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Abstract We develop revealed preference tests for models of multi-product oligopoly,
building on the work in Carvajal et al. (Econometrica 81(6):2351–2379, 2013). We
analyze a Cournot model with multiple goods and show that it has testable restrictions
when at least one good is produced by two or more firms. We also develop a revealed
preference test for Bertrand oligopoly in a setting where each firm produces a single
differentiated good, and these goods are potentially substitutes for each other. Our tests
require qualitative assumptions on the shape of the demand curves and (in the Bertrand
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case) their evolution across observations, but they do not rely on the estimation of
market demand.

Keywords Cournot equilibrium · Bertrand equilibrium · Revealed preference ·
Observable restrictions · Product differentiation · Supermodular games

JEL Classification C12 · C14 · C60 · C72 · D22 · D43 · L13

1 Introduction

Revealed preference gives a simple and intuitive way of checking whether a data set
is consistent with a given model under minimal assumptions. Perhaps the earliest
and most well-known application of this approach is to test the consumption models,
where Afriat (1967) derived necessary and sufficient conditions for a finite set of price
and demand observations to be consistent with utility maximization.1 Subsequently,
this approach has found applications in testing production (Varian 1984), general
equilibrium (Brown and Matzkin 1996), collective household consumption (Cherchye
et al. 2007) and other models.

In this paper, we derive revealed preference tests for models of multi-product
oligopoly. These tests take the form of inequalities (which must have a solution for
the data to be rationalizable) that are derived from the first-order conditions of best
responding firms. We assume the observer is given a data set consisting of market
prices and firm quantities over time and ask the following question: when does there
exist a time invariant cost function for each firm such that the observed variation
in the data can be explained by (static) Nash equilibrium play in response to a time
varying market demand. We require the rationalizing cost functions to be increasing
and convex and sometimes impose reasonable shape restrictions on demand func-
tions, but otherwise, no parametric assumptions are made. Market demand curves are
also required to be consistent with the data, in the sense that they must pass through
the observed prices and output quantities. However, unlike the empirical literature in
industrial organization, we do not assume that the researcher can observe variables
that are known to shift or twist the demand curves, so there is no attempt at fitting the
demand behavior to a particular model of demand. In this sense, our approach gives
‘pure’ tests of the oligopoly model that involve a minimum of ancillary restrictions.

Our revealed preference tests for oligopolies are useful for at least two reasons.
Firstly, since they require very parsimonious assumptions, they can serve as a pretest
before proceeding with estimation of demand or cost parameters. Such a pretest would
determine whether the chosen Cournot or Bertrand model is appropriate to model the
market. Secondly, such tests can be useful to antitrust authorities who consider static
Nash equilibrium as a benchmark. The minimal required assumptions imply that a
rejection of equilibrium by our tests provides very robust evidence that firm interaction

1 For a more recent treatment of Afriat’s Theorem see Fostel et al. (2004).
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is taking a more complicated (and possibly collusive) form.2 This could then provide
a reason for authorities to conduct further analysis via more industry-specific models
or by other methods.

Recently, Carvajal et al. (2013), henceforth referred to as CDFQ, derived revealed
preference tests for a single-product Cournot oligopoly. Critical to those results was
the assumption that firms in the market produce a single homogenous good. The
aim of this paper was to extend the CDFQ results in two directions: by allowing
for multi-product environments and by testing for Bertrand interaction, in addition
to Cournot. These extensions are important for a number of reasons. For example,
in many industries, firms compete in multiple geographical markets (third degree
price discrimination), which formally correspond to each firm producing multiple
goods. Under certain conditions, such multimarket contact can make collusion easier
to sustain—see Bernheim and Whinston (1990) and the literature thereafter—and this
makes collusion detection important in such environments. In other situations, there
may be a single market, but the goods produced by each firm are differentiated rather
than perfectly homogeneous. Such a market is often modeled as a Bertrand oligopoly
with differentiated goods, perhaps the most widely used model for demand estimation
in empirical industrial organization. Again, it is important to explore how this model
could be tested from a revealed preference perspective.

In Sect. 2, we develop a test for a general multi-product Cournot oligopoly, after a
quick review of the CDFQ results. Our model allows for the inverse demand function
to change arbitrarily over time and the market clearing price of each product depends
(potentially) on the entire vector of quantities produced. Thus, the various goods are
permitted to be either complements or substitutes. Additionally, each firm can produce
multiple products; its cost function is required to be convex in the output vector but
we allow for there to be economies of scope in production. We show that this model
has nontrivial testable restrictions on observed data, so long as there is at least one
product sold by two or more firms. We also characterize the properties that a data set
must satisfy to be consistent with this model.

Section 3 of the paper develops a test for a Bertrand model with differentiated prod-
ucts. In this case, we assume that each firm produces exactly one good, with a cost
function that is increasing and convex. The demand for each firm’s product has the fol-
lowing features: it is a log-concave function of its own price and the own-price demand
elasticity is decreasing in the prices charged by other firms. Both of these shape restric-
tions on the demand function are standard in the literature. The first assumption is often
made because it guarantees (along with a convex cost function) that each firm’s profit is
a quasi-concave function of its price and so the first-order conditions are also sufficient
for profit maximization. The second condition is often made to help guarantee that
prices are strategic complements and the Bertrand oligopoly is a supermodular game
in the sense of Milgrom and Roberts (1990) or Vives (1990). With respect to the data
generating process, we assume that observations are generated by shifts in the firms’
demand functions, where demand changes in such a way that own-price elasticities

2 Note that we are not saying that firms that fail Cournot or Bertrand rationalizability must necessarily
be colluding. A discussion of the distinction between testing for Cournot rationalizability and testing for
collusion can be found in Carvajal et al. (2013).
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either fall or rise across all firms in the industry; we call this the co-evolving property.
In particular, this excludes the possibility that data variation is primarily driven by
firm-specific demand shocks or by changes to each firm’s cost function.3 We show
that this model of Bertrand oligopoly has nontrivial testable restrictions on data and
identify necessary and sufficient conditions on a data set for consistency with this
model. Finally, we explain how it is possible to modify this basic test to incorporate
idiosyncratic shocks to a firm’s demand or marginal cost functions, by postulating that
the observer can observe parameters that permit these shocks to be (at least partially)
ordered.

1.1 Related literature

The testable implications of equilibrium behavior in abstract games have been inves-
tigated by Sprumont (2000), Ray and Zhou (2001) and Lee (2012), among others. In
these papers, payoff functions remain fixed and the variability in the data arises from
each player being constrained to choose from different subsets of the set of avail-
able strategies. This differs from our paper, and also from CDFQ, where the data are
generated by changes to the demand—hence payoff—function. There are also results
comparing Nash equilibria in abstract supermodular games as payoffs vary—see, for
example, Theorem 6 in Milgrom and Roberts (1990). The demand perturbations gen-
erating the data in our analysis do not correspond to the type of parameter changes
for which standard results on the monotone comparative statics of Nash equilibria
are applicable. Furthermore, those results generally compare the largest (or smallest)
Nash equilibrium4 before and after the parameter change while in our analysis we
do not require that an observation be rationalized as the largest (or smallest) Nash
equilibrium.

2 Cournot rationalization

In this section, we derive revealed preference tests for the general Cournot oligopoly
model. We consider an industry consisting of a set I = {1, 2, . . . , I } of firms, pro-
ducing the goods K = {1, 2, . . . , K }. The observer has access to a data set where
each observation, t , consists of a vector of the prevailing prices of the K goods,
Pt = (Pk

t )k∈K, and the output vector of each firm, Qi,t = (Qk
i,t )k∈K. The data set con-

sists of T observations of this industry, which are indexed by t ∈ T = {1, 2, . . . , T },
and so we can write it as {[Pt , (Qi,t )i∈I ]}t∈T . We denote the aggregate output of the
industry at observation t by Qt = ∑

i∈I Qi,t .

2.1 Cournot rationalization in a single-product oligopoly

We first recap the main result from CDFQ. This will set up the framework and provide
the intuition for the multi-product generalization we present in Sect. 2.2.

3 This mirrors the setup in CDFQ in the sense that data are generated by demand shocks rather than cost
shocks and, of course, the demand shocks are never firm specific since all firms produce the same good.
4 This notion is well defined in a supermodular game (see Milgrom and Roberts 1990).
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In CDFQ, each firm produces the same homogeneous good (so K = 1). At each t ,
the market price of the good, Pt , and the output of each firm (Qi,t )i∈I are observed.
(In this case, both Pt and Qi,t are scalars.) We require Qi,t > 0 for all (i, t). The data
set {[Pt , (Qi,t )i∈I ]}t∈T is said to be Cournot rationalizable if each observation can be
explained as a Cournot equilibrium arising from a different market demand function,
keeping the cost function of each firm fixed across observations, and with the demand
and cost functions obeying certain regularity properties. By a cost function of firm i , we
mean a strictly increasing and convex function C̄i : R+ → R+ that takes nonnegative
values. The convexity assumption is standard in theoretical and econometric work as
it helps to make the firm’s optimization problem tractable and it is also a plausible
assumption in many settings.5 The market inverse demand is a function P̄t : R+ → R

(for each t) which is differentiable at all q > 0, with P̄ ′
t (q) < 0. Assuming the demand

curves to be downward sloping is standard and uncontroversial. Formally, the data set
{[Pt , (Qi,t )i∈I ]}t∈T is Cournot rationalizable if there are cost functions C̄i for each
firm i and inverse demands P̄t for each observation t such that

(i) P̄t (Qt ) = Pt , and
(ii) Qi,t ∈ argmaxqi ≥0 { qi P̄t (qi + ∑

j �=i Q j,t ) − C̄i (qi )}.
Condition (i) says that the inverse demand must agree with the observed data at each
observation. Condition (ii) says that, again at each observation, each firm’s observed
output level maximizes its profit given the output of the other firms.

We begin by examining conditions on a data set that are necessary for it to be Cournot
rationalizable. Suppose that {[Pt , (Qi,t )i∈I ]}t∈T is Cournot rationalizable by inverse
demand functions {P̄t }t∈T and convex cost functions {C̄i }i∈I . We denote by ∂C̄i (Qi,t )

the set of subgradients of C̄i at Qi,t ; the nonemptiness of this set is guaranteed by the
convexity of C̄i . At observation t , firm i chooses qi to maximize its profit given the
output of the other firms; at its optimal choice, Qi,t , the first-order conditions say that
there is δi,t ≥ 0 contained in ∂C̄i (Qi,t ) such that Qi,t P̄ ′

t (Qt ) + P̄t (Qt ) − δi,t = 0 or

δi,t = P̄t (Qt ) − λt Qi,t , (1)

where λt = −P̄ ′
t (Qt ) (the slope of the inverse demand curve at the observed total

quantity Qt ). Additionally, since cost functions are convex, for any two observations
t and t ′, any firm i , and any subgradient δi,t ∈ ∂C̄i (Qi,t ), we have C̄i (Qi,t ′) ≥
C̄i (Qi,t ) + δi,t (Qi,t ′ − Qi,t ) which may be written as

Ci,t ′ ≥ Ci,t + δi,t (Qi,t ′ − Qi,t ), (2)

where Ci,t = C̄i (Qi,t ) and Ci,t ′ = C̄i (Qi,t ′).
It follows that a simple necessary condition for a data set {[Pt , (Qi,t )i∈I ]}t∈T to

be Cournot rationalizable is that there exist positive constants δi,t , Ci,t and λt such

5 Some restriction on the shape of the firms’ cost functions is necessary for there be nontrivial testable
restrictions on the data; this is formally shown in Theorem 1 of CDFQ. For a property on cost functions that
is weaker than convexity but still leads to observable restrictions on data, see the working paper version of
CDFQ, Carvajal et al. (2010).
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that (1) and (2) are satisfied for all i , t . CDFQ prove that these conditions are also
sufficient.

Theorem 1 (Carvajal et al. 2013). The following statements on the data set
{[Pt , (Qi,t )i∈I ]}t∈T are equivalent:

[A] The set of observations is Cournot rationalizable.
[B] There are numbers λt , δi,t and Ci,t such that, for all t , t ′ ∈ T , and i ∈ I, the

following inequalities hold:6

(i) λt > 0, δi,t > 0, and Ci,t > 0
(ii) δi,t = Pt − λt Qi,t and

(iii) Ci,t ′ ≥ Ci,t + δi,t (Qi,t ′ − Qi,t ).

CDFQ showed via Theorem 1 that the Cournot model has testable implications
despite there being no restrictions on how the demand curves can change over time.
In the next subsection, we generalize this result and construct a test for a Cournot
oligopoly with multiple goods. Importantly, we show that testable restrictions exist
even in this general multi-product setting.

2.2 Cournot rationalization in a multi-product oligopoly

We now derive the tests for the general multi-product Cournot oligopoly, so we allow
for K > 1. Once again, we consider a market consisting of I firms but now we allow
each firm to produce more than one good. The production costs and demand for these
goods are possibly interrelated, which allows for economies of scope in production
and complementarity/substitutability in demand—see, for example, Brander and Eaton
(1984) and Bulow et al. (1985). Let Ki ⊆ K, with Ki = |Ki |, be the set of goods
firm i is capable of producing. The output vector of each firm, Qi,t = (Qk

i,t )k∈K,

has Qk
i,t = 0 if k /∈ Ki . We require that each firm has nonzero production at each

observation: for each i ∈ I and t ∈ T , there is k ∈ Ki (which may depend on t) such
that Qk

i,t > 0. We also assume that Qt = ∑
i∈I Qi,t � 0 for all t ; in other words,

strictly positive amounts of each good are produced at all observations.
Generalizing our earlier definition, the cost function of firm i is a convex map

C̄i : R
Ki+ → R+ that takes nonnegative values and is strictly increasing in qk

i for all
k ∈ Ki . Abusing our notation, we will often write C̄i (qi ) where qi ∈ R

K+ (for example,
C̄i (Qi,t )); by this we simply mean C̄i (q̂i ), where q̂i is the restriction of qi to Ki .

The market inverse demand function is a vector-valued mapping P̄t : R
K+ → R

K .
We say that inverse demand function P̄t obeys the law of demand if it is differentiable
with a negative definite derivative matrix ∂ P̄t .7 This condition is the multi-product
generalization of a downward sloping inverse demand curve. In particular, it implies

6 These conditions are stated slightly differently in CDFQ. Condition (ii) is stated in CDFQ as the common
ratio property and condition (iii), which guarantees the convexity of the firms’ cost functions, is captured
by the co-monotone property. These conditions have been restated here in a way that is more clearly related
to the multi-product generalization in Theorem 2.
7 For the use of this condition in the context of multi-product oligopolies, see Vives (1999). The
micro-foundations of this property have been extensively studied; see Quah (2003) and the survey of
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that the diagonal terms of ∂ P̄t (the own-price derivative for any good) are negative
numbers, but negative definiteness is a stronger property. This generalization of the
downward sloping property is not the only one possible, but it is intuitive, convenient
for our purposes, and has been extensively studied.

As before, the set of observations is rationalizable if each observation can be
explained as a Cournot equilibrium arising from a different market inverse demand
function, keeping the cost function of each firm fixed across observations. Formally,
the set of observations {[Pt , (Qi,t )i∈I ]}t∈T is said to be Cournot rationalizable if
there are cost functions C̄i for each firm i , and demand functions P̄t obeying the law
of demand at each observation t , such that:

(i) P̄t (Qt ) = Pt , and

(ii) Qi,t ∈ argmaxqi ∈�i

{∑K
k=1 qk

i P̄k
t (qi + ∑

j �=i Q j,t ) − C̄i (qi )
}

, where

�i = {qi ∈ R
K+ : qk

i = 0 ∀ k /∈ Ki }.

Condition (i) requires each hypothesized inverse demand function to agree with its
respective observation, while condition (ii) says that firm i’s output choice is profit-
maximizing, given the output of other firms, the hypothesized inverse demand function,
and the output vectors the firm is capable of producing, which is the set �i .

Theorem 2 below generalizes Theorem 1 by characterizing multi-product data sets
that are Cournot rationalizable.

Theorem 2 The following statements on the data set {[Pt , (Qi,t )i∈I ]}t∈T are equiv-
alent:

[A] The set of observations is Cournot rationalizable.8

[B] There are real numbers λ
�,k
t , δk

i,t and Ci,t such that, for all � and k ∈ K, all t and
t ′ ∈ T , and all i ∈ I, the following holds:

(i) Ci,t > 0, δk
i,t = 0 if k /∈ Ki . δk

i,t > 0 if k ∈ Ki , and the K × K matrix

Λt = [λ�,k
t ] is positive definite;

(ii) δk
i,t − Pk

t +∑K
�=1 λ

�,k
t Q�

i,t ≥ 0 and (δk
i,t − Pk

t +∑K
�=1 λ

�,k
t Q�

i,t )Qk
i,t = 0; and

(iii) Ci,t ′ ≥ Ci,t + ∑K
k=1 δk

i,t (Qk
i,t ′ − Qk

i,t ).

Footnote 7 continued
Jerison and Quah (2008). The literature usually considers demand as a function of price, rather than the
inverse demand function considered here. However, the two cases are equivalent: if ∂ P̄t (q) is negative
definite, then P̄t is locally invertible, and its inverse, the demand function Q̄t , has a negative definite matrix
at P̄t (q).
8 Instead of requiring P̄t to obey the law of demand, we could require that, for all i ∈ I and t ∈ T ,
the derivative matrix ∂ P̄t is negative definite when restricted to the subset of goods Ki , which is weaker
than simply requiring ∂ P̄t to be negative definite. To characterize Cournot rationalizable data sets with this
weaker requirement on demand, condition (i) in statement [B] must be modified. It should now require
Λt to have the following property: for all i and t , the restriction of Λt to Ki is negative definite. This
modification of Theorem 2 is possible because the weaker property on Λt is nonetheless sufficient to enable
the construction of a rationalizing inverse demand function P̄t such that each firm’s profit function is concave
(see Lemma 1).
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Remark When there is just one good, statement [B] reduces to the following: there
are numbers λt > 0, δi,t > 0, Ci,t > 0 such that δi,t = Pt − λt Qi,t and Ci,t ′ ≥
Ci,t + δi,t (Qi,t ′ − Qi,t ). Thus, Theorem 1 is a special case of this result.

Theorem 2 establishes an equivalence between Cournot rationalizability and the
solution to a programming problem. However, unlike Theorem 1, the program in
statement [B] of Theorem 2 is not linear, because the requirement that the matrices
Λt are positive definite imposes nonlinear conditions on the unknowns. The Tarski-
Seidenberg Theorem tells us that there is an algorithm that could ascertain whether or
not a solution exists and that provides a solution if it does. This theorem states that the
projection of any semi-algebraic set is semi-algebraic as well, and that it can be found
in finite time. A set is semi-algebraic if it can be described by a finite set of polynomial
inequalities on real numbers; as the three conditions introduced in statement [B] are
polynomial inequalities, the set of values of the variables that satisfy them is semi-
algebraic. Thus, the projection of this set into the space of prices and quantities is also
characterized by a finite set of polynomial inequalities. These inequalities, defined
only on the observed prices and quantities, are necessary and sufficient conditions for
Cournot rationalizability. So this gives us a way of implementing the test in principle,
even if the derivation of these conditions is computationally demanding. The existing
algorithms that implement this elimination of quantified variables are, in the best of
cases, of exponential complexity.9

Note that this computational issue arises only if we insist on requiring that the
rationalizing market inverse demand functions obey the law of demand. It is possible
to replace this property with something a bit stronger and just as intuitive, for which the
corresponding test is a (computationally less demanding) linear program; we explain
this in greater detail in Sect. 2.4.

2.3 Testable restrictions of the multi-product Cournot model

While Theorem 2 provides us with a test for the Cournot model, it does not immediately
follow that the test generates non-trivial restrictions on the data. Indeed, consider the
important special case where each firm in the industry produces one good that is
differentiated from all the others. In this case, no good is produced by more than one
firm and Cournot rationalizability in the sense of Theorem 2 imposes no observable
restrictions on the data (apart from trivial nonnegativity restrictions on prices and
output). To rationalize any data set, simply assume that all cross-price elasticities
equal zero, so that each firm is a single-product monopoly. It is not hard to see (and
it is shown in CDFQ) that any sequence of price and outputs from a single-product
monopoly can be rationalized with a (convex and increasing) cost function and a
sequence of downward sloping demand functions that change across observations.
Thus, Theorem 2 is not suitable as a test of strategic interaction in an industry where
each firm is producing a differentiated good. Industries with this feature are typically

9 The original procedure of Tarski and Seidenberg, and the alternative of Cylindrical Algebraic Decompo-
sition are known to be doubly exponential. More recent developments in Quantifier Elimination may yield
a procedure that is singly exponential: see Basu et al. (2006, Ch. 13).
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modeled as Bertrand oligopolies and they feature prominently in both the theoretical
and empirical IO literature. The revealed preference properties of that model will be
considered in the next section.

The multi-product Cournot model does impose substantive restrictions on the data
when, as in the case of the single-product Cournot model, there are goods that are
supplied by more than one firm. The following example illustrates this phenomenon.

Example 1 Consider an industry with two goods, 1 and 2, where observations taken
from the two firms in this industry are as follows:

(i) at observation t , P1
t = 10, Q1

i,t = 13, Q2
i,t = 12, Q1

j,t = 4, and Q2
j,t = 6; and

(ii) at observation t ′, P1
t ′ = 1, P2

t ′ = 1, Q1
j,t ′ = 8, and Q2

j,t ′ = 8.

We claim that these observations are not Cournot rationalizable. Suppose, to the
contrary, that they are, and invoke statement [B] in Theorem 2. Using condition (ii),
we have that

P1
t − Q1

i,tλ
1,1
t − Q2

i,tλ
2,1
t − δ1

i,t = 0,

and

P1
t − Q1

j,tλ
1,1
t − Q2

j,tλ
2,1
t − δ1

j,t = 0.

Multiplying the first equation by Q2
j,t and the second equation by Q2

i,t and taking the
difference between them, we obtain

(
Q2

j,t − Q2
i,t

)
P1

t −
(

Q2
j,t Q1

i,t − Q2
i,t Q1

j,t

)
λ

1,1
t − Q2

j,tδ
1
i,t + Q2

i,tδ
1
j,t = 0. (3)

The significance of the numbers chosen for observation t is that they guarantee that
Q2

j,t − Q2
i,t < 0 and Q2

j,t Q1
i,t − Q2

i,t Q1
j,t > 0. Recall that δ1

i,t > 0 and (because

Λt is positive definite) λ
1,1
t > 0. Therefore, the second and third terms on the left of

equation (3) are both negative. Re-arranging that equation, we obtain

δ1
j,t ≥ Q2

i,t − Q2
j,t

Q2
i,t

· P1
t = 6

12
· 10 = 5. (4)

Condition (iii) in statement [B] says that

C j,t ′ ≥ C j,t +δ1
j,t (Q1

j,t ′ − Q1
j,t )+δ2

j,t (Q2
j,t ′ − Q2

j,t ) = C j,t +(Q j,t ′ − Q j,t )·δ j,t (5)

and
C j,t ≥ C j,t ′ + (Q j,t − Q j,t ′) · δ j,t ′ . (6)

It follows from (5) that
C j,t ′ − C j,t ≥ 5(8 − 4) = 20. (7)
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Condition (ii) in vector and matrix notation says that −Λt ′ Q j,t ′ = δ j,t ′ − Pt ′ .
Pre-multiplying this by Q j,t ′ , we obtain (by the positive definiteness of Λt ′)

Q j,t ′ · Pt ′ ≥ Q j,t ′ · δ j,t ′ .

Furthermore, Q j,t ′ > Q j,t , and so

Q j,t ′ · Pt ′ ≥ (Q j,t ′ − Q j,t ) · δ j,t ′ ≥ C j,t ′ − C j,t , (8)

where the last inequality is taken from (6). But (8) is impossible since Q j,t ′ · Pt ′ = 16
and we know from (7) that C j,t ′ − C j,t = 20.

In other words, (4) provides us with a lower bound on the marginal cost of firm
j at its observed output of (4, 6):

∂C̄ j

∂q1
(4, 6) ≥ 5. (9)

This in turn leads to a lower bound on the cost to firm j of raising its output from
Q j,t = (4, 6) to Q j,t ′ = (8, 8) [see (7)]. On the other hand, firm j’s total revenue at
t ′ must be greater than the added cost of raising output from Q j,t to Q j,t ′ [see (8)],
but this is impossible given the output levels and prices.

2.4 Variations on Theorem 2

Theorem 2 provides a test for data sets that are consistent with Cournot outcomes,
assuming that the market inverse demand function obeys the law of demand. For var-
ious reasons, it is sometimes convenient to either strengthen or weaken this condition
on the demand function, which will entail corresponding changes to the test. We now
discuss a number of these cases and explain how the test could be modified.

As we have already pointed out, the test for Cournot rationalizability given in state-
ment [B] of Theorem 2 requires us to solve a nonlinear program, where the nonlinearity
arises from the positive definiteness condition imposed on Λt (see condition (i) in the
statement). It is possible to replace the law of demand with a stronger condition that
is easier to check. For example, we could require the rationalizing inverse demand
function P̄t to obey diagonal dominance with uniform weights; by this, we mean that

2
∂ P̄k

t

∂qk
(q) +

∑

� �=k

∣
∣
∣
∣
∂ P̄k

t

∂q�
(q) + ∂ P̄�

t

∂qk
(q)

∣
∣
∣
∣ < 0 for all q and for all k ∈ K.

This intuitive condition says that own-price effects are larger than the sum of all cross-
price effects. If we impose this condition on the rationalizing demand system, then the
corresponding requirement on Λt (modifying condition (i) in [B]) is the following:10

10 This property guarantees the positive definiteness of the symmetric matrix Λ+ΛT , which is equivalent to
the positive definiteness of Λ; see Mas-Colell et al. (1995, Appendix M.D.) for more on diagonal dominance.
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−2λ
k,k
t +

∑

� �=k

|λ�,k
t + λ

k,�
t | < 0 for all k ∈ K;

note that this can condition can be equivalently stated as a set of linear conditions. The
other parts of the test [as stated in conditions (i), (ii), and (iii)] remain unchanged and
all of them involve only linear conditions.

In certain contexts, the modeler may have specific information on cross-price effects
which he would like to impose as conditions on the rationalizing demand system, on
top of those required by the law of demand or diagonal dominance. For example, it
is possible to interpret the different goods in this model as the same good sold in
several distinct and isolated markets; in other words, this multi-product oligopoly is
an instance of third degree price discrimination, with the same firms interacting in
several markets. In that case, it may be reasonable to require all cross-price effects
to equal zero, i.e., ∂ P̄k

t /∂q� = 0 for all k �= �. Correspondingly, one would have to
impose the condition λ

�,k
t = 0 for all t and whenever � �= k, in addition to the ones

listed in statement [B] of Theorem 2.11

Similarly, the modeler may believe that the K goods are substitutes (∂ P̄k
t /∂q� ≤ 0

for all � and k) or complements (∂ P̄k
t /∂q� ≥ 0 for all � �= k). The corresponding

conditions are λ
�,k
t ≤ 0 for all � and k, and λ

�,k
t ≥ 0 for all � �= k, respectively.12

2.5 Proof of Theorem 2

Proof of Theorem 2: Suppose that [A] holds, so the data is rationalized by inverse
demand functions P̄k

t , for k ∈ K and t ∈ T , and cost functions C̄i . We set Ci,t =
C̄i (Qi,t ) and

λ
�,k
t = −∂ P̄�

t

∂qk
(Qt )

Since (P̄k
t )k∈K obeys the law of demand, Λt is positive definite as required by (i).

At observation t , firm i’s revenue function, given that firm j �= i is producing Q j,t ,
is

R̄i,t (qi ) =
K∑

�=1

q�
i P̄�

t

⎛

⎝qi +
∑

j �=i

Q j,t

⎞

⎠ ;

11 Even though cross-price effects are zero, each firm is producing more than one good and the market for
each good can be served by more than one firm, so this is not formally identical to the case of an industry
where each firm is producing a good different from that produced by other firms. In the latter scenario, as
we have already pointed out, observable restrictions do not exist if there are no cross-price effects.
12 If we impose the condition that all the goods are substitutes, then Cournot rationalizability requires that

all observed prices be nonnegative: if Pk̄
t < 0 then any firm that is producing good k̄ is strictly better off if

it reduces its output of k̄. In the case when the goods are not necessarily substitutes, the model allows for
the possibility that some observed prices are negative: firms can optimally pay for a good to be consumed
in order that it may raise the demand for some other good.
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note that

∂ R̄i,t

∂qk
i

(Qi,t ) = P̄k
t (Qt ) +

K∑

�=1

∂ P̄�
t

∂qk
(Qt )Q�

i,t = Pk
t −

K∑

�=1

λ
�,k
t Q�

i,t . (10)

By assumption, Qi,t maximizes �i,t (qi ) = R̄i,t (qi ) − C̄i (qi ). Therefore, there exists
a vector (δ̂k

i,t )k∈K〉 in ∂C̄i (Qi,t ) ∈ R
Ki such that δ̂k

i,t ≥ Pk
t − ∑K

�=1 λ
�,k
t Q�

i,t for all

k ∈ Ki , with equality whenever Qk
i,t > 0. Since C̄i is increasing and convex, δ̂k

i,t ≥ 0

for all k ∈ Ki , with δ̂k
i,t > 0 if Qk

i,t > 0. Let δ̂k
i,t = 0 for k /∈ Ki . Then, δ̂k

i,t satisfies,

with one exception, all the conditions in (i), (ii), and (iii), with (iii) holding because C̄i

is convex and Ci,t = C̄i (Qi,t ). The exception is that, if Qk
i,t = 0 for some k ∈ Ki , it is

possible that δ̂k
i,t = 0. Now define δk

i,t in the following way: for k ∈ Ki , let δk
i,t = δ̂k

i,t if

δ̂k
i,t > 0 and let δk

i,t = ε > 0 if δ̂k
i,t = 0; for k /∈ Ki , simply let δk

i,t = δ̂k
i,t = 0. It is clear

that δk
i,t chosen in this manner will obey conditions (i) and (ii). Furthermore, because

C̄i is convex and increasing, condition (iii) will also be satisfied if ε is sufficiently
small. This completes our proof that [A] implies [B].

Lemmas 1 and 2, which we state and prove below, show immediately that [B]
implies [A]. ��

Lemma 1 Suppose that, at some observation t, there are real numbers λ
�,k
t and δk

i,t
such that, for all �, all k ∈ K and all i ∈ I, conditions (i) and (ii) in Theorem 2
hold. Suppose also that there are cost functions C̄i : R

Ki → R+ with (δk
i,t )k∈Ki ∈

∂C̄i (Qi,t ) ⊂ R
Ki+ . Then, there exists an inverse demand function P̄t , obeying the law

of demand, such that P̄t (Qt ) = Pt and, with each firm i having the cost function C̄i ,
{Qi,t }i∈I constitutes a Cournot equilibrium.

Proof We define the inverse demand function for good k by

P̄k
t (q) = ak

t −
K∑

�=1

λ
k,�
t q� (11)

with ak
t chosen such that P̄k

t (Qt ) = Pk
t .

Firm i’s profit at observation t , given that firm j �= i is producing Q j,t is �i,t (qi ) =
R̄i,t (qi ) − C̄i (qi ), where R̄i,t (qi ) = ∑K

�=1 q�
i P̄�

t (qi + ∑
j �=i Q j,t ), and marginal

revenue is given by (10). Since (δk
i,t )k∈Ki ∈ ∂C̄i (Qi,t ), condition (ii) gives the Kuhn-

Tucker conditions for profit maximization. These conditions are sufficient to guarantee
that firm i’s choice is optimal if �i,t , is concave in qi . Given that the cost function
C̄i is, by definition, convex, it suffices to check that the R̄i,t is concave in qi . It
is straightforward to verify that, for all qi , the Hessian ∂2 R̄i,t (qi ) = −ΛT

t − Λt .
Condition (i) guarantees that this matrix is negative definite, so we conclude that R̄i,t

is concave. ��
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Lemma 2 Suppose that for some firm i, there are numbers δk
i,t , with δk

i,t > 0 for

k ∈ Ki and δk
i,t = 0 for k /∈ Ki , and numbers Ci,t > 0 such that, for all t and t ′ ∈ T ,

condition (iii) in Theorem 2 is satisfied. Then, there is a cost function C̄i : R
Ki+ → R+

with (δk
i,t )k∈Ki ∈ ∂C̄i (Qi,t ).

Proof Define the function C̄i by

C̄i (q) = max
t∈T

{

Ci,t +
K∑

k=1

δk
i,t

(
qk − Qk

i,t

)
}

− max
t∈T

{

Ci,t −
K∑

k=1

δk
i,t Qk

i,t

}

. (12)

Notice that, by construction, C̄i (0) = 0. Since δk
i,t > 0 for all k ∈ Ki , function

C̄i is increasing and, since it is the upper envelope of linear functions, C̄i is a convex
function. Thus, C̄i satisfies all the conditions of a cost function. Furthermore, condition
(iii) implies that C̄i (Qi,t ) = Ci,t − maxt∈T {Ci,t − ∑K

k=1 δk
i,t Qk

i,t } > 0, since

Ci,t ≥ Ci,s +
K∑

k=1

δk
i,s

(
Qk

i,t − Qk
i,s

)
for all s ∈ T .

Therefore, (δk
i,t )k∈Ki ∈ ∂C̄i (Qi,t ). ��

3 Bertrand rationalization with differentiated goods

We assume that each firm i ∈ I is producing just one good, which we shall also
refer to as i . Each observation in the data set consists of a vector of prevailing prices,
Pt = (Pi,t )i∈I , where Pi,t is the price of i (produced by firm i) at observation t , and
a vector of outputs, Qt = (Qi,t )i∈I , where Qi,t is firm i’s output of product i .13 As
in the previous section, we assume that T is finite, with T = {1, 2, . . . , T }.

We are interested in finding necessary and sufficient conditions on a data set
{(Pt , Qt )}t∈T under which each observation can be explained as a Bertrand equi-
librium arising from a different market demand function, keeping the cost function
of each firm fixed across observations. In other words, we require cost functions
C̄i : R+ → R+ for each firm i (which are increasing and convex by definition), and
demand functions Q̄i,t : R

I+ → R
I for each product, i , and each observation, t , with

∂ Q̄i,t/∂pi < 0 at all p ∈ R
I+, such that:

(i) Q̄i,t (Pt ) = Qi,t , and
(ii) Pi,t ∈ argmaxpi ≥0 { pi Q̄i,t (pi , P−i,t ) − C̄i (Q̄i,t (pi , P−i,t ))}.

13 In the previous section, superindices were used to denote commodities, while firms were indicated by
the first of two subindices. In this section, each firm produces only one product, so we shall dispense with
the superindex.
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3.1 A revealed preference test for Bertrand behavior

Our objective is to develop a revealed preference test that retains the spirit of Theorem 1
and its multi-product generalization, Theorem 2. The distinguishing feature of CDFQ’s
test of the Cournot model is that the test does not require specific information on the
industry’s demand curve – in contrast to empirical IO models, it does not entail the
estimation of industry demand. The surprise in those results is that testable restrictions
exist even when demand is not known to the observer. However, in that case, the job
was made simpler by the fact that different firms are producing the same good, which
means (by definition) that they encounter identical demand conditions, even if the
demand curve is not known to the observer. In this case, we are considering firms that
are producing differentiated goods. How can we formally allow for differentiation
and yet capture the idea that these firms are in the same industry? And how can we
develop a model where observable restrictions exist while keeping broadly to the
spirit of Theorems 1 and 2, which means avoiding the imposition of industry-specific
numerical bounds on price elasticities and other demand parameters (that need to be
separately estimated)?

Examining Theorem 1 more closely, we notice that the single-good assumption in
Theorem 1 has, in a sense, two consequences: (1) at each observation, when some
firm i raises its output, it affects the price faced by another firm j , in the particular way
given by their common demand function; (2) the price tradeoff faced by each firm
(as it decides on its output) changes in the same way across observations since there
is just one demand function. Our modeling strategy here is to model the industry’s
demand structure, and the demand perturbations across time, in a way that involve
restrictions loosely analogous to (1) and (2), while allowing for differentiated goods.
First, we impose restrictions on how, at each observation, demand for one good is
affected by the price of another good produced in the same industry. Second, even
though different firms produce different goods, we require that the demand conditions
they face move in the same direction from one observation to the next.

Let us denote by ε̄i,t (p) the relative decrease in the demand of good i in response
to an infinitesimal increase in its price, when the vector of prices is p; that is, given
the demand function for good i at observation t , Q̄i,t ,

ε̄i,t (pi , p−i ) = − 1

Q̄i,t (pi , p−i )

∂ Q̄i,t

∂pi
(pi , p−i ).

We impose the following condition on the demand system {Q̄i,t }(i,t)∈I×T : at each
observation t and for all goods i ,

ε̄i,t (pi , p−i ) is nondecreasing in pi and nonincreasing in p−i . (13)

The first of these two conditions we call the log-concave condition because it says that
the demand for good i is a log-concave function of its own price. This is a standard
assumption to make because it ensures, together with increasing marginal cost, that
firm i’s profit is quasi-concave in the price it charges. The second condition we call
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the substitutes condition. Clearly, this condition is equivalent to saying that the own-
price elasticity of good i , pi ε̄i,t (p), is nondecreasing in p−i , i.e., the prices of other
goods. Again, this is a standard assumption and is typically made to guarantee that
the Bertrand game played among firms is a game of strategic complements, i.e., firm
i’s optimal price is increasing in the price of other goods (see Milgrom and Shannon
1994).

The log-concave and substitutes conditions impose curvature properties on the
demand function of each firm at each observation. However, it should be clear that
these conditions are not sufficient to generate nontrivial observable restrictions on a
data set, since it is possible for each firm to encounter perturbations to its demand
function that are completely unrelated to that faced by other firms in the industry. We
thus impose a further condition on demand that captures a temporal feature of firms
that belong to the same industry: they experience common demand shocks. Formally,
we assume the demand system is co-evolving in the following sense: for any t and t ′,
either

ε̄i,t (p) ≥ ε̄i,t ′(p), for all p and all i ∈ I, (14)

or
ε̄i,t (p) ≤ ε̄i,t ′(p) for all p and all i ∈ I. (15)

This assumption excludes the possibility that a shock raises the demand elasticity for
one firm but lowers it for another, and allows us to rank the elements in T according
to the impact of t on demand elasticity. Of course, firms in an industry can encounter
idiosyncratic shocks, so what we are doing is confining ourselves to observations over
some time frame where industry-wide shocks are a reasonable assumption. While
there are various ways in which this assumption can be modified or generalized (and
we discuss this in Sect. 3.4), it is important to emphasize that the co-evolving property
is a very natural benchmark assumption for firms that are, after all, supposed to belong
to the same industry.

The data set {(Pt , Qt )}t∈T is said to be Bertrand rationalizable if each observation
can be explained as a Bertrand equilibrium, with the demand system {Q̄i,t }(i,t)∈I×T
obeying the log-concave, substitutes and co-evolving conditions. The following result
provides a test for data sets that are Bertrand rationalizable.

Theorem 3 The following statements on {[Pt , (Qi,t )i∈I ]}t∈T are equivalent:

[A] The set of observations is Bertrand rationalizable.
[B] There is a permutation of T , denoted by the function σ : T → T , and real

numbers λi,t , δi,t , Ci,t for all t ∈ T and i ∈ I, such that the following holds:
(i) Ci,t > 0, δi,t > 0, λi,t > 0;

(ii) δi,tλi,t − Pi,tλi,t + 1 = 0;
(iii) Ci,t ′ ≥ Ci,t + δi,t (Qi,t ′ − Qi,t ); and
(iv) if Pi,t ′ ≥ Pi,t , P−i,t ′ ≤ P−i,t and σ(t) < σ(t ′), then λi,t ≤ λi,t ′ .

Statement [B] in Theorem 3 provides us with a test of Bertrand rationalizability
that can be implemented in a finite number of steps. Indeed, for a given permutation
σ of T , the stated conditions form a linear program in δi,t , Ci,t , and 1/λi,t . Since T
is finite, so is the number of permutations of T , and thus, the entire problem can be
solved in a finite number of steps.
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Theorem 3 assumes that demand is co-evolving and that cost functions are
unchanged over the observation period. The co-evolving assumption may not be suit-
able if the demand faced by different firms are subject to idiosyncratic shocks; it also
leads to a computationally demanding test, since with a data set of T observations,
there will be T ! ways in which demand could be co-evolving (even if each possi-
ble ranking leads to a simple linear test). Similarly, the cost function of each firm
can change (perhaps because of a change in input prices) during the period where
observations are taken.

One way of avoiding all of these issues is to use data sets consisting of a small
number of observations collected over a short duration. An implementation of our
test would then involve cutting up a long (possibly very long) data set of an indus-
try’s performance over many periods into much shorter segments, with each segment
containing observations taken over a small number of consecutive periods. There will
then be a large number of small data sets, and tests can be performed on each of them.
The number of observations in each data set should be small enough so that the test is
computationally feasible (which could mean fewer than 10 observations). Assuming
that idiosyncratic changes to firms’ demand functions or firms’ cost functions occur
only slowly (or infrequently) relative to industry-wide demand fluctuations, the co-
evolving condition will hold and cost functions of firms will remain unchanged in
each data set and so a negative test outcome will correctly be attributed to a violation
of Bertrand behavior. The frequency of passing these tests then serves as an indicator
of whether the industry is behaving as a Bertrand oligopoly. The empirical strategy
outlined here is, in essence, the same as the one used in CDFQ’s implementation of
the test for Cournot rationalizability.14

3.2 Proof and motivation for Theorem 3

Proof (that [A] implies [B] in Theorem 3): If the data set can be rationalized, the
first-order condition of profit maximization is that

Q̄i,t (Pt ) + Pi,t
∂ Q̄i,t

∂pi
(Pt ) − δi,t

∂ Q̄i,t

∂pi
(Pt ) = 0, (16)

for some δi,t ∈ ∂C̄ ′
i (Q̄i,t (Pt )) (the set of subgradients of C̄i st Qi,t ). Setting

Ci,t = C̄i (Qi,t ) and λi,t = ε̄i,t (Pt ),

14 An issue that all revealed preference tests have to contend with is that they are binary: a data set either
passes or fails the test. Thus, implementing such a test on a large data set will often be problematic, unless
a way of accounting for errors is formally included. This is one reason why data sets used in revealed
preference tests generally tend not to be very big. In studies of consumer demand, it is typical to implement
these tests (for example, Afriat’s Theorem or its variations) on a large number of subjects, with the number of
observations for each subject being fairly modest (fewer than 15 or even 10 observations are not uncommon).
In other words, there is a large number of tests, with each test having a small data set, and the frequency
of passing the test in this collection of data sets is used as a measure of the model’s success. The empirical
strategy proposed here, and used in CDFQ, has a broadly similar pattern.
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we obtain (i) and, through each firm’s first-order condition, we obtain (ii). Condition
(iii) must also hold because the cost function of each is convex. For part (iv), first
observe that the co-evolving property of the demand system guarantees that there is a
permutation of the observations, σ , such that if σ(t) < σ(t ′), then

ε̄i,t (p) ≤ ε̄i,t ′(p) for all p ≥ 0 and i ∈ I.

(In other words, we are ranking the observations in T according to the own-price
elasticity of demand; there is no ambiguity because of the co-evolving condition.)
Given this, when Pi,t ′ ≥ Pi,t and P−i,t ′ ≤ P−i,t we obtain that

ε̄i,t (Pi,t , P−i,t ) ≤ ε̄i,t (Pi,t ′ , P−i,t ) ≤ ε̄i,t (Pi,t ′ , P−i,t ′) ≤ ε̄i,t ′(Pi,t ′ , P−i,t ′),

where the first and second inequalities follow from the log-concave and substitute
properties of the demand system, respectively, while the third one follows from the
ordering given by the co-evolving property. Hence, λi,t ≤ λi,t ′ . ��

It is useful to compare and contrast the conditions identified in Theorem 3 with those
in Theorem 1. In both cases, condition (iii) captures the requirement that firms’ cost
functions are convex. Condition (ii) in both cases capture the first-order conditions that
must hold at each firm’s observed choice, but there is an important difference between
them. Condition (ii) in Theorem 1 leads to a restriction on marginal costs across firms,
because different firms face the same price impact from a marginal change in output.15

This is not true of the analogous condition in Theorem 3 because the price elasticities
faced by different firms are not the same at each observation (i.e., λi,t and λ j,t need not
be equal). It is not hard to see that conditions (i), (ii) and (iii) in Theorem 3 are not in
themselves sufficient to impose restrictions on the data; restrictions exist only because
of the inclusion of condition (iv). This condition says that, under certain circumstances,
we can rank the elasticity of demand faced by firm i at observation t (λi,t ) with the
elasticity it faces at observation t ′ (λi,t ′ ). This condition arises from the combination
of the log-concave, substitutes, and co-evolving assumptions on the demand system;
there is no analog to this restriction in Theorem 1 because that model does not require
the inverse demand functions across observations to be globally ranked by elasticities.

Proof (that [B] implies [A] in Theorem 3): Lemma 2, condition (iii) implies that firm
i has a cost function C̄i with δi,t ∈ C̄ ′

i (Qi,t ). The function C̄i is increasing and convex
in qi . Next, we choose, for each i and t , a continuous function εi,t : R

I++ → R that is
strictly positive, nondecreasing in pi and nonincreasing in p−i , such that εi,t (Pt ) = λi,t

and εi,t (p) ≤ εi,t ′(p) for all p, whenever σ(t) < σ(t ′). This is possible because of
(iv). The log-demand function for good i is chosen to be

L̄i,t (p) = −
∫ pi

0
εi,t (z, p−i ) dz + ai,t (17)

15 Notice that (ii) is equivalent to (Pt − δi,t )/Qi,t = (Pt − δi,t )/Qi,t > 0 for any two firms i and j and
for all t . In CDFQ, this is called the common ratio property.
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where ai,t is chosen so that Q̄i,t (Pt ) = exp(L̄i,t (Pt )) = Qi,t . With this choice of Q̄i,t ,

ε̄i,t (Pt ) = − 1

Q̄i,t

∂ Q̄i,t

∂pi
(Pt ) = εi,t (Pt ) = λi,t .

Condition (ii) implies that, given the chosen demand curves and cost functions, the
observed quantities satisfy firm i’s first-order conditions for profit maximization. Fur-
thermore, note that firm i’s demand curve is log-concave (since εi,t is nondecreasing
in pi ) and its cost function is convex in its output; together these imply that firm i’s
profit function is quasiconcave in pi and so the first-order condition is also sufficient
for optimality.16 Finally our assumptions on εi,t guarantee that the demand system
constructed from it with (17) also has the substitutes and co-evolving properties. ��

3.3 Examples of rationalizable and nonrationalizable data sets

In order to show that our model of Bertrand oligopoly is refutable, we now present an
example of data that cannot be rationalized by the model.

Example 2 Consider an industry with two, firms 1 and 2, each producing a differenti-
ated good. Suppose that between observations t and t ′ the following hold: P1,t < P1,t ′ ,
P2,t > P2,t ′ , Q1,t > Q1,t ′ , Q2,t < Q2,t ′ . In other words, going from t to t ′, firm 1 is
charging more and producing less, while firm 2 is doing the opposite. We claim that
these observations are not Bertrand rationalizable.

Indeed, the log-concavity and substitutes properties say that

ε̄1,t (P1,t , P2,t ) ≤ ε̄1,t (P1,t ′ , P2,t ) ≤ ε̄1,t (P1,t ′ , P2,t ′). (18)

Note that the first-order condition (16) can be rewritten as

P1,s − δ1,s = 1

ε̄1,s(P1,s, P2,s)
, (19)

16 The profit function �̄i of firm i is log-concave if, and only if,

−�̄′
i (pi ) = C̄ ′

i (Q̄i (pi ))Q̄′
i (pi ) − Q̄i (pi ) − pi Q̄′

i (pi )

is a single crossing function of pi . (We are suppressing the dependence of Q̄i on p−i in the notation.) Since
C̄ ′

i (Q̄i (pi ))Q̄′
i (pi ) − Q̄i (pi ) and −pi Q̄′

i (pi ) are both single crossing functions of pi (indeed, the first is
a negative-valued function and the second a positive-valued function), it suffices to show that ratio

C ′
i (Q̄i (pi ))Q̄′

i (pi ) − Q̄i (pi )

pi Q̄′
i (pi )

= 1 + ε̄i (pi )C
′
i (Q̄i (pi ))

pi ε̄i (pi )

is decreasing in pi (see Quah and Strulovici 2012). This is true because C̄ ′
i is nondecreasing in qi while

ε̄(pi ) and Q̄i are both nonincreasing in pi .
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(for s = t, t ′) where δ1,s ∈ C̄ ′
1(Q1,s). Furthermore, P1,t < P1,t ′ , Q1,t > Q1,t ′ , and

Firm 1 has a convex cost function. It follows that P1,t − δ1,t < P1,t ′ − δ1,t ′ and thus

ε̄1,t (P1,t , P2,t ) > ε̄1,t ′(P1,t ′ , P2,t ′). (20)

It follows from (18) and (20) that

ε̄1,t ′(P1,t ′ , P2,t ′) < ε̄1,t (P1,t ′ , P2,t ′). (21)

In the case of Firm 2, the log-concave and substitutes properties tell us that

ε̄2,t (P1,t , P2,t ) ≥ ε̄2,t (P1,t ′ , P2,t ) ≥ ε̄2,t (P1,t ′ , P2,t ′) (22)

while it follows from (21) and the co-evolving property that ε̄2,t ′(P1,t ′ , P2,t ′)
≤ ε̄2,t (P1,t ′ , P2,t ′). Thus,

ε̄2,t (P1,t , P2,t ) ≥ ε̄2,t ′(P1,t ′ , P2,t ′).

Firm 2’s first-order condition then guarantees (through the analogy of (19) for Firm
2) that there is δ2,s ∈ C̄ ′

2(Q2,s) for s = t, t ′ such that

P2,t − δ2,t ≤ P2,t ′ − δ2,t ′ , (23)

but this cannot happen since P2,t > P2,t ′ and δ2,t ≤ δ2,t ′ (the latter because Q2,t

< Q2,t ′).
It is also possible to check directly that the data set does not obey the conditions in

[B]. Indeed, it follows from (iii) that δ1,t ′ ≤ δ1,t , since Q1,t ′ > Q1,t . Using this and
the fact that P1,t < P1,t ′ , condition (ii) tells us that λ1,t > λ1,t ′ . By (iv) and the fact
that P2,t > P2,t ′ , this can only occur if σ(t ′) > σ(t). An analogous argument applied
to Firm 2 will tell us that λ2,t < λ2,t ′ and that can only occur if σ(t ′) < σ(t). So we
obtain a contradiction.

The next example illustrates the role that cross-price effects can play in rationalizing
the data. The data set in this example is Bertrand rationalizable and it can only be
rationalized by a demand system with nonzero cross-price effects, which means that
the firms are interacting with each other in a nontrivial way.

Example 3 Consider an industry with firms 1, 2, and 3, each producing a differentiated
good and suppose that the following hold at observations t and t ′:

(i) for firm 1, P1,t = 10, P1,t ′ = 12, Q1,t = 10, and Q1,t ′ = 8;
(ii) for firm 2, P2,t = 10, P2,t ′ = 9, Q2,t = 5, and Q2,t ′ = 6; and

(iii) for firm 3, P3,t = 10, P3,t ′ = 9, Q3,t = 5, and Q3,t ′ = 6.

We claim that any rationalization of this data must involve nonzero cross-price
effects. Note, firstly, that between t and t ′, the price charged by firm 1 has increased
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while that of firms 2 and 3 have fallen. Since firm 1’s demand function has the log-
concave and substitutes properties, we obtain

ε̄1,t (P1,t , P2,t , P3,t ) ≤ ε̄1,t (P1,t ′ , P2,t , P3,t ) ≤ ε̄1,t (P1,t ′ , P2,t ′ , P3,t ′). (24)

On the other hand, since firm 1’s price is higher and its output lower at t ′ compared with
t , the first-order condition tells us that ε̄1,t (P1,t , P2,t , P3,t ) > ε̄1,t ′(P1,t ′ , P2,t ′ P3,t ′).
Thus, we obtain

ε̄1,t ′(P1,t ′ , P2,t ′ , P3,t ′) < ε̄1,t (P1,t ′ , P2,t ′ , P3,t ′). (25)

By the co-evolving property, firm 2’s demand function must obey

ε̄2,t ′(P1,t ′ , P2,t ′ , P3,t ′) ≤ ε̄2,t (P1,t ′ , P2,t ′ , P3,t ′). (26)

Firm 2’s price is lower and its output higher at t ′ compared with t , the first-order
condition implies that ε̄2,t (P1,t , P2,t , P3,t ) < ε̄2,t ′(P1,t ′ , P2,t ′ , P3,t ′). Together with
(26), we obtain

ε̄2,t (P1,t , P2,t , P3,t ) < ε̄2,t (P1,t ′ , P2,t ′ , P3,t ′). (27)

So in any Bertrand rationalization of the data, (27) must hold. Since P2,t ′ < P2,t and
P1,t ′ > P1,t ,

ε̄2,t (P1,t , P2,t , P3,t ) ≥ ε̄2,t (P1,t ′ , P2,t , P3,t ) ≥ ε̄2,t (P1,t ′ , P2,t ′ , P3,t ) (28)

where the first inequality follows from the substitutes property (with respect to the
price of firm 1) and the second from the log-concave property (with respect to firm
2’s own price). (27) and (28) together gives us

ε̄2,t (P1,t ′ , P2,t ′ , P3,t ) < ε̄2,t (P1,t ′ , P2,t ′ , P3,t ′). (29)

We conclude that any demand function for firm 2 that rationalizes the data must exhibit
the following property: when the price charged by firm 3 falls from P3,t to P3,t ′ , the
own-price elasticity of firm 2’s product will strictly increase.

It is straightforward to check that the data set passes the test set out in statement
[B] of Theorem 3 if the unknowns are chosen as follows:

σ(t) = 2 > σ(t ′) = 1;
λ1,t = 1

5
, λ1,t ′ = 1

8
, δ1,t = 5, δ1,t ′ = 4, C1,t = 14, and C1,t ′ = 4;

λ2,t = 1

5
, λ2,t ′ = 1

4
, δ2,t = 5, δ2,t ′ = 5, C2,t = 25, and C2,t ′ = 30; and

λ3,t = 1

5
, λ3,t ′ = 1

4
, δ3,t = 5, δ3,t ′ = 5, C3,t = 25, and C3,t ′ = 30.
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3.4 Variations on Theorem 3

It is quite straightforward to adapt Theorem 3 to yield somewhat different tests of
Bertrand rationalizability. In this section, we explain how we may modify the co-
evolving property on demand by allowing for firm-specific demand shocks and also
how we can relax the assumption that firms’ cost functions do not change across
observations. The idea is to incorporate observed parameters that are known to influ-
ence a firm’s demand or marginal cost. We do not assume that these parameters affect
demand or marginal costs via specific functional forms; instead, we assume that they
convey ordinal information in the sense that they allow the observer to impose a partial
order on a firm’s demand elasticity or on its marginal costs. The inclusion of these
parameters obviously raises the informational requirements of the test, but it enlarges
the circumstances under which a test is possible.

We shall consider, in turn, the incorporation of firm-specific demand shocks and the
incorporation of firm-specific cost shocks. The reader will have no difficulty seeing
how a single Bertrand test that combines both these features can also be constructed
but, in order to keep the exposition simple and clear, we shall not present it in that
fashion.
Allowing for idiosyncratic demand shocks Suppose that an observer has access to
some index of general economic conditions which he knows will affect the elasticity
of demand for all firms in the industry. In addition, for each firm, he observes some
index that affects only the demand facing that firm. Formally, these can be represented
by an observable parameter α ∈ A ⊆ R that raises demand elasticity at all firms in
the same direction and, for each firm i , a parameter βi ∈ Bi ⊆ R that only raises
the elasticity of demand for firm i’s output. The data set is then {(Pt , Qt , αt , βt )}t∈T ,
where αt is the value of α at observation t , and βt = (βi,t )i∈I is the realization of βi

at t . This data set is Bertrand rationalizable if each observation can be explained as a
Bertrand equilibrium, with the demand function for good i , Q̄i (p, α, βi ), having the
following properties: it agrees with the observations, i.e., Q̄i (Pt , αt , βi,t ) = Qi,t (for
all t ∈ T ), it obeys the log-concave and substitutes properties (in p = (pi , p−i )), and
the own-price elasticity of demand is nondecreasing in (α, βi ). The last property is
equivalent to

ε̄i (p, α, βi ) ≥ (=) ε̄i (p, α′, β ′
i ) for all p whenever (α, βi ) > (=) (α′, β ′

i ), (30)

where

ε̄i (p, α, βi ) = − 1

Q̄i

∂ Q̄i

∂pi
(p, α, βi ).

The test for this concept of rationalizability is easily obtained by modifying the one
set out in Theorem 3. It would involve conditions (i), (ii), and (iii) (in [B]), with (iv)
being replaced by the following new condition (iv):

[a] if Pi,t ′ ≥ Pi,t , P−i,t ′ ≤ P−i,t , and (at ′ , βi,t ′) ≥ (at , βi,t ), then λi,t ′ ≥ λi,t ;
[b] if Pi,t ′ = Pi,t , P−i,t ′ = P−i,t , and (a′

t , βi,t ′) = (at , βi,t ), then λi,t ′ = λi,t .
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Notice that this test is computationally straightforward, since it involves checking
for a solution to a family of linear inequalities. The necessity of these conditions is
clear. As in the proof of Theorem 3, we set Ci,t = C̄i (Qi,t ) and λi,t = ε̄i,t (Pt ), from
which we obtain properties (i), (ii), and (iii). It is then obvious that condition [b] holds.
Furthermore, if Pi,t ′ ≥ Pi,t and P−i,t ′ ≤ P−i,t , and (at , βi,t ) ≤ (at ′ , βi,t ′), we obtain

ε̄i,t (Pi,t , P−i,t ) ≤ ε̄i,t (Pi,t ′ , P−i,t ) ≤ ε̄i,t (Pi,t ′ , P−i,t ′) ≤ ε̄i,t ′(Pi,t ′ , P−i,t ′),

where the first and second inequalities follow from the log-concave and substitute
properties of the demand system, respectively, while the third one follows from
(at , βi,t ) ≤ (at ′ , βi,t ′). Hence, λi,t ≤ λi,t ′ as required by [a]. The sufficiency of
conditions (i)–(iii), together with the new condition (iv), to guarantee Bertrand ratio-
nalization in the sense defined here can also be easily checked by mimicking the proof
of Theorem 3.17

Note that to obtain substantive restrictions on data it is crucial that the observer
can rank idiosyncratic shocks to each firm’s demand, but it is permissible for him
to be ignorant of how general shocks to demand are ranked. (In other words, the
observability of αt is not crucial.) This is clear from Example 2 in Sect. 3.3. In that
case, the test for Bertrand rationalizability will require that we consider all possible
rankings of the general shock to demand and then combine them with the idiosyncratic
shocks to (at least partially) order each firm’s demand function across observations.
This is formally equivalent to introducing a fictitious parameter αt , carrying out the
test as described and, if necessary, repeating it up to T ! times to cover all the possible
ways the general shock to demand can be ordered.
Allowing changes to firms’ cost functions The test for Bertrand rationalizability
provided by Theorem 3 requires firms’ cost functions to stay unchanged across all
observations in the data set. It is clear that if we allow cost functions to change arbi-
trarily across observations in a way that is unknown to the observer (in addition to
the type of demand changes permitted by the test), then there can be no observable
restrictions to the data. However, it is possible to modify the test to allow for changes
to the cost functions, provided the observer knows the direction in which marginal
costs have changed.

To be specific, suppose that, in addition to prices and firm-level outputs, there is
also an observable parameter wi ∈ Wi ⊆ R that has an impact on firm i’s cost
function, which we denote as C̄i (·;wi ). We assume that firm i has a differentiable cost
function (so the set C̄ ′

i (·;wi ) is a singleton) and its marginal cost is affected by wi ,

17 To construct the demand system, we choose, for each i , a function εi : R
I++ × A × Bi → R such that

ε(p, α, βi ) is strictly positive, continuous in p, nondecreasing in pi , nonincreasing in p−i and nondecreasing
in (α, βi ) such that εi (Pt , αt , βi,t ) = λi,t . This is possible because of the new condition (iv). The log-

demand function for good i is chosen to be L̄i (p, α, βi ) = − ∫ pi
0 εi (z, p−i , α, βi ) dz +ki (α, βi ) where the

function ki is chosen so that Q̄i (Pt , αt , βi,t ) = exp(L̄i (Pt , αt , βi,t ) = Qi,t (for all t ∈ T ). Q̄i (p, α, βi )

has all the required properties of a demand function for product i and also satisfies

− 1

Qi,t

∂ Q̄i

∂pi
(Pt , αt , βi,t ) = λi,t .
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with higher values of wi leading to higher marginal costs, while costs are unchanged
if the parameter is unchanged.18 In other words,

C̄ ′
i (qi ; w̄i ) ≥ (=) C ′

i (qi ; ŵi ) for all qi > 0 if w̄i > (=) ŵi . (31)

The data set is then {(Pt , Qt , wt )}t∈T , where wt = (wi,t )i∈I and wi,t is the value of wi

at observation t . We say that this data set is Bertrand rationalizable if each observation
can be explained as a Bertrand equilibrium, with the demand system obeying the
log-concave, substitutes and co-evolving properties and with each firm i having, at
observation t , a differentiable and convex cost function C̄(·;wi,t ) that obeys (31).

The necessary and sufficient conditions on {(Pt , Qt , wt )}t∈T for this hypothesis
are a straightforward modification of that set out in [B] in Theorem 3: there is a
permutation of T , denoted by the function σ : T → T , and real numbers λi,t and δi,t

for all t ∈ T and i ∈ I, such that the following holds:

(i) δi,t > 0 and λi,t > 0;
(ii) δi,tλi,t − Pi,tλi,t + 1 = 0;

(iii) δi,t ′ ≥ δi,t whenever (Qi,t ′ , wi,t ′) > (Qi,t , wi,t ) and δi,t ′ = δi,t whenever
(Qi,t ′ , wi,t ′) = (Qi,t , wi,t ); and

(iv) if Pi,t ′ ≥ Pi,t , P−i,t ′ ≤ P−i,t and σ(t) < σ(t ′), then λi,t ≤ λi,t ′ .

The proof of this claim is a straightforward modification of the arguments made
in Sect. 3.2, so we shall leave the details to the reader. To check the necessity of
these conditions, we set δi,t = C̄ ′

i (Q̄i,t (Pt );wi,t ) and λi,t = ε̄i,t (Pt ). The justification
for (i), (ii), and (iv) remain the same as in Theorem 3, while condition (iii) follows
from the convexity and differentiability of each firm’s cost function and (31). To
establish the sufficiency of these conditions, we first construct functions m̄i (qi ;wi ) (for
(qi ;wi ) ∈ R+ ×Wi ) that are positive valued, nondecreasing in (qi , wi ), continuous in
qi , and with m̄i (Qi,t ;wi,t ) = δi,t . This is possible because of (iii). Then C̄i (qi ;wi ) =∫ qi

0 m̄i (s;wi ) ds has the following properties: it is an increasing, differentiable, and
convex function of qi , it obeys (31), and C̄ ′

i (Qi,t ;wi,t ) = δi,t . The rest of the proof
then follows that of Theorem 3 ([B] implies [A]) in Sect. 3.2.

Lastly, it should be quite clear that we can simultaneously incorporate idiosyncratic
demand changes and changes to cost functions even though, for reasons of expositional
clarity, we have treated them separately.

4 Conclusion

The purpose of this paper was to develop revealed preference tests for equilibrium
in a multi-product oligopoly, akin to the classical revealed preference tests of utility
maximization in consumer demand. The distinctive feature of our revealed preference

18 We could think of wi as the price of a factor, with a higher price leading to a higher marginal cost.
Note that, instead of a one-dimensional parameter wi , we could allow for a multi-dimensional parameter
which is guaranteed to raise the marginal cost function of a firm only if it is higher in all dimensions; such a
formulation is more complicated but can be handled in a similar way. The reader can consult the treatment
of this issue in Carvajal et al. (2010).
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tests is that they make minimal modeling assumptions on industry demand and, in
particular, they do not require any information on variables that shift or twist demand
curves. We have also discussed different ways in which these tests can be modified, for
example, to account for additional information on the movement of firms’ marginal
costs. Obviously, we have not exhausted all the empirical contexts in which one may
conceivably wish to carry out a test of oligopoly behavior, so it is not always possible
to use our results ‘off-the-shelf.’ Nonetheless, the basic ideas and methods set out in
this paper can inform the development of other tests of oligopoly interaction.

In cases where the revealed preference tests are not rejected, they also give informa-
tion about the values of unobserved variables like firms’ marginal costs. For example,
we know from the proof of Theorem 2 in Section 2.5. that if a convex cost function
C̄i for firm i is part of a Cournot rationalization of a given data set, then there is(
δk

i,t

)
k∈Ki

∈ ∂C̄i (Qi,t ) (for all t ∈ T ) such that
(
δk

i,t

)
k∈Ki

is part of a solution to the

test [B] in Theorem 2. Conversely, if
(
δk

i,t

)
k∈Ki

is part of the solution to [B], then there

is rationalizing cost function C̄i for firm i such that (δk
i,t )k∈Ki ∈ ∂C̄i (Qi,t ) (for all

t ∈ T ). In other words, the test for Cournot rationalizability provides, as a by-product,
set restrictions on each firm’s marginal costs. Equation (2) is an instance of this: under
the hypothesis of Cournot equilibrium, observation t in Example 1 gives us a lower
bound on the marginal cost of firm j at its observed output. In that example, observa-
tion t ′ was chosen in such a way that the data set is not rationalizable, but it is possible
for observation t to be part of a Cournot rationalizable data set; in that case, any coun-
terfactual analysis of the industry from which this data set was obtained must respect
this bound on marginal cost, so long as the Cournot hypothesis is maintained. Sim-
ilarly, our test of Bertrand rationalizability yields information about firms’ marginal
costs. Suppose we modify the data set in Example 2 slightly and have Q2,t > Q2,t ′
(while keeping the rest of the data unchanged). It is easy to see that this new data
set (unlike Example 2 itself) will be consistent with Bertrand rationalizability. The
arguments leading to (23) remain valid, and thus,

δ2,t ≥ P2,t − P2,t ′ + δ2,t ′ ≥ P2,t − P2,t ′ > 0.

In this way, we obtain a nontrivial lower bound on firm 2’s marginal cost at all output
levels q2 > Q2,t (since firm 2 has a convex cost function).

Standard revealed preference tests are binary—either a data set passes the test or it
fails. In empirical applications, it is often useful to introduce ways of accommodating
or measuring ‘small’ deviations that prevent a data set from passing a test. In the
context of consumer demand, where revealed preference methods are most mature,
different ways have been developed to address this issue. For example, Varian (1985)
has suggested a way in which Afriat’s test of utility maximization could be modified to
account for measurement error. In Carvajal et al. (2010), we showed how the standard
test for the single-product Cournot oligopoly (stated in this paper as Theorem 1) can be
modified to allow for measurement error. Besides this, there may well be other ways
of modifying revealed preference tests for oligopoly models that will facilitate their
empirical implementation. We leave the careful exploration of this issue for future
research.
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