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In this online appendix, we prove Corollary 1. For completeness, we first restate the result.

COROLLARY 1. Suppose the value for each good is iid with distribution F̌ (so the prior F = F̌× · · · × F̌).
No random separate sales mechanism provides the highest revenue guarantee π?.

To prove this result, we need to define the special class of truncated Pareto distributions. These
are defined as

Hα,β(θ) =


0 if θ < α,

1− α/θ if θ ∈ [α, β),
1 if θ ≥ β,

(1)

where α ≤ β. Truncated Pareto distributions are supported on [α, β], are continuous on (α, β) and
have an atom of size α

β at the truncation point β. When α = β, Hα,α is the degenerate distribution
with an atom of size 1 at α.

We use HP
F′ = {Hα,β | F′ % Hα,β} to denote the subset of Pareto distributed signals correspond-

ing to the one-dimensional distribution F′ with mean µ′. This set is non-empty because it includes
the distribution Hµ′,µ′ which corresponds to the completely uninformative signal.

Roesler and Szentes (2017) showed that the class of truncated Pareto distributions can be used to
characterize the buyer-optimal outcome for a single good. The truncated Pareto distribution Hα,β

has the property that all pure bundling mechanisms with price p in [α, β] yield the same profit
α. Since their work, the properties of this class of distributions have been exploited in several
information design papers. Moreover, we showed that the highest revenue guarantee π? is exactly
the same as the seller’s profit in the buyer-optimal outcome. We use this observation to prove the
corollary.

In order to prove Corollary 1, we need to establish some properties of Pareto distributed grand
bundle signals. These properties are known (although, to our knowledge, have not appeared in
print) but we reproduce the entire arguments here to make the complete proof self contained. We
use π? to denote the profit for the seller in a buyer-optimal outcome. Recall that this is also the
highest revenue guarantee attained by the robustly optimal mechanism.

LEMMA 1. For any α ∈ [π?, µ], there exists a unique βF′(α) ≥ α for which Hα,βF′ (α)
∈ HP

F′ . Moreover,
βF′(α) is continuous and strictly decreasing in α ∈ (π?, µ).
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In words, this lemma says that, for all α ∈ [π?, µ], there is a Pareto distributed grand bundle
signal that has α as the minimum of the support and, moreover, that the maximum of the support
is strictly decreasing in α.

PROOF OF LEMMA 1. Take an arbitrary Pareto distribution Hα,β ∈ ∆(S) with α ∈ [π?, µ′] and
β ∈ [α, 1] that need not be a grand bundle signal.

First observe, that for s ∈ [θ`, α],
∫ s

θ`
Hα,β(x) dx = 0. Moreover, for s ∈ [α, β), it holds that

∫ s

θ`

Hα,β(x) dx =

∫ s

α

(
1− α

x

)
dx = s− α− α log s + α log α.

The above expression is increasing in s and decreasing in α.
For s ∈ [β, θh], we obtain∫ s

0 Hα,β(x) dx =
∫ β

0 Hα,β(x) dx +
∫ s

β Hα,β(x) dx = (β− α− α log β + α log α) + (s− β)

= s− α− α log β + α log α,
(2)

which is increasing in s and decreasing in both α and β.

Now note that for the Pareto distributed signal Hπ?,βF′ (π
?) in the buyer-optimal outcome, βF′(π

?)

is unique because the mean of the Pareto distribution Hα,β changes in location β of the atom.
Because Hπ?,βF′ (π

?) is a Pareto distributed grand bundle signal it must have the same mean as
F′ so ∫ θh

θ`

(
1− Hπ?,βF′ (π

?)(x)
)

dx =
∫ θh

θ`

(1− F′(x)) dx = µ′.

Because
∫ θh

θ`
Hα,β(x) dx is decreasing in both α and β, this in turn implies that∫ θh

θ`

(1− Hα,1(x)) dx ≥
∫ θh

θ`

(
1− Hπ?,βF′ (π

?)(x)
)

dx =
∫ θh

θ`

(1− F′(x)) dx = µ′.

Moreover, note that ∫ θh

θ`

(1− Hα,α(x)) dx = α ≤ µ′.

From (2), we know that
∫ θh

θ`
(1− Hα,β(x)) dx is continuous in β. Therefore, by the intermediate-

value theorem, there must be a βF′(α) that is the solution to

µ′ =
∫ θh

θ`

(
1− Hα,β(x)

)
dx =1− (β− α− α log β + α log α + (1− β))

=α + α log β− α log α

and we define

βF′(α) = α exp
(

µ′ − α

α

)
.

Observe that βF′(α) is continuous and decreasing over the interval α ∈ [π?, µ′].

We will now argue that Hα,βF′ (α)
∈ HP

F′ for all α ∈ [π?, µ′]. Observe that

Hα,βF′ (α)
(s) ≤ Hπ?,βF′ (π

?)(s) for s < βF′(α) and Hα,βF′ (α)
(s) = 1 ≥ Hπ?,βF′ (π

?)(s) for s ≥ βF′(α)
2
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or, in words, that Hα,βF′ (α)
crosses Hπ?,βF′ (π

?) once from below. Since
∫ θh

θ`
Hα,βF′ (α)

(x) dx =
∫ θh

θ`
Hπ?,βF′ (π

?)(x) dx

by construction, this implies that the function s 7→
∫ s

θ`
Hα,βF′ (α)

(x) dx must lie below the function

s 7→
∫ s

θ`
Hπ?,βF′ (π

?)(x) dx for s ∈ [θ`, θh] or equivalently that∫ s

θ`

Hα,βF′ (α)
(x) dx ≤

∫ s

θ`

Hπ?,βF′ (π
?)(x) dx ≤

∫ s

θ`

F′(x) dx for all s ∈ [θ`, θh].

This shows that Hα,βF′ (α)
∈ HP

F′ and completes the proof of this part. �

The next lemma establishes a property relates the buyer-optimal grand bundle signal to the
prior type distribution. Let Hπ?,βF′ (π

?) ∈ HP
F′ be the buyer-optimal Pareto distributed grand bun-

dle signal.

LEMMA 2. Then, there exists an s ∈ (θ`, θh) such that∫ s

θ`

Hπ?,βF′ (π
?)(x) dx =

∫ s

θ`

F′(x) dx.

PROOF. Suppose, for contradiction that∫ s

θ`

Hπ?,βF′ (π
?)(x) dx <

∫ s

θ`

F′(x) dx for all s ∈ (θ`, θh). (3)

We first argue this implies βF′(π
?) < 1. Because

∫ θh
θ`

Hπ?,βF′ (π
?)(x) dx =

∫ θh
θ`

F′(x) dx, the above

inequality (3) implies that
∫ θh

s Hπ?,βF′ (π
?)(x) dx >

∫ θh
s F′(x) dx for all s ∈ (θ`, θh).

If βF′(π
?) = θh, then Hπ?,βF′ (π

?)(θh) = F′(θh) = 1 and Hπ?,βF′ (π
?)(s) < F′(s) for some neighbor-

hood s ∈ (θh − ε, θh), ε > 0 because F′ is continuous but Hπ?,βF′ (π
?) has an atom at θh. For any s in

this neighborhood, we would have
∫ θh

s Hπ?,βF′ (π
?)(x) dx <

∫ θh
s F′(x) dx which is a contradiction.

We now use the fact that βF′(π
?) < θh to argue that we can find a Pareto distributed signal

Hα,βF′ (α)
∈ HP

F′ with α < π?. This would provide the requisite contradiction because it would
contradict the optimality of π?.

Let

γ = min
s∈
[

π?
2 ,

1+βF′ (π
?)

2

]
[∫ s

θ`

F′(x)−
∫ s

θ`

Hπ?,βF′ (π
?)(x) dx

]
and observe that γ > 0 because the term in the square brackets is a continuous function that is
positive (by (3)) in the interval s ∈

[
π?

2 , 1+βF′ (π
?)

2

]
.

Now consider an α = π? − ε with ε > 0 such that π?

2 < α < βF′(α) <
1+βF′ (π

?)
2 . Observe that

Hα,βF′ (α)
(s)− Hπ?,βF′ (π

?)(s) =



0 if s ∈ [θ`, α],
1− α

s if s ∈ (α, π?],
π?−α

s if s ∈ (π?, βF′(π
?)),

− α
s if s ∈ [βF′(π

?), βF′(α)),
0 if s ∈ [βF′(α), θh].

Now observe that
∫ s

θ`

[
Hα,βF′ (α)

(x)− Hπ?,βF′ (π
?)(x)

]
dx takes its highest value at s = βF′(π

?) be-
cause the function in the brackets is non-negative for s < βF′(π

?) but non-positive for s ≥ βF′(π
?).

3
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Evaluating the difference at this point, we get∫ βF′ (π
?)

θ`

[
Hα,βF′ (α)

(x)− Hπ?,βF′ (π
?)(x)

]
dx

=

∫ α

θ`

[
Hα,βF′ (α)

(x)− Hπ?,βF′ (π
?)(x)

]
dx +

∫ π?

α

[
Hα,βF′ (α)

(x)− Hπ?,βF′ (π
?)(x)

]
dx

+

∫ βF′ (π
?)

π?

[
Hα,βF′ (α)

(x)− Hπ?,βF′ (π
?)(x)

]
dx

=

∫ π?

α

[
1− α

x

]
dx +

∫ βF′ (π
?)

π?

[
π? − α

x

]
dx

≤
∫ π?

α

[ ε

α

]
dx +

∫ βF′ (π
?)

π?

[ ε

α

]
dx

=
ε

α
(π? − α + βF′(π

?)− π?) =
ε

α
(βF′(π

?)− α) .

Therefore, for small enough 0 < ε < α
βF′ (π

?)−α
γ, we have∫ s

θ`

Hα,βF′ (α)
(x) dx ≤

∫ s

θ`

Hπ?,βF′ (π
?)(x) dx + γ ≤

∫ s

θ`

F′(x) dx for all s ∈
[

π?

2
,

1 + βF′(π
?)

2

]
,∫ s

θ`

Hα,βF′ (α)
(x) dx =

∫ s

θ`

Hπ?,βF′ (π
?)(x) dx = 0 for all s ∈

[
θ`,

π?

2

)
and∫ s

θ`

Hα,βF′ (α)
(x) dx =

∫ s

θ`

Hπ?,βF′ (π
?)(x) dx = s− µ′ for all s ∈

(
1 + βF′(π

?)

2
, θh

]
.

This implies that Hα,βF′ (α)
∈ HP

F′ and we have the requisite contradiction for the optimality of
Hπ?,βF′ (π

?) which completes the proof of the lemma. �

Let n = 2 and F = F̌ × F̌ where F̌ has mean µ̌. We use π̌? = min{α | Hα,βF′ (α)
∈ HP

F̌} and
π? = min{α | Hα,βF′ (α)

∈ HP
F} to denote the profit of a seller with a single good in the buyer-

optimal outcome when the prior distributions are F̌ and F respectively.

LEMMA 3. For n = 2 and F = F̌× F̌, we have 2π̌? < π?.

PROOF. From Lemma 1, Hπ̌?,βF̌(π̌
?) ∈ HP

F̌ . Then, we must have

π̌? log βF̌(π̌
?)− π̌? log π̌? + π̌? = µ̌ (4)

and
x− π̌? − π̌? log x + π̌? log π̌? ≤

∫ x

θ`

F̌(v)dv, (5)

for all x ∈ [π̌?, βF′(π̌
?)]. Lemma 2 shows that inequality (5) must bind for some x̃ ∈ (π̌?, βF̌(π̌

?)).
So ∫ x̃

θ`

Hπ̌?,βF̌(π̌
?)(s)ds = x̃− π̌? − π̌? log x̃ + π̌? log π̌? =

∫ x̃

θ`

F̌(v)dv.
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So suppose, as a contradiction, that 2π̌? = π?. Lemma 1 implies that H2π̌?,βF(2π̌?) ∈ HP
F which

in turn implies βF(2π̌?) = 2βF̌(π̌
?) because the mean of H2π̌?,βF(2π̌?) must be 2µ̌ or

2π̌? log βF(2π̌?)− 2π̌? log(2π̌?) + 2π̌? = 2µ̌

=⇒ 2(π̌? log βF̌(π̌
?)− π̌? log π̌? + π̌?) + 2π̌? log βF(2π̌?)− 2π̌? log βF̌(π̌

?)− 2π̌? log 2 = 2µ̌

=⇒ βF(2π̌?) = 2βF̌(π̌
?),

where the last implication follows from (4).
We will establish the contradiction by arguing that H2π̌?,2βF̌(π̌

?) /∈ HP
F . First, observe that 2x̃ <

2βF̌(π̌
?) = βF(2π̌?) and so∫ 2x̃

θ`

H2π̌?,2βF̌(π̌
?)(s)ds =2x̃− 2π̌? − 2π̌? log 2x̃ + 2π̌? log 2π̌?

=2(x̃− π̌? − π̌? log x̃ + π̌? log π̌?)

=2
∫ x̃

θ`

F̌(v)dv.

Then, note that F satisfies

F(v̄) =
∫ v̄

θ`

F̌(y) f̌ (v̄− y)dv̄ =
d

dv̄

∫ v̄

θ`

F̌(y)F̌(v̄− y)dy,

for v ∈ [2θ`, 2θh] and, so for any x ∈ [2θ`, 2θh], we have∫ x

θ`

F(v̄)dv̄ =
∫ x

θ`

F̌(y)F̌(x− y)dy.

Now consider the value 2x̃. We must have

2
∫ x̃

θ`

F̌(v)dv =
∫ 2x̃

θ`

H2π̌?,2βF̌(π̌
?)(s)ds ≤

∫ 2x̃

θ`

F(v̄)dv̄

=
∫ 2x̃

θ`

F̌(y)F̌(2x̃− y)dy

=
∫ x̃

θ`

F̌(y)F̌(2x̃− y)dy +
∫ 2x̃

x̃
F̌(y)F̌(2x̃− y)dy

<
∫ x̃

θ`

F̌(y)dy +
∫ 2x̃

x̃
F̌(2x̃− y)dy

=2
∫ x̃

θ`

F̌(y)dy

which provides the necessary contradiction. The weak inequality follows from H2π̌?,2βF̌(π̌
?) ∈ HP

F
and the strict inequality follows from the fact that x̃ ∈ (θ`, θh) and that the distribution F has full
support. �

In what remains, we denote a separate sales mechanism simply by a joint distribution P ∈
∆(Rn) of prices. Pi denotes the marginal distribution of prices for good i ∈ N. We abuse notation
and use Π(P , G) to denote the profit from separate sales mechanism P and signal G ∈ G. Sim-
ilarly, Πi(Pi, Gi) denotes the profit from the sale of good i alone when the prices for good i are
distributed according to Pi and Gi is the distribution over posterior estimates of good i values.
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We are now in a position to complete the proof of Corollary 1.

PROOF OF COROLLARY 1. The highest revenue guarantee from a separate sales mechanism is
achieved by solving

sup
P∈∆(Rn)

inf
G∈G

Π(P , G) =
n

∑
i=1

sup
Pi∈∆(R)

inf
F̌%Gi

Πi(Pi, Gi) = nπ̌?

where the first equality follows from the facts that (i) for all G ∈ G and i ∈ N, the marginal
distribution over good i posterior estimates satisfies F̌ % Gi and (ii) for every distribution F̌ % Gi

over the goods i = 1, . . . , n, we have G1 × · · · × Gn ∈ G.
Clearly, we must have nπ̌? ≤ π? since the seller can always do at least weakly better when

she is not restricted to the subclass of separate sales mechanisms. But Lemma 3 shows that this
inequality is strict for n = 2. Therefore, Theorem 4 implies that this inequality must also be strict
for all n > 2. This completes the proof. �

REFERENCES

ROESLER, A.-K., AND B. SZENTES (2017): “Buyer-Optimal Learning and Monopoly Pricing,”
American Economic Review, 107(7), 2072–80.

6


	References

