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A monopolist seller of multiple goods screens a buyer whose type vector is initially unknown to
both but drawn from a commonly known prior distribution. The seller chooses a mechanism to maximize
her worst-case profits against all possible signals from which the buyer can learn about his values for the
goods. We show that it is robustly optimal for the seller to bundle goods with identical demands (these
are goods that can be permuted without changing the buyer’s prior type distribution). Consequently,
pure bundling is robustly optimal for exchangeable prior distributions. For exchangeable priors, pure
bundling is also optimal for the seller in the information environment (with the reverse timing) where
an information designer, with the objective of maximizing consumer surplus, first selects a signal for the
buyer, and then the seller chooses an optimal mechanism in response. We derive a formal relationship
between the seller’s problem in both information environments.
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1. INTRODUCTION

What is the optimal mechanism that a monopolist should use to sell multiple goods to a single
buyer? Despite being a classic economic problem, multi-dimensional screening is notoriously
intractable. Even if the seller has just two goods and the buyer’s values are additive, independent,
and identically distributed, the optimal mechanism is hard to characterize generally. Moreover,
in environments where the optimal mechanism can be characterized, it often takes a complex
form involving (possibly uncountable) menus of lotteries. But, in practice, multiproduct sellers
often use simple mechanisms. For instance, online retailers (with significant market power) such
as movie and music streaming services typically offer a single price for their entire catalogue—a
practice economists refer to as “pure bundling”—instead of, for instance, selling separate sub-
scription bundles for movies and music of different genres. In this paper, we provide a rationale
for this practice: we show pure bundling is optimal for a seller who does not precisely know the
buyer’s type distribution and wants their chosen mechanism to be robustly optimal against all
possible buyer information.

The editor in charge of this paper was Andrea Galeotti.

2744

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article/91/5/2744/7320043 by U

niversity of Toronto user on 09 Septem
ber 2024



Deb & Roesler BUYER-OPTIMAL LEARNING AND INFORMATIONAL ROBUSTNESS 2745

In our benchmark model, the buyer initially has an unknown type (θ1, . . . , θn) that is
drawn from a commonly known, exchangeable1 distribution, where each θi ∈ [θ�, θh] ⊂ R+.
The buyer’s type determines his value

∑
i∈b θi for any bundle b ⊆ {1 . . . , n} =: N of goods.

The buyer learns about his type via a signal. Upon privately observing the signal realization,
the buyer forms a posterior estimate of his type. The seller chooses a robustly optimal mecha-
nism: this mechanism provides the highest profit guarantee against all possible buyer signals. In
other words, the seller chooses a mechanism and nature picks a signal to minimize seller profits;
the robustly optimal mechanism maximizes this worst-case profit. We show that pure bundling
(albeit with a random price) is robustly optimal.

In our view, this information environment is a natural way to relax the standard assumption
of perfect demand knowledge for sellers. There are many scenarios where a seller is unlikely to
have a precise estimate of a buyer’s value distribution. This would certainly be true for a seller
determining how to price new goods that she is introducing to a market. Conversely, even armed
with demand estimates from historical data, it is impossible for a seller to precisely predict
what information the buyer has or will acquire to learn about his value for the goods. Our result
provides one explanation for why, in practice, we do not observe very complex screening that
depends on fine details of the type distribution (as is possible in multi-dimensional screening
even with independent and identically distributed values). Instead, pure bundling is the common
way that digital goods such as streaming services from retailers like Netflix and Spotify with
considerable market power are sold.

For intuition on the robust optimality of pure bundling, first note that every mechanism yields
a weakly higher profit guarantee when the buyer is restricted to learning via a smaller set of
signals. In particular, if only signals that lead to perfectly (positively) correlated distributions of
posterior estimates for the goods were permitted, the buyer’s posterior type would effectively be
one-dimensional and hence a mechanism that only allocates the grand bundle (that is, the bundle
of all n goods) achieves the highest worst-case profit. Conversely, suppose the seller chose to
pure bundle (with any random price) and nature could pick any signal. Since the seller only sells
the grand bundle, her profits only depend on the distribution over grand bundle estimates (the
expected value of θ1 + · · · + θn). We show that, when the prior distribution is exchangeable,
the set of possible distributions over grand bundle estimates induced by perfectly correlated
signals is the same as the set of possible distributions over grand bundle estimates induced by
unrestricted signals. This, in turn, implies that pure bundling is robustly optimal.

Having characterized the robustly optimal mechanism, we study the information environment
in which the timing is reversed: nature, with the objective of maximizing consumer surplus, first
selects a signal, and then the seller chooses an optimal mechanism in response. We refer to this
signal and the corresponding seller best response as a buyer-optimal outcome. We show that a
buyer-optimal outcome is also the solution to the problem where nature, with the goal of mini-
mizing seller profits (as opposed to maximizing consumer surplus), first picks a signal and then
the seller best responds. In other words, we show that the buyer-optimal outcome is the solution
to the min–max problem corresponding to the max–min problem that yields the robustly opti-
mal mechanism. We show that there is a buyer-optimal outcome in which the seller’s optimal
mechanism is pure bundling and, moreover, that the seller gets the same profit in both problems.
Moreover, pure bundling remains seller-optimal in both problems even when the buyer’s value

1. This is an assumption of symmetry that requires every permutation of the type vector to have the same joint
distribution; it does not rule out positive or negative correlations. As we will discuss, we can weaken exchangeability
to allow for some specific forms of asymmetry. But since this assumption is ubiquitously made and easy to state, we
choose to impose it for our benchmark model to simplify the presentation.
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for bundle b takes the non-additive form κb
∑

i∈b θi where κb ≥ 0 are bundle-specific constants
that satisfy a weak free-disposal assumption (κb

∑
i∈b θi ≤ κN

∑
i∈N θi for all (θ1, . . . , θn) ∈

[θ�, θh]n and all b ⊂ N ). This value function allows for goods to be either substitutes or
complements (in particular, it captures add-on items) and introduces asymmetry into the model.

Finally, we examine robust optimality for non-exchangeable priors. We first show that it is
always robustly optimal to bundle subsets of goods with identical demands. Here, bundling a
subset B ⊆ N of goods refers to a mechanism that never allocates any proper subset of B with
positive probability. A subset of goods is said to have identical demands if the prior joint distri-
bution of the type vector remains unchanged when these goods are permuted (exchangeability
corresponds to the case where all goods have identical demands). We view this result—bundling
goods with identical demands is robustly optimal—to be the main economic insight of the paper
in that it provides a simple and general principle for multi-dimensional screening. Some readers
might find this result surprising because the structure of the optimal mechanism in the standard
multi-dimensional screening environment typically depends finely on the details of the entire
joint distribution of values.

Our last result shows that it is not always robustly optimal to bundle goods with non-identical
demands. We demonstrate this by considering the case of two goods and a prior distribution such
that each dimension of the buyer’s type is distributed independently and is identical up to a shift;
an example of such a prior distribution is U[0, 1] × U[a, a + 1] where a ≥ 0 and U refers to
the uniform distribution. For any distribution F̃ of θ1, we show that there exists a bound such
that, when θ2’s independent distribution is also F̃ but shifted by more than the bound, there is
a separate sales mechanism (that is, a mechanism in which goods are priced individually) that
yields strictly higher profit guarantee than all pure bundling mechanisms.

1.1. Related literature

This paper lies at the intersection of a few different literatures. The first literature examines
the classic question of how a monopolist should jointly sell multiple goods. Despite being a
mature literature (dating back till at least Adams and Yellen, 1976), due to the complexity of the
problem, there are surprisingly few general insights. A seminal result by McAfee et al. (1989) is
that when values are additive and each dimension of the type is distributed independently, selling
goods individually (separate sales) is never optimal for the monopolist.

In general, the optimal mechanism can be extremely complex even when values are indepen-
dent. Pavlov (2011) shows that optimal screening can involve randomization when values are
identically and uniformly distributed. Daskalakis et al. (2017) show that the optimal mechanism
for two goods features an infinite menu of lotteries when the values are drawn independently
from the beta distribution. In fact, the seller might get a negligible fraction of the optimal profit
if she is restricted to using “simple mechanisms” like pure bundling or separate sales (Hart
and Nisan, 2019). However, in contrast to these (theoretical) results, very complex mechanisms
are not employed in practice and our results provide an explanation for the ubiquity of pure
bundling.

Moreover, all these aforementioned papers assume additive values. Our result (the robust
optimality of pure bundling) is relatively unusual in that it extends to the non-additive value
setting we described above and we view this to be a strength of our framework. The recent survey
of Armstrong (2016) describes a strand of the screening literature (with non-additive values)
that does not aim to characterize the optimal mechanism but instead derives conditions under
which the seller can profit from offering bundle discounts. A notable exception is Haghpanah
and Hartline (2021) who characterize environments where pure bundling is seller optimal, and
we employ one of their results in our proofs.
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This paper is also related to the growing literature on information design: Bergemann and
Morris (2019) and Kamenica (2019) are recent surveys. Within this literature, we are most
closely related to the recent work studying how the information environment affects the mech-
anism chosen by the seller, the efficiency of trade, and the resulting surplus division in bilateral
trade settings.2 Ravid et al. (2022) study a single good environment where buyer-learning is
unobservable but costly. Their main result shows that there is a distinction between free and
arbitrarily cheap learning. Bergemann et al. (2015) and Haghpanah and Siegel (2022) study
a standard single and multiple good monopoly pricing problem, respectively, and analyse
which buyer–seller surplus pairs are achievable when the seller (instead of the buyer) receives
additional information which she can use to price discriminate.

Within this literature, the closest papers are Du (2018) and Roesler and Szentes (2017); they,
respectively, analyse the one-dimensional versions of the two problems we study. Du (2018)
derives the informationally robust optimal mechanism (a random posted price) for a single good3

and uncovers the relation to the buyer-optimal outcome. Roesler and Szentes (2017) derive the
buyer-optimal outcome for a single good, and their main insight is to show that, even if infor-
mation is free, the buyer is better off by not learning his value for the product perfectly. The
richness of the multi-dimensional screening environment that we consider opens the door to
questions that cannot be addressed in the one-dimensional context. Namely, our main contribu-
tion is to derive the qualitative properties of the seller’s optimal mechanism (it takes the form of
pure bundling) in both information environments; the seller of a single good can only ever post
a price (either random or deterministic).

The (informationally) robust optimal mechanism that we derive is also related to the broader
literature on robust mechanism design. Within this literature, the closest paper is Carroll (2017).
He considers a seller who knows the marginal distribution of the buyer’s value for each good
but not the joint distribution. The monopolist chooses a mechanism that maximizes the worst-
case profit computed over all joint distributions which have the given marginals. He shows that
separate sales is seller optimal for this criterion. The main difference between his and our setting
is the set over which the seller evaluates worst-case profits; these sets are not nested. In our case,
the distribution of the buyer’s posterior type estimate must be obtained by Bayesian updating.
As a result, any signal jointly determines both the marginal distribution of each dimension of the
type and the correlation across dimensions.

Finally, there are two closely related contemporaneous papers Brooks and Du (2021) and
Che and Zhong (2022); we will discuss the relation to them after we present our first result
(Theorem 1).

2. THE MODEL

We consider a mechanism design problem with one buyer and one seller, the latter of whom has
one unit of each of n ≥ 2 goods for sale. We denote the set of goods by N = {1, . . . , n}.

This section describes our benchmark model (which is a canonical version of the multi-
dimensional screening model) that has additive values, an exchangeable type distribution and
zero seller costs. We discuss generalizations of first two assumptions in Sections 3.3 and 4.1,
respectively. In the concluding remarks, we discuss how our main insight is unaffected by
positive seller costs.

2. Similar ideas can also be found in the literature on information acquisition and disclosure in mechanism design
settings such as Persico (2000), Bergemann and Välimäki (2002) or Shi (2012). In contrast to the information design
literature, these papers usually consider a restricted domain of feasible information structures.

3. He additionally constructs an informationally robust auction to sell a common-value good which has the
property that, as the number of bidders gets large, its profit guarantee converges to the full surplus.
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Type space. The buyer has a type θ = (θ1, . . . , θn) that lies in a set � = [θ�, θh]n (endowed
with the Borel σ -algebra F ) with θh>θ� ≥ 0. The type is initially unknown to both the buyer
and seller, and is drawn from a commonly known (cumulative) distribution F.4 Throughout the
paper, we assume F has a positive density for all θ ∈ �.

In the benchmark model, we assume that F is exchangeable: for any permutation σ : N → N ,
the joint distribution of (θ1, . . . , θn) is the same as the joint distribution of (θσ(1), . . . , θσ(n)) (both
of which are F).5

This requires the marginal distribution of every θi to be the same and is clearly satisfied
when each θi is independent and identically distributed (henceforth iid). Importantly, note that
exchangeability allows for both positive and negative correlations between dimensions of the
type vector. It is worth flagging that we make this assumption to simplify the presentation and,
as we will discuss, our results only require a weaker assumption implied by exchangeability.

Given a type θ , we use θ ∈ � := [nθ�, nθh] to denote the sum θ := θ1 + · · · + θn and F
denotes the distribution of the sum θ induced by the type distribution F.

Value function. A buyer of type θ has an additive value for each bundle b ⊆ N which is
given by

u(θ, b) =
∑
i∈b

θi (1)

so, in particular, the buyer’s value of not receiving a good is u(θ,∅) = 0. We assume that prefer-
ences are quasilinear in the transfers and that both the seller and buyer are risk-neutral expected
utility maximizers.

Signals. The buyer learns about his type via a signal. Given the linearity of our model and
risk-neutrality of players, we will (as is common in the literature), without loss, restrict atten-
tion to unbiased signals (S, GS×�). The set of signal realizations S = � is just the type space.
GS×� ∈ �(S × �) is a joint distribution over S × � such that the marginal distribution of GS×�

over � is F. We denote the marginal distribution of GS×� over the set of signal realizations S by
G.

The buyer learns about his type by observing a signal realization s ∈ S. We assume the poste-
rior estimate of the type is just the signal realization s = (s1 . . . , sn) itself (hence, the “unbiased”
terminology) so

s = EGS×�
[θ | s]

for all s that lie in the support of G. The buyer privately observes the signal realization, s ∈ S.
We will refer to both the joint distribution GS×� and the marginal distribution G as signals

since we can always convert one to the other. We denote the set of signals, by

G := {G ∈ �(S) | G is the marginal distribution over S induced by some signal (S, GS×�)}.
Note that this is the set of possible distributions over posterior estimates.

Mechanism. The seller chooses a (direct) mechanism M = (q, t) that consists of an (possi-
bly random) allocation q : S → �(2N ) and a transfer t : S → R. The allocation determines the

4. We will abuse notation and interchangeably refer to F as a cumulative distribution (henceforth, cdf) and a
probability measure where convenient. The meaning will be clear from the argument (element vs. set) of F.

5. Formally, for any X ∈ F , we have F(X) = F(Xσ ) where Xσ = {(θσ(1), . . . , θσ (n))|(θ1, . . . , θn) ∈ X}.
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likelihood of receiving the various bundles and not being allocated the good; we sometimes use
q(s, b) to denote the probability that the buyer is allocated bundle b when he reports s.

If the buyer with posterior estimate s reports s ′, his expected utility is

Eq(s ′)[u(s, b)] − t (s ′),

where the expectation is taken with respect to the random allocation. Because of this structure
of payoffs, it is without loss to restrict the seller to deterministic transfers.

A mechanism (q, t) is incentive compatible if

Eq(s)[u(s, b)] − t (s) ≥ Eq(s ′)[u(s, b)] − t (s ′) (IC)

for every s, s ′ ∈ S. Further, the mechanism is individually rational if

Eq(s)[u(s, b)] − t (s) ≥ 0. (IR)

for all s ∈ S.
We denote the set of IC and IR mechanisms by M and henceforth, when not specified, we

always implicitly assume every mechanism M is incentive compatible (so M ∈ M ). Faced
with a mechanism in this class, the buyer will report his posterior estimate s truthfully.

U (s,M) := Eq(s)[u(s, b)] − t (s) denotes the utility of a buyer with signal realization s fac-
ing the mechanism M ∈ M . Conversely, we denote the seller’s profit by �(G,M) := EG[t (s)]
where the expectation is taken with respect to distribution over signal realizations.

Pure bundling and separate sales. We will refer to two special classes of mechanisms
repeatedly. The first is a pure bundling mechanism at price p. This is the mechanism (q, t) in
which the buyer is only allowed to purchase the grand bundle N at a price p. Formally, for all
b 
= ∅,

q(s, b) =
{

1 if u(s, N ) ≥ p and b = N ,
0 otherwise, and t (s) =

{
p if u(s, N ) ≥ p,
0 otherwise. (PB)

and q(s,∅) = 1 − q(s, N ). We denote the set of pure bundling mechanisms by M P B ⊂ M .
The second is a separate sales mechanism at prices p = (p1, . . . , pN ). Here, the seller offers

a price pi for each individual good and the buyer can choose whichever bundle he likes and just
pay the total price. Formally, this is a mechanism (q, t) given by

q(s, b) =
{

1 if b = b̂(s, p),
0 otherwise,

and t (s) =
{∑

i∈b pi if b = b̂(s, p),

0 otherwise,
(SS)

where b̂(s, p) is a bundle (possibly the empty set) that satisfies b̂(s, p) ∈ argmaxb′⊆N {u(s, b′) −∑
i∈b′ pi }. In words, this is the bundle that gives the buyer the highest positive utility when

individual goods are priced separately. When there is more than one such bundle, the mechanism
arbitrarily allocates one of the bundles to the buyer.

We will also refer to the randomized versions of these mechanisms. A random pure bundling
mechanism has an allocation and transfer rule that only depend on the grand bundle values
and moreover, the buyer is only ever allocated the grand bundle with positive probability. Put
differently, the buyer is effectively offered a menu of prices and probabilities where each menu
item corresponds to the buyer paying a price in exchange for receiving the grand bundle with the
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given probability. Formally, this is a mechanism (q, t) given by

q(s, N ) = q(s ′, N ), t (s) = t (s ′) whenever
∑
i∈N

si =
∑
i∈N

s ′
i and

q(s, b) = 0 for ∅ ⊂ b ⊂ N , q(s,∅) = 1 − q(s, N ) for all s ∈ S.

(rPB)

The set of random pure bundling mechanisms is denoted by M r P B ⊂ M .
Finally, a random separate sales mechanism is simply a separate sales mechanism where

the seller chooses the prices randomly; for any realized prices, the buyer is free to choose any
bundle and just pay the sum of the prices of the goods in that bundle. Formally, the seller chooses
a distribution over prices P ∈ �(Rn) which results in an allocation rule and transfer

q(s, b) = EP

[
1{b=b̂(s,p)}

]
and t (s) = EP

[∑
b⊆N

1{b=b̂(s,p)}
∑
i∈b

pi

]
, (rSS)

where the expectation is taken with respect to the distribution P and 1{b=b̂(s,p)} is the indicator
function that takes the value 1 when b = b̂(s, p), 0 otherwise.

This completes the description of our model and we now proceed to showing the optimality
of pure bundling under buyer learning.

3. THE OPTIMALITY OF PURE BUNDLING

This section is organized as follows. In Section 3.1, we first show that random pure bundling
is a robustly optimal mechanism and discuss an application of this result. In Section 3.2, we
then show that there is a buyer-optimal outcome in which, once again, the seller chooses pure
bundling, and derive a formal relationship between the two problems. Finally, in Section 3.3,
we present a class of non-additive value functions for which all the results generalize. All proofs
are in the appendix.

3.1. Informational robustness

The main focus of this section is to derive qualitative properties of the mechanism that provides
the seller the highest profit guarantee against all signals. This setting captures a seller who is
uncertain about how a buyer learns about his value for the goods, and the seller wants to insure
herself against the worst-case scenario. In other words, the seller does not know the buyer’s infor-
mation acquisition technology and evaluates each mechanism based on the worst-case profits
taken with respect to all possible signals and buyer best responses.

We begin with a few definitions.

Profit guarantee. We say that a mechanism M ∈ M provides a profit guarantee
of π if

�(G,M ) ≥ π, for all signals G ∈ G .

Robustly optimal mechanism. Formally, we define the robustly optimal mechanism M
 as
the mechanism that solves

M 
 ∈ argmax
M∈M

inf
G∈G

�(G,M ). (2)
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Deb & Roesler BUYER-OPTIMAL LEARNING AND INFORMATIONAL ROBUSTNESS 2751

This is the mechanism we aim to characterize. In words, it provides the seller the highest profit
guarantee against all possible signals. We denote this highest profit guarantee by

π
 := max
M∈M

inf
G∈G

�(G,M ).

Before proceeding, it is worth making a few comments about the above definition. First, note
that, implicit in the seller optimizing over direct mechanisms, is the fact that she gets to break
ties in her favour (since the mechanism picks the allocation and transfer). Since signals may
have atoms, such favourable tie-breaking might have a material impact on the seller’s profit. It
is reasonable to demand that a notion of robust optimality should not just guard against different
signals but also against the profit-minimizing best response chosen by the buyer. We show in
the appendix that the robust optimality of bundling does not depend on favourable tie-breaking
by the buyer; we chose not to include buyer tie-breaking in the above definition to simplify the
presentation.

Second, the definition implicitly suggests that a robustly optimal mechanism exists and, need-
less to say, this existence will be a consequence of our proof. Finally, note that, if the seller
chooses to randomize the prices of different bundles, nature picks a signal before the price is
realized. This is a consequence of the fact that the seller is choosing a direct mechanism and so
can commit to random allocations after the buyer reports his signal realization to the mechanism.

We are now in the position to present our first main result.

Theorem 1. There is a random pure bundling mechanism that is a robustly optimal mechanism.

An immediate consequence of this result is that an explicit characterization of the robustly
optimal mechanism (that is, the menu of prices and probabilities with which the grand bundle is
allocated) follows from Du (2018). This is because Theorem 1 shows that the seller’s problem
can effectively be reduced to one of a single-good monopolist (whose good is the grand bundle).

Why is it robustly optimal to only sell the grand bundle? We will provide detailed intuition
below but the high-level economic reason is that it is optimal to bundle together ex-ante similar
goods. Choosing a mechanism that only allocates the grand bundle effectively shrinks the set
of signals that the seller has to guard against since any two distinct signals (of which there are
many) that generate the same distribution over posterior estimates of the grand bundle value
lead to the same profit. But is there a different mechanism that can do better against all such
signals? As we will argue, the answer is no because the prior distribution F is exchangeable
and consequently, for any distribution of grand bundle estimates generated by a signal, there
is a “perfectly correlated” signal that generates the same distribution. Against such perfectly
correlated signals, it is robustly optimal for the seller to pure bundle.

We now formalize this intuition a little more, beginning with a definition.

Perfectly correlated signals. We say that a signal G ∈ G is maximally positively corre-
lated across dimensions, or simply perfectly correlated, if it is distributed along the diagonal
{(s1, . . . , sn) ∈ S | s1 = · · · = sn}. We denote the set of perfectly correlated signals by G pc ⊆ G.

Given a signal realization s ∈ S, we use s = s1 + · · · + sn to denote the sum. The set of
all such sums s is denoted by S; note that S = � (because S = �) but we use distinct nota-
tion nonetheless to distinguish the sum of the signal realization vector from the sum of the type
vector. Every signal G ∈ G induces a distribution G ∈ �(S) over the posterior estimates s of
the grand bundle value. We use G to denote the set of these distributions of grand bundle esti-
mates that are induced by some signal G ∈ G. Similarly, we use G pc

to denote the set of these
distributions of grand bundle estimates that are induced by perfectly correlated signals G ∈ G pc.
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Now, first observe that

max
M∈M

inf
G∈G

{�(G,M )} ≤ max
M∈M

inf
G∈G pc

{�(G,M )} = max
M∈M r P B

inf
G∈G pc

{�(G,M )}.

The inequality follows from the fact that the infimum is taken over a smaller set of signals.
Loosely, the equality follows from the fact that, when the signals are perfectly correlated, the
buyer’s type is effectively one-dimensional so it suffices for the seller to employ mechanisms
that only allocate the grand bundle.

Conversely, observe that

max
M∈M

inf
G∈G

{�(G,M )} ≥ max
M∈M r P B

inf
G∈G

{�(G,M )} = max
M∈M r P B

inf
G∈G pc

{�(G,M )}.

The inequality follows from the fact that the maximum is taken over a smaller set of mecha-
nisms. When the mechanism only allocates the grand bundle, the seller’s profit is determined
completely by the distribution of grand bundle estimates. The equality follows from the fact that
G = G pc

or, in words, that perfectly correlated signals G ∈ G pc generate the same set of distribu-
tions over grand bundle estimates as (general) signals G ∈ G (Lemma 1 in the appendix shows
this formally). This is a consequence of the property that EF [θi − θ j |θ] = 0 for all i, j ∈ N
when the prior F is exchangeable. In words, the symmetry of the prior ensures that, if the buyer
only learns about his value θ for the grand bundle, his conditional value for each good is θ/n.
Note that, exchangeability is a stronger assumption than necessary to ensure this property6 but
we chose to impose this assumption nonetheless as it is easier to state and interpret.

Taken together, both inequalities must in fact be equalities which imply that

max
M∈M

inf
G∈G

{�(G,M )} = max
M∈M r P B

inf
G∈G

{�(G,M )}

or that there is random pure bundling mechanism that provides the highest profit guarantee.
Before proceeding, it is worth contrasting our theorem with results in some recent related

papers. As mentioned earlier, Haghpanah and Hartline (2021) provide a condition under which
pure-bundling is optimal in the standard (non-robust) multi-dimensional screening problem.
Their setting is more general than ours in that they allow for arbitrary value functions but theirs
is a joint condition on the value function and the type distribution.7 The best way to highlight
the difference is to discuss the restriction of their condition to additive values. When the type
distribution is perfectly correlated, their condition applies and the optimal mechanism is pure
bundling. However, their condition does not hold in general for exchangeable type distributions;
as is well known, pure bundling is not always optimal for iid type distributions. Conversely,
our result holds for all exchangeable distributions. Indeed, as the above discussion suggests,
our proof exploits the fact that the robust optimality criterion allows us to restrict attention to
perfectly correlated signals.

We would also like to acknowledge some contemporaneous work that generalizes Theorem 1
along two distinct dimensions.8 Brooks and Du (2021) independently sketch an argument similar
to the one described above and argue that Theorem 1 extends to the case of an auction with mul-
tiple buyers. Che and Zhong (2022) build on our work by showing that Theorem 1 generalizes to

6. For example, EF [θi − θ j |θ] = 0 for the non-exchangeable prior F for three goods that assigns equal
probability to the types (1, 2, 3), (3, 1, 2), and (2, 3, 1).

7. They show pure bundling is optimal if, for all bundles b ⊂ N , the distribution of u(θ,b)
u(θ,N ) conditional on

u(θ, N ) = u is the first-order stochastically non-decreasing in u.
8. Both results appeared online after the first version of our working paper was circulated.
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(i) the seller being uncertain about the exact prior distribution as well as buyer-learning and (ii)
certain non-exchangeable prior distributions, requiring that the vector of valuations is built from
a co-monotonic component and an idiosyncratic component that has zero ex-ante means. The
main aim of their paper is to generalize the results of Carroll (2017) and their proof follows a
distinct approach they develop towards achieving this goal. Specifically, they consider a setting
where there is a partition of the set of goods, and there is an exogenously given set of distri-
butions for the value (

∑
i∈b θi ) of each bundle b that is an element of the partition. Their seller

evaluates worst-case profits across all possible joint distributions whose marginal distributions
of the value of each partition element b lie in the given set.

As mentioned earlier, we are going to generalize Theorem 1 along two different dimensions
not covered by either paper. First, in Section 3.3, we first describe how our result applies to a
certain class of non-additive values that now allow goods to be either complements or substitutes.
Then, in Section 4.1, we study non-exchangeable priors (that do not need to satisfy the co-
monotonicity property of Che and Zhong, 2022) and show that it is always robustly optimal for
the seller to bundle goods with identical demands. But more importantly, our goal is to develop
the economic implications of Theorem 1 which we do in the remainder of this subsection and in
Section 4.

The careful reader would have noted that Theorem 1 does not state that a robustly optimal
mechanism must be random pure bundling. Indeed the intuition above, involving perfectly corre-
lated signals, might suggest that a random separate sales mechanism (for instance, with perfectly
correlated prices) can also provide the same profit guarantee. But this is not the case.

Corollary 1. Suppose the value for each good is iid with distribution F̌ (so the prior F =
F̌ × · · · × F̌). No random separate sales mechanism provides the highest profit guarantee π
.

The proof of this result is in an online appendix but we provide some intuition here. Let π̌ 


denote the highest profit guarantee that a seller can achieve when she sells a single good to a
buyer whose value is drawn from F̌ . As Theorem 1 shows, π
 is the highest profit guarantee
the seller can achieve by selling the grand bundle to a buyer whose value is drawn from F (the
prior distribution of the sum θ ). Put differently, π
 and π̌ 
 can both be found by deriving the
highest profit guarantee in a one-dimensional setting which is a problem that has been solved in
the literature. Now, if nπ̌ 
<π
 (by definition, it cannot be >), then the seller cannot achieve a
profit guarantee of π
 by random separate sales.

In words, this inequality states that a single-good monopolist can achieve a strictly higher
revenue guarantee when she faces a buyer whose type is drawn from distribution F̌ as opposed to
a buyer whose type is the average of n iid draws from F̌ . To see this, note that the distribution of
the average value θ1+···+θn

n is a mean-preserving contraction9 of F̌ . This implies that the infimum
in the definition of the highest profit guarantee is taken over a larger set when the prior type distri-
bution is F̌ (since, in this one-dimensional setting, every signal is a mean-preserving contraction
of the prior type distribution).

For intuition on why the highest profit guarantee from a separate sales mechanism is nπ̌ 
,
recall that a random separate sales mechanism is a joint distribution over prices P ∈ �(Rn).
Now, consider signals of the form G = Ǧ1 × · · · × Ǧn ∈ G in which the posterior estimate of
the value of each good i is drawn independently from Ǧi . Against such signals, no distribution
P over prices can yield a profit guarantee higher than nπ̌ 
 because the profit guarantee from
the sale of each good is determined by the marginal distribution of prices for that good derived

9. A distribution is a mean-preserving contraction of another if both have the same mean and the latter second-
order stochastically dominates the former. A formal definition can be found in the proof of Theorem 2 in the appendix.
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from P . This simply amounts to separately deriving the optimal distribution of prices for each
of n identical one-dimensional problems in which the buyer’s value is drawn from F̌ and, by
definition, the seller cannot achieve a profit guarantee higher than π̌ 
 from the sale of each good.

As an example for two goods, when F̌ is U[0, 1] and therefore, F is the triangle distribution
on [0, 2] with mode 1, we have .408 = 2π̌ 
<π
 = .482.

We end this subsection with an application of Theorem 1. The canonical multi-dimensional
screening problem (without buyer learning), in addition to being generally intractable, has sev-
eral counterintuitive features. One particularly surprising property is shown by Hart and Reny
(2015). Unlike the case of a single good, the optimal mechanism for a seller of multiple goods
might yield a lower profit for a type distribution that the first-order stochastically dominates
another.10 This is because the optimal mechanism need not be “monotone” in that a higher type
(component by component) might end up paying strictly less than a lower type. In fact, Ben
Moshe et al. (2022) have recently shown that restricting attention to monotone mechanisms may
yield a negligible fraction of the maximal profit.

The next result shows that this counterintuitive property disappears for the robustly optimal
mechanism (the result is actually a little stronger). This is because a random pure bundling
mechanism is effectively one-dimensional and so the highest profit guarantee only depends on
the prior distribution F of grand-bundle values.

Theorem 2. Suppose the type distribution F first-order stochastically dominates the type
distribution F ′. Then, for any random pure bundling mechanism M ∈ M r P B, we have

inf
G∈G

�(M , G) ≥ inf
G ′∈G ′

�(M , G ′)

where G and G ′ are the sets of signals corresponding to priors F and F ′, respectively.
Consequently, the seller’s highest profit guarantee from F is greater than that from F ′.

3.2. The buyer-optimal outcome

In this subsection, we formally define and characterize a buyer-optimal outcome and relate it
to the robustly optimal mechanism. We begin by defining an outcome and what it means for an
outcome to be buyer-optimal.

Outcome. An outcome is a pair (G,M) where G ∈ G is a signal and M is an optimal
mechanism for the seller in response to distribution G (that is, �(G,M) ≥ �(G,M′) for all
M′ ∈ M ).

Buyer-optimal outcome. A buyer-optimal outcome maximizes the buyer’s surplus across
all outcomes and is given by(

G*, M *) ∈ argmax
M∈M ,G∈G

EG [U (s,M )]

such that �(G,M ) ≥ �(G,M ′) for all M ′ ∈ M .
(3)

10. A type distribution F first-order stochastically dominates distribution F ′ if for all increasing functions y :
� → R, we have

∫
� y(θ)d F(θ) ≥ ∫

� y(θ)d F ′(θ). (A function y is increasing if y(θ) ≥ y(θ ′) when θi ≥ θ ′
i for all

1 ≤ i ≤ n.) This is the standard definition of the first-order stochastic dominance for multivariate distributions (see
Section 6 in Shaked and Shanthikumar, 2007).
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Note that the constraint corresponds to verifying that M is the solution to the standard multi-
dimensional screening problem for the signal G. It is well defined because an optimal mechanism
exists for every type distribution (see Balder, 1996). Since optimal multi-dimensional screening
for arbitrary type distributions is intractable, our proof approach circumvents having to evaluate
the objective at every signal G and its corresponding optimal mechanism M. Moreover, our
proof explicitly constructs the signal G* in the buyer-optimal outcome thereby showing that the
maximum for the objective function is obtained.

We are now in a position to present our second main result.

Theorem 3. There exists a buyer-optimal outcome (G*, M*) which has the following
properties.

(i) Seller Best-Response: M* is a pure bundling mechanism.
(ii) Signal: G* is perfectly correlated.

(iii) Total Surplus: The buyer is allocated the grand bundle with probability one so trade is
efficient.

It might be surprising to some readers that the signal in the buyer-optimal outcome does not just
perfectly reveal the buyer’s type. After all, this would allow him to always get the highest ex-post
consumer surplus by making the optimal purchase decision. Indeed, the fact that trade is efficient
implies that the buyer sometimes purchases the grand bundle when he should not. To see this,
note that when θ� = 0, the seller’s optimal mechanism never gives away the grand bundle for
free since she can always guarantee herself a strictly positive profit by selling the grand bundle
at a price just above zero. So the optimal mechanism M* must be providing the seller a strictly
positive profit which, combined with efficient trade, implies that the buyer makes purchases with
positive probability when his true value for the grand bundle is below the seller’s profit.

The reason perfect information about his type is not optimal for the buyer is because this
allows the seller to extract more surplus by screening effectively. To prevent this, the signal in the
buyer-optimal outcome injects two different types of noise into learning. First, it only provides
information about the value of the grand bundle. As discussed in the previous subsection, for
exchangeable prior distributions F, this is possible without additional information about the
individual dimensions trickling through, yielding a perfectly correlated distribution of posterior
estimates. This effectively makes the type space one-dimensional and reduces the seller’s ability
to screen across dimensions.

Reducing the seller’s ability to screen by introducing correlation could still harm the buyer
as it might simultaneously lead to a reduction of total surplus. This can be prevented by injecting
further noise into the signal: instead of telling the buyer his exact grand bundle value, the signal
provides a noisy estimate. Loosely speaking, perfect correlation effectively reduces the seller’s
problem to its one-dimensional counterpart. Hence, we can employ the argument of Roesler and
Szentes (2017) (who study the sale of a single good) to show that it is possible to construct a
signal such that there is an optimal pure bundling mechanism for the seller in which the grand
bundle is always traded. Finally, since the signal is perfectly correlated, this mechanism is also a
best response of the seller in the original problem. The price for the grand bundle is the minimum
of the support of the distribution of the posterior estimate of the grand bundle value induced
by G*.

Note the relationship between the robustly optimal mechanism that solves (8) and the buyer-
optimal outcome that solves (9). In the former, the seller chooses to pure bundle in order to
protect against non perfectly correlated signals that provide the buyer differential information
about the dimensions of his type. In the latter, the signal is perfectly correlated in order to prevent
the seller from screening effectively by using the full power of multi-dimensional screening.
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In fact, these problems are formally related; the next result describes a property of the buyer-
optimal outcome that will make this connection clear.

Corollary 2. The seller’s profit in any outcome is weakly greater than her profit π* in any buyer-
optimal outcome. As a consequence, trade happens with probability one in every buyer-optimal
outcome.

In words, this corollary says that every buyer-optimal outcome not only maximizes con-
sumer surplus, it also minimizes profits. The first part of the above corollary implies that the
seller’s profit π* must be the same in every buyer-optimal outcome from which it then follows
by statement (iii) of Theorem 3 that trade must be efficient in every buyer-optimal outcome. Thus
Corollary 2 strengthens statement (iii) of Theorem 3 as the latter simply refers to the existence
of a buyer-optimal outcome with efficient trade.

This corollary also implies that the seller’s profit in the buyer-optimal outcome is the solution
to the min–max problem where an adversarial nature first picks the signal and the seller then
chooses an optimal mechanism in response. In other words,

π* = min
G∈G

max
M∈M

�(G,M ). (4)

In fact, the seller’s profit is identical in both problems (2) and (4):

π
 = max
M∈M

min
G∈G

�(G,M ) = min
G∈G

max
M∈M

�(G,M ) = π*.

The fact that the max–min and min–max problems have the same value for the case of a single
good was first observed by Du (2018). Brooks and Du (2021) generalize this insight to a variety
of different settings (including multiple goods with additive values) with multiple buyers who
have interdependent values. They consider finite type spaces, so the fact that this equivalence
arises in our model is not per se implied by any of their results. More substantively however,
the aims of our respective papers are different. Our goal is to derive qualitative properties of the
seller’s optimal mechanism in two different information environments; the fact that the seller
gets the same profit in both is a consequence, but not a main focus of this paper. By contrast,
Brooks and Du (2021) aim to show the equivalence of the min-max and max-min problems very
generally, but they do not derive the seller’s optimal mechanism in either; instead, their results
are meant to provide a means for efficient numerical simulation.

We end this subsection with an application of Theorem 3 to derive a comparative static
relating consumer surplus in the buyer-optimal outcome to the number of goods. We begin with
some context that motivates this application. It is clearly beneficial for the monopolist to have the
ability to screen over all n goods as opposed to having to set a price for each good individually.
This is because maximizing profits over a larger set of mechanisms must achieve a weakly
higher profit. However, as Salinger (1995) observes, increased profits need not be at the expense
of consumer surplus. For instance, consider the case of two goods and a buyer whose value for
each good is independently and uniformly distributed on [0, 1]. Here, the optimal separate sales
mechanism charges a price of 1

2 for each good. Now, suppose that in addition to selling the goods
individually, the seller could pure bundle. She would choose to do the latter with the optimal

pure bundling mechanism charging a price of
√

2
3< 1

2 + 1
2 for the grand bundle. This mechanism

(which exploits the fact that there are multiple goods) leads to both higher profits and consumer
surplus.

By contrast, Bakos and Brynjolfsson (1999) derive a limit result that shows the seller can
extract all the surplus from a buyer with additive, iid values when the number of goods n → ∞.
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They use a law of large numbers to argue that the value of the grand bundle divided by the
number of goods n converges, and so the seller can extract all the surplus by just offering a
pure bundling mechanism at a price of n-times that limit. Because it is hard to characterize the
optimal mechanism, we are not aware of any general results for finitely many goods that describe
whether the seller’s ability to screen across multiple dimensions hurts consumers. We show that
such an analysis is possible for the buyer-optimal outcome.

The next result refers to the average consumer surplus, which is the consumer surplus in the
buyer-optimal outcome divided by the number of goods. C Sn refers to the average consumer
surplus from the buyer-optimal outcome corresponding to the prior distribution F. Now consider
the marginal distribution over the first n − 1 goods derived from F and note this distribution is
also exchangeable. We use C Sn−1 to denote the average consumer surplus in the buyer-optimal
outcome corresponding to this prior distribution.

Theorem 4. The average consumer surplus in the buyer-optimal outcome is decreasing in the
number of goods: C Sn ≤ C Sn−1.

This result highlights the nuanced interplay between information and screening but might
seem counterintuitive in light of the following two facts discussed above. First, there is always
a buyer-optimal outcome in which the seller chooses to pure bundle. Second, without buyer
learning, the optimal pure bundling mechanism can yield a strictly higher average consumer
surplus when the number of goods increases (for example when n = 2 and the value of each
good is independently drawn from the uniform [0, 1] distribution). These statements do not
conflict because the information that the buyer receives in the buyer-optimal outcome changes
as the number of goods increases. In order to prevent the seller from effectively screening across
dimensions, the signal in the buyer-optimal outcome introduces correlation (by injecting noise)
and does so by only providing information to the buyer about his value for the grand bundle. As
the number of goods increases, such correlation surrenders more surplus to the seller.

3.3. Substitutes and complements

All the results from Sections 3.1 and 3.2 hold11 when the buyer has the non-additive value
function

u(θ, b) = κb

∑
i∈b

θi where κb ≥ 0, (5)

which implies the value of not receiving a good is u(θ,∅) = 0. We assume that u(θ, N ) ≥
u(θ, b) for all b ⊆ N and all θ ∈ �. This is a weak free-disposal property and ensures that
the greatest surplus is generated by trading the grand-bundle (as in the additive values case). In
terms of the κb-s, this requires that κb ≤ (1 + N−|b|

|b|
θ�

θh
)κN . Note that we do not require κb′ ≥ κb

(or u(θ, b′) ≥ u(θ, b)) for proper subsets b ⊂ b′ ⊂ N . Indeed, when θ�>0, we can have κb>κN .
Clearly, this value function subsumes the additive value framework of Section 2.

This value function allows for goods to be either substitutes or complements, generality that
is important for modelling the demand for multiple goods.12 As an example, consider a buyer
evaluating two bundles from a movie streaming service: the first bundle b only offers comedy

11. Our older working paper Deb and Roesler (2021) contains the proofs of Theorems 1 and 3 for this value
function.

12. Geng et al. (2005) study a standard multi-dimensional screening setting with such a value function, but they
require that κb is decreasing in the number of goods in the bundle b. Within this framework, they provide a sufficient
condition for the approximate optimality of pure bundling.
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movies and the second bundle N is the entire catalogue. It would be natural for the buyer to assign
a lower marginal value to any individual comedy movie when they have the entire catalogue
instead of when they only have the comedy bundle since the likelihood that they will ever watch
the movie is lower when they have more choice. In this case, κN<κb.

Conversely, consider a two-partner household evaluating the same two-tiered bundles. In this
case, the marginal value for a movie might be higher for the entire catalogue. This is because the
household may end up watching fewer comedy movies (the preference of one partner) if they do
not have the option of watching movies from other genres (the preference of the second partner).
In this case, κN >κb. Of course, in both scenarios the total value of the entire catalogue will be
higher (κN

∑
i∈N θi ≥ κb

∑
i∈b θi ) since disposal is free for a digital product.

While we situate this example in the context of a streaming service, it should be clear that
goods can be substitutes or complements in a variety of different multiproduct settings. While
the above value function is more general than the bulk of the literature (that focuses on additive
values), it retains the feature that only the posterior type estimate is relevant for the mechanism
design problem. In other words, the value of each bundle is linear in the buyer’s type; this allows
us to restrict attention to unbiased signals which is an essential feature for tractability. For this
reason, linearity is a commonly made assumption in the information design literature.

We end this section with two additional observations. First, note that this general value
function allows the buyer to assign different values to two bundles b and b′ even though∑

i∈b θi = ∑
i ′∈b′ θi ′ . This allows us to accommodate some limited asymmetry in the environ-

ment even with an exchangeable type distribution F. In particular, this value function can capture
add-on items. Returning to the example of a streaming service, consider a buyer whose primary
concern is to acquire a specific TV show for his children which is say captured by good i. He
values having access to additional shows and movies but only if the bundle contains the show
i. For such a buyer, κb = 0 for all b ⊂ N , i /∈ b, and 0<u(θ, {i}) ≤ u(θ, b′) ≤ u(θ, N ) for all
b′ ⊂ N , i ∈ b′. In the next section, we maintain additive values but discuss the implications of
a non-exchangeable prior.

Finally, note that Theorem 3 did not claim that the buyer-optimal outcome is unique and,
indeed, pure bundling need not be the unique seller best response to a perfectly correlated signal.
Specifically (and unlike Theorem 1), with additive values, it is also optimal for the seller to
offer a separate sales mechanism where the price vector for the goods is simply the minimum
of the support of G*. This is because the buyer will still prefer to always buy the grand bundle
when faced with this mechanism. However, when values can take the more general form of this
subsection, there are cases where separate sales may not be part of any buyer-optimal outcome.
This observation, demonstrated in the next example, is the reason we highlight pure bundling
(as opposed to separate sales) in Theorem 3.

Example. Suppose there are two goods and that κ{i}>κN = 1 for both i ∈ {1, 2}. We now
argue that separate sales cannot be the seller’s optimal mechanism in any buyer-optimal out-
come. As a contradiction, suppose that there is a buyer-optimal outcome (G*,M*) where M*

is a separate sales mechanism at prices p = (p1, p2). Corollary 2 implies that trade must be
efficient and so the buyer must always purchase the grand bundle. This in turn implies that, for
every ε>0, we must have G*({(s1, s2) | (s1 + s2) − (p1 + p2) ≤ ε})>0. In words, there must
be a positive mass of buyer types whose grand bundle value is just above the total price for
the grand bundle as, otherwise, the seller could earn a greater profit by instead offering a pure
bundling mechanism at the higher price p1 + p2 + ε.

Now consider the positive mass of types that satisfy 0 ≤ (s1 + s2) − (p1 + p2) ≤ ε. The
buyer prefers to purchase the grand bundle instead of just good i whenever κ{i}si − pi ≤ (s1 +
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s2) − (p1 + p2). Adding up these inequalities over both goods, we get

(κ� − 1)(p1 + p2) ≤ (κ� − 1)(s1 + s2) ≤ (κ{1} − 1)s1 + (κ{2} − 1)s2

≤ (s1 + s2) − (p1 + p2) ≤ ε,

where κ� = min{κ{1}, κ{2}}. For small enough ε>0, the above inequality cannot be true since we
must have p1 + p2>0. This provides the requisite contradiction because it implies that there will
be a positive mass of buyer types that will strictly prefer not to buy the grand bundle thereby
implying trade is not efficient in the buyer-optimal outcome (G*, M*).

4. BEYOND EXCHANGEABILITY

In this section, we discuss properties of the robustly optimal mechanism (for additive val-
ues) when the assumption of an exchangeable prior distribution is relaxed. In Section 4.1,
we first show that our main economic insight—goods with identical demands should be
bundled—extends to non-exchangeable priors. In Section 4.2, we then show that this is not true
for goods whose demands differ. Specifically, random pure bundling is not a robustly optimal
mechanism even for two goods whose values are independently distributed and are identical up
to a shift.

4.1. Bundling goods with identical demands

Without loss, let the bundle B = {1, . . . , m} consist of the first 2 ≤ m ≤ n goods. We use θB

and θ−B (and a similar notation for s) to denote (θ1, . . . , θm) and (θm+1, . . . , θn), respectively.

Identical demands. We say goods in bundle B have identical demands if, for any permu-
tation σ : B → B, the joint distributions of (θ1, . . . , θn) and (θσ(1), . . . , θσ(m), θm+1, . . . , θn) are
both F.13

One simple example of such a prior is when the joint distribution of bundle B is independent
from the joint distribution of θ−B and the marginal distribution of B is exchangeable.

We now define what it means to bundle a subset of goods.

Bundling a subset of goods. We say that a mechanism (q, t) ∈ M bundles the set B ⊆ N
of goods if it satisfies the following two properties:

(i) Proper subsets of B are never allocated: if q(s, b)>0 for s ∈ S and b ⊆ N , then B ∩ b ∈
{∅, B};

(ii) Only the value of bundle B matters: for types (sB, s−B), (s ′
B, s−B) such that

∑
i∈B si =∑

i∈B s ′
i , the allocation q(sB, s−B) = q(s ′

B, s−B) and transfer t (sB, s−B) = t (s ′
B, s−B) are

the same.

Our next result generalizes Theorem 1 by showing that it is robustly optimal to bundle goods
with identical demands.

Theorem 5. Suppose the goods in bundle B have identical demands. If a mechanism provides
a profit guarantee of π then, there is a mechanism that bundles B that also provides a profit
guarantee of π .

13. Formally, for any X ∈ F , we have F(X) = F(Xσ ) where Xσ = {(θσ(1), . . . , θσ (m), θm+1, . . . , θn)

|(θ1, . . . , θn) ∈ X}.
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The intuition for this result mirrors that of Theorem 1. Bundling goods in B implies that
only the distribution of s B = s1 + · · · + sm matters for profits so there are fewer signals to
guard against. Moreover, because goods in B have identical demands, for any signal G ∈ G,
there is another signal G ′ ∈ G that induces the same distribution over (s B, sm+1, . . . , sn) but for
which the marginal distribution of (s1, . . . , sm) is perfectly correlated. Against such signals, it is
robustly optimal to bundle the goods in B.

The observant reader would have noticed that Theorem 5 is phrased differently to Theorem 1
in that it does not refer to a robustly optimal mechanism. We chose this particular statement
since it has the same economic content and a relatively simple proof that does not require us to
establish the existence of a robustly optimal mechanism.

Finally, note that, unlike Theorem 1 which provides a complete characterization, Theorem 5
only describes a qualitative property of the robustly optimal mechanism. Specifically, it does
not characterize the probability with which bundle B is allocated as a function of the posterior
estimates s−B of the other goods N\B (and vice versa). Deriving a complete characterization is
beyond the scope of this paper but we view this to be an interesting question for future work.

4.2. When bundling is not robustly optimal

The previous subsection allowed for non-exchangeable priors but focused on the allocation of
goods with identical demands. What about goods whose demands differ? We now argue that
bundling together such goods can be strictly suboptimal.

To demonstrate this point, we focus on a class of simple non-exchangeable environments that
are obtained from an iid setting by simply shifting the support of one marginal. Specifically, we
consider the case of two goods (so n = 2) whose joint distribution is given by F = F̌ × F̌x so
each dimension of the type is distributed independently with marginal distributions F̌ and F̌x ,
respectively. Moreover, the distribution of the second dimension is an x-shift of the first where
x>0. Formally, F̌x (θ2) = F̌(θ2 − x) for all θ2 ∈ [θ� + x, θh + x].14

Our last result shows, that for sufficiently large x, there is a random separate sales mecha-
nism that provides a profit guarantee that no random pure bundling mechanism can match. The
implication, of course, is that no random pure bundling mechanism is robustly optimal.

Theorem 6. Suppose n = 2 and the prior distribution is given by F = F̌ × F̌x where F̌ is
supported on [θ�, θh] with θ� = 0 and F̌x is an x-shift of F̌ .

Then, there is an x>0 such that for all x ≥ x, there exists a random separate sales
mechanism that provides a profit guarantee that no random pure bundling mechanism can
provide.

The following is brief intuition for this result. The distribution of grand bundle values is
supported on [2θ� + x, 2θh + x]. As x becomes larger, the highest profit guarantee achievable
with a random pure bundling mechanism converges to the lower bound of the support 2θ� + x .
Loosely speaking, this is because the profit loss from not selling the good increases relative to
the benefits from randomizing the price of the grand bundle. Conversely, the seller can always
guarantee herself a profit of π̌ + θ� + x by setting a price of θ� + x for the second good (thereby
always selling it) and randomizing the price of the first good in a way that corresponds to the
robustly optimal mechanism for a single good whose prior value is distributed by F̌ . Since π̌>0

14. The fact that the distributions of both dimensions of the type are supported on distinct intervals is not critical
for the point we are trying to make. We focus on shifted distributions since this seemed like the smallest qualitative
departure from exchangeability.
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when θ� = 0 (the seller can always guarantee a positive profit by pricing just above 0), we have
π̌ + θ� + x>2θ� + x as required.15

We end this section by noting that the bound x above which random separate sales starts
providing a strictly higher profit guarantee than every random pure bundling mechanism need
not be very large. For instance, if F̌ is U[0, 1], the bound x = 1.75 reflects a relatively small
shift.

5. CONCLUDING REMARKS

Before concluding, it is worth providing a brief discussion of the assumption of zero seller
costs that we imposed throughout. Our most general result on robust optimality (Theorem 5)
holds when the seller has a cost c>0 of producing each good; indeed, the proof of this result
in the appendix incorporates such costs. We did not impose this generality at the outset because
Theorem 3 that characterizes the buyer-optimal outcome does not similarly generalize. The proof
of that result was built around the fact that trade is efficient in the buyer-optimal outcome. This
continues to be the case when the cost is positive but sufficiently low but not when the cost
becomes larger.

To summarize, in this paper, we study a general multi-dimensional screening problem with
buyer learning. We derive qualitative features of the robustly optimal mechanism: this is the
mechanism that provides the highest profit guarantee for the seller against all signals from which
the buyer learns his value. The main economic insight is simple and general: it is robustly optimal
to bundle goods with identical demands.

APPENDICES

This appendix contains the proofs of all the results in the text.

A. Proofs of theorem 1 and theorem 5

We first prove Theorem 5 and then invoke it to prove Theorem 1.
We need to introduce some additional notation and terminology. Given s ∈ S, recall that s B = s1 + · · · + sm

denotes the sum of posterior estimates of goods in the bundle B. The set of all (s B , s−B ) is denoted by

S̃B := [
mθ�, mθh

] × [θ�, θh ]n−m =: �̃B .

Every signal G ∈ G induces a distribution G̃ B ∈ �(S̃B ) over the posterior estimates (s B , s−B ). We use G̃B to denote
the set of these distributions that are induced by signals G ∈ G. Similarly, F̃B denotes the distribution over �̃B induced
by the prior F.

We say that a signal G ∈ G is perfectly correlated for bundle B if G({s ∈ S | s1 = · · · = sm }) = 1 or in words, that
all the mass of the signal is on the subset of S for which the signal realizations of goods in B are identical. We denote
the set of such signals by G pc

B ⊆ G.
We now present a lemma that will be useful to prove the optimality of pure bundling.

Lemma 1. For every signal G ∈ G, there exists a signal G′ ∈ G pc
B that is perfectly correlated for bundle B such that G

and G′ induce the same distribution G̃ B over S̃B .

Proof. We begin by defining the n − m + 1-dimensional signals that only provide information about the sum of values
for goods in B, but there are no restrictions on the information provided about goods not in the bundle B. These are
(unbiased) signals (S̃B , HS̃B×�̃B

) where HS̃B×�̃B
∈ �(S̃B × �̃B ) is a joint distribution over S̃B × �̃B such that the

15. This intuition can be generalized to arbitrary θ�>0 and we actually prove a slightly more general statement
of Theorem 6 in the appendix (Theorem 7). We chose the special case of θ� = 0 to simplify the statement.
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marginal distribution of HS̃B×�̃B
over �̃B is F̃B and

(s B , s−B ) = EHS̃B ×�̃B
[(θ B , θ−B )|(s B , s−B )]

for all (s B , s−B ) in the support.
We use H to denote the marginal distribution of HS̃B×G̃B

over the set of signal realizations S̃B and use H to denote
the set of all such distributions. As with the signals (S, GS×�) for the type vector, it is without loss to restrict attention
to such unbiased signals.

We first argue that G̃B ⊆ H. To see this, observe that signal GS×� induces a joint distribution GS̃B×�̃B
over

S̃B × �̃B such that the marginal distribution over �̃B is F̃B . Formally, GS̃B×�̃B
is the image measure of GS×�

generated by the mapping a(s, θ) = (
∑

i∈B si , s−B ,
∑

i∈B θi , θ−B ) which implies that, for any measurable set A ⊆
S̃B × �̃B , we have GS̃B×�̃B

(A) = GS×�(a−1(A)). Moreover, observe that

EGS̃B ×�̃B

[
(θ B , θ−B )|(s B , s−B )

] = EGS×�

[
(θ B , θ−B )|(s B , s−B )

]
= EGS×�

[
EGS×�

[(θ B , θ−B )|s]|(s B , s−B )
]

= EGS×�
[(s B , s−B )|(s B , s−B )] = (s B , s−B )

for all (s B , s−B ) in the support. Therefore, the marginal distribution G̃ B over S̃B induced by GS̃B×�̃B
satisfies

G̃ B ∈ H.
We now show that, for every H ∈ H, there exists a G ∈ G that is perfectly correlated for bundle B such that the

distribution it induces on S̃B satisfies G̃ B = H . (This also shows that H ⊆ G̃B .)
By definition, H is the marginal distribution over S̃B corresponding to an unbiased signal HS̃B×�̃B

∈ �(S̃B × �̃B ).

We use the distribution HS̃B×�̃B
to define a family of conditional distributions Ĥ(·|θ) ∈ �(S̃B ) as follows:

Ĥ(·|θ) := H(·|θ1 + · · · + θm , θm+1, . . . , θn). (6)

This combined with the distribution F over � generates a joint distribution ĤS̃B×�
over S̃B × � whose marginal

distributions over S̃B and � are H and F, respectively.
Now observe that

EĤS̃B ×�

[
(θ B , θ−B ) | (s B , s−B )

] = (s B , s−B )

for all (s B , s−B ) in the support. This is a consequence of definition (6) of ĤS̃B×�
and from the fact that (s B , s−B ) =

EHS̃B ×�̃B
[(θ B , θ−B )|(s B , s−B )].

Given the joint distribution ĤS̃B×�
, we can derive the conditional distribution Ĥ(·|s̃B ) over �. Now observe that

the conditional distribution Ĥ(·|s̃B ) has the feature that goods in B have identical demands. This follows from the
definition of ĤS̃B×�

and because F is such that goods in B have identical demands. This in turn implies

EĤS̃B ×�

[
θi |(s B , s−B )

] = s B
m

for all i ∈ {1, . . . , m}.

Now define a joint distribution GS×� over S × � that is the image measure of ĤS̃B×�
generated by the map-

ping â(s B , s−B , θ) =
(

s B
m , . . . ,

s B
m , s−B , θ

)
. Formally, for any measurable Â ⊆ S × �, we have GS×�( Â) =

ĤS̃B×�
(â−1( Â)). By construction, the marginal distribution of GS×� over � is F, the marginal distribution G over S

assigns measure 1 to the set {s ∈ S | s1 = · · · = sm } and so is perfectly correlated for bundle B.
Observe that

EGS×�

[
θ

∣∣∣∣s =
(

s B
m

, . . . ,
s B
m

, sb+1, . . . , sn

)]
= EĤS̃B ×�

[
θ |(s B , s−B )

] =
(

s B
m

, . . . ,
s B
m

, sb+1, . . . , sn

)
,

and so G ∈ G or, in words, that G is an unbiased signal. Finally, by construction, the distribution G̃ B over posterior
estimates of (θ B , θ−B ) induced by G satisfies G̃ B = H which completes the proof.
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With this lemma in hand, we are now in a position to prove Theorem 5. As we mentioned in the conclusion, we will
in fact prove a more general version of the result in which the seller has a cost c ≥ 0 of each good. In the proof, we use
one additional piece of notation: M B ⊂ M denotes the set of mechanisms that bundle B.

Proof of Theorem 5. We first show that

sup
M∈M

inf
G∈G

{�(G,M )} ≥ sup
M∈M B

inf
G∈G

{�(G,M )} = sup
M∈M B

inf
G∈G

pc
B

{�(G,M )}. (7)

Here, the inequality simply follows from the fact that the right side takes the supremum over the smaller set of mech-
anisms that bundle B. The equality is a consequence of Lemma 1. When the seller offers a mechanism M ∈ M B that
bundles goods in B, for any signal G ∈ G, the profit only depends on the distribution G̃ B that the signal G induces over
the vector S̃B . But as Lemma 1 shows, there is another signal G′ ∈ G pc

B that is perfectly correlated for bundle B that
induces the same distribution G̃ B on S̃B . Therefore, taking the infimum over G or G pc

B leads to the same value.
Next, we show that

sup
M∈M

inf
G∈G

{�(G,M )} ≤ sup
M∈M

inf
G∈G

pc
B

{�(G,M )} = sup
M∈M B

inf
G∈G

pc
B

{�(G,M )}. (8)

The inequality is a consequence of taking the infimum over the smaller set of signals. We will show the equality by the
following argument: for every mechanism (q, t) ∈ M, we will construct a mechanism (q̂, t̂) ∈ M B that bundles B and
generates the same profit for the seller at all signals in G pc

B . Since every signal in G pc
B is perfectly correlated in bundle

B, the seller’s profit only depends on how the mechanism is defined for types of the form (ŝ, . . . , ŝ, s−B ).
So given a mechanism (q, t), we first define q̂ as follows. Consider an arbitrary b ⊂ N such that b ∩ B = ∅ (such a

b can be the empty set). We set

q̂(s, b′) = 0 for all b ⊂ b′ ⊂ b ∪ B and all s ∈ S.

In words, the allocation q̂ assigns zero probabilities to bundles b′ which contain a strict subset of the goods in B as
required for a mechanism that bundles B.

Then, we set

q̂(s, B ∪ b) =
∑

b⊂b′⊆b∪B

|B ∩ b′|
m

q
((

s B
m

, . . . ,
s B
m

, s−B

)
, b′

)

and

q̂(s, b) =
∑

b⊆b′⊆b∪B

q
((

s B
m

, . . . ,
s B
m

, s−B

)
, b′

)
− q̂(s, B ∪ b),

for all s ∈ S. In words, the altered allocation rule q̂ is different from q in two ways. First, as required for a mechanism
that bundles B, for any signal realization s ∈ S, the allocation q̂ only depends on (s B , s−B ). Second, q̂ is constructed
from q by moving the allocation probability from any bundle b′ such that b ⊂ b′ ⊂ b ∪ B to the bundles b and B ∪ b.

Note that q̂ is a well-defined allocation rule in that, for all s ∈ S, q̂(s, b) ∈ [0, 1] for all b ⊆ N , and∑
b⊆N q̂(s, b) = 1. The former follows immediately from the definition; to see the latter, observe that

∑
b⊆N

q̂(s, b) =
∑

b∩B=∅

(
q̂(s, B ∪ b) + q̂(s, b)

)

=
∑

b∩B=∅

⎛⎝q̂(s, B ∪ b) +
∑

b⊆b′⊆b∪B

q
((

s B
m

, . . . ,
s B
m

, s−B

)
, b′

)
− q̂(s, B ∪ b)

⎞⎠
=

∑
b∩B=∅

∑
b⊆b′⊆b∪B

q
((

s B
m

, . . . ,
s B
m

, s−B

)
, b′

)

=
∑
b⊆N

q
((

s B
m

, . . . ,
s B
m

, s−B

)
, b
)

= 1.
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The transfer for a type s ∈ S is simply set to

t̂(s) = t
(

s B
m

, . . . ,
s B
m

, s−B

)
.

and observe that t̂ is identical to t at all types (ŝ, . . . , ŝ, s−B ) ∈ S. Therefore, if (q̂, t̂) is IC and IR, it yields the same
revenue for the seller as (q, t) for every signal G ∈ G pc

B .
We now show that (q̂, t̂) is indeed IC and IR. Note that, by construction, every type s ∈ S gets the same util-

ity as
(

s B
m , . . . ,

s B
m , s−B

)
. Also note that the utility that every type (ŝ, . . . , ŝ, s−B ) gets from (mis)reporting as type

(ŝ′, . . . , ŝ′, s′−B ) is the same in both mechanisms (q, t) and (q̂, t̂) because

Eq̂(ŝ′,...,ŝ′,s′−B )[u((ŝ, . . . , ŝ, s−B ), b)]
=

∑
b∩B=∅

[
q̂((ŝ′, . . . , ŝ′, s′−B ), B ∪ b)u((ŝ, . . . , ŝ, s−B ), b ∪ B) + q̂((ŝ′, . . . , ŝ′, s′−B ), b)u((ŝ, . . . , ŝ, s−B ), b)

]

=
∑

b∩B=∅

⎡⎣q̂((ŝ′, . . . , ŝ′, s′−B ), B ∪ b)

⎛⎝∑
i∈b

si + mŝ

⎞⎠ + q̂((ŝ′, . . . , ŝ′, s′−B ), b)

⎛⎝∑
i∈b

si

⎞⎠⎤⎦
=

∑
b∩B=∅

⎡⎣(q̂((ŝ′, . . . , ŝ′, s′−B ), B ∪ b) + q̂((ŝ′, . . . , ŝ′, s′−B ), b)
)⎛⎝∑

i∈b

si

⎞⎠ + q̂((ŝ, . . . , ŝ, s−B ), B ∪ b)
(
mŝ

)⎤⎦
=

∑
b∩B=∅

⎡⎣ ∑
b⊆b′⊆b∪B

q((ŝ′, . . . , ŝ′, s′−B ), b′)

⎛⎝∑
i∈b

si

⎞⎠ +
∑

b⊂b′⊆b∪B

q((ŝ′, . . . , ŝ′, s′−B ), b′)
(|B ∩ b′|ŝ)

⎤⎦
=

∑
b∩B=∅

⎡⎣ ∑
b⊆b′⊆b∪B

q((ŝ′, . . . , ŝ′, s′−B ), b′)u((ŝ, . . . , ŝ, s−B ), b′)

⎤⎦
=

∑
b⊆N

q((ŝ′, . . . , ŝ′, s′−B ), b)u((ŝ, . . . , ŝ, s−B ), b)

= Eq(ŝ′,...,ŝ′,s′−B )[u((ŝ, . . . , ŝ, s−B ), b)],

and the transfers under t and t̂ are identical for such types. This shows (q̂, t̂) is IC and IR because (q, t) is IC and IR.
It remains to be shown that the seller’s expected cost under mechanism (q̂, t̂) is the same as under (q, t). Take any

type (ŝ, . . . , ŝ, s−B ). The cost of serving this type under mechanism (q̂, t̂) is

∑
b⊆N

c|b|q̂((ŝ, . . . , ŝ, s−B ), b)

=
∑

b∩B=∅

∑
b⊆b′⊆b∪B

c|b′|q̂((ŝ, . . . , ŝ, s−B ), b′)

=
∑

b∩B=∅

[
c|b|q̂((ŝ, . . . , ŝ, s−B ), b) + c|b ∪ B|q̂((ŝ, . . . , ŝ, s−B ), b ∪ B)

]
=

∑
b∩B=∅

∑
b⊆b′⊆b∪B

c|b|q (
(ŝ, . . . , ŝ, s−B ), b′)

−
∑

b∩B=∅
c|b|q̂((ŝ, . . . , ŝ, s−B ), B ∪ b) +

∑
b∩B=∅

c|b ∪ B|q̂((ŝ, . . . , ŝ, s−B ), b ∪ B)

=
∑

b∩B=∅

∑
b⊆b′⊆b∪B

c|b|q (
(ŝ, . . . , ŝ, s−B ), b′) +

∑
b∩B=∅

cmq̂((ŝ, . . . , ŝ, s−B ), b ∪ B)

=
∑

b∩B=∅

∑
b⊆b′⊆b∪B

c|b|q (
(ŝ, . . . , ŝ, s−B ), b′) +

∑
b∩B=∅

cm
∑

b⊂b′⊆b∪B

|B ∩ b′|
m

q
(
(ŝ, . . . , ŝ, s−B ), b′)
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=
∑

b∩B=∅

∑
b⊆b′⊆b∪B

c|b′|q (
(ŝ, . . . , ŝ, s−B ), b′)

=
∑
b⊆N

c|b|q((ŝ, . . . , ŝ, s−B ), b).

Since the revenue and cost for the seller are the same under both mechanisms, we have shown �(G, (q, t)) =
�(G, (q̂, t̂)) for all G ∈ G pc

B as required.
The above argument shows that the inequalities in (7) and (8) are in fact equalities which in turn implies that

sup
M∈M

inf
G∈G

{�(G,M )} = sup
M∈M B

inf
G∈G

pc
B

{�(G,M )} = sup
M∈M

inf
G∈G

pc
B

{�(G,M )}.

If, for the left term, the value of the supremum is not attained by any M ∈ M , then the theorem follows from the first
equality. Conversely, if the value of the supremum is achieved by some M ∈ M , the above construction together with
the second equality imply that there must also be a mechanism M ∈ M B that attains the value of the supremum. This
completes the proof. �

Recall that, after we defined a robustly optimal mechanism in equation (2), we had mentioned that this defini-
tion implicitly assumed that the buyer, when indifferent between reporting type s or s′, broke ties in favour of the
seller. We had mentioned that adversarial tie breaking will not affect our results; this is demonstrated by the proof of
Theorem 5. To see this, redefine the profit function �(G,M) so that the profit for a given signal G and mechanism
M is computed by assuming the buyer, from his set of best responses, chooses the reporting strategy that minimizes
the seller’s profit. With this new definition, the proof goes through unchanged. This is because the key step of the proof
that shows supM∈M infG∈G pc

B
{�(G,M)} = supM∈M B infG∈G pc

B
{�(G,M)} is constructive: for any M ∈ M , we

constructed a mechanism M̂ ∈ M B such that all types in the support of any signal G ∈ G pc
B get the same utility, the

seller gets the same transfer and the cost is the same. Therefore, even with the new definition of profits (with adversarial
tie-breaking), it must be the case that �(G,M) = �(G,M̂) for all G ∈ G pc

B . Finally, also observe that this argument
remains unchanged if we defined mechanisms more generally with message spaces that were not necessarily the type
space S.

Proof of Theorem 1. The proof of Theorem 5 (taking B = N ) implies that

sup
M∈M

inf
G∈G

{�(G,M )} = sup
M∈M r P B

inf
G∈G pc

{�(G,M )}.

When the seller chooses a random pure bundling mechanism, for any signal G ∈ G, the profits are only
determined by the distribution G over grand bundle values induced by G. But this implies that the problem
supM∈M r P B infG∈G pc {�(G,M)} is equivalent to deriving the robustly optimal mechanism for a single good (whose
prior value distribution is F). Du (2018) shows such an optimal mechanism exists (he additionally characterizes it) and
this completes the proof.

B. Proof of theorem 2

Proof of Theorem 2. Analogously to F and G, we use F ′ and G′ to, respectively, denote the distribution of grand bundle
values and the set of distributions of posterior estimates corresponding to F ′. It is well known that the set G (respectively,
G′) consists of all mean-preserving contractions of F (respectively, F ′). A distribution H ′ ∈ �(�) is a mean-preserving
contraction of another distribution H ∈ �(�) if∫ z

nθ�

H(s) ds ≥
∫ z

nθ�

H ′(s) ds for all z ∈ [nθ�, nθh ] with equality for z = nθh . (9)

With this definition in place, we prove the theorem in two steps.
Step 1: For every distribution G ∈ G, there exists a distribution G′ ∈ G′ such that G first-order stochastically dominates
G′.

We begin by noting that∫ z

nθ�

F ′(s) ds ≥
∫ z

nθ�

F(s) ds ≥
∫ z

nθ�

G(s) ds ∀z ∈ [nθ�, nθh ]
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where the first inequality follows from the fact that F first-order stochastically dominates F ′ and the second from the
fact that G is a mean-preserving contraction of F .

First observe that, if F and F ′ have equal means, then the above inequalities hold with equality at z = nθh and so
the claim in this step can be proved by choosing G′ = G.

So suppose the mean of F is strictly greater than F ′. Define

z := max

{
z ∈ [nθ�, nθh ]

∣∣∣∣ ∫ z

nθ�

F ′(s) ds =
∫ z

nθ�

G(s) ds

}

and note the maximum exists because both terms on either side of the equality are continuous in z and equal at z = nθ�.
A consequence of this definition is that

∫ z

nθ�

F ′(s) ds>
∫ z

nθ�

G(s) ds for all z ∈ (z, nθh ].

Now, for t ∈ [z, nθh ], define the distribution

G′
t (s) :=

{
G(s) if s ∈ [nθ�, t)

1 if s ∈ [t, nθh ],

In words, the distribution G′
t is the same as G before the point t and assigns all remaining mass in G (to the right of t)

to an atom of G′
t at t. Observe that, by construction, G first-order stochastically dominates G′

t for every t ∈ [z, nθh ].
When t = nθh , we have

∫ nθh

nθ�

G′
nθh (s) ds =

∫ nθh

nθ�

G(s) ds<
∫ nθh

nθ�

F ′(s) ds,

and when t = z, we have

∫ nθh

nθ�

G′
z(s) ds =

∫ z

nθ�

G(s) ds +
∫ nθh

z
1 ds =

∫ z

nθ�

F ′(s) ds +
∫ nθh

z
1 ds ≥

∫ nθh

nθ�

F ′(s) ds.

Now, since
∫ nθh

nθ�
G′

t (s) ds is continuous in t, the intermediate value theorem implies that there exists a ẑ ∈ [z, nθh ] at
which ∫ nθh

nθ�

G′
ẑ(s) ds =

∫ nθh

nθ�

F ′(s) ds.

We end the proof of this step by arguing that G′
ẑ is a mean-preserving contraction of F ′. To see this, first observe that

for z ∈ [nθ�, ẑ], we have

∫ z

nθ�

G′
ẑ(s) ds =

∫ z

nθ�

G(s) ds ≤
∫ z

nθ�

F(s) ds ≤
∫ z

nθ�

F ′(s) ds.

Since, by construction, the means of G′
ẑ and F ′ are equal and 1 = G′

ẑ(s) ≥ F ′(s) for s ∈ [ẑ, nθh ], the above inequality
also implies that ∫ z

nθ�

G′
ẑ(s) ds ≤

∫ z

nθ�

F ′(s) ds for all z ∈ (ẑ, nθh ].

Thus G′
ẑ ∈ G′ is the distribution of posterior estimates of grand bundle values required to complete the proof of this

step.
Step 2: For any random pure bundling mechanism M = (q, t) ∈ M r P B , we have

inf
G∈G

�(G,M ) ≥ inf
G′∈G ′ �(G′,M ).

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article/91/5/2744/7320043 by U

niversity of Toronto user on 09 Septem
ber 2024



Deb & Roesler BUYER-OPTIMAL LEARNING AND INFORMATIONAL ROBUSTNESS 2767

We can always write a random pure mechanism as a one-dimensional mechanism. Simply take q : S → [0, 1], t : S → R

to be

q(s) = q(s, N ) and t(s) = t (s) for any s ∈ S,
∑
i∈N

si = s

and recall this is well defined because the allocation and transfer of a random pure bundling mechanism only depends
on the grand bundle value s. Clearly, (q, t) is incentive compatible for the message space S because Mr P B is incentive
compatible.

Take any signal G ∈ G and note that, by construction,∫
S

t(s) dG(s) =
∫

S
t (s) dG(s).

From Lemma 1 and Step 1, there exists a signal G′ ∈ G′ such that the corresponding distribution of posterior estimates
of grand bundle values G′ is the first-order stochastically dominated by G. Hence,∫

S
t (s) dG(s) =

∫
S

t(s) dG(s) ≥
∫

S
t(s) dG′(s) =

∫
S

t (s) dG′(s)

where the inequality follows from Proposition 2 in Hart and Reny (2015). (They show that for the sale of a single
good, any incentive compatible mechanism yields a higher profit from a type distribution that first-order stochastically
dominates another.) This completes the proof of this step and the theorem since for every signal G ∈ G we can find
another signal G′ ∈ G′ such that the random pure bundling mechanism M yields a lower profit on the latter.

C. Proofs of results in section 3.2

Proof of Theorem 3 and Corollary 2. We first show that

inf
G∈G

sup
M∈M

{�(G,M )} ≥ inf
G∈G

sup
M∈M P B

{�(G,M )} = inf
G∈G pc

sup
M∈M P B

{�(G,M )}. (10)

Here, the inequality simply follows from the fact that the right side takes the supremum over the smaller set of pure
bundling mechanisms. The equality is a consequence of Lemma 1. When the seller offer a pure bundling mechanism
M ∈ M P B , for any signal G ∈ G, the profit only depends on the distribution G that the signal G induces grand bundle
values. But as Lemma 1 shows, there is a perfectly correlated signal G′ ∈ G pc that induces the same distribution G on
S. Therefore, taking the supremum over G or G pc leads to the same value.

Next, we show that

inf
G∈G

sup
M∈M

{�(G,M )} ≤ inf
G∈G pc

sup
M∈M

{�(G,M )} = inf
G∈G pc

sup
M∈M P B

{�(G,M )}. (11)

The inequality is a consequence of taking the infimum over the smaller set of signals. Finally, the equality follows from
the fact that, for any perfectly correlated signal G ∈ G pc , it is optimal for the seller to choose a pure bundling mechanism.
This is easy to show directly but we do not need to because it is a consequence of Proposition 1 in Haghpanah and
Hartline (2021).16

Taken together, the inequalities (10) and (11) imply that

inf
G∈G

sup
M∈M

{�(G,M )} = inf
G∈G pc

sup
M∈M P B

{�(G,M )}.

But the problem on the right is equivalent to solving the one-dimensional problem

inf
G∈G

sup
p∈�

{
p
∫ nθh

p
dG(s)

}
,

16. Informally, their result states that a pure bundling mechanism is optimal when types are one-dimensional and
the ratio of the value of the grand bundle N to every other bundle is non-increasing.
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in which p corresponds to a price for the grand bundle. Roesler and Szentes (2017) show that a solution (G*
, p*) to

this problem is the single good buyer-optimal outcome. Importantly, this solution has the feature that trade occurs with
probability one (that is G*

(p*) = 0).
Therefore, there is a buyer-optimal outcome (G*,M*) in which G* ∈ G pc is a perfect correlated signal that gen-

erates the distribution G* over grand bundle estimates (such a signal exists because of Lemma 1) and M* is the pure
bundling mechanism at price p*. The reason this outcome is buyer-optimal is that the maximal surplus is realized and
the signal G* generates the lowest possible profit for the seller. This also implies that trade must be efficient in every
buyer-optimal outcome. This completes the proof of the theorem and the corollary.

Proof of Theorem 4. Let F̆n denote the distribution of the average value θ1+···+θn
n and similarly, let F̆n−1 denote the

distribution of θ1+···+θn−1
n−1 where both are computed with respect to prior F. Let Ğn , Ğn−1 denote the set of signals

corresponding to F̆n , F̆n−1, respectively; these signals provide information to the buyer about the posterior estimate of
the average value.

First, consider the case with n goods and observe (from the proof of Theorem 3) that the consumer surplus from
a buyer-optimal outcome for distribution F is identical to the consumer surplus from a buyer-optimal outcome for the
sale of a single good whose prior value distribution is F . Then note that for every G ∈ G, there is a Ğn ∈ Ğn (and vice
versa) such that G(ns̆) = Ğn(s̆) for all s̆ ∈ [θ�, θh ] and therefore

∫ nθh
p [s − p]dG(s) = n

∫ θh
p/n [s̆ − p/n]dĞn(s̆) for all

p. This implies that C Sn is the consumer surplus from a buyer-optimal outcome for the sale of a single good whose
prior value distribution is F̆n and a similar relation holds when there are n − 1 goods.

Second, the distribution F̆n is a mean-preserving contraction of F̆n−1 because F is exchangeable. This in turn
implies Ğn ⊆ Ğn−1 since every mean preserving contraction of F̆n is also a mean preserving contraction of F̆n−1.
Consequently, we must have C Sn−1 ≥ C Sn since the consumer surplus in the latter is maximized over a smaller set of
signals.

D. Proof of theorem 6

The proof of Theorem 6 employs the following lemma.

Lemma 2. Take any distribution F with a positive density on its support [2θ�, 2θh ]. Let Fx be the distribution that
satisfies Fx (θ) = F(θ − x) for all θ ∈ [2θ� + x, 2θh + x]. Let π


x be the highest profit guarantee (provided by the
robustly optimal mechanism) for this distribution Fx .

Then, for every y>0, there exists an x>0, such that

π

x ≤ 2θ� + x + y for all x ≥ x .

Proof. Take an arbitrary y>0. If there is no x>0 such that π

x >2θ� + x + y, we are done. When there is such an x, we

have to show that there exists a bound x>0 such that π

x >2θ� + x + y implies x<x . So first, observe that

2θ� + x + y<π

x ≤ max

p∈[2θ�+x,2θh+x] p[1 − Fx (p)] = max
p∈[2θ�,2θh ][p + x][1 − F(p)] (12)

where the right side is the monopoly profit the seller would get against the signal that perfectly reveals the buyer’s value.
Obviously, the highest profit guarantee must be lower than the profit that the seller can get against any fixed signal.

Then, (12) implies that every p* ∈ argmaxp∈[2θ�,2θh ][p + x][1 − F(p)] must satisfy

p*>2θ� + y

as otherwise even trade with probability one would not yield the necessary profit. Therefore,

π

x ≤ max

p∈[2θ�,2θh ][p + x][1 − F(p)] ≤ [2θh + x][1 − F(2θ� + y)]

because p ≤ 2θh and trade happens with at most probability [1 − F(2θ� + y)]. Now since F(2θ� + y)>0 (as F has
positive density throughout the support), there exists an x>0 such that

[2θh + x][1 − F(2θ� + y)] ≤ 2θ� + x .

For all x ′ ≥ x , we therefore have π

x ′ ≤ 2θ� + x ′ which in turn implies x<x as required.
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As mentioned in the body of the paper, we prove a slightly more general result.

Theorem 7. Suppose n = 2 and the prior distribution is given by F = F̌ × F̌x where F̌ is supported on [θ�, θh ] and
F̌x is an x-shift of F̌ . Moreover, suppose a seller of a single good facing a buyer whose prior value distribution is F̌ can
guarantee herself a profit π̌>θ�.

Then, there is an x>0 such that for all x ≥ x, there exists a random separate sales mechanism that provides a profit
guarantee that no random pure bundling mechanism can provide.

Proof. Let Fx be the distribution over grand bundle values induced by the joint distribution F̌ × F̌x . From Lemma 2
(taking y = (π̌ − θ�)/2), there exists an x such that, for all x ≥ x , the profit guarantee provided by every random pure
bundling mechanism is less than 2θ� + x + π̌−θ�

2 .
But the seller can always guarantee herself as least a payoff of

θ� + x + π̌ = 2θ� + x + π̌ − θ�>2θ� + x + π̌ − θ�

2

by setting the price of good 2 to θ� + x (so a deterministic price equal to the lower bound of the support) and randomizing
the price of good 1 using the distribution P ∈ �(R) that provides a seller of a single good who faces a buyer whose
prior value distribution is F̌ a profit guarantee of π̌ . The latter follows from the fact that the marginal distribution G1 of
good 1 corresponding to any signal G ∈ G of the joint distribution F̌ × F̌x is a mean preserving contraction of F̌ . This
completes the proof.
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