditure is higher than 8, then the sub-utility achieve must be lower
than that of xt1 .

APPENDIX A.2. PROOF OF PROPOSITION 2

(1) We have already shown the ‘only if’ part of this claim, so we need to show the ‘if’
part holds. From the proof of Theorem 1, we know that for a large M, it is the case that
pt �p pt′ if and only if (xt, M − pt · xt) �x (xt′ , M − pt′ · xt′) and hence pt �∗p pt′ if and
only if (xt, M− pt · xt) �∗x (xt′ , M− pt′ · xt′). If pt 6�∗p pt′ , then (xt, M− pt · xt) 6�∗x (xt′ , M−
pt′ · xt′) and hence there is a utility function Ũ : RL+1

+ → R rationalizing the augmented
data set D̃ such that Ũ(xt, M − pt · xt) < Ũ(xt′ , M − pt′ · xt′) (see Remark 2 in Section
A.1.1). This in turn implies that the augmented utility function U (as defined by (5)), has
the property that U(xt,−pt · xt) < U(xt′ ,−pt′ · xt′) or, equivalently, V(pt) < V(pt′).

(2) Given part (1), we need only show that if pt �∗p pt′ but pt 6�∗p pt′ , then there is some
augmented utility function U such that U(xt,−pt · xt) = U(xt′ ,−pt′ · xt′). To see that this
holds, note that if pt �∗p pt′ but pt 6�∗p pt′ , then (xt, M− pt · xt) �∗x (xt′ , M− pt′ · xt′) but
(xt, M− pt · xt) 6�∗x (xt′ , M− pt′ · xt′). In this case there is a utility function Ũ : RL+1

+ → R

rationalizing the augmented data set D̃ such that Ũ(xt, M− pt · xt) = Ũ(xt′ , M− pt′ · xt′).
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This in turn implies that the augmented utility function U (as defined by (5)) satisfies
U(xt,−pt · xt) = U(xt′ ,−pt′ · xt′) and so V(pt) = V(pt′). �

APPENDIX A.3. PRICE INDICES TO DEFLATE NOMINAL EXPENDITURE

In this section, we build on the discussion in Section 3.5. Suppose that, at observation
t, the consumer chooses (xt, yt) to maximize Ũ(x, y), subject to pt · xt + qt · yt ≤ Mt.
We are interested in the conditions under which there is an index kt, depending on the
prices of the outside goods, such that the deflated data {(pt/kt, xt)}T

t=1 obeys GAPP (and
hence can be rationalized as maximizing an augmented utility function). In the main
paper, we explained that this holds if prices of the outside goods move up and down
proportionately (so there is no change to their prices relative to each other). When relative
prices are allowed to change, it is still possible to obtain a deflator kt guaranteeing that
{(pt/kt, xt)}T

t=1 obeys GAPP, but stronger assumptions will have to be imposed on the
utility function Ũ. We outline a set of sufficient conditions for this to hold.

Suppose that the outside goods are weakly separable from the observed goods, so the
overall utility function has the form Ũ(x, ũ(y)), where ũ(y) is the sub-utility of the bun-
dle y of outside goods. Furthermore, we assume that ũ has an indirect utility ṽ of the
following form:

ṽ(q, m) = h
(

m
f (q)

+ b(q), g1(q), g2(q), . . . , gN(q)
)

where f , b, g1, . . . , gN are all real-valued functions of the prices q of the outside goods,
and m is the expenditure devoted to those goods. This formulation covers a number
of standard functional forms used in empirical analysis. If ṽ(q, m) = m/ f (q) where f is
one-homogeneous then the preference it generates is homothetic; if ṽ(q, m) = (m/ f (q))+
b(q), where b is zero-homogeneous, then we obtain the Gorman polar form (see Gorman
(1961)). Another example is the form

ln ṽ(q, m) =

{[
ln m− ln f (q)

g1(q)

]−1

+ g2(q)

}−1

(A.5)

where g1 and g2 are zero-homogeneous functions. If g2 ≡ 0, the form (A.5) generates the
Price Invariant Generalized Logarithmic (PIGLOG) demand system (Muellbauer, 1976);
if further functional form restrictions are imposed on f and g1, we obtain the Almost
Ideal Demand System (AIDS) of Deaton and Muellbauer (1980). The Quadratic Almost
Ideal Demand System (QUAIDS) is a generalization of AIDS that has greater flexibility to
model empirically relevant Engel curves (see Banks, Blundell, and Lewbel (1997)); it is a
special case of (A.5) with functional form restrictions on f , g1, and g2.
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We assume that the consumer’s total wealth Mt varies with t in such a way that, should
the consumer devote all of this wealth to the unobserved goods, then her utility is con-
stant. This captures the idea that the consumer’s real wealth (as measured by the in-
direct utility function v) is unchanged across observations. While we permit prices of
the unobserved goods to change, we require that they change in such a way that g1(qt),
g2(qt), . . . , gN(qt) remain constant at ḡ1, ḡ2 . . . , ḡN (respectively) for all t. Given the form
of ṽ, this implies that (Mt/ f (qt)) + b(qt) is constant for all t; let this constant be C. Thus
we can think of the consumer as choosing (x, c) to maximize Ũ(x, ṽ(c, ḡ1, ḡ2, . . . , ḡN)) sub-
ject to pt · x + (c− b(qt)) f (qt) ≤ (C− b(qt)) f (qt). This inequality can be written as

pt · x
f (qt)

+ c ≤ C.

It follows that the data set {(pt/ f (qt), xt)}T
t=1 will obey GAPP.

APPENDIX A.4. NONLINEAR PRICING, THE RATIONALITY INDEX, AND RELATED TOPICS

In this section, we formulate and prove a rationalization result that allows for both
imperfect rationalization and nonlinear pricing. This result generalizes Theorem 2 and
Theorem 1 by allowing for imperfect rationality. We explain how this result is crucial in
helping us to calculate the rationality index (introduced in Section 3.4) and other varia-
tions on that index that provide a measure of departures from exact rationality. We also
use this result to show that the bounds on the compensating and equivalent variations
obtained in Section 3.3 are tight.

A.4.1. ϑ-rationalization

We are in the setting of Section 4. The consumer chooses her consumption from the
space X ⊆ RL

+. A price system is a map ψ : X → R+, where ψ(x) is the cost of purchasing
x ∈ X. Let ϑ = (ϑ1, ϑ2, . . . , ϑT) ∈ (0, 1]T. An augmented utility function U : X×R+ → R

provides a ϑ-rationalization of a data set D = {(ψt, xt)}T
t=1 if, at each observation t,

U(xt,−ψt(xt)) ≥ U(x,−(ϑt)−1ψt(x)) for all x ∈ X.

Note that this definition of ϑ-rationalization generalizes the notion introduced in Section
3.4, which can be thought of as the special case where ϑt = ϑt′ for all t, t′ ∈ T. The
context here is also more general since we allow for nonlinear pricing (as introduced in
Section 4). Obviously, if a data set can be exactly rationalized then it is ϑ-rationalized
with ϑ = (1, 1, . . . , 1); note also that if a data set can be ϑ-rationalized then it can also be
ϑ
′
-rationalized for ϑ

′
< ϑ. A consumer whose observations cannot be exactly rationalized

but can be ϑ-rationalized for some ϑ < (1, 1, . . . , 1) exhibits limited rationality in the sense
discussed in Section 3.4.
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The calculation of the rationality index hinges on our ability to ascertain whether a data
setD has a ϑ-rationalization for a given ϑ. It is possible to characterize those data sets that
can be ϑ-rationalized using a modified version of the GAPP test, as we now explain.

Let ϑ ∈ (0, 1]T. Define the relations �p,ϑ and �p,ϑ in the following way:

ψt′ �p,ϑ ψt if ψt′(xt) ≤ ϑt′ψt(xt) and ψt′ �p,ϑ ψt if ψt′(xt) < ϑt′ψt(xt).

Denote the transitive closure of �p,ϑ by �∗
p,ϑ

. Obviously these definitions generalize the
ones given for revealed preference relations over prices provided in Section 4.

The data set D obeys ϑ-GAPP if

there do not exist observations t, t′ ∈ T such that ψt′ �∗
p,ϑ

ψt and ψt �p,ϑ ψt′ .

The next result states that ϑ-GAPP characterizes ϑ-rationalization.

Theorem A.4.1. A data set D = {(ψt, xt)}T
t=1 can be ϑ-rationalized by an augmented utility

function for some ϑ ∈ (0, 1]T if and only if it satisfies ϑ-GAPP.

REMARK 1. This theorem states, in particular, that D = {(ψt, xt)}T
t=1 can be rationalized

by an augmented utility function if and only if it satisfies GAPP, which corresponds to
the special case where ϑ = (1, 1, . . . , 1). So it covers the first claim in Theorem 2 (the part
before “Furthermore,. . . ”) and also the equivalence of statements (1) and (2) in Theorem
1. For the proof of the second claim in Theorem 2 see the end of this subsection. Unlike
the proof we gave of Theorem 1 in the main body of the paper, our proof of Theorem
A.4.1 does not appeal to Afriat’s Theorem, though it is clearly inspired by it. In particular,
we show that ϑ-GAPP implies that there is a solution to a system of linear inequalities
(see Lemma A.1 below), analogous to the so-called Afriat inequalities usually derived
in the proof of Afriat’s Theorem and then use those inequalities to explicitly construct a
piecewise linear augmented utility function that rationalizes the data.

REMARK 2. Note that checking whether or not ϑ-GAPP holds for a given ϑ is compu-
tationally undemanding: the relations �p,ϑ and �p,ϑ can be easily constructed; once this
has been obtained, we can apply Warshall’s algorithm to compute the transitive closure
of the revealed preference relations and then check for violations of ϑ-GAPP.

REMARK 3. Suppose we impose the mild restriction that every bundle that is an ob-
served choice has a strictly positive value under any of the other price observation, that
is, ψt′(xt) > 0 whenever ψt′ 6= ψt. Then we can choose sufficiently small ϑ > 0 so that
ψt′(xt) > ϑψt(xt) whenever ψt′ 6= ψt. If we let ϑ = (ϑ, . . . , ϑ), then D must obey ϑ-GAPP
simply because the relation �p,ϑ is empty. Thus every data set is ϑ-rationalizable for ϑ

sufficiently close to zero.
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Proof of Theorem A.4.1. Suppose D can be ϑ-rationalized by an augmented utility func-
tion for some ϑ ∈ (0, 1]T. In that case, if ψt′ �p,ϑ ψt, then ψt′(xt) ≤ ϑt′ψt(xt) and so

U(xt′ ,−ψt′(xt′)) ≥ U(xt,−(ϑt′)−1ψt′(xt)) ≥ U(xt,−ψt(xt)), (A.6)

where the first inequality follows from the (imperfect) optimality of xt′ and the second
from the property that U is strictly decreasing in expenditure. It follows that if ψt′ �∗

p,ϑ
ψt,

then U(xt′ ,−ψt′(xt′)) ≥ U(xt,−ψt(xt)). Similarly, if ψt′ �p,ϑ ψt, then ψt′(xt) < ϑt′ψt(xt)

and we obtain U(xt′ ,−ψt′(xt′)) > U(xt,−ψt(xt)) since the second inequality in (A.6)
will now be strict. It is then clear that we cannot simultaneously have ψt′ �∗

p,ϑ
ψt, and

ψt �p,ϑ ψt′ , which establishes ϑ-GAPP.

Conversely, suppose thatD obeys ϑ-GAPP. Then there is a complete preorder% defined
on the set {pt}t∈T that extends �p,ϑ and �p,ϑ in the sense that such ψt′ % ψt if ψt′ �∗

p,ϑ
ψt

and ψt′ � ψt if ψt′ �p,ϑ ψt, where � is the asymmetric part of %. We first prove the
following lemma.

Lemma A.1. Suppose D obeys ϑ-GAPP and let % be a complete preorder that extends �p,ϑ and
�p,ϑ. Then there are numbers φt and λt > 0 (for t = 1, 2, . . . , T) with the following properties:

(a) φt′ > φt if ψt′ � ψt;
(b) φt′ = φt if ψt′ ∼ ψt; and
(c) φt′ ≤ φt + λt(ψt(xt′)− ϑtψt′(xt′)) for all t 6= t′.

Proof. Let zij = ψi(xj)− ϑiψj(xj) for i, j ∈ T. Note that, for i 6= j, zij < 0 implies that
ψi � ψj and zij ≤ 0 implies that ψi % ψj. We shall explicitly construct φt and λt > 0
that satisfy the required conditions. With no loss of generality, suppose that ψt+1 % ψt for
t = 1, 2, . . . , T − 1.

First, choose φ1 to be any number and λ1 to be any strictly positive number. Suppose
ψ2 � ψ1. Then minj>1 z1j > 0, because if z1j′ = ψ1(xj′)− ϑ1ψj′(xj′) ≤ 0 for some j′ > 1,
then ψ1 % ψj′ , which is a contradiction. So there is φ2 such that

φ1 < φ2 < min
j>1
{φ1 + λ1z1j}. (A.7)

If ψ2 ∼ ψ1 then minj>1 z1j ≥ 0 because if z1j′ = ψ1(xj′)− ϑψj′(xj′) < 0 for some j′ > 1,
then ψ1 � ψj′ , which is a contradiction. Setting φ2 = φ1, we obtain

φ1 = φ2 ≤ min
j>1
{φ1 + λ1z1j}. (A.8)

We claim that there is λ2 > 0 such that

φ1 ≤ φ2 + λ2z21.
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Clearly this inequality holds if z21 ≥ 0. If z21 = ψ2(x1)− ϑ2ψ1(x1) < 0, then ψ2 � ψ1; this
implies that φ1 < φ2 and thus the inequality holds for λ2 sufficiently small.

We now go on to choose φ3 and λ3. Since ψj % ψi for all j > 2 and i = 1, 2, we obtain
zij ≥ 0. Consider two cases: when ψ3 � ψ2 % ψ1 and ψ3 ∼ ψ2 % ψ1. In the former case,
both minj>2 z1j > 0 and minj>2 z2j > 0. Therefore

φ2 < min
j>2
{φ2 + λ2z2j}.

If φ2 = φ1, obviously we also have

φ2 < min
j>2
{φ1 + λ1z1j};

this inequality also holds if φ2 > φ1 since in that case (A.7) holds. It follows that we can
find φ3 such that

φ2 < φ3 < min
{

min
j>2
{φ1 + λ1z1j}, min

j>2
{φ2 + λ2z2j}

}
.

We turn to the case where ψ3 ∼ ψ2 % ψ1. It follows from (A.7) and (A.8) that φ2 ≤
minj>2{φ1 + λ1z2j}. We also know that z2j ≥ 0 for all j > 2. Therefore, we can choose φ3

such that

φ2 = φ3 ≤ min
{

min
j>2
{φ1 + λ1z1j}, min

j>2
{φ2 + λ2z2j}

}
.

Now choose λ3 > 0 sufficiently small so that

φi ≤ φ3 + λ3z3i for i = 1, 2.

Clearly that this inequality holds for any λ3 > 0 if z3i ≥ 0. If z3i < 0 then ψ3 � ψi, in
which case φ3 > φi and the inequality will be satisfied for λ3 sufficiently small.

Repeating this argument, we choose φt (for t ≤ T − 1) such that if ψt � ψt−1 then

φt−1 < φt < min
s≤t−1

{
min
j>t−1

{φs + λszsj}
}

(A.9)

and if ψt ∼ ψt−1 then

φt−1 = φt ≤ min
s≤t−1

{
min
j>t−1

{φs + λszsj}
}

; (A.10)

and λt > 0 (for t = 2, 3, . . . , T) such that

φi ≤ φt + λtzti for i ≤ t− 1. (A.11)

For a fixed t′, (A.9) and (A.10) guarantee that φt′ ≤ φt + λtztt′ for t < t′ while (A.11)
guarantees that this inequality holds for t > t′. So we have found λt and φt to obey
condition (c), while the first two conditions hold by construction. �
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We now return to the proof that (2) implies (3). Let % be a complete preorder that
extends �p,ϑ and �p,ϑ and let the numbers φt and λt > 0 (for t = 1, 2, . . . , T) satisfy
properties (a) – (c) in Lemma A.1. Define the function U : X×R− → R by

U(x,−e) = min
t∈T
{φt + λt(ψt(x)− ϑte)}. (A.12)

This function is an augmented utility function since it is strictly increasing in the last
argument. We claim that this function also satisfies the property that, at each t ∈ T,

U(xt,−ψt(xt)) ≥ U(x,−(ϑt)−1ψt(x)) for all x ∈ X.

Indeed, at a given observation s, for any t 6= s, we have φt +λt(ψt(xs)− ϑtψs(xs)) ≥ φs by
condition (c); furthermore, φs + λs(ψs(xs)− ϑsψs(xs)) ≥ φs since λs > 0 and ϑs ∈ (0, 1].
Therefore, U(xs,−ψs(xs)) ≥ φs. On the other hand, by the definition of U,

U(x,−(ϑs)−1ψs(x)) ≤ φs + λs(ψs(x)− ψs(x)) ≤ φs.

So U(xs,−ψs(xs)) ≥ U(x,−ϑ−1ψs(x)) for all x. �

The augmented utility function U at the price system ψ induces an indirect utility given
by V(ψ) = maxx∈X U(x,−ψ(x)). In the case where GAPP holds and exact rationalization
is possible, one could also choose the rationalizing utility function U so that its indirect
utility V agrees with any ordering over {ψt}T

t=1 that is consistent with the revealed pref-
erence relations. (Note that this feature is also present in Afriat’s Theorem; see Remark 2
in Section A.1.1.) The following result is used in Section A.5.

Theorem A.4.2. Suppose the data set D = {(ψt, xt)}T
t=1 obeys GAPP and let % be a complete

preorder on {ψt}T
t=1 that extends �p and �p. Then there is an augmented utility function U :

X ×R− → R that rationalizes D such that V(ψt′) = V(ψt) if ψt′ ∼ ψt and V(ψt) > V(ψt) if
ψt′ � ψt (where ∼ and � are the symmetric and asymmetric parts of %).

Proof. From the proof of Theorem A.4.1, we know that U(x,−e) as given by (A.12) (with
θt = 1 for all t) rationalizes D. We can then conclude that V(ψt) = U(xt,−ψ(xt)) = φt

because φt ≤ φt′ + λt′(ψt′(xt)− ψt(xt)) from part (c) of Lemma A.1. Finally, V satisfies
the required properties because of (a) and (b) in Lemma A.1. �

We end this subsection with the proof of Theorem 2; this result is obtained as a corollary
of Theorem A.4.1.

Proof of Theorem 2. Choosing ϑ = (1, 1, . . . , 1), Theorem A.4.1 states, in particular, that
D = {(ψt, xt)}T

t=1 can be rationalized by an augmented utility function if and only if it
satisfies GAPP. It remains for us to show that, under assumptions (i), (ii), and (iii), this
utility function could be extended to one defined on a closed set Y containing X and that
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is increasing in xK. We know from the proof of Theorem 2 that the function U : X → R

given by
U(x,−e) = min

t∈T
{φt + λt(ψt(x)− e)}.

rationalizes the data (see A.12). It suffices to show that each function ψt, which is defined
on X could be extended to a continuous function on Y that is strictly increasing in xK, in
which case we could correspondingly extend U and the extension would be continuous
and strictly increasing in xK (since λT > 0).

That ψt admits such an extension is guaranteed by (i), (ii), and (iii). A quick way of ar-
riving at this conclusion is to appeal to Levin’s Theorem, which is a version of Szpilrajn’s
Theorem for closed preorders (see Nishimura, Ok, and Quah (2017) for a proof of Levin’s
Theorem). Since ψt is continuous, it induces a closed preorder %′ on X and therefore also
on Y.2 For K ⊂ L, let ≥K be the partial order on Y such that, for x′ and x in RL, we have
x′ ≥K x if x′i ≥ xi for all i ∈ K and x′i = xi for i /∈ K. It is straightforward to check that, for
any number M, the set

{x ∈ Y : there is x̃ ∈ X with x̃ ≥K x and M ≥ ψt(x̃)}

is a compact set in Y. (Recall that Y is closed, contains X, and is contained in RL
+.) Using

this property, one could check that %′′, defined as the transitive closure of %′ and ≥K, is
also a closed prorder on Y. Levin’s Theorem then guarantees that there is a complete and
closed preorder % on Y that extends %′′ and has a continuous representation V : Y → R.
In particular, V must be strictly increasing in xK and satisfies the following property:
V(x′) ≥ (>)V(x) if ψt(x′) ≥ (>)ψt(x), for x′, x ∈ X. Furthermore, our assumptions
guarantee that that {V(x) : x ∈ X} ⊆ R is a closed set. These properties guarantee
that we could choose a strictly increasing transformation h defined on the range of V, i.e.,
the set {V(x) : x ∈ Y}, so that h(V(x)) = ψt(x) for all x ∈ X. Therefore the function
h ◦V : Y → R is a continuous extension of ψt : X → R that is strictly increasing in xK. �

A.4.2. Rationality indices and their computation

Given a data setD = {(ψt, xt)}T
t=1, we know that it admits a (ϑ, ϑ, . . . , ϑ)-rationalization

for some ϑ > 0 (see Remark 3 following Theorem A.4.1). This guarantees that the ratio-
nality index, given by

ϑ∗ = sup{ϑ ∈ (0, 1] : D has a (ϑ, ϑ, . . . , ϑ)-rationalization},

is well-defined. Note that this definition generalizes the definition provided in Section
3.4 of the main paper, which applies to the linear price environment. A data set that can

2A preorder %′ defined on a set X is closed if {(a, b) ∈ X× X : a %′ b} is a closed subset of X× X.
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be rationalized exactly has a rationality index of 1 and we could use the closeness of ϑ∗ to
1 as a measure of the data set’s closeness to exactly rationality.

Given the characterization of ϑ-rationality stated in Theorem A.4.1, we also have

ϑ∗ = sup{ϑ ∈ (0, 1] : D satisfies (ϑ, ϑ, . . . , ϑ)-GAPP}. (A.13)

This identity provides us with a practical way of calculating ϑ∗. Indeed, ϑ∗ can be ob-
tained through a binary search algorithm that works as follows. We first set the lower
and upper bounds on ϑ∗ to be ϑL = 0 and ϑH = 1. We then check (by checking ϑ-
GAPP) whether the data set passes or fails the test at ϑ = (ϑL + ϑH)/2 (to be precise,
at ϑ = (ϑ, ϑ, . . . , ϑ)); if it passes the test, then we update both ϑ∗ and its lower bound
to (ϑL + ϑH)/2; if it fails the test, then we update ϑ∗ to ϑL and the upper bound on ϑ∗ to
(ϑL + ϑH)/2. We then repeat the procedure, selecting and testing the new midpoint of the
updated lower and upper bounds. The algorithm terminates when the lower and upper
bounds are sufficiently close.

There are other plausible variations on the rationality index, based on the way one ag-
gregates ϑt across observations. Let F : (0, 1]T → R+ be any weakly increasing function
taking nonnegative values such that F(1, 1, . . . , 1) = 1. We can then construct a general-
ized rationality index

F∗ = sup{F(ϑ) : D has a ϑ-rationalization}.

The rationality index ϑ∗ corresponds to the case where F is defined by

F(ϑ) = min{ϑ1, ϑ2, . . . , ϑT}.

As an alternative to this, one could choose

F(ϑ) = 1−
√
(1− ϑ1)2 + (1− ϑ2)2 + . . . + (1− ϑT)2 ,

which leads to a measure of rationality based on the sum of square differences from the
case of exact rationality (where ϑ = (1, 1, . . . , 1)).

Computing these generalized rationality indices can be more demanding than com-
puting the (basic) rationality index ϑ∗ since in searching for those values of ϑ that ϑ-
rationalizes the data and maximizes F(ϑ), we would not in general be able to confine our-
selves to the the case where ϑt = ϑt′ for all t, t′. In the literature on measuring GARP vio-
lations, there are indices, such as the one proposed by Varian (1990), that involve solving
a maximization problem with the same mathematical structure. (In that case the problem
is to find the best way to break up revealed preference cycles over consumption bundles
rather than over price vectors.) Algorithms that have been devised to compute Varian’s
index (see Halevy, Persitz, and Zrill (2018) and Polisson, Quah, and Renou (2020)) can
also be used to compute F∗.
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A.4.3. ϑ-GAPP and ϑ-GARP

We confine our discussion to the environment where prices are linear, so the data set
has the formD = {(pt, xt)}T

t=1. Let ϑ ∈ (0, 1]T. We say that a utility function Ũ : RL
+ → R

ϑ-rationalizes D in the sense of Afriat if Ũ(xt) ≥ Ũ(x) for all x ∈ Bt
ϑ
, where

Bt
ϑ
= {x ∈ RL

+ : pt · x ≤ ϑt pt · xt}.

ϑ-rationalization in this sense admits a characterization similar to the one we gave for
ϑ-rationalization in the augmented utility model.

Define the relations �x,ϑ and �x,ϑ on the set {xt}T
t=1 in the following way:

xt′ �x,ϑ xt if pt′ · xt ≤ ϑt′ pt′ · xt′ and xt′ �x,ϑ xt if pt′ · xt < ϑt′ pt′ · xt′

Denote the transitive closure of �x,ϑ by �∗
x,ϑ

. Obviously these definitions generalize the
ones given for the revealed preference relations over bundles (see Section 2.2 of the main
paper). With these definitions in place, we can also generalize the definition of GARP. We
say that the data set D obeys ϑ-GARP if

there do not exist observations t, t′ ∈ T such that xt′ �∗
x,ϑ

xt and xt �x,ϑ xt′ .

It is straightforward to show that ϑ-GARP is necessary for the ϑ-rationalization of D
(in the sense of Afriat) by a locally nonsatiated utility function Ũ : RL

+ → R. It is also
known (see Halevy, Persitz, and Zrill (2018)) that ϑ-GARP is sufficient to guarantee the
ϑ-rationalization of D (in Afriat’s sense) by a continuous, strictly increasing and concave
utility function Ũ : RL

+ → R.3 By definition, the critical cost efficiency index c∗ satisfies

c∗ = sup{ϑ ∈ (0, 1] : D has a (ϑ, ϑ, . . . , ϑ)-rationalization in the sense of Afriat}

and since ϑ-rationalization in Afriat’s sense can be characterized by ϑ-GARP, we obtain

c∗ = sup{ϑ ∈ (0, 1] : D satisfies (ϑ, ϑ, . . . , ϑ)-GARP}. (A.14)

With these observations in place, the proof of Proposition 3 is now straightforward.

Proof of Proposition 3. First we note that there is a generalization to Proposition 1: it is
straightforward to check pt′ �p,ϑ pt if and only if x̆t′ �x,ϑ x̆t and pt′ �p,ϑ pt if and only

if x̆t′ �x,ϑ x̆t. Thus, D satisfies ϑ-GAPP if and only if D̆ satisfies ϑ-GARP. Then it follows

3Indeed, we could obtain this result by modifying our proof of Theorem A.4.1. First, ϑ-GARP guarantees
that there is a complete preorder % on {xt}T

t=1 that extends �x,ϑ and �x,ϑ. Then, by mimicking the proof
of Lemma A.1, one could guarantee the existence of numbers φt and λt > 0 (for t = 1, 2, . . . , T) with the
following properties: (a) φt′ > φt if xt′ � xt; (b) φt′ = φt if xt′ ∼ xt; and (c) φt′ ≤ φt + λt pt · (xt′ − ϑtxt) for
all t 6= t′. The utility function Ũ : RL

+ → R given by

U(x) = min
t∈T
{φt + λt pt · (x− ϑtxt)}

is a continuous, concave, and strictly increasing. It is straightforward to check that property (c) guarantee
that Ũ rationalizes D in Afriat’s sense.
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immediately from (A.13) and (A.14) that the critical cost efficiency index of D̆ is equal to
the rationality index of D. �

A.4.4. Allowing for variation in product characteristics across observations

In Section 4.1(3) we considered a model of differentiated goods, where each product is
represented by a vector of product characteristics in the space RL

+. We assumed in that
section that the set of available goods, X, is fixed across observations but that assumption
is not crucial to our model or test. We now allow the range of products available to the
consumer to vary across observations.

The changes we have in mind include the introduction of new products and also changes
to characteristics of an existing product. The latter could be a substantive change — for
example, a change to the formula for a breakfast cereal — or it could be a change (say)
to the amount of money spent on advertising that alters a product’s utility (in the broad
sense). All these cases could be formally captured by a data set D = {(ψt, xt, Xt)}T

t=1,
where Xt is the set of products available at observation t, xt (as usual) is the product cho-
sen, and ψt : Xt → R+ is the price system as observation t. Notice that the price system
at observation t is defined on Xt (the set of available products at observation t). An aug-
mented utility function U : Y ×R− → R, where Y is a subset of RL

+ containing ∪t∈TXt

rationalizes D if, at each observation t,

U(xt,−ψt(xt)) ≥ U(x,−ψt(x)) for all x ∈ Xt;

in other words, xt and its associated expenditure gives greater utility than any other prod-
uct available at observation t. Sometimes, there is universal agreement that certain prod-
uct characteristics K ⊂ L will always make the product more desirable; in this case, we
would also like the rationalizing utility function to be increasing in xK.

Developing a test of whether D = {(ψt, xt, Xt)}T
t=1 can be rationalized by an aug-

mented utility function that is increasing in xK requires a modification of the notion of
revealed preference.

We say that ψt′ is directly revealed preferred to ψt, and denote it by ψt′ �vp ψt if ψt′(x̂) ≤
ψt(xt) where x̂ ∈ Xt′ and x̂ ≥K xt.4 In other words, ψt′ is directly revealed preferred to
ψt if there is a product x̂ available at t′ that is weakly superior to xt in the dimensions
belonging to K, the same in the other dimensions, and costs less than xt. We say that ψt′ is
directly strictly revealed preferred to ψt, and denote it by ψt′ �vp ψt if ψt′ is directly revealed
preferred to ψt and, either ψt′(x̂) < ψt(xt) or x̂ >K xt. We denote the transitive closure
of �vp by �∗vp, that is, ψt′ �∗vp ψt if there are t1, t2, . . . , tN in T such that ψt′ �vp ψt1 ,
ψt1 �vp ψt2 , . . . , ψtN−1 �vp ψtN , and ψtN �vp ψt′ ; in this case we say that ψt′ is revealed

4The partial order ≥K is defined as follows: x′′ ≥K x′ if x′′−K = x′−K and x′′K ≥ x′K.
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preferred to ψt. If anywhere along this sequence, it is possible to replace�vp with�vp then
we denote that relation by ψt′ �∗vp ψt and say that ψt′ is strictly revealed preferred to ψt.

It is straightforward to check that if D can be rationalized by an augmented utility
function that is strictly increasing in xK then it obeys GAPP with respect to �∗vp and �∗vp, in
the following sense:

there do not exist observations t, t′ ∈ T such that ψt′ �∗vp ψt and ψt �∗vp ψt′ .

The following theorem asserts that the converse is also true.

Theorem A.4.3. Let the data set be D = {(ψt, xt, Xt)}T
t=1, where Xt is finite for all t ∈ T and

ψt : Xt → R+ is strictly increasing in xK, i.e., if x′′ >K x′ and both x′′ and x′ are in Xt, then
ψt(x′′) > ψt(x′). Let Y be a closed set in RL

+ containing ∪t∈TXt.
Then D can be rationalized by an augmented utility function U : Y×R− → R that is strictly

increasing in xK if and only if satisfies GAPP with respect to �∗vp and �∗vp.

Proof. We skip the proof of the necessity of GAPP, which is straightforward, and turn to
establishing its sufficiency. Let X = ∪t∈TXt. We claim that we can extend the function
ψt : Xt → R+ to a function ψt : X → R that is increasing in xK and such that D =

{(ψt, xt)}T
t=1 satisfies GAPP (with respect to the revealed preference orders �∗p and �∗p

induced by D). Then an application of Theorem 2 will guarantee that D, and thus also
D, can be rationalized by an augmented utility function U : Y ×R− → R that is strictly
increasing in xK.

To guarantee that D satisfies GAPP, with respect to �∗p and �∗p, we need to specify
ψt(x), for x ∈ X \ Xt, in such a way that �∗p=�∗vp and �∗p=�∗vp. Then GAPP holds with
respect to �∗p and �∗p because GAPP holds with respect to �∗vp and �∗vp. Because X is
finite, such an extension ψt can be obtained with no technical difficulty. For x ∈ X \ Xt,
if there is no x′ ∈ Xt such that x′ >K x, we choose ψt(x) > max{ψs(xs) : s ∈ T}, while
making sure that ψt remains increasing in xK. If there is x′ ∈ Xt such that x′ >K x, then
choose ψt(x) to be strictly lower than ψt(x′), but if x = xs for some observation s, then
choose ψt(x) = ψt(xs) > ψs(xs) if ψt(x′) > ψs(xs). In this way, we guarantee �∗p=�∗vp

and �∗p=�∗vp. �

APPENDIX A.5. MORE ON COMPENSATING VARIATION

Our objective is to prove equation (11) from the body of the paper:

inf(µc) = max{ms
c : ms

c satisfies (10) for some s ∈ S} (A.15)

where (10) requires pt2 xs + ms
c = psxs.

Proof. Since S is a finite set, there is s̄ ∈ S that achieves the maximum on the right
of (A.15). We have already shown that inf(µc) ≥ ms̄

c, so it remains to show that they
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are equal. We shall do this by producing, for any ε > 0, an augmented utility function
rationalizing D for which the compensating variation is smaller than ms̄

c + ε.

To this end, let U be any augmented utility function that rationalizes D = {(pt, xt)}T
t=1;

we know that U exists sinceD obeys GAPP by assumption. Let ψ̂ : X → R+ be the nonlin-
ear price system given by ψ̂(x) = pt2 · x+ms̄

c + ε and suppose that x̂ ∈ argmaxx∈XU(x,−ψ̂(x)).
Now consider the data set D′ = D ∪ {(ψ̂, x̂)}. Obviously this data set can be rationalized
(in fact it is rationalized by U). Furthermore, ψ̂ 6�p ps for any s ∈ S. This is because

ψ̂(xs) = pt2 xs + ms̄
c + ε > pt2 · xs + ms

c = psxs

for any s ∈ S. (Recall that, be definition, ms̄
c ≥ ms

c for all s ∈ S.) Thus there is a complete
preorder % on {pt}T

t=1 ∪ {ψ̂}, completing the revealed preference relations on D′ such
that pt1 � ψ̂. By Theorem A.4.2, there is an augmented utility Û rationalizing D′ such
that its indirect utility V̂ satisfies V̂(pt1) > V̂(ψ̂). In other words,

V̂(ψ̂) = max
x∈X

Û(x,−pt2 · x−ms̄
c − ε) < Û(xt1 ,−pt1 · xt1).

So for the augmented utility function Û, the compensating variation must be smaller than
ms̄

c + ε. �

Our treatment of the compensating and equivalent variations can be easily extended
to allow for nonlinear pricing. We give a sketch of the procedure for calculating a bound
on the compensating variation and leave the reader to fill in the details; this procedure is
completely analogous to the one for linear prices described in Section 3.3

Let U be the consumer’s augmented utility function. Suppose that the initial price is
ψt1 and it changes to ψt2 , leading to a change in consumption from xt1 to xt2 . Then the
compensating variation µc is, by definition, the variable that solves the equation

maxx∈RL
+

U(x,−ψt2(x)− µc) = V(ψt1) = U(xt1 ,−ψt1(xt1)). (A.16)

Note that µc is unique since U is strictly increasing in the last argument. We could think
of µc as the lump sum transferred from the consumer (if it is positive) or to the consumer
(if it is negative) after the price change that will make her indifferent between the two
situations.

Now suppose a data set D obeys GAPP and contains the observation (ψt1 , xt1). How
can we form a lower bound of the compensating variation of a price change from ψt1 to
ψt2? (Note that our discussion is valid whether or not ψt2 is an observed price system in
the D.) Formally, we wish to find

inf{µc : µc solves (A.16) for some augmented utility function U that rationalizes D}.

Abusing terminology somewhat, we shall denote this term by inf(µc).
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We now describe how to compute this bound. Let S ⊂ T be the set of observations such
that s ∈ S if ψs �∗p ψt1 . This set is nonempty since it contains pt1 itself. For each s ∈ S,
there is ms

c such that
ψt2(xs) + ms

c = ψs(xs). (A.17)

For any U that rationalizes D, the compensating variation µc ≥ ms
c. Indeed, if m < ms

c,
then m 6= µc for any utility function rationalizing D because

maxx∈RL
+

U(x,−ψt2(x)−m) ≥ U(xs,−ψt2(xs)−m) > U(xs,−ψt2(xs)−ms
c)

= U(xs,−ψs(xs)) ≥ U(xt1 ,−ψt1(xt1)) = V(ψt1).

Thus inf(µc) ≥ ms
c for all s ∈ S. In fact, by adapting the argument we provided for the

case of linear prices in the earlier part of this section, we could show that

inf(µc) = max{ms
c : ms

c satisfies (A.17) for some s ∈ S}. (A.18)

Since the right side of this equation can be computed from the data, we have found a
practical way of calculating inf(µc).

Notice that if ψt2 is revealed preferred to ψt1 , in the sense that there is s′ ∈ S such that
ms′

c ≥ 0, then inf(µc) ≥ 0; in other words, a lump sum tax of inf(µc) will leave the agent
no worse off than at t1 and potentially better off. On the other hand, if ψt2 is not revealed
preferred to ψt1 , that is, for every s ∈ S, we have ms

c < 0, then inf(µc) < 0; in other words,
at ψ = ψt2 , a lump sum transfer of inf(µc) to the agent will guarantee that the agent no
worse off than at t1 and potentially better off.

APPENDIX A.6. PROOF OF THEOREM 3

Given a deterministic data set of the form D = {(pt, xt)}T
t=1, we can construct its iso-

expenditure version D̆ = {(pt, x̆t)}T
t=1, where x̆t = xt/pt · xt (so pt · x̆t = 1 for all t). Suppose

that x̆t does not lie on the intersection of budget planes, that is, there is it such that x̆t ∈
int(Bit,t). We make two observations. First, Proposition 1 tells us that D satisfies GAPP if
and only if D̆ satisfies GARP. Second, if D satisfies GAPP then so does D′ = {(pt, yt)}t∈T

if yt has the property that its re-scaled version y̆t satisfies ỹt ∈ int(Bit,t); this is because the
revealed preference relations (over the bundles ỹt) are determined only by where y̆t lies
on the budget set relative to its intersection with another budget. It follows from these
observations that we may classify deterministic data sets that obey GAPP according to
the patch occupied by the scaled bundle x̆t at each Bt. Formally, each D that obeys GAPP
is associated with an iso-expenditure D̆ that obeys GARP, which is in turn associated with
a vector a =

(
a1,1, . . . , aIT ,T) ∈ A (as defined in Section 5.2 of the main paper).

Given a repeated cross-sectional data set D , we can construct A and the matrix A.
(Recall that A denotes the matrix whose columns consist of every a ∈ A, arranged in an
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arbitrary order.) Suppose that this data set can be rationalized by some distribution µ. Let
νa denote the mass of consumers of type a in the population, that is

νa = µ

({
ω ∈ Ω :

χt(ω)

pt · χt(ω)
∈ Bit,t if ait,t = 1, for all t ∈ T

})
.

At a given observation t, let Ait,t = {a : ait,t = 1}; this is the subset of GARP-consistent
types that have their re-scaled demands in the patch Bit,t at observation t. The proportion
of the population whose types belong to Ait,t is

µ

({
ω ∈ Ω :

χt(ω)

pt · χt(ω)
∈ Bit,t

})
= ∑

a∈Ait ,t

νa = ∑
a∈A

νa ait,t.

Since D is rationalized by µ,

π̊t(Y) = µ({ω ∈ Ω : χt(ω) ∈ Y}) for any measurable Y ⊂ RL
+. (A.19)

Setting Y = {x ∈ RL
+ : x/(pt · x) ∈ Bit,t}, we obtain

πit,t = ∑
a∈A

νa ait,t (A.20)

where πit,t is defined by equation (17) (in the main paper). In other words, the observed
probability of choices that land on Bit,t after scaling must equal to the mass of GARP-
consistent types implied by µ. This condition must hold for all patches Bit,t, so (A.20) can
be more succinctly written as Aν = π, where ν is the column vector (νa)a∈A. (Recall that
π is the vector of observed patch probabilities.) So we have established that if D can be
RAUM-rationalized then there is a distribution ν ∈ ∆|A| that solves Aν = π.

It remains for us to show the converse. Given π̊t, we define π̃it,t to be the conditional
distribution of demand at observation t when it restricted to the cone Kit,t = {r · x : x ∈
Bit,t, r > 0}. Thus, if Y is a measurable subset of RL

+, then

π̊t(Y ∩ Kit,t) = πit,t π̃it,t(Y).

(Recall that, by definition, πit,t = π̊t(Kit,t).) Of course, if Y ∩ Kit,t = ∅ then π̃it,t(Y) = 0.
Given a and t, there is a unique i′t such that ai′t,t = 1; let Kt

a = Ki′t,t and let π̃t
a be the

probability measure on RL
+ such that π̃t

a = π̃i′t,t. Obviously, π̃t
a(Kt

a) = 1.
Let λa be the product measure on (RL

+)
T given by λa = ×t∈Tπ̃t

a. It follows from the
definition of a that

×t∈TKt
a ⊂

{
x ∈ (RL

+)
T : {(pt, xt)}t∈T satisfies GAPP

}

and since π̃t
a(Kt

a) = 1 for all t, we obtain

λa

({
x ∈ (RL

+)
T : {(pt, xt))}t∈T satisfies GAPP

})
= 1. (A.21)

Note that xt refers to the tth entry of x).
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Define Ω = A× (RL
+)

T and the probability measure µ on Ω by µ({a} × Y) = νaλa(Y)
for any measurable set Y ⊆ (RL

+)
T, where νa refers to the ath entry of ν. Lastly, define

χ : Ω→ (RL
+)

T by χ((a, x)) = x. Then, using (A.21), we obtain

µ
({

(a, x) ∈ Ω : {(pt, χt(a, x))}t∈T satisfies GAPP
})

= ∑
a∈A

νaλa

({
x ∈ (RL

+)
T : {(pt, χt(a, x))}t∈T satisfies GAPP

})
= ∑

a∈A
νa = 1.

It remains for us to show that (A.19) holds. Let Y be a measurable set in RL
+. For any Kit,t,

µ({(a, x) ∈ Ω : χt(a, x) ∈ Y ∩ Kit,t}) = ∑
a∈A

νaλa({x ∈ (RL
+)

T : χt(a, x) ∈ Y ∩ Kit,t})

= ∑
a∈A

νaλa({x ∈ (RL
+)

T : xt ∈ Y ∩ Kit,t})

= ∑
a∈A

νaπ̃t
a({xt ∈ RL

+ : xt ∈ Y ∩ Kit,t})

Recall that Ait,t = {a ∈ A : ait,t = 1}, so π̃t
a({xt ∈ RL

+ : xt ∈ Y ∩ Kit,t}) = 0 for any
a /∈ Ait,t. Thus

∑
a∈A

νaπ̃t
a({xt ∈ RL

+ : xt ∈ Y ∩ Kit,t}) = ∑
a∈Ait ,t

νaπ̃t
a({xt ∈ RL

+ : xt ∈ Y ∩ Kit,t})

=
π̊t(Y ∩ Kit,t)

πit,t ∑
a∈Ait ,t

νa

= π̊t(Y ∩ Kit,t),

where the last equation follows from Aν = π. Thus we have shown that, for all Kit,t,

µ({(a, x) ∈ Ω : χt(a, x) ∈ Y ∩ Kit,t}) = π̊t(Y ∩ Kit,t).

This in turn guarantees that (A.19) holds. �

APPENDIX A.7. OMITTED DETAILS FROM SECTION 6

In this section, we formally develop our bootstrap procedure from Section 6.2. We
begin by describing Weyl-Minkowski duality5which is used for the equivalent (dual) re-
statement (26) of our test (24). As we mentioned earlier, we will also appeal to this duality
in the proof of the asymptotic validity of our testing procedure.

Theorem A.7.1. (Weyl-Minkowski Theorem for Cones) A subset C of RI is a finitely generated
cone

C = {ν1a1 + ... + ν|A|a|A| : νh ≥ 0} for some A = [a1, ..., aH] ∈ RI×|A| (A.22)

5See, for example, Theorem 1.3 in Ziegler (1995).
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if, and only if, it is a finite intersection of closed half spaces

C = {t ∈ RI |Bt ≤ 0} for some B ∈ Rm×I . (A.23)

The expressions in (A.22) and (A.23) are called a V-representation (as in “vertices”) and
a H-representation (as in “half spaces”) of C, respectively. In what follows, we use an
H-representation of cone(A) corresponding to a m× I matrix B as implied by Theorem
A.7.1.

We are now in a position to show that the bootstrap procedure defined in Section 6.2 is
asymptotically valid. Note first that Θ = [θ, θ], where

θ = max
ν∈∆|A|−1

ρ · ν = max
1≤j≤|A|

ρj (A.24)

θ = min
ν∈∆|A|−1

ρ · ν = min
1≤j≤|A|

ρj, (A.25)

where ρj denotes the jth component of ρ. We normalize (ρ, θ) such that Θ = [θ, θ + 1].
Next, define

H := {1, 2, ..., |A|} (A.26)

H := {j ∈ H | ρj = θ} (A.27)

H := {j ∈ H | ρj = θ} (A.28)

H0 := H \ (H∪H). (A.29)

Recall that τN is a tuning parameter chosen such that τN ↓ 0 and
√

NτN ↑ ∞. For θ ∈ ΘI ,
we now formally define the τN-tightened version of S as

SτN(θ) := {Aν | ρν = θ, ν ∈ VτN(θ)},

where

VτN(θ) :=





ν ∈ ∆|A|−1

∣∣∣∣∣∣∣∣

νj ≥ (θ−θ)τN
|H∪H0| , j ∈ H, νj′ ≥ (θ−θ)τN

|H∪H0|
, j′ ∈ H,

νj′′ ≥
[
1− (θ−θ)|H|

|H∪H0| −
(θ−θ)|H|
|H∪H0|

]
τN
|H0| , j′′ ∈ H0





.

In applications where ρ is binary, the above notation simplifies. Specifically, in our
empirical application on deriving the welfare bounds, ρ = 1t�∗pt′ and θ = Nt�∗pt′ . Here,
θ = 1, θ = 0, and θ− θ = 1 holds without any normalization. Also,H (H) is just the set of
indices for the types that (do not) prefer price pt compared to pt′ , while H0 is empty. We
then have:

SτN(Nt�∗pt′) =
{

Aν
∣∣∣ 1′t�∗pt′ν = Nt�∗pt′ , ν ∈ VτN(Nt�∗pt′)

}
,
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where

VτN(Nt�∗pt′) =

{
ν ∈ ∆|A|−1

∣∣∣∣∣ νj ≥
(1−Nt�∗pt′)τN

|H| , j ∈ H, νj′ ≥
Nt�∗pt′τN

|H| , j′ ∈ H
}

.

We now state the mild data assumptions.

Assumption 1. For all t = 1, ..., T, Nt
N → κt as N → ∞, where κt > 0, 1 ≤ t ≤ T.

Assumption 2. The econometrician observes T independent cross-sections of i.i.d. sam-

ples
{

xt
n(t)

}Nt

n(t)=1
, t = 1, ..., T of consumers’ choices corresponding to the known price

vectors {pt}T
t=1.

Next, let di,t
n(t) := 1{xt

n(t) ∈ Bi,t}, dt
n(t) = [d1,t

n(t), ..., dIt,t
n(t)], and dt

n = [d1,t
n , ..., dIt,t

n ]. Let dt

denote the choice vector of a consumer facing price pt (we can, for example, let dt = dt
1).

Define d = [d′1, ..., d′T]
′: note, E[d] = π holds by definition. Among the rows of B some

of them correspond to constraints that hold trivially by definition, whereas some are for
non-trivial constraints. Let KR be the index set for the latter. Finally, let

g = Bd

= [g1, ..., gm]
′.

With these definitions, consider the following requirement:

Condition 1. For each k ∈ KR, var(gk) > 0 and E[|gk/
√

var(gk)|2+c1 ] < c2 hold, where
c1 and c2 are positive constants.

This guarantees the Lyapunov condition for the triangular array CLT used in establishing
asymptotic uniform validity. This type of condition has been used widely in the literature
of moment inequalities; see Andrews and Soares (2010).

PROOF OF THEOREM 4. Define C = cone(A) and

T (θ) = {π = Aν : ρ′ν = θ, ν ∈ R|A|},

an affine subspace of RI . It is convenient to rewrite T (θ) as T (θ) = {t ∈ RI : B̃t = d(θ)}
where B̃ ∈ m̃×RI , d(·) ∈ m̃× 1, and m̃ all depend on (ρ, A). We let b̃j denote the j-th
row of B̃. Then

S(θ) = C ∩ ∆|A|−1 ∩ T (θ).
By Theorem A.7.1, C = {π : Bπ ≤ 0}, therefore

S(θ) = {t ∈ R|A| : Bt ≤ 0, B̃t = d(θ), 1′Ht = 1}. (A.30)

Let
ψ(θ) = [ψ1(θ), ..., ψH(θ)]

′ θ ∈ Θ
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with

ψj(θ) =





(θ−θ)
|H∪H0| if j ∈ H,
(θ−θ)

|H∪H0|
if j ∈ H,[

1− (θ−θ)|H|
|H∪H0| −

(θ−θ)|H|
|H∪H0|

]
1
|H0| if j ∈ H0,

where terms are defined in (A.26)-(A.29). Then

SτN(θ) = {π = Aν : ν ≥ τNψ(θ), ν ∈ ∆|A|−1, ρ′ν = θ}.

Finally, let
CτN = {π = Aν : ν ≥ τNψ(θ)}.

Then
SτN(θ) = CτN ∩ ∆|A|−1 ∩ T (θ).

Proceeding as in the proof of Lemma 4.1 in KS, we can express the set CτN as

CτN = {t : Bt ≤ −τNφ(θ)}

where
φ(θ) = −BAψ(θ).

As in Lemma 4.1 in KS, let the first m̄ rows of B represent inequality constraints and the
rest equalities, and also let Φkh the (k, h)-element of the matrix −BA. We have

φk =
|A|
∑
h=1

Φkhψh(θ)

where, for each k ≤ m̄, {Φkh}|A|h=1 are all nonnegative, with at least some of them being
strictly positive, and Φkh = 0 for all h if m̄ < k ≤ m. Since ψh(θ) > 0, 1 ≤ h ≤ |A| for
every θ ∈ Θ by definition, we have φj(θ) ≥ C, 1 ≤ j ≤ m̄ for some positive constant C,
and φj(θ) = 0, m̄ < j ≤ m for every θ ∈ Θ. Putting these together, we have

SτN(θ) = {t ∈ R|A| : Bt ≤ −τNφ(θ), B̃t = d(θ), 1′Ht = 1}

where 1H denotes the |A|-vector of ones. Define the RI-valued random vector

π∗τN
:=

1√
N

ζ + η̂τN , ζ ∼ N(0, Ŝ)

where Ŝ is a consistent estimator for the asymptotic covariance matrix of
√

N(π̂ − π).
Then (conditional on the data) the distribution of

δ∗(θ) := N min
η∈SτN (θ)

[π∗τN
− η]′Ω[π∗τN

− η]
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corresponds to that of the bootstrap test statistics. Let

B∗ :=




B
B̃

1′H




Define ` = rank(B∗) for the augmented matrix B∗ instead of B in KS, and let the `× m-
matrix K be such that KB∗ is a matrix whose rows consist of a basis of the row space
row (B∗). Also let M be an (I − `)× I matrix whose rows form an orthonormal basis of
kerB∗ = ker(KB∗), and define P = (KB∗

M ). Finally, let ĝ = B∗π̂.

Define

T(x, y) :=
(

x
y

)′
P−1′ΩP−1

(
x
y

)
, x ∈ R`, y ∈ RI−`

t(x) := min
y∈RI−`

T(x, y)

s(g) := min
γ=[γ≤′,γ= ′]′,γ≤≤0,γ′∈col(B)

t(K[g− γ])

with

γ= =




0m−m̄

d(θ)
1




where 0m−m̄ denotes the (m − m̄)-vector of zeros. It is easy to see that t : R` → R+ is
a positive definite quadratic form. By (A.30), we can write δN(θ) = Ns(ĝ) = s(

√
Nĝ).

Likewise, for the bootstrapped version of δ we have

δ∗(θ) = N min
η∈SτN (θ)

[π∗τN
− η]′Ω[π∗τN

− η]

= s(ϕN(ξ̂) + ζ),

where ξ̂ = B∗π̂/τN. Note the function ϕN(ξ) = [ϕ1
N(ξ), ..., ϕm

N(ξ)] for ξ = (ξ1, ..., ξm)′ ∈
col(B∗). Moreover, its k-th element ϕk

N for k ≤ m̄ satisfies

ϕk
N(ξ) = 0

if |ξk| ≤ δ and ξ j ≤ δ, 1 ≤ j ≤ m, δ > 0, for large enough N and ϕk
N(ξ) = 0 for

k > m̄. This follows (we use some notation in the proof of Theorem 4.2 in KS, which
the reader is referred to) by first noting that it suffices to show that for small enough
δ > 0, every element x∗ that fulfills equation (9.2) in KS with its RHS intersected with
∩m̃

j=1S̃j(δ), S̃j(δ) = {x : |b̃′jx− dj(θ)| ≤ τδ} satisfies

x∗|S(θ) ∈ ∩q
j=1Hτ

j ∩ L ∩ T (θ).
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If not, then there exists (ã, x̃) ∈ F ∩ T (θ)×∩q
j=1Hj ∩ L ∩ T (θ) such that

(ã− x̃)′(x̃|Sτ(θ)− x̃) = 0,

where x̃|Sτ(θ) denotes the orthogonal projection of x̃ on Sτ(θ). This, in turn, implies
that there exists a triplet (a0, a1, a2) ∈ A ×A×A such that (a1 − a0)

′(a2 − a0) < 0. But
as shown in the proof of Theorem 4.2 in KS, this cannot happen. The conclusion then
follows by Theorem 1 of Andrews and Soares (2010). �
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