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Abstract

We examine a model of dynamic screening and price discrimination in which the seller has limited com-
mitment power. Two cohorts of anonymous, patient, and risk-neutral buyers arrive over two periods. Buyers 
in the first cohort arrive in period one, are privately informed about the distribution of their values, and then 
privately learn the value realizations in period two. Buyers in the second cohort are “last-minute shoppers” 
that already know their values upon their arrival in period two. The seller can fully commit to a long-term 
contract with buyers in the first cohort, but cannot commit to the future contractual terms that will be offered 
to second-cohort buyers. The expected second-cohort contract serves as an endogenous type-dependent out-
side option for first-cohort buyers, reducing the seller’s ability to extract rents via sequential contracts. We 
derive the seller-optimal equilibrium and show that, when the seller cannot condition on future contractual 
terms (either explicitly or implicitly), she endogenously generates a commitment to maintaining high future 
prices by manipulating the timing of contracting.
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1. Introduction

In many contracting settings, agents have private information that changes over time. Recent 
advances in dynamic mechanism design have highlighted the benefits of using dynamic contracts 
in such settings. Different short- and long-term prices, option contracts, and introductory offers 
are all methods by which a principal can provide incentives for agents to reveal new private 
information over time; by doing so, a principal is able to make contingent decisions that extract 
greater rents than those generated by unconditional, static contracts. One of the basic intuitions 
arising from this literature is that by contracting in the earliest stages of a relationship, when her 
informational disadvantage is at its smallest, a principal can relax the participation and incentive 
constraints she faces. Thus, early contracting leads to more effective price discrimination and 
smaller information rents. This intuition arises in large part from the assumption that the principal 
is able to determine the timing of contracting. In many settings, however, such an assumption 
need not be justified: in many markets, agents are “born” or enter the market at different times, 
and they are frequently able to time their transactions or delay entry into contractual relationships. 
Moreover, a principal may be unable to prevent such delays and treat different agent cohorts 
differently.

This strategic delay by agents in the timing of contracting is even more of a concern when the 
principal has limited commitment power. We have in mind settings in which the principal can 
commit to fully enforceable long-term contracts that bind (with some restrictions) her bilateral 
relationship with individual agents, but cannot commit in advance to the contractual terms that 
may be offered in future periods. This form of limited commitment, in addition to being of natural 
theoretical interest, also arises in a variety of real-world settings. For instance, consider the mar-
ket for airline tickets. Each ticket sold for future travel is a long-term contract, complete with a 
commitment to its provisions for future refundability and exchangeability. The features of tickets 
that may be sold in the future (including prices, fare classes, and other terms and conditions) are 
not advertised or made available, nor is there any presumption that an airline is pre-committed 
to these ticket characteristics. Potential ticket buyers, on the other hand, face uncertainty about 
their value for traveling at the date in question. They must therefore decide whether to purchase 
a ticket immediately and take advantage of its option-like features (canceling the ticket if their 
realized value is low), or instead postpone their purchase in hopes of more advantageous con-
tracting opportunities in the future. Optimal ticketing schemes must take this strategic timing 
of contracting into consideration, accounting for buyers’ option values of postponing purchases 
and the impact of such behavior on the seller’s ability to extract rents from different cohorts of 
buyers.

With this in mind, the present work studies the role of limited commitment in dynamic screen-
ing with strategic agents. We construct a simple two-period model in order to isolate the role of 
limited commitment in a transparent fashion. Our model features a monopolist that faces two 
cohorts of buyers that arrive over two periods; all consumption occurs at the end of the second 
period. Each buyer in the first cohort (which arrives in the first period) initially has private in-
formation regarding the distribution from which her private value is drawn, but does not learn 
the realized value until the second period.1 Buyers in the second cohort arrive in period two, and 
already know their private value (which is drawn from a commonly known distribution). We as-
sume that buyers are anonymous, so that the seller is unable to distinguish in period two between 

1 This period-one uncertainty about the final value differentiates our sequential screening framework from the Coasian 
durable goods framework; see Bulow (1982) for a two-period durable goods model.



R. Deb, M. Said / Journal of Economic Theory 159 (2015) 891–928 893
first-cohort buyers who postponed contracting and second-cohort buyers who have just arrived 
to the market. Thus, the seller cannot prevent first-cohort buyers from contracting in period two.

A straightforward strategic tension arises in this setting. Since buyers in the first cohort learn 
their values over time, the seller has a strong incentive to sequentially screen these buyers us-
ing (dynamic) option contracts. The seller would also like to sell to buyers in the second cohort 
by offering a (static) “last-minute price” contract in period two. We assume that the seller can
credibly commit to a sequential contract offered in the first period, but that she cannot commit 
at that time—either explicitly with a promise, or implicitly with contingencies in the period-
one contract—to the contract she intends to offer in period two. That future contract affects the 
seller’s ability to screen cohort-one buyers and extract rents, however: the period-two contract 
serves as an endogenous outside option for cohort-one buyers. If the seller can commit to a rel-
atively high period-two price, this outside option becomes less attractive, and the seller’s profits 
from cohort-one buyers increase. With limited commitment, however, competition between the 
period-one seller and her future self increases the rents left to buyers and reduces the seller’s 
profits.

A simple thought experiment is helpful in illustrating the interplay between the seller’s lim-
ited commitment and buyers’ ability to strategically delay contracting. Suppose that the mass of 
cohort two is small, and suppose further that the monopoly price that corresponds to this cohort 
(in isolation) is low. If cohort-one buyers anticipate this low price, then waiting until the second 
period to contract is a very attractive outside option, and the seller’s ability to extract rents in 
period one is reduced. Note, however, that the small mass of the second cohort implies that their 
contribution to total profits is also small; therefore, a seller with full commitment power could 
(relatively costlessly) commit to forgoing profits from the second-period cohort by charging an 
excessively high second-period price, thereby reducing the option value of strategic delay for 
cohort-one buyers and increasing overall profits. A seller with limited commitment power, on 
the other hand, would be unable to carry out the threat to maintain a high price in period two. 
Because the mass of cohort two is small, however, small changes in the composition of the set 
of buyers contracting in the second period can have a large impact on the distribution of buyers’ 
values. In particular, the seller has a strong incentive to postpone contracting and encourage delay 
by some cohort-one buyers in order to generate stronger period-two demand. This delayed con-
tracting by a subset of buyers can generate (via sequential rationality) a higher period-two price 
and, hence, a commensurately lower period-one outside option—appropriate “management” of 
demand across the two periods yields the seller some measure of endogenous commitment power.

Our main result identifies the subset of cohort-one buyers that delay contracting to period two 
in the seller-optimal contract. The seller can achieve the highest period-two price (and hence 
the greatest reduction in the option value of strategic delay) by delaying buyers with the largest 
expected values. However, these buyers are precisely those for whom early contracting generates 
the greatest gains from trade. Meanwhile, delaying buyers with the lowest expected values may 
actually decrease the period-two price, thereby increasing the option value of strategic delay. 
The seller’s optimal contract therefore trades off these forces by inducing the strategic delay of 
an interior subset of “intermediate” cohort-one buyers.

This insight serves as a complement to the findings in the literature that long-term contracts 
can be used by sellers in dynamic environments to increase profits. In particular, our result shows 
that the absence of contracts with some buyers can be a useful tool for changing the composi-
tion of the buyer population in future periods and thereby constraining the seller’s own future 
behavior. This sheds new light on the role of commitment power in dynamic settings, and on the 
underlying sources of that commitment.
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In addition, note that the optimal contract with limited commitment features an interesting 
non-monotonicity: in sharp contrast to most optimal contracting results in both the static and 
dynamic mechanism design literatures, where exclusion typically follows a simple cutoff rule, 
the set of buyers in our setting that contract in the first period is disjoint. This non-monotonicity 
reduces the seller’s ability to “separate” and discriminate types in the first period. Thus, demand 
management, though valuable in raising future prices and creating endogenous commitment, 
entails an additional deadweight loss relative to the full commitment benchmark. Indeed, the 
potential for endogenous commitment arising from delayed contracting highlights the compli-
cations that arise due to limited commitment, but also suggests that studying such models can 
lead to rich predictions and insights that further our understanding of dynamic contracting in 
real-world settings.

We also extend our analysis to examine the case where, in addition to their ability to delay 
contracting, buyers are also free to recontract in the second period. (For example, a traveler may 
choose to exercise her right to a partial refund of an airplane ticket and purchase an entirely new 
ticket at a later date.) In such cases, the constraints placed on the seller by her limited ability 
to commit are exacerbated by the additional power granted to buyers. In particular, the seller 
cannot exclude buyers from the period-two spot market simply by contracting with them in the 
initial period. Effectively, this implies that the seller’s period-two price factors in the cohort-one 
buyers with the lowest expected values as they can always be enticed to “trade-in” relatively 
inefficient contracts. We provide a partial characterization of the seller’s optimal contract in this 
setting, and show that it resembles the optimal contract in the setting without recontracting: in 
both cases, the period-two price is greater than the cohort-two monopoly price, and the pattern of 
distortions relative to the full-commitment optimal contract are qualitatively similar. However, 
the timing of contracting that arises is indeterminate (among others, there exists a seller-optimal 
equilibrium in which no buyers delay contracting), and the possibility of recontracting leads to a 
further decrease in the seller’s ex ante profits.2

The present work contributes to the literature on optimal dynamic mechanism design.3 This 
literature focuses on characterizing revenue-maximizing dynamic contracts for a principal facing 
agents with evolving private information. Typically, the principal is endowed with full commit-
ment power and observes agent arrivals, enabling her to commit to excluding agents that do not 
contract immediately. Thus, in contrast to our model, all agents receive their (exogenous) reser-
vation utility if they attempt to delay contracting, thereby incentivizing contracting upon arrival. 
Baron and Besanko (1984) were the first to study such problems and point out the crucial role of 
the “informativeness” of initial-period private information about future types in determining the 
optimal distortions away from efficiency used to reduce information rents. More recently, Pavan 
et al. (2014) derive a dynamic envelope formula that is necessarily satisfied in general dynamic 
environments, and also identify some sufficient conditions for incentive compatibility.

Our model is most closely related to the now-canonical work of Courty and Li (2000), who 
demonstrate the utility of sequential screening when buyers’ private information may evolve 

2 Recontracting is typically permitted in the sale of airline tickets and hotel rooms. By contrast, for tickets to certain 
highly demanded events (including some high-profile soccer or rugby matches), buyers can choose the timing of purchase 
but are only allowed to place a single order and cannot recontract. Note that in all the above mentioned examples, the 
seller could enforce a no-recontracting policy by requiring identifying information at the time of purchase. Our results 
suggest that enforcing such a policy could be beneficial.

3 There is also an extensive literature on efficient dynamic mechanism design. See Bergemann and Said (2011) and 
Vohra (2012) for surveys of both literatures.
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between contracting and consumption.4 We extend their model in several important ways: we 
introduce a second cohort of informed buyers who arrive in period two; we allow cohort-one 
buyers to postpone contracting until the second period; and we relax the assumption that the 
principal has unlimited commitment power. The first two of these features are shared with the 
work of Ely et al. (2015), who show that a capacity-constrained seller with full commitment 
power can benefit from “overbooking” (selling more units than capacity); overdemanded units 
can then be repurchased from low-value buyers and reallocated. By committing to biasing the 
reallocation stage away from late-arriving buyers, the seller can incentivize early purchases and 
increase her profits. Full commitment also plays an important role in Deb (2014) and Garrett
(2013), who also consider models where agents’ incentives to delay contracting influence the 
optimal contracts. In related work, Armstrong and Zhou (2014) study a setting where privately 
informed buyers can either purchase immediately from a seller or incur a search cost to learn 
their value for an outside option. The seller employs sales tactics such as exploding offers and 
“buy-now” discounts to manage the timing of purchases; instead of inducing delayed contracting 
as in our setting, however, their seller uses these option-like contracts to discourage consumer 
search and induce immediate transactions.

Since our seller cannot commit in advance to contracts that might be offered in the second 
period, this paper also ties into the broader literature on dynamic contracting without full commit-
ment. In such settings, the optimal contract can often be implemented by entering into short-term 
contracts with some types while committing to long-term contracts with other types—see, for in-
stance, Fudenberg and Tirole (1990) or Laffont and Tirole (1990). In these models, leaving some 
contingencies unspecified and differentiating agents by the timing of contracting is used to ad-
dress the multiplicity of continuation equilibria, but is not necessary for optimality if multiplicity 
is not a concern (as in the present work, where the continuation equilibrium is always unique).

2. Model

2.1. Environment

We consider a monopoly seller of some good who faces a continuum of privately informed 
buyers. We normalize the seller’s constant marginal cost of production to zero, and we assume 
that she faces no capacity constraints on the quantity that she may sell. There are two periods, in 
each of which a cohort of anonymous and risk-neutral buyers arrives. Anonymity implies that, 
outside a contractual relationship, the seller is unable to distinguish in period two between buyers 
from each cohort. Each buyer has single-unit demand, and all consumption occurs at the end of 
period two. For simplicity, we assume that neither the seller nor the buyers discount the future; 
note, however, that our results remain unchanged in the presence of a common discount factor.

The first cohort of buyers consists of a unit mass of agents arriving in period one. Each 
such buyer has a private initial type λ ∈ � := [λ, ̄λ] that is drawn from the distribution F
with continuous and strictly positive density f . In period two, each buyer then learns her value 
v ∈ V := [v, v̄], where v is drawn from the (conditional) distribution G(·|λ) with strictly posi-
tive density g(·|λ). We assume throughout that all partial derivatives of G and g exist and are 
bounded.

4 Boleslavsky and Said (2013) show that sequential screening becomes “progressive” screening when buyers’ values 
are subject to additional (correlated) shocks over time. In contrast, Krähmer and Strausz (2015) show that there is no 
benefit to sequential screening when buyers have ex post participation constraints or limited (ex post) liability.
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The second cohort of buyers consists of a mass γ > 0 of new entrants arriving in period two. 
Upon arrival, each such buyer already knows her private value v ∈ V. Cohort-two values are 
drawn from the commonly known distribution H with continuous and strictly positive density h.

2.2. Additional assumptions

The following additional assumptions on primitives are maintained throughout what follows.

Assumption 1. The family of distributions {G(·|λ)}λ∈� satisfies the monotone likelihood ratio 
property: for all λ′, λ′′ ∈ � with λ′ > λ′′, g(v|λ′)

g(v|λ′′) is increasing in v.

Assumption 2. The monopoly profit functions πλ(p) := p(1 − G(p|λ)) and πH (p) := p(1 −
H(p)) are strictly concave for all p ∈ V and all λ ∈ �.

Assumption 3. Let pH := arg maxp{πH (p)} denote the cohort-two monopoly price. There exists 
some μ̂ ∈ (λ, ̄λ) such that pH = arg maxp{πμ̂(p)}.

Assumption 4. The function max
{

0, v + ∂G(v|λ)
/
∂λ

g(v|λ)
1−F(λ)

f (λ)

}
is nondecreasing in both v and λ.5

Assumption 1 implies first-order stochastic dominance, so that

Gλ(v|λ) := ∂G(v|λ)

∂λ
≤ 0 for all v ∈ V and λ ∈ �.

Thus, buyers with higher initial types expect higher values.
Assumption 2 ensures that the monopoly prices

pλ := arg max
p

{πλ(p)} and pH := arg max
p

{πH (p)}

are well-defined. Since Assumption 1 also implies the hazard rate order, pλ is increasing in λ. 
Assumption 2 also guarantees the existence and uniqueness of optimal prices when considering a 
monopolist selling to a “mixed” population consisting of a subset of cohort-one buyers alongside 
cohort-two buyers. This assumption also guarantees (via the Theorem of the Maximum) the 
continuity of these optimal prices. In concert with Assumption 1, this implies that adding a 
positive measure of sufficiently high-λ cohort-one buyers to a population increases the optimal 
price, while adding a positive measure of sufficiently low-λ cohort-one buyers decreases that 
price.

Assumption 3 implies that pH = pμ̂ ∈ (pλ, pλ̄), so that we can compare (in price-space) the 
second-cohort monopoly price pH to monopoly prices for various cohort-one initial types. Note 
that we do not require H = G(·|μ̂), so the distribution of cohort-two buyers’ values need not be 
identical to that of any type of cohort-one buyer.

5 Simply assuming that v + ∂G(v|λ)
/
∂λ

g(v|λ)
1−F(λ)

f (λ)
is everywhere increasing in both v and λ is also sufficient for our 

purposes, but rules out certain natural families of distributions that otherwise satisfy the remaining assumptions.
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Finally, we use Assumption 4 to justify a “local” first-order approach to incentive compatibil-
ity.6 It is stronger than the standard log-concavity assumption on the initial distribution of private 
information; indeed, it is a joint assumption on both the distribution F of initial types λ and the 
conditional distributions G of values. The assumption is, however, an easily verified condition 
on primitives that is satisfied in a wide variety of economic environments of interest.

One natural example satisfying these assumptions is the family of power distributions. Note 
that Assumptions 1 and 2 are satisfied when G(v|λ) = vλ for v ∈ V = [0, 1] and λ ∈ [λ, ̄λ] ⊆R+. 
If we further let H = G(·|μ̂) for any μ̂ ∈ (λ, ̄λ), then Assumption 3 is also satisfied. Finally, it is 
easy to verify that Assumption 4 holds when � = [0, 1] and F(λ) = λρ for any ρ > 0.

2.3. Contracts

In the absence of full commitment, we cannot appeal directly to the revelation principle. 
Instead, we must consider mechanisms with more general message spaces. We restrict attention 
throughout to deterministic mechanisms, with pure message-reporting strategies for buyers.7

In the initial period, the seller offers, and fully commits to, a dynamic mechanism to cohort-
one buyers. Such a mechanism is a game form D = {M11, M12, τ11, τ12, a1}, where M11 is a set 
of period-one messages; M12(m11) is a set of period-two messages; τ11(m11) is a period-one 
transfer; τ12(m11, m12) is a period-two transfer; and a1(m11, m12) ∈ {0, 1} is the eventual allo-
cation in period two. We impose the restriction that there exist m11 ∈ M11 and m12 ∈ M12 that 
correspond to non-participation in the dynamic mechanism—buyers are not compelled to partic-
ipate in the seller’s mechanism in the first period, and are also free to exit the mechanism in the 
second period.

In period two, the seller offers, and fully commits to, a static mechanism S = {M22, τ22, a2}, 
where M22 is a set of possible messages; τ22(m22) is a transfer; and a2(m22) ∈ {0, 1} is the 
resulting allocation. When recontracting is not permitted, S is offered to cohort-two buyers and 
cohort-one buyers that chose not to participate in D. When recontracting is allowed, cohort-one 
buyers participating in D may choose to exit that mechanism and then participate in S. (Note 
that buyers are free to exercise their right to not purchase within D—by sending a message 
m12 ∈ a−1

1 (0|m11) that maximizes the period-two transfer τ12(m11, m12) from the seller—and 
still go on to participate in S; this allows a buyer to, for instance, claim any refunds available from 
D and apply them towards purchasing in S.) Under both regimes, the fact that the mechanism S
is offered to cohort-one buyers not participating in D corresponds to our anonymity assumption: 
the seller is unable to distinguish between these cohort-one buyers and newly arrived cohort-two 
buyers.

Strategy profiles are defined in the standard way: they are a choice of an action at each infor-
mation set. Similarly, beliefs at each information set are defined in the usual way. These jointly 
generate outcomes: allocations and payments conditional on buyers’ types λ and values v. Thus, 

6 Analogous conditions were first imposed by Baron and Besanko (1984) and Besanko (1985). Pavan et al. (2014)
develop sufficient conditions guaranteeing the validity of the first-order approach in dynamic environments. Absent such 
conditions, a local approach may not yield global incentive compatibility—see Battaglini and Lamba (2015).

7 The restriction to deterministic mechanisms is with loss of generality. The various assumptions we impose are too 
weak to ensure that deterministic contracts are optimal—even in the simplest case of full commitment with only a single 
cohort, Courty and Li (2000) show that the principal can reduce information rents by “fine-tuning” contracts using 
randomization. A general analysis that allows for stochastic contracts is beyond the scope of the present work. A key 
difficulty lies in the absence of natural conditions that yield a tractable characterization of incentive compatible stochastic 
contracts in this dynamic multidimensional environment.
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if a buyer contracts in the initial period, the within-contract outcomes (that is, outcomes when 
contracting in the first period and remaining in a contract through the end of period two) are

{p11(λ),p12(v, λ), q1(v, λ)}v∈V,λ∈�,

where p11 is the period-one payment; p12 is the period-two payment; and q1 is the allocation. For 
buyers that enter into a period-two contract, the resulting second-period outcomes are denoted 
by

{p22(v), q2(v)}v∈V,

where p22 is the period-two payment and q2 is the allocation.8

Working directly with the underlying mechanisms D and S is intractable, as the set of possible 
contracts is large and unwieldy. Instead, we adapt the approach of Riley and Zeckhauser (1983)
and Skreta (2006) and search for optimal outcomes, with the additional restriction that these 
outcomes are implementable in a perfect Bayesian equilibrium of the “full” underlying game. 
Thus, our analysis proceeds as if the seller uses a direct revelation mechanism for cohort-one 
buyers, taking into account the constraints imposed by sequential rationality.

We must therefore account for the potential for strategic delay by cohort-one buyers. There-
fore, the period-one mechanism includes a participation decision x1 : � → [0, 1], where x1(λ)

denotes the probability with which type-λ buyers contract immediately, and (1 − x1(λ)) is the 
probability that a type-λ buyer delays contracting until the second period. Since there is a con-
tinuum of buyers, these probabilities do not generate any aggregate uncertainty about the set 
of buyers who ultimately delay contracting, and so x1(λ) and (1 − x1(λ)) also correspond to 
the fractions of type-λ buyers that contract immediately or delay until the second period, re-
spectively. In addition, we let x2(v, λ) ∈ [0, 1] denote the (conditional) probability with which a 
type-λ buyer with value v ∈ V chooses to remain in a period-one contract that they previously 
entered, while (1 − x2(v, λ)) is the probability with which they recontract and participate in the 
seller’s period-two mechanism. (When recontracting is not permitted, we simply set x2(v, λ) = 1
for all λ ∈ � and v ∈ V.)

We solve for the optimal contract by letting the seller choose x1 and x2, but require that these 
choices be consistent with rational behavior on the buyers’ part. This parallels the approach of 
Jullien (2000), who characterizes the optimal contract for an environment with exogenous type-
dependent participation constraints. In our setting, however, these constraints are endogenously 
determined, so excluding some buyers has an additional impact on the seller’s problem.9

It is important to emphasize that we have restricted the seller by ruling out first-period con-
tracts that condition on the seller’s second-period contract. (In particular, no elements of the 
period-two mechanism S are arguments of any elements of the period-one mechanism D.) In-
stead, the contracts we study are bilateral contracts that govern the relationship between the 
seller and an individual buyer and are independent of other buyers’ choices or behavior. A seller 
can, of course, generate additional commitment by offering such contracts. A simple example 
is a contract that, in period one, promises prohibitively large payments to buyers if the period-
two contract deviates from that offered by a seller with full commitment power. In this case, 

8 While the period-two mechanism S may attempt to discriminate across cohorts or initial-period types λ, this dimen-
sion of private information is payoff-irrelevant in period two; therefore, the resulting outcomes depend only on values.

9 Mierendorff (2014) examines a similar issue in a dynamic auction setting where long-lived buyers can pretend to be 
impatient. The resulting incentive constraint serves as an endogenously determined participation constraint.



R. Deb, M. Said / Journal of Economic Theory 159 (2015) 891–928 899
the resulting outcome corresponds to the full-commitment optimal contracts we describe in Sec-
tion 4.1. Another method of generating additional (but less than full) commitment power is to 
offer “coupons” that grant additional (type-dependent) discounts on the period-two price in the 
event of recontracting. (Such a scheme is not permitted in our setting, as it implicitly requires the 
period-one contract’s payment rules to depend on actions taken in the period-two mechanism.) 
Such coupons induce the seller to avoid lowering prices due to the additional cost of buyers 
cashing in their coupons.10

2.4. Buyer payoffs and constraints

With these preliminaries in hand, we can recursively define the buyers’ payoffs. We begin 
with payoffs in the second period. Define

U12(v, λ) := q1(v, λ)v − p12(v, λ)

to be the payoffs from continuing in a period-one contract in period two, and let

U22(v) := q2(v)v − p22(v)

be the payoffs from entering a period-two contract. In addition, we define the payoff of a buyer 
who recontracts in period two as

Ũ12(v, λ) := U22(v) + p̃12(λ),

where p̃12(λ) := max
{
0,maxv′

{−p12(v
′, λ)

∣∣q1(v
′, λ) = 0

}}
is the largest transfer a buyer can claim while exiting the period-one contract without purchas-
ing the good.11 Thus, the continuation payoff of a buyer who entered into a contract in period 
one is

V12(v, λ) := x2(v, λ)U12(v, λ) + (1 − x2(v, λ))Ũ12(v, λ).

We have a similar set of payoff functions for period one. The expected payoff of a cohort-one 
buyer who enters into a contract in period one is

U11(λ) := −p11(λ) +
∫
V

V12(v,λ)dG(v|λ),

while the expected payoff of a cohort-one buyer who delays contracting until the second period 
is

Ũ11(λ) :=
∫
V

U22(v)dG(v|λ).

10 “Most-favored-nation” clauses or “best-price” guarantees induce similar effects: since the seller can fully commit 
to the terms of the period-one contract, these clauses allow the seller to pre-commit to some terms of the period-two 
contract and implicitly endow her with additional long-term commitment power. See Board (2008) and Butz (1990) for 
analyses of such guarantees in dynamic durable-goods monopoly models.
11 Recall from Section 2.3 that, in addition to simply opting out in period two, buyers participating in the seller’s 
period-one mechanism are also free to exercise any contractual options not to purchase (and claim any associated refunds) 
before recontracting. Thus, p̃12(λ) reflects the buyer’s gains, if any, from her optimal exit decision.
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Finally, the overall expected payoff of a cohort-one buyer is

V11(λ) := x1(λ)U11(λ) + (1 − x1(λ))Ũ11(λ).

Of course, the outcomes (and corresponding payoffs) must be consistent with equilibrium in 
the underlying contracting game and its various subgames. We again work backwards and start 
from the second period. Note that in equilibrium, it must be the case that each type of buyer 
must prefer behaving in accordance with their type’s strategy rather than with the strategy of 
any other type. Therefore, for cohort-one buyers continuing in a period-one contract, we must 
have

U12(v, λ) ≥ q1(v
′, λ)v − p12(v

′, λ) for all v, v′ ∈ V and λ ∈ �. (IC12)

A similar requirement holds for buyers entering into a period-two contract: we must have

U22(v) ≥ q2(v
′)v − p22(v

′) for all v, v′ ∈ V. (IC22)

In period one, we require that (conditional on entering into a contract) a type-λ buyer must 
prefer her own contract to that chosen by any other type λ′ ∈ �.12 This implies that we must 
have

U11(λ) ≥ −p11(λ
′) +

∫
V

V12(v, λ′)dG(v|λ) for all λ,λ′ ∈ �. (IC11)

In addition, since each buyer is free to postpone contracting, her overall expected payoff 
must be bounded below by the option value of delay. Moreover, individual delay decisions 
(as recommended by the seller) must be optimal: a buyer’s period-one participation de-
cision must maximize her expected payoff, and a buyer should be willing to randomize 
only if she is indifferent between delaying and contracting immediately. This is summarized 
as

V11(λ) ≥ Ũ11(λ) for all λ ∈ �, with equality if x1(λ) < 1. (SD)

A similar constraint is necessary when buyers are free to anonymously recontract in period two. 
In that setting, a cohort-one buyer’s continuation utility (within a period-one contract) is bounded 
below by the option value of recontracting; thus, we must have

V12(v, λ) ≥ Ũ12(v, λ) for all v ∈ V and λ ∈ �, with equality if x2(v, λ) < 1. (R̃C)

(When recontracting is not permitted, we simply impose x2(v, λ) = 1 for all v ∈ V and λ ∈
�.)

Finally, buyer participation must be voluntary. This requires that, for all λ ∈ � and v ∈ V,

U22(v) ≥ 0, U12(v, λ) ≥ 0, and V11(λ) ≥ 0. (IR)

Notice, however, that the option value of strategic delay is sufficient to make the period-one 
participation constraint redundant whenever the period-two contract is individually rational.13

12 Since initial types are payoff-irrelevant in period two, constraints (IC12) and (IC22) preclude compound “misreports.”
13 Unlike the participation constraints in Krähmer and Strausz (2015), we place no restrictions on ex post payoffs.
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2.5. The seller’s problem

The seller’s expected profits, from the perspective of period one, may be expressed as

	1 :=
∫ ∫
�×V

x1(λ)x2(v, λ)[p11(λ) + p12(v, λ)]dG(v|λ)dF (λ)

+
∫ ∫
�×V

x1(λ)(1 − x2(v, λ))[p11(λ) − p̃12(λ) + p22(v)]dG(v|λ)dF (λ)

+
∫ ∫
�×V

(1 − x1(λ))p22(v)dG(v|λ)dF (λ) + γ

∫
V

p22(v)dH(v).

In the absence of full commitment, the seller’s second-period contract must be sequentially 
rational; in particular, the seller’s period-two mechanism must maximize her continuation prof-
its

	2 := 	1 −
∫ ∫

�

x1(λ)p11(λ)dF (λ).

Therefore, when buyers cannot recontract in the second period, the sequential rationality con-
straint can be written as

{q2,p22} ∈ arg max {	2} subject to (IC22) and (IR). (SR)

If, instead, cohort-one buyers are free to recontract in period two, then this constraint be-
comes

{q2,p22} ∈ arg max {	2} subject to (IC22), (IR), and (R̃C). (S̃R)

Note that the seller’s continuation profits 	2 (and therefore problems (SR) and (S̃R)) are unaf-
fected by measure-zero changes to the set of buyers that choose to delay or to recontract, as such 
changes do not affect the resulting distributions of values.14

Thus, when cohort-one buyers cannot recontract in period two, the seller’s problem is to

max
x1,p11,p12,q1,p22,q2

{	1} subject to (IC11), (IC12), (IR), (SD), and (SR). (P)

Similarly, when recontracting is permitted in period two, the seller solves

max
x1,p11,p12,q1,x2,p22,q2

{	1} subject to (IC11), (IC12), (IR), (SD), and (S̃R). (P̃)

14 Recall that our model features a continuum of buyers instead of finitely many agents. This implies that a strategic 
deviation by any (infinitesimal) individual buyer in our setting does not affect the distribution of agents contracting in 
each period, leaving the expected path of play unchanged. We thank an anonymous referee for pointing out an alternative 
approach that delivers identical results: suppose a single buyer privately arrives with positive probability at each date. In 
this case, strategic delay by the period-one buyer remains on path, so the period-two contract does not depend on whether 
the buyer actually arrived in period one or two.
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3. Preliminary observations

It is relatively straightforward to simplify the seller’s problem and its various constraints.15

Incorporating the incentive compatibility and strategic delay constraints into the seller’s objective 
function yields a more useable (and familiar) virtual surplus form expressing that the seller’s 
payoff as a function of the “effective” allocation rule q̄1(v, λ) alone, where we define

q̄1(v, λ) := x1(λ)x2(v, λ)q1(v, λ) + (1 − x1(λ)x2(v, λ))q2(v).

In particular, we can write the seller’s ex ante payoff as

	1 =
∫ ∫
�×V

q̄1(v, λ)ϕ1(v,λ)dG(v|λ)dF (λ) − V11(λ)

+ γ

∫
V

q2(v)ψ2(v)dH(v) − γU22(v),

where the cohort-one and cohort-two virtual surplus functions are given by

ϕ1(v, λ) := v + Gλ(v|λ)

g(v|λ)

1 − F(λ)

f (λ)
and ψ2(v) := v − 1 − H(v)

h(v)
,

respectively. Similarly, the seller’s continuation payoff is

	2 =
∫ ∫
�×V

q̄1(v, λ)ψ1(v,λ)dG(v|λ)dF (λ)

−
∫
�

[x1(λ)V12(v,λ) + (1 − x1(λ))U22(v)]dF(λ)

+ γ

∫
V

q2(v)ψ2(v)dH(v) − γU22(v),

where the virtual surplus for a cohort-one buyer with known initial type λ ∈ � is given by

ψ1(v, λ) := v − 1 − G(v|λ)

g(v|λ)
.

Finally, the assumption of deterministic mechanisms implies that the allocation rules correspond 
to cutoff policies: there exists a function k1 : � → V and a constant α ∈ V such that

q1(v, λ) =
{

0 if v < k1(λ),

1 if v ≥ k1(λ); and q2(v) =
{

0 if v < α,

1 if v ≥ α.

This cutoff behavior is inherited by the effective allocation q̄1(v, λ), which can be represented 
as a cutoff policy with threshold k̄1(λ) for all λ ∈ �.16 Of course, the stochastic order on 

15 The observations in this section, Lemma 1 aside, follow relatively standard arguments; see Appendix B for details.
16 If q̄1 is not a cutoff rule, then there exists an interval (λ1, λ2) with x1(λ) ∈ (0, 1) but k1(λ) 	= α for all λ ∈ (λ1, λ2). 
But if k1(λ) < α and q1(·, λ) is more generous than q2(·), first-order stochastic dominance implies that all types λ′ > λ

strictly prefer q1(·, λ) to q2(·). This, of course, contradicts the optimality of delay for buyers in the interval (λ1, λ2). 
A symmetric argument rules out the possibility that k1(λ) > α for λ ∈ (λ1, λ2). Thus, any agent that mixes between 
immediate contracting and delay must be receiving identical cutoffs in both.
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{G(·|λ)}λ∈� implies that higher initial types are more likely to realize values above any given 
cutoff; due to this single-crossing property, any implementable k̄1(λ) must be (weakly) decreas-
ing.

Recall that when buyers cannot recontract in period two, the seller’s period-two problem (SR)
requires maximizing continuation profits from the combined population of cohort-two buyers 
and cohort-one buyers that delayed contracting. As is well known, the optimal allocation with 
linear payoffs and indivisible goods is implemented by a posted price; the optimal such price 
solves

max
α

⎧⎨
⎩

∫
�

(1 − x1(λ))πλ(α)dF (λ) + γπH (α)

⎫⎬
⎭ . (SR′)

The period-two problem (S̃R) when cohort-one buyers are free to recontract in the second 
period is somewhat more subtle, as the seller’s choice of period-two mechanism influences—
through constraint (R̃C) and its impact on x2(v, λ)—the set of buyers that choose to recontract; 
that is, the set of participating buyers in period two is endogenously determined by the seller’s 
choice of contract. Despite this additional complication, we show that a simple price is still opti-
mal for the seller in period two (see Lemma B.4 in Appendix B, which shows that the seller does 
not use subsidies to encourage recontracting). Moreover, when faced with a price, cohort-one 
buyers will choose to recontract whenever that price is more generous (that is, lower) than their 
already-contracted cutoff. Therefore, the seller’s period-two problem (S̃R) becomes

max
α

⎧⎨
⎩

∫
�

(
x1(λ)

[
πλ(min{k1(λ),α}) − U12(v,λ)

] + (1 − x1(λ))πλ(α)
)
dF(λ)

+ γπH (α)

⎫⎬
⎭ . (S̃R

′
)

Thus, regardless of whether buyers can recontract in period two or not, the period-two contract 
takes the form of a price α ∈ V. However, this second-period price also serves as a type-
dependent outside option for each cohort-one buyer. The following result helps characterize 
when the resulting endogenous “participation” constraint (SD) binds and how it impacts the 
seller’s problem.

Lemma 1. Suppose constraint (SD) binds at some λ̂ ∈ � in the solution to either (P) or (P̃). 
Then (SD) binds at all λ < λ̂; k̄1(λ) = α for all λ ∈ (λ, ̂λ); and k̄1(λ) ≤ α for all λ > λ̂.17

The intuition behind this result is relatively straightforward. Suppose that, in an optimal con-
tract, the strategic delay constraint (SD) binds for some buyer with initial type λ1 but is slack 
for some λ2 < λ1. Incentive compatibility implies that type λ1 prefers strategic delay to λ2’s 
contract, which type λ2 in turn strictly prefers to strategic delay. Since Assumption 1 implies 
first-order stochastic dominance (so higher types have a stronger preference for the “quantity” 
allocated), this is only possible if λ2’s contract is less generous than the optimal period-two con-
tract. Thus, we must have k̄1(λ2) > α for any λ2 < λ1 for whom constraint (SD) is slack. If 

17 Note that Lemma 1 holds under both full and limited commitment, whether or not recontracting is possible.
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the seller instead offers type λ2 the period-two contract in advance (by setting k1(λ2) = α), she 
can raise her profits (the surplus from trade increases while type λ2’s payoff decreases) with-
out affecting any incentive or strategic delay constraints (as all types already have the option of 
strategic delay).

4. Optimal contracts

We now characterize the solution to the seller’s optimal contracting problem. We contrast re-
sults across four environments that are ordered with respect to the seller’s commitment power: 
full commitment when buyers cannot delay contracting; full commitment with strategic delay; 
limited commitment without recontracting; and limited commitment with recontracting. Al-
though our primary focus is on settings with partial commitment, the full-commitment settings 
provide useful benchmarks for understanding the impact of limitations on the seller’s ability to 
commit to future contractual terms.18

4.1. Full commitment

Suppose first that cohort-one buyers are unable to delay contracting or recontract in period 
two. In this case, the seller is able to treat the two cohorts of buyers separately, with no regard 
to the potential impact of the second-period contract on buyers in the first cohort. Thus, the 
seller simply charges the monopoly price pH to cohort-two buyers, while the optimal cohort-one 
contract (depicted in Fig. 1a) is essentially that of Courty and Li (2000). In particular, the linearity 
of the seller’s profits with respect to q̄1 implies that the optimal cohort-one contract is a set of 
(call) options with strike prices kND(λ) defined by

ϕ1(k
ND(λ), λ) = 0.

(To ensure that this function is well-defined, we set kND(λ) := v if ϕ1(v, λ) > 0.) Assumption 4
implies that these strike prices are decreasing in λ. Buyers also pay an (increasing) upfront pre-
mium pND

11 (λ) that is determined using the initial-period sorting constraint (IC11).

Theorem 1. (See Courty and Li, 2000.) Suppose that cohort-one buyers cannot delay contracting 
until the second period, so xND

1 (λ) := 1 for all λ ∈ �. Then the seller maximizes profits by 
offering a period-one contract {qND

1 , pND
11 , pND

12 }, where

qND
1 (v, λ) :=

{
0 if v < kND(λ),

1 if v ≥ kND(λ),
pND

12 (v, λ) := qND
1 (v, λ)kND(λ), and

pND
11 (λ) :=

v̄∫
kND(λ)

(1 − G(v|λ))dv +
λ∫

λ

v̄∫
kND(μ)

Gλ(v|μ)dvdμ,

and a period-two contract {qND
2 , pND

22 } corresponding to the fixed price pH .

When buyers can strategically delay contracting, the seller’s period-two price α now serves 
as a type-dependent outside option for cohort-one buyers and constraint (SD) must be consid-
ered. The argument of Lemma 1 applies immediately in this setting to show that whenever this 

18 For the sake of brevity, we omit proofs of the full-commitment results in Section 4.1, but they are available on request.
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(A) Without strategic delay (B) With strategic delay

Fig. 1. Optimal contracts with full commitment.

constraint binds for some type λ̂ ∈ �, it must also bind for all λ < λ̂. This observation implies 
that, when the seller can fully commit to a second-period price α, the optimal cohort-one contract 
(depicted in Fig. 1b) remains relatively simple: cohort-one buyers are offered a set of call options 
with strike prices kFC(λ) defined by

kFC(λ) := min{α, kND(λ)};
the upfront premium for kFC(λ) = α is zero; the premiums for the remaining options are dis-
counted from the no-delay premiums pND

11 (λ) by the lowest type’s option value of waiting; and 
no buyers delay contracting (since a “free” call option with strike price α is equivalent to wait-
ing).

Theorem 2. Suppose the seller fully commits to the second-period contract {qFC
2 , pFC

22 } corre-
sponding to a fixed price α, and also that cohort-one buyers can strategically delay contracting. 
Then the period-one contract {qFC

1 , pFC
11 , pFC

12 } maximizes the seller’s cohort-one profits, where

qFC
1 (v, λ) :=

{
0 if v < kFC(λ),

1 if v ≥ kFC(λ); pFC
12 (v, λ) := qFC

1 (v, λ)kFC(λ);

pFC
11 (λ) :=

v̄∫
kFC(λ)

(1 − G(v|λ))dv +
λ∫

λ

v̄∫
kFC(μ)

Gλ(v|μ)dvdμ −
v̄∫

α

(1 − G(v|λ))dv;

and all cohort-one buyers optimally choose to contract immediately, so xFC
1 (λ) := 1 for all 

λ ∈ �. Moreover, the seller’s optimal period-two contract corresponds to the fixed price αFC

that maximizes

	FC(α) :=
∫
�

v̄∫
kFC(λ)

ϕ1(v,λ)dG(v|λ)dF (λ) −
v̄∫

α

(1 − G(v|λ))dv + γπH (α),

the seller’s total profits (from both cohorts of buyers) under full commitment. Finally, αFC > pH .

Thus, a seller with full commitment power optimally increases the second-period price αFC

above the price charged in the absence of strategic delay. Doing so decreases profits derived 
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from second-cohort buyers—in the absence of potential buyers from cohort one, the seller would 
simply charge pH in the second period. This decrease is, of course, offset by two effects. First, 
the outside option of all first-cohort buyers is reduced, as delayed contracting involves a higher 
price; this implies that the induced participation constraint (SD) is relaxed somewhat, reducing 
the rents left to cohort-one buyers. Second, raising the second-period contract price allows the 
seller to mimic the distortions of the no-delay optimal contract for a larger subset of cohort-one 
buyers.

In the limit as γ shrinks to zero, the impact of cohort-two entrants on the seller’s profits 
vanishes, and the tradeoff between maximizing profits from cohort-two buyers and reducing the 
outside option of cohort-one buyers disappears. Thus, in the limit, the seller commits to αFC ≥ v̄

and no sales in the final period, thereby reducing the value of strategic delay to zero. Of course, it 
is in precisely this situation that the seller’s ability to commit is most valuable: in the absence of 
commitment to future contractual terms, cohort-one buyers will anticipate the seller’s incentive 
to decrease her second-period price should they delay contracting. It is with this in mind that we 
now turn to the seller’s problem in the face of limited commitment.

4.2. Limited commitment without recontracting

Consider the seller’s problem (P) when cohort-one buyers cannot recontract in period two. 
Using the observations of Section 3, this problem can be simplified and rewritten as

max
x1,λ̂,p11,p12,k1,α

⎧⎪⎨
⎪⎩

λ̂∫
λ

v̄∫
α

ϕ1(v,λ)dG(v|λ)dF (λ) +
λ̄∫

λ̂

v̄∫
k1(λ)

ϕ1(v,λ)dG(v|λ)dF (λ)

+ γπH (α) − V11(λ)

⎫⎪⎬
⎪⎭

subject to x1(λ) = 1 for all λ > λ̂,V11(λ) ≥ Ũ11(λ), k̄1(λ) decreasing, and (SR′). (P ′)
(Note that we denote by λ̂ the upper bound of the interval, possibly degenerate, of types λ for 
whom (SD) binds; its existence follows from Lemma 1.)

It is quite easy to see that the constraint V11(λ) ≥ Ũ11(λ) (which substitutes the tighter delay 
constraint (SD) for the participation constraint in (IR)) must bind. Therefore, we must have

V11(λ) =
∫
V

max{v − α,0}dG(v|λ) =
v̄∫

α

(v − α)dG(v|λ) =
v̄∫

α

(1 − G(v|λ))dv.

Moreover, once we fix λ̂ and x1(·), we can isolate the question of optimally choosing the cutoffs 
k1(λ).19 Recall from Lemma 1 that we must have k1(λ) ≤ α for all λ > λ̂. It is easy to see (by 
pointwise maximization for each λ > λ̂) that the optimal allocation and cutoff must then be

qLC
1 (v, λ) :=

{
0 if v < kLC(λ),

1 if v ≥ kLC(λ); where kLC(λ) :=
{

α if λ ≤ λ̂,

min{α, kND(λ)} if λ > λ̂.

19 Assumption 2 implies that, for any delay decisions x1(·), the objective function in (SR′) is strictly concave and thus 
admits a unique maximizer. Therefore, by fixing λ̂ and x1(·), we also implicitly pin down α.
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Note, as before, that Assumption 4 implies that kLC(·) is decreasing, and so the induced allocation 
rule is increasing in λ and the initial-period incentive compatibility constraint (IC11) is satisfied.

We can also determine the payment rules for the optimal period-one contract. We let

pLC
12 (v, λ) := qLC

1 (v, λ)kLC(λ), (1)

which corresponds to simply charging each buyer a strike price in period two equal to her (type-
dependent) cutoff. Meanwhile, pLC

11 (λ) is pinned down via the envelope condition corresponding 
to (IC11), where the constant of integration is simply the payoff V11(λ) received by the lowest 
type:

pLC
11 (λ) :=

v̄∫
kLC(λ)

(1 − G(v|λ))dv +
λ∫

λ

v̄∫
kLC(μ)

Gλ(v|μ)dvdμ −
v̄∫

α

(1 − G(v|λ)). (2)

Notice that pLC
11 (λ) is the immediate (limited commitment) analogue of pFC

11 (λ) from Theorem 2; 
it is identical in “form” to the full commitment case, but the cutoffs involved now differ.

Finally, we turn to characterizing the set of buyers that delay contracting. It is without loss 
of generality to consider contracts that induce all buyers within an interval to delay contracting 
(with probability one), leaving all other buyers to contract immediately. To see why this should 
be the case, consider a contract in which the seller recommends delay (with probability 1) for 
all buyers with initial types in the set �1 := [λ1, λ2] ∪ [λ3, λ4] (where λ1 < λ2 < λ3 < λ4), and 
assume (for the sake of illustration only; the remaining possibilities are covered in Appendix A) 
that the resulting period-two price is some α1 < pλ2 , where pλ2 is the monopoly price corre-
sponding to G(·|λ2). Suppose that the seller instead recommends the delay of all buyers with 
initial types in the set �2 := �1 ∪ (λ2, λ2 + ε] for sufficiently small ε > 0. Since Assumption 1
implies that type-specific monopoly prices are increasing in λ, the resulting period-two price will 
be some α2 > α1. Of course, Assumption 2 implies that the second-period price varies contin-
uously as the measure of delayed buyers changes; therefore, there exists some δ > 0 such that 
when the set of delayed buyers is �3 := �2 \ (λ4 − δ, λ4], the period-two price is α3 = α1. 
Therefore, the seller is able to maintain the same period-two price (leaving the tradeoff between 
cohort-one outside options and cohort-two profits unaffected) while decreasing the upper bound 
of the set of delayed buyers.

Of course, Lemma 1 implies that (SD) binds and k̄1(λ) = α1 for all λ ≤ λ4 when the delayed 
set is �1, while k̄1(λ) = α1 for all λ ≤ λ4 − δ when the delayed set is �3. But since δ > 0, 
delaying buyers in �3 provides the seller with greater freedom in choosing optimal cutoffs for 
types λ ∈ (λ4 −δ, λ4]; that is, by decreasing the upper bound of the set of delayed buyers from λ4
to λ4 − δ, the seller relaxes an implicit constraint in her problem and (weakly) increases profits.

Thus, any contract in which there are “gaps” in the set of delayed buyers—that is, where the 
set of delayed buyers is not connected—can be improved upon by concentrating the mass of 
delayed buyers and “closing” any gaps. The same argument also implies that there is no benefit 
to delaying only a fraction x1(λ) ∈ (0, 1) of type-λ buyers. Since the strategic delay constraint 
(SD) binds at λ if x1(λ) < 1, delaying only a fraction of type-λ buyers has the same impact on 
the seller’s ability to price discriminate in period one as delaying all type-λ buyers. However, 
delaying only a fraction of type-λ buyers attenuates the impact of delay on the second-period 
price (and ultimately requires a larger set of types to delay with positive probability, causing 
(SD) to bind over a larger interval). Thus, the seller optimally recommends deterministic delay 
to an interval of buyers.
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Lemma 2. Fix any period-one contract {x1, q1, p11, p12} with 
∫
�
(1 − x1(λ))dF (λ) > 0, period-

two price α, and total profits 	. Then there exists some μ1, μ2 ∈ � and a period-one contract 
{x̂1, q̂1, p̂11, p̂12} with

x̂1(λ) :=
{

0 if λ ∈ [μ1,μ2],
1 otherwise,

such that the induced second-period price is α̂ = α and total profits are 	̂ ≥ 	.

With this characterization in hand, we can therefore rewrite the seller’s problem as simply a 
choice of the interval of delayed types; that is, the seller must solve

max
μ1,μ2,α

⎧⎪⎨
⎪⎩

μ2∫
λ

v̄∫
α

ϕ1(v,λ)dG(v|λ)dF (λ) +
λ̄∫

μ2

v̄∫
kLC(λ)

ϕ1(v,λ)dG(v|λ)dF (λ)

+ γπH (α) −
v̄∫

α

(1 − G(v|λ))dv

⎫⎬
⎭

subject to μ1 ≤ μ2 and (SR′). (R)

The solution to this problem yields the seller’s optimal contract under limited commitment.

Theorem 3. Let μLC
1 and μLC

2 solve problem (R), define

xLC
1 (λ) :=

{
0 if λ ∈ [μLC

1 ,μLC
2 ],

1 otherwise,

and let αLC denote the solution to (SR′) given xLC
1 . Then

1. the contract {xLC
1 , qLC

1 , pLC
11 , pLC

12 } solves the seller’s problem (P);
2. αLC ∈ [pH , αFC], and if αLC ∈ (pH , αFC), then μLC

1 = μ̄ < μLC
2 , where μ̄ > μ̂ is defined by 

pμ̄ = αLC; and
3. the seller’s profits are given by

	LC := 	FC(αLC) −
max{(kND)−1(αLC),μ2}∫

(kND)−1(αLC)

αLC∫
kND(λ)

ϕ1(v,λ)dG(v|λ)dF (λ).

There are several key features of the characterization in Theorem 3 (illustrated in Fig. 2) to 
note. First, the seller delays an interval of cohort-one buyers; by doing so, she is able to in-
crease the second-period price αLC above the cohort-two monopoly price pH . This has two 
effects: it relaxes the participation constraint (SD) induced by the possibility of strategic delay, 
thereby increasing the seller’s profits from cohort-one buyers; but it also moves prices away from 
the cohort-two optimum, thereby decreasing the seller’s profits from cohort-two buyers. Notice, 
however, that the induced second-period price αLC is lower than the second-period price under 
full commitment αFC. Thus, in the absence of commitment concerns, the seller would continue 
trading off cohort-two profits in order to decrease the implicit outside option available to cohort-
one buyers. This tradeoff is not feasible when the seller has limited commitment, however; in 
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Fig. 2. Optimal contract with limited commitment and no recontracting.

order to continue increasing the period-two price, the seller needs to induce buyers with even 
higher types to delay contracting. While doing so succeeds in reducing the endogenous outside 
option in period one, it also reduces the seller’s ability to screen buyers in the first period. In par-
ticular, each additional buyer that delays contracting until the second period is a buyer whom the 
seller cannot separate in the first period and sequentially screen. This reduced screening ability 
reflects the deadweight loss of limited commitment: in order to reduce the option value of strate-
gic delay, the seller must inefficiently exclude buyers with initial types λ ∈ ((kND)−1(αLC), μLC

2 )

and realized values v ∈ (kND(λ), αLC). If, on the other hand, the seller were able to fully commit 
in advance to a period-two price equal to αLC, these buyers (indicated by the shaded region in 
Fig. 2) would not be excluded. This deadweight loss (quantified by the integral in part (3) of 
Theorem 3) is, of course, in addition to the fact that αLC is suboptimally low for a seller with full 
commitment.

Inducing delay by “intermediate” buyers remains optimal even if we drop Assumption 2 and 
weaken Assumption 1 to simple first-order stochastic dominance. In the absence of these reg-
ularity assumptions, the set of buyers who choose to delay contracting may consist of disjoint 
intervals instead of a single connected set; that is, Lemma 2 (which showed that any contract 
can be improved by “coalescing” all delayed buyers into an interval) may fail in the absence of 
concavity and continuity. Weaker assumptions (such as monotone hazard rates or appropriately 
ordered virtual values) are not sufficient, as they generally imply only that the monopoly profit 
functions πλ(·) are quasi-concave without imposing additional structure on the behavior of these 
functions away from their (single) peaks. This in turn implies that it is possible to achieve a higher 
period-two price by delaying the disjoint interval of types [μ

1
, μ

2
] ∪ [μ1,μ2] (with μ

2
< μ1) 

instead of delaying any single interval [μ′
1, μ

′
2] with μ

1
≤ μ′

1 ≤ μ′
2 ≤ μ2. Even when this is the 

case, however, these disjoint intervals remain “intermediate” in the sense of Theorem 3. This fol-
lows from Lemma 1’s implication that delay by a relatively “high” buyer type forces the pooling 
of all lower types. This pooling prevents the seller from offering more efficient contracts to the 
more valuable high-λ buyers and then extracting that increased surplus via screening and price 
discrimination.

Note further that there is, in general, a gap between the type μ̂ corresponding to the cohort-
two monopoly price and the lower bound of the interval of delayed types. To see why this is 
the case, notice that as we increase the mass of cohort-one buyers who delay contracting, we 
decrease the responsiveness of the sequentially rational second-period price to the composition 
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of that set. Thus, increasing the second-period price is most efficiently achieved by inducing the 
delay of a relatively small set of buyers with moderately high monopoly prices (as opposed to a 
large set of buyers with low-to-intermediate monopoly prices). This implies that the optimal con-
tract in the case of limited commitment will generally display an interesting non-monotonicity: 
cohort-one buyers with relatively low and relatively high initial-period types will contract in the 
initial period, while intermediate initial-period types will delay contracting to the second period.

Finally, note that we have thus far analyzed this dynamic contracting problem using a “reduced 
form” approach that focuses on the allocations and payments generated by equilibrium behav-
ior. We have not yet verified, however, that there indeed exists a perfect Bayesian equilibrium in 
the underlying game that implements the optimal contract described above. Suppose, however, 
that the seller offers the menu of call options M := {(0, αLC)} ∪ {(pLC

11 (λ), kLC(λ))|λ > μLC
2 }

in the first period, where each (τ1, τ2) ∈ M denotes an upfront premium τ1 that guarantees the 
period-two strike price τ2. If each cohort-one buyer expects that all buyers with initial-period 
types λ ∈ [μLC

1 , μLC
2 ] will delay contracting, then they will expect the seller to (rationally) set a 

price αLC in the second period. Moreover, as each buyer is infinitesimal, a unilateral deviation in 
the timing of contracting will not affect the seller’s second-period pricing problem (SR). Since 
constraints (IC11) and (SD) are satisfied in the contract described in Theorem 3, this implies that 
it is, in fact, optimal for buyers with λ < μLC

1 to choose the (0, αLC) option; for intermediate buy-
ers with λ ∈ [μLC

1 , μLC
2 ] to reject the menu and delay contracting; and for buyers with λ > μLC

2
to choose the (pLC

11 (λ), kLC(λ)) option. This, of course, justifies the seller setting a period-two 
price αLC. Finally, the strike prices have been chosen to implement the optimal cohort-one allo-
cation rule qLC

1 . Thus, the contract described in Theorem 3 is indeed implementable in a perfect 
Bayesian equilibrium.

4.3. Limited commitment with recontracting

We now turn to the seller’s problem (P̃) when cohort-one buyers are free to recontract in the 
second period. The solution is complicated by the fact that, unlike the no-recontracting case, the 
seller’s period-two problem (S̃R

′
) depends not only on the distribution of cohort-one buyers who 

delayed contracting, but also on the allocations promised to buyers who did not delay. This is 
because recontracting is advantageous for all buyers whose allocation from a contract signed in 
period one is less generous (has a higher cutoff) than the period-two price. Note that this will be 
the case irrespective of how the seller chooses to implement (via option contracts, refunds etc.) 
the period-one contract.

Again taking advantage of the observations in Section 3, the seller’s problem (P̃) becomes

max
x1,λ̂,p11,p12,k1,α

⎧⎪⎨
⎪⎩

λ̂∫
λ

v̄∫
α

ϕ1(v,λ)dG(v|λ)dF (λ) +
λ̄∫

λ̂

v̄∫
k1(λ)

ϕ1(v,λ)dG(v|λ)dF (λ)

+ γπH (α) − V11(λ)

⎫⎪⎬
⎪⎭

subject to x1(λ) = 1 for all λ > λ̂,V11(λ) ≥ Ũ11(λ), k̄1(λ) decreasing, and (S̃R
′
). (P̃ ′)

(Note that λ̂ again denotes the upper bound of the interval, possibly degenerate, on which (SD)
binds; its existence follows from Lemma 1.)
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As in the case where buyers cannot recontract in period two, the effective participation con-
straint V11(λ) ≥ Ũ11(λ) must bind; therefore, we must have V11(λ) = ∫ v̄

α
(1 −G(v|λ))dv. We can 

also pin down the optimal payment rules for buyers contracting in period one. We again make use 
of option contracts in which buyers are charged a period-two strike price equal to their contracted 
cutoffs, and the upfront premiums are determined via the envelope formulation of (IC11). There-
fore, the payment rules are as in (1) and (2), but using the appropriate cutoffs kL̃C

1 (λ). As before, 

these payments implement the optimal allocations if the effective cutoffs k̄L̃C
1 (λ) are decreasing.

We first observe that, as in the case without recontracting, the optimal period-two price cannot 
be less than pH . Recall that when recontracting was prohibited, the seller could always ensure 
that the period-two price was at least pH (for instance, by contracting with all cohort-one buyers 
in the first period). The intuition for this similar result with recontracting is more subtle. Suppose 
the optimal period-two price were α′ < pH . This would only be possible if seller was contracting 
in period two with some cohort-one buyers (either via delay or recontracting) in addition to 
the mass of newly arrived cohort-two buyers. Instead, the seller could “lock in” buyers who 
take advantage of that price by offering a free (zero premium) option with strike price α′ in 
period one. Doing so will induce the same cohort-one allocation and profits (without affecting 
any incentives). Note however, that by doing so, it is no longer optimal for the seller to lower 
her price to α′ in period two. Instead, the sequentially rational period-two price would be pH . 
Consequently, this alternate contract would result in a gain of profits from cohort-two buyers and 
a reduced value for the delay option in period one (which implies the seller can charge more in 
the first period) contradicting the optimality of α′ < pH .

Lemma 3. In an optimal contract, the solution α∗ to problem (S̃R
′
) is such that α∗ ≥ pH .

We focus on the case where the seller optimally induces a period-two price strictly greater 
than pH . This case is particularly interesting as the optimal contract is qualitatively similar to the 
no-recontracting optimum described in Theorem 3, thereby isolating the influence of recontract-
ing possibilities on the timing of contracting and the resulting impact on the optimal contract. 
As before, the seller pools all buyers with initial types below a cutoff λ̂, providing them with 
effective allocations equivalent to the period-two contract; all types above the cutoff receive the 
full-commitment-optimal allocations. By contrast, the period-two price is the seller’s optimal 
price when selling to cohort two combined with the entire interval [λ, ̂λ]: it is no longer sequen-
tially rational for the seller to charge a greater price that would only be optimal when delaying a 
strict subset of that interval consisting of relatively higher types. This is because the seller would 
have an incentive (that is not present when recontracting is prohibited) to drop her price and cap-
ture the additional period-two gains from recontracting with relatively lower types. Therefore, 
while the pattern of (additional) distortions is the same, their magnitude is greater when buyers 
are free to recontract in period two.

Theorem 4. Suppose that the optimal contract induces a period-two price αL̃C > pH . Then there 
exists some λ̂ ≥ (kND)−1(αL̃C) such that

αL̃C ∈ arg max
α

⎧⎪⎨
⎪⎩

λ̂∫
λ

πμ(α)dF (μ) + γπH (α)

⎫⎪⎬
⎪⎭ and k̄L̃C

1 (λ) =
{

αL̃C if λ ≤ λ̂,

kND(λ) if λ > λ̂.

Moreover, the seller’s profits are 	L̃C ≤ 	LC.
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While Theorem 4 characterizes the allocations to period-one buyers, it is relatively unrestric-
tive along one important dimension. While the equilibrium requires xL̃C

1 (λ) = 1 for all λ > λ̂, as 
these initial types receive strictly more generous contracts than what might be achieved via delay, 
our result is completely agnostic, however, about the delay decisions for initial types λ ≤ λ̂. The 
outcomes would be identical if all such buyers delayed contracting—the conditions in Theorem 4
guarantee that the seller’s optimal price given delay by all such buyers is equal to αL̃C. Likewise, 
the seller could simply offer all buyers in this interval a contract in period one that “locks in” the 
ultimate period-two outcome in advance (as was optimal in the case where contracts could not 
be broken); the resulting optimal period-two price that solves (S̃R) would again be exactly αL̃C. 
Indeed, many other types of contracts, as well as different combinations thereof across buyer 
types, yield the same outcome. And while this multiplicity in possible delay decisions stands 
in contrast to the sharp characterization in Theorem 3, it should not be too surprising: just as 
renegotiation-proof contracts can be used to preclude the possibility of contract renegotiation on 
the equilibrium path, it is possible to write “recontracting-proof” contracts in the present setting 
that preempt the possibility of recontracting on the equilibrium path.

Of course, the irrelevance of the recontracting constraint for the timing of contracting on 
the equilibrium path does not imply payoff irrelevance; rather, the recontracting constraint that 
differentiates problem (SR) from (S̃R) has a negative impact on the seller’s rent extraction ability. 
This is most simply demonstrated by a revealed-preference argument. Theorem 4 demonstrates 
that the optimal contract when recontracting is possible can be achieved by delaying contracting 
with all buyers in the interval [λ, ̂λ] for some λ̂ ∈ �, while offering all buyers with types λ > λ̂

the full-commitment allocations kND(λ) described in Theorem 1. This is, of course, a feasible 
contract under the limited commitment without recontracting regime. In this no-recontracting 
regime, however, the interval of delayed types (characterized in part (2) of Theorem 3) is strictly 
interior; therefore, the ability of buyers to recontract in the second period decreases the seller’s 
payoff. Intuitively, the seller can always sell to all cohort-one types in period two by offering 
a low enough price (irrespective of whether they contracted in the first period or not) whereas, 
without recontracting, low cohort-one types can effectively be removed from the period-two 
market. As a consequence, a seller who can choose whether or not to bar recontracting and 
exclude buyers who contracted in the past would like to “renegotiate” with some cohort-one 
buyers and capture a portion of the efficiency gains arising from a lower price. Precisely in order 
to avoid this temptation, the seller in period one benefits from banning recontracting entirely 
(perhaps by keeping records on buyer identities and imposing a “one-transaction-per-customer” 
rule).

The following proposition identifies an intuitive sufficient condition under which the period-
two price in the optimal contract satisfies αL̃C > pH (the required assumption for Theorem 4).

Proposition 5. Define λH := (kND)−1(pH ) and suppose that λH > λ. In addition, suppose 

that pH < arg maxα

{∫ λH

λ
πμ(α)dF (μ)

}
. Then the optimal contract induces a period-two price 

αL̃C > pH .

The condition in Proposition 5 holds in settings where both (a) the period-two monopoly 
price pH is low relative to the prices attainable by delaying cohort-one buyers; and (b) the opti-
mal full-commitment contract from Theorem 1 entails substantially larger distortions away from 
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efficiency for low initial-period types than for cohort-two buyers.20 Intuitively, maintaining a 
period-two price greater than pH in such settings allows the seller to simultaneously reduce 
the incentives for delay while ensuring that allocations to cohort-one buyers are closer to the 
no-delay optimal schedule kND(·).

It is also possible for the optimal contract to induce a period-two price equal to the cohort-two 
monopoly price (that is, αL̃C = pH ).21 The key difficulty in characterizing the optimal contract 
in such cases is that the strategic delay constraint (SD) may only bind at the lowest type λ. When 
this is the case, Lemma 1’s implication that constraint (SD) leads to pooling no longer has any 
bite. Therefore, the seller’s contracting problem involves optimally choosing a decreasing sched-
ule of cutoffs that trade off proximity to the no-delay optimal schedule kND(·) with resilience to 
the incentive to cut prices. Although this appears to be a natural candidate for an optimal con-
trol approach, the sequential rationality constraint (S̃R

′
) is not easily incorporated into such a 

problem.
This is not to say, however, that the optimal contract is entirely indeterminate when the seller 

optimally implements a period-two price αL̃C = pH . It is straightforward to argue that the opti-
mal cutoffs in such a case must “eventually” coincide with kND(·) (that is, k̄L̃C

1 (λ) = kND(λ) for 
sufficiently large λ ∈ �). This follows from the usual “no-distortion-at-the-top” logic in which 
the surplus obtainable from the highest cohort-one types is large enough that—absent sequen-
tial rationality considerations—the seller wishes to offer them approximately efficient contracts. 
Such types are therefore promised allocations with cutoffs so low as to not be tempted by any 
prices that the seller might rationally charge in the second period. Thus, the sequential rationality 
constraint is generally satisfied “for free” at the top end of the type distribution.

5. Concluding remarks

A critical assumption in our analysis is our assumption, as is common in the dynamic 
mechanism design literature, that the distribution of values G(·|λ) for any type λ first-order 
stochastically dominates that of any lower type λ′ < λ. A natural alternative ordering is one in 
which higher types face greater uncertainty about their realized values (in the sense of second-
order stochastic dominance). Indeed, Courty and Li (2000) also examined a special case of 
second-order stochastic dominance in which the family of distributions {G(·|λ)}λ∈� are rotation 
ordered.22 They showed that, under certain additional conditions on the allocation rule, mono-
tonicity of the optimal cutoffs kND(·) continues to be sufficient for incentive compatibility and 
hence optimality. The additional assumptions ensure that the cutoffs kND(·) are in regions where 
the cumulative distributions are ordered in a well-behaved manner similar to first-order stochastic 
dominance.

Unfortunately, our analysis in the present work does not in general extend to such type spaces. 
(In the special case where both kND(·) and pH are larger than the distributional rotation point, our 
results extend immediately. In this case, all the relevant allocations occur in a region where types 

20 Consider a simple power family of distributions as described in Section 2.2: � = V = [0, 1], F(λ) = λ, G(v|λ) = vλ, 
and H(v) = G(v|μ̂). Then the condition in Proposition 5 is satisfied whenever μ̂ is less than approximately 0.3.
21 This occurs, for example, when � = [1, 2], V = [0, 1], F(λ) = λ, G(v|λ) = 1 − (1 − v)1/λ, H(v) = G(v|1.5), and 
we impose a positive marginal cost c = 0.2. Even if the mass of cohort-two buyers is very small (γ = 0.001, for instance), 
the optimal contract with recontracting is characterized by αL̃C := pH > kND(λ) =: k̄L̃C

1 (λ) for all λ ∈ �.
22 In the rotation order, all distributions G(v|λ) pass through a single point z ∈ V. Moreover, G(v|λ) is increasing in λ
for all v < z and decreasing in λ for all v > z. For more on this order, see Johnson and Myatt (2006).
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are ordered “as though” by first-order stochastic dominance.) One difficulty arises in identifying 
the set of types for which the strategic delay constraint (SD) binds in an optimal contract—
even for a fixed period-two price. In particular, finding an analogue to Lemma 1 is difficult 
because there is no general relationship governing the relative rankings of the cutoffs kND(·) and 
the period-two price α; the utility from either may be increasing, decreasing, or simply non-
monotone in λ. An additional complication arises in fully characterizing initial-period incentive 
compatibility: without the structure imposed by first-order stochastic dominance, general nec-
essary and sufficient conditions for incentive compatibility are not known. This precludes the 
“first-order approach” to solving for optimal contracts, thereby necessitating a consideration of 
“global” incentive compatibility constraints as in Battaglini and Lamba (2015).

There are a number of other natural generalizations of our model. One such extension is to 
allow for uncertain market conditions in the second period; for example, suppose that the mass 
γ of cohort-two entrants is randomly drawn from some distribution. When the seller can observe 
the realization of this draw before choosing her period-two mechanism, the price charged in the 
second period becomes (from the perspective of a cohort-one buyer) a random variable. Clearly, 
there exists some deterministic “certainty equivalent” contract for each initial-period type λ such 
that the buyer receives exactly the same utility from contracting immediately instead of delaying 
contracting to period two. However, first order stochastic dominance is not sufficient to guarantee 
that this certainty equivalent price is well-behaved and monotonically decreasing in λ. Since in-
centive compatibility requires monotonicity in the effective allocation rule, this implies that there 
can no longer be an interval of types contracting in the initial period for whom the “induced par-
ticipation constraint” binds. This, in turn, complicates the seller’s revenue management problem 
as she now must provide rents (beyond this endogenous outside option) to low initial types to 
prevent them from delaying contracting until the second period.

A second natural extension of our framework provides a tractable model to study a seller 
without commitment who has a limited supply of the good.23 Since we have a continuum of 
buyers in each period, there is no aggregate uncertainty regarding the distribution of values of 
cohort-one buyers in the second period. Thus, for a given contract, the seller knows exactly the 
quantity promised to cohort-one buyers who contract in the first period. This precludes over-sale 
situations in which the seller promises a greater quantity than her available supply. Moreover, 
it is easy to see that the optimal second-period price is simply determined by market-clearing. 
Despite this apparent simplicity, however, the case of limited supply introduces some additional 
complexity: in addition to determining which cohort-one buyer purchases should be postponed to 
the second period, the seller must also determine the constraint on period-two supply remaining 
after period-one contracting. In particular, offering generous contracts in the first period ensures 
that there is greater scarcity and increased competition in the second period, thereby inducing 
higher prices.24 Understanding the tradeoffs involved when the seller has an additional avenue 
for endogenously generating commitment power is certainly an interesting question, but is also 
one that is beyond the scope of the present work.

23 In a full-commitment model very similar to our own, Ely et al. (2015) show that “overbooking” and then repurchasing 
pre-committed capacity can improve profits over a simple auction for limited capacity. In related work, Hinnosaar (2015)
shows that the sale of conditional promises of allocation can be revenue-maximizing when overlapping generations of 
buyers compete for limited supply.
24 This is similar to the intuition (in a model with fully persistent private information) of Dilme and Li (2014), where 
the seller holds occasional fire-sales in order to endogenously commit to future supply restrictions.
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Finally, we emphasize that the nature of the seller-optimal equilibrium depends delicately 
on the class of contracts available to her. As discussed in Section 2.3, if the seller can offer 
period-one contracts that condition (either explicitly or implicitly) on the period-two price, she 
can generate additional commitment power and profits. Thus, our characterization of the full- and 
limited-commitment outcomes provides bounds on the best- and worst-case payoffs the seller can 
achieve. The mapping between the richness of a contractual language and the payoff it allows 
(within these bounds) is a natural question that we leave for future study.

Appendix A. Omitted proofs from Section 4

Proof of Lemma 1.25 Fix any λ̂ at which constraint (SD) binds, and fix any λ′ ∈ �. Of course, 
if x1(λ

′) = 0, k̄1(λ
′) = α by definition; therefore, assume that x1(λ

′) > 0. Recall that

V11(λ̂) := x1(λ̂)U11(λ̂) + (1 − x1(λ̂))Ũ11(λ̂)

≥ x1(λ
′)

⎛
⎝∫

V

V12(v, λ′)dG(v|λ̂) − p11(λ
′)

⎞
⎠ + (1 − x(λ′))Ũ11(λ̂)

= V11(λ
′) + x1(λ

′)
∫
V

[V12(v, λ′) − U22(v)]d[G(v|λ̂) − G(v|λ′)]

+ (Ũ11(λ̂) − Ũ11(λ
′))

≥ x1(λ
′)

∫
V

[V12(v, λ′) − U22(v)]d[G(v|λ̂) − G(v|λ′)] + Ũ11(λ̂),

where the final inequality is strict if (SD) is slack at λ′. (The first equality is the definition of 
V11(λ̂); the next line follows from (IC11); the third from the definition of V11(λ

′); and the final 
line from (SD).) Note, however, that (SD) binds at λ̂, implying that V11(λ̂) = Ũ11(λ̂). Therefore,

0 ≥
∫
V

[V12(v, λ′) − U22(v)]d[G(v|λ̂) − G(v|λ′)]

=
∫
V

[q2(v) − q̄12(v, λ′)][G(v|λ̂) − G(v|λ′)]dv =
k̄12(λ

′)∫
α

[G(v|λ̂) − G(v|λ′)]dv,

where the first equality follows from integration by parts, and the second from the cutoff property 
of the allocations. Since {G(·|λ)}λ∈� is ordered by first-order stochastic dominance, however, 
this inequality holds only if k̄1(λ

′) ≤ α for all λ′ > λ̂, and k̄1(λ
′) ≥ α for all λ′ < λ̂ (with strict 

inequalities if (SD) is slack at λ′).
With this observation in hand, fix an optimal contract (denoted with a ∗ superscript) and let

λ̂ := sup{λ|V11(λ) = Ũ11(λ)};

25 Note that the various steps of this proof apply, except where explicitly noted, to both problems (P) and (P̃); the 
argument also extends immediately to the full-commitment setting described in Section 4.1.
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that is, λ̂ is the largest type for which constraint (SD) binds. Now suppose that there exists some 
μ̃ < λ̂ such that (SD) is slack. (Note that this requires x∗

1 (μ̃) = 1. Moreover, both of these two 
properties must hold in a neighborhood of μ̃ due to the absolute continuity of both V11 and Ũ11.)

We now define a new contract, which we denote with a ∗∗ superscript, by

q∗∗
1 (v, λ) :=

{
q∗

2 (v) if λ ≤ λ̂,

q∗
1 (v, λ) if λ > λ̂; p∗∗

11(λ) :=
{

0 if λ ≤ λ̂,

p∗
11(λ) if λ > λ̂; and

p∗∗
12(v, λ) :=

{
p∗

22(v) if λ ≤ λ̂,

p∗
12(v, λ) if λ > λ̂.

We will show that this contract, when combined with an appropriate delay recommendation x∗∗
1 , 

has three important properties: (a) it induces a period-two price α∗∗ = α∗; (b) it satisfies the 
various incentive compatibility constraints; and (c) increases the seller’s profits.

We begin by defining the x∗∗
1 separately for problems (P) and (P̃), and show that α∗ = α∗∗:

• Problem (P): for all λ ∈ �, let x∗∗
1 (λ) = x∗

1 (λ). Since the composition of the set of de-
layed buyers is identical in the two contracts, the period-two problem in (SR′) is unchanged. 
Therefore, α∗∗ = α∗.

• Problem (P̃): for all λ ∈ �, let x∗∗
1 (λ) = 1. Note that we can write the seller’s objective 

function from (S̃R
′
) as

	2(α|x1, k1) = γπH (α) +
∫
�

(1 − x1(λ))πλ(α)dF (λ)

+
∫
�

x1(λ)πλ(min{α, k1(λ)})dF (λ),

ignoring the 
∫
�

x1(λ)U12(v, λ)dF (λ) term that is independent of α. For all α ≤ α∗, we have

	2(α|x∗
1 , k∗

1) = γπH (α) +
λ̂∫

λ

(1 − x∗
1 (λ))πλ(α)dF (λ) +

λ̄∫
λ̂

(1 − x∗
1 (λ))πλ(α)dF (λ)

+
λ̂∫

λ

x∗
1 (λ)πλ(min{α, k∗

1(λ)})dF (λ)

+
λ̄∫

λ̂

x∗
1 (λ)πλ(min{α, k∗

1(λ)})dF (λ)

= γπH (α) +
λ̂∫

λ

πλ(α)dF (λ) +
λ̄∫

λ̂

πλ(min{α, k∗
1(λ)})dF (λ)

= γπH (α) +
λ̂∫

λ

πλ(min{α,α∗})dF (λ) +
λ̄∫

λ̂

πλ(min{α, k∗
1(λ)})dF (λ)

= 	2(α|x∗∗, k∗∗),
1 1
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where the first equality is the definition of 	2; the second follows from k∗
1(λ) ≥ α∗ for all 

λ < λ̂ and x∗
1 (λ) = 1 for all λ > λ̂ (as constraint (SD) must be slack there); and the last line 

from the definitions of x∗∗
1 and k∗∗

1 . Thus, since α∗ is optimal under the ∗ contract, we must 
have 	2(α

∗|x∗∗
1 , k∗∗

1 ) ≥ 	2(α|x∗∗
1 , k∗∗

1 ) for all α ≤ α∗. Moreover, for any α′ > α∗,

	2(α|x∗∗
1 , k∗∗

1 ) = γπH (α) +
∫
�

πλ(min{α, k∗∗
1 (λ)})dF (λ)

= γπH (α) +
∫
�

πλ(k
∗∗
1 (λ))dF (λ),

since k∗∗
1 (λ) = α∗ for all λ ≤ λ̂ and k∗∗

1 (λ) = k∗
1(λ) < α∗ for all λ > λ̂ (where the strict 

inequality follows from the observation above). Therefore,

	2(α|x∗∗
1 , k∗∗

1 ) − 	2(α
∗|x∗∗

1 , k∗∗
1 ) = γ (πH (α) − πH (α∗)) < 0,

where the inequality follows from the strict concavity of πH Lemma 3. Thus, α∗∗ = α∗.

Since α∗∗ = α∗, the value of delay is unchanged from the ∗ contract, so (SD) remains satis-
fied. In addition, the ∗∗ contract satisfies (IC12) and (IC22) because it yields cutoff allocations. 
Constraint (IC11) is trivially satisfied for types λ > λ̂, as they see no change in their “designated” 
contract and have fewer possible deviations. As for types λ ≤ λ̂, note that for all λ′ > λ̂,

V ∗∗
11 (λ) −

⎛
⎝−p∗∗

11(λ′) +
∫
V

V ∗∗
12 (v, λ′)dG(v|λ)

⎞
⎠

=
∫
V

[
U∗∗

22 (v) − V ∗∗
12 (v, λ′)

]
dG(v|λ) + p∗∗

11 (λ′)

≥
∫
V

[
U∗∗

22 (v) − V ∗∗
12 (v, λ′)

]
dG(v|λ̂) + p∗∗

11(λ′)

= V ∗
11(λ̂) −

⎛
⎝−p∗

11(λ
′) +

∫
V

V ∗
12(v, λ′)dG(v|λ̂)

⎞
⎠ ≥ 0.

The first equality above follows from (SD) binding at λ; the first inequality from the facts that 
G(·|λ̂) stochastically dominates G(·|λ) and that ∂

∂v
[U∗∗

22 (v) − V ∗∗
12 (v, λ′)] = q∗

2 (v) − q∗
1 (v, λ′) ≤

0; the next equality from the definition of λ̂ and the fact that our construction leaves the contracts 
for all λ′ > λ̂ unchanged; and the final inequality follows from the incentive compatibility of the 
original ∗ contract. Thus, the new contract ∗∗ satisfies (IC11).

We now consider the change in the seller’s period-one profits, which can be written as

	∗∗
1 − 	∗

1 =
λ̂∫

λ

∫
V

v[q̄∗∗
1 (v, λ) − q̄∗

1 (v, λ)]dG(v|λ)dF (λ) +
λ̂∫

λ

[V ∗
11(λ) − V ∗∗

11 (λ)]dF(λ).

However, q̄∗∗
1 (v, λ) ≥ q̄∗

1 (v, λ) for all v ∈ V and all λ ∈ �, while V ∗
11(λ) ≥ V ∗∗

11 (λ) for all λ ∈ �

(with strict inequality in a neighborhood of μ̃). Thus, 	∗∗ −	∗ > 0, contradicting the optimality 
1 1
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of the original ∗ contract. Therefore, we may conclude that (SD) must bind for all λ < λ̂, as 
desired.

Finally, note that this implies that (SD) binds at λ. Then for any μ ∈ (λ, ̂λ), the first observa-
tion of this proof implies α ≥ k̄1(μ) ≥ α, so k̄1(μ) = α. �
Proof of Lemma 2. Consider the original contract, and let μ̄ := sup{λ|x1(λ) < 1} denote the 
largest initial-period type that delays contracting with positive probability. Note that Assump-
tion 2 implies that the objective function in (SR′) is strictly concave, so its associated first-order 
condition is necessary and sufficient to characterize the induced period-two price; that is, α solves∫

�

(1 − x1(λ))π ′
λ(α)dF (λ) + γπ ′

H (α) = 0.

Recalling that Assumption 3 guarantees the existence of some initial-period type μ̂ ∈ (λ, ̄λ) such 
that pH = pμ̂, Assumptions 1 and 2 jointly imply that there also exists some μ∗ ∈ � such that 
α = pμ∗ . Moreover, we must have π ′

λ(α) > 0 for all λ > μ∗, and that π ′
λ(α) < 0 for all λ < μ∗.

Thus, the first-order condition induced by x1 can be written as X1 + X2 + π ′
H (α) = 0, where

X1 :=
min{μ∗,μ̄}∫

λ

(1 − x1(λ))π ′
λ(α)dF (λ) and X2 :=

μ̄∫
min{μ∗,μ̄}

(1 − x1(λ))π ′
λ(α)dF (λ),

and note that X1 ≤ 0 ≤ X2. Finally, we define

Y1(z) :=
min{μ∗,μ̄}∫

z

π ′
λ(α)dF (λ) and Y2(z) :=

z∫
min{μ∗,μ̄}

π ′
λ(α)dF (λ).

Notice that Y1(min{μ∗, μ̄}) = 0 and Y1(λ) ≤ X1, and that Y1(z) is strictly increasing, so there 
exists a unique μ1 ∈ [λ, min{μ∗, μ̄}] with Y1(μ1) = X1. Similarly, Y2(min{μ∗, μ̄}) = 0, and 
Y2(μ̄) ≥ X2, and Y2(z) is strictly increasing, so there exists a unique μ2 ∈ [min{μ∗, μ̄}, μ̄] with 
Y2(μ2) = X2.

We then define x̂1 by x̂1(λ) := 0 for all λ ∈ [μ1, μ2] and x̂1(λ) := 1 for all λ /∈ [μ1, μ2]. Then∫
�

(1 − x̂1(λ))π ′
λ(α)dF (λ) + γπ ′

H (α) = Y1(μ1) + Y2(μ2) + γπ ′
H (α)

= X1 + X2 + γπ ′
H (α) = 0;

that is, the first-order condition induced by x̂1 also yields a period-two price α̂ = α. Thus, the 
option value of strategic delay is the same under both x1 and the newly constructed x̂1.

Of course, Lemma 1 implies that (SD) binds and k̄1(λ) = α for all λ < μ̄ when delay is given 
by x1, and also that k̄1(λ) = α for all λ < μ2 when delay is given by x̂1. But since μ2 ≤ μ̄, 
delay given by x̂1 provides the seller with greater freedom in choosing optimal cutoffs for types 
λ ∈ [μ2, μ̄]. Thus, by decreasing the upper bound of the set of delayed buyers from μ̄ to μ2, we 
have relaxed an “implicit” constraint on the seller’s problem, implying that 	̂ ≥ 	. �
Proof of Theorem 3. Suppose first that μLC

1 and μLC
2 solve problem (R). Note that constraints 

(IC12) and (IC22) are satisfied by construction; in addition, Assumption 4 implies that the effec-
tive allocation rule is monotone in λ. Invoking Lemmas B.1 and B.3, the contract is incentive 
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compatible. Finally, it is trivial to verify that each buyer’s expected utility from the cohort-one 
contract is greater than the expected value of delay, so constraint (SD) is also satisfied. Thus, the 
proposed contract does indeed solve the seller’s problem (P).

It is easy to see that we cannot have αLC < pH . Delaying some cohort-one buyers in order 
to reduce the second-period price below pH has two effects: it reduces the profits derived from 
cohort-two buyers (which are, by definition, maximized at pH ), and it also increases the utility 
that must be promised to all cohort-one buyers while decreasing the seller’s ability to price 
discriminate. Each of these forces decreases overall profits, and so we must have αLC ≥ pH .

Denote by α(μ1, μ2) the period-two price induced when the set of delayed buyers is an inter-
val [μ1, μ2] (which is without loss by Lemma 2). Then the seller’s profits from the objective in 
(R) are

	LC(μ1,μ2) :=
μ2∫
λ

v̄∫
α(μ1,μ2)

ϕ1(v,λ)dG(v|λ)dF (λ)

+
λ̄∫

μ2

v̄∫
min{α(μ1,μ2),k

ND(λ)}
ϕ1(v,λ)dG(v|λ)dF (λ)

+ γπH (α(μ1,μ2)) −
v̄∫

α(μ1,μ2)

(1 − G(v|λ))dv

=
λ̃(α(μ1,μ2))∫

λ

v̄∫
α(μ1,μ2)

ϕ1(v,λ)dG(v|λ)dF (λ)

+
max{λ̃(α(μ1,μ2)),μ2}∫

λ̃(α(μ1,μ2))

v̄∫
α(μ1,μ2)

ϕ1(v,λ)dG(v|λ)dF (λ)

+
λ̄∫

max{λ̃(α(μ1,μ2)),μ2}

v̄∫
kND(λ)

ϕ1(v,λ)dG(v|λ)dF (λ)

+ γπH (α(μ1,μ2)) −
v̄∫

α(μ1,μ2)

(1 − G(v|λ))dv,

where λ̃(v) := (kND)−1(v) is the solution to ϕ1(v, ̃λ(v)) = 0. Rearranging this expression yields

	LC(μ1,μ2) = 	FC(α(μ1,μ2)) −
max{λ̃(α(μ1,μ2)),μ2}∫

λ̃(α(μ1,μ2))

α(μ1,μ2)∫
kND(λ)

ϕ1(v,λ)dG(v|λ)dF (λ),

where 	FC is the full-commitment profit function as defined in Theorem 2. Notice that whenever 
μ2 > λ̃(α(μ1, μ2)), the integrand in the last line above is always positive, as kND is decreasing 
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in λ, and ϕ1(v, λ) ≥ 0 whenever v ≥ kND(λ). We may use this expression to evaluate the seller’s 
profits when she induces a second-period price αLC > αFC .

Define � := {
μ ∈ � : there exists μ′ ≤ μ with α(μ′,μ) = αFC

}
. If � is empty, then it is not 

possible to induce a period-two price αFC: since α(μ1, μ2) is continuous and α(λ, λ) = pH <

αFC , this implies that αLC ≤ maxμ1,μ2{α(μ1, μ2)} < αFC . On the other hand, if � is nonempty, 
we may define μFC

2 := min{μ ∈ �}; that is, μFC
2 is the smallest upper bound of the set of de-

layed buyers that is compatible with inducing αFC. In addition, we implicitly define μFC
1 by 

α(μFC
1 , μFC

2 ) = αFC .
Note that if μFC

2 ≤ λ̃(αFC), the seller can replicate the effective allocation and payment 
rules from the full commitment case. This implies the payoff of the full-commitment prob-
lem is achievable even with limited commitment, and so αLC = αFC . So suppose instead that 
μFC

2 > λ̃(αFC), and note that Assumptions 1 and 2 imply that inducing αLC > αFC requires 
μLC

2 > μFC
2 . Then

	LC(μFC
1 ,μFC

2 ) = 	FC(αFC) −
μFC

2∫
λ̃(αFC)

αFC∫
kND(λ)

ϕ1(v, λ)g(v|λ)f (λ)dvdλ

= 	FC(αFC) −
αFC∫

kND(μFC
2 )

μFC
2∫

λ̃(v)

ϕ1(v, λ)g(v|λ)f (λ)dλdv, and

	LC(μLC
1 ,μLC

2 ) = 	FC(αLC) −
μLC

2∫
λ̃(αLC)

αLC∫
kND(λ)

ϕ1(v, λ)g(v|λ)f (λ)dvdλ

= 	FC(αLC) −
αLC∫

kND(μLC
2 )

μLC
2∫

λ̃(v)

ϕ1(v, λ)g(v|λ)f (λ)dλdv,

where the second equality in each expression follows from reversing the order of integration. 
Subtracting the two expressions above and then rearranging the integrals, we have

	LC(μFC
1 ,μFC

2 ) − 	LC(μLC
1 ,μLC

2 )

= 	FC(αFC) − 	FC(αLC) +
αLC∫

αFC

μFC
2∫

λ̃(v)

ϕ1(v, λ)g(v|λ)f (λ)dλdv

+
αLC∫

kND(μLC
2 )

μLC
2∫

μFC
2

ϕ1(v, λ)g(v|λ)f (λ)dλdv.

By definition, 	FC(αFC) ≥ 	FC(αLC). Moreover, it is straightforward to verify that each of 
the integrands is positive, and therefore 	LC(μFC

1 , μFC
2 ) > 	LC(μLC

1 , μLC
2 ), contradicting the 

optimality of the proposed contract. Thus, the seller optimally induces a second-period price 
αLC ≤ αFC .
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Now suppose that the period-two price is αLC ∈ (pH , αFC). Since αLC > pH , Assumption 2
implies that π ′

H (αLC) < 0. Similarly, Assumption 3 implies that π ′
μ̂
(αLC) < 0 = π ′

μ̂
(pH ). Fi-

nally, notice that the first-order condition associated with (SR′) may be written as

μLC
2∫

μLC
1

π ′
μ(αLC)dF (λ) + γπ ′

H (αLC) = 0.

So suppose that μLC
1 < μ̄, where μ̄ is such that pμ̄ = αLC . Assumptions 1 and 2 then imply that 

π ′
μLC

1
(αLC) < 0. Now define

X1 :=
μ̄∫

μLC
1

π ′
λ(α

LC)dF (λ) and Y1(z) :=
z∫

μ̄

π ′
λ(α

LC)dF (λ),

and note that X1 < 0, Y1(μ̄) = 0, Y1(μ
LC
2 ) = −(γ π ′

H (αLC) + X1) > 0, and Y ′
1(z) > 0 for all 

z > μ̄. (In addition, note that we must have μ̄ < μLC
2 ; otherwise, the left-hand side of the FOC 

is strictly negative.) Therefore, there exists some μ′ ∈ (μ̄, μLC
2 ) such that Y1(μ

′) = −γπ ′
H (αLC). 

Thus, α(μ̄, μ′) = αLC = α(μLC
1 , μLC

2 ), so the seller can achieve the same second-period price 
by delaying a (strictly) smaller subset of buyers. Since whenever constraint (SD) binds at a 
given type λ, it binds for all lower types (recall Lemma 1), the delay of a “lower” subset of 
buyers relaxes this constraint and increases profits. Therefore, we can choose μLC

1 ≥ μ̄ without 
decreasing profits.

Similarly, suppose that αLC > pH , but that μLC
1 > μ̄, where (again) μ̄ is defined by pμ̄ = αLC . 

Assumptions 1 and 2 then imply that π ′
μLC

1
(αLC) > 0. So define

Y2(z) :=
z∫

μ̄

π ′
λ(α

LC)dF (λ),

and note that Y2(μ̄) = 0, Y2(μ
LC
2 ) > −γπ ′

H (αLC) > 0, and Y ′
2(z) > 0 for all z > μ̄. Then 

there exists some μ′ ∈ (μ̄, μLC
2 ) such that Y2(μ

′) = −γπ ′
H (αLC). Thus, α(μ̄, μ′) = αLC =

α(μLC
1 , μLC

2 ), so the seller can achieve the same period-two price while decreasing the upper 
bound of the set on which (SD) must bind. Since whenever constraint (SD) binds at a given 
type λ, it binds for all lower types, relaxing this constraint increases profits. Thus, we can opti-
mally set μLC

1 = μ̄. �
Proof of Lemma 3. Fix an optimal contract (denoted by ∗), and suppose that it induces a solution 
α∗ to (S̃R

′
) such that α∗ < pH . Let �∗∗ := � \ {λ|x∗

1 (λ) = 1 and k∗
1(λ) ≤ α∗} be the set of types 

that delay contracting with positive probability or choose to recontract in period two because 
k∗

1(λ) > α∗. Now define a new contract (denoted by ∗∗) with x∗∗
1 (λ) = 1 for all λ ∈ �;

p∗∗
11 (λ) :=

{
0 if λ ∈ �∗∗,
p∗

11(λ) if λ /∈ �∗∗; p∗∗
12 (v, λ) :=

{
p∗

22(v) if λ ∈ �∗∗,
p∗

12(v, λ) if λ /∈ �∗∗; and

q∗∗
1 (v, λ) :=

{
q∗

2 (v) if λ ∈ �∗∗,
q∗(v, λ) if λ /∈ �∗∗; for all λ ∈ � and v ∈ V.
1
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Note that we can write the objective function in (S̃R
′
) as

	2(α|x1, k1) :=
∫
�

[x1(λ)πλ(min{α, k1(λ)}) + (1 − x1(λ))πλ(α)]dF(λ) + γπH (α),

where we ignore the 
∫
�

x1(λ)U12(v, λ)dF (λ) term as it does not depend on α. Then for all 
α ≤ α∗,

	2(α|x∗
1 , k∗

1) =
∫
�

[x∗
1 (λ)πλ(min{α, k∗

1(λ)}) + (1 − x∗
1 (λ))πλ(α)]dF(λ) + γπH (α)

=
∫

�\�∗∗
πλ(min{α, k∗

1(λ)})dF (λ) +
∫

�∗∗
πλ(α)dF (λ) + γπH (α)

=
∫

�\�∗∗
πλ(min{α, k∗∗

1 (λ)})dF (λ)

+
∫

�∗∗
πλ(min{α, k∗∗

1 (λ)})dF (λ) + γπH (α)

= 	2(α|x∗∗
1 , k∗∗

1 ),

where the second equality follows from the fact that all buyers with λ ∈ �∗∗ ultimately consume 
the period-two contract (either by delaying or by recontracting), and the next equality from the 
fact that k∗∗

1 (λ) = α∗ ≥ α for all λ ∈ �∗∗. Therefore, since α∗ maximizes 	2(·|x∗
1 , k∗

1), we must 
have 	2(α

∗|x∗∗
1 , k∗∗

1 ) ≥ 	2(α|x∗∗
1 , k∗∗

1 ) for all α ≤ α∗.
Now consider any price α′ > α∗, and notice that 	2(α

′|x∗∗
1 , k∗∗

1 ) − 	2(α
∗|x∗∗

1 , k∗∗
1 ) equals

γ [πH (α′) − πH (α∗)] +
∫
�

[πλ(min{α′, k∗∗
1 (λ)}) − πλ(min{α∗, k∗∗

1 (λ)})]dF(λ)

= γ [πH (α′) − πH (α∗)]
since k∗∗

1 (λ) = α∗ for all λ ∈ �∗∗ and k∗∗
1 (λ) = k∗

1(λ) ≤ α∗ for all λ /∈ �∗∗. Recall, however, that 
πH is strictly concave and is maximized at pH ; this implies that the difference above is positive 
and is maximized at pH . Therefore, the solution to (S̃R

′
) given contract ∗∗ is α∗∗ = pH > α∗.

Of course, α∗∗ > α∗ yields a decrease in the option value of delay, so constraint (SD) is now 
slack. This rent can be captured by charging all cohort-one buyers an additional lump sum of

Ũ∗
11(λ) − Ũ∗∗

11 (λ) =
∫
V

(max{v − α∗,0} − max{v − α∗∗,0})dG(v|λ) > 0.

Thus, augmenting the ∗∗ contract with the additional transfer above maintains the same allocation 
as ∗ for period-one buyers while extracting additional surplus, and also extracts the maximal
surplus from period-two buyers. This yields the seller a payoff strictly greater than the ∗ contract, 
contradicting its presumed optimality. Therefore, we must have α∗ ≥ pH . �
Remark A. Define for all λ ∈ � the function α(λ) := arg maxp

{
γπH (p) + ∫ λ

λ
πμ(p)dF (μ)

}
as the seller’s optimal price when combining cohort two with the interval [λ, λ]. The concavity 
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of πH and πμ imply that α(·) is well-defined, and furthermore that α(λ) satisfies the first-order 
condition

γπ ′
H (α(λ)) +

λ∫
λ

π ′
μ(α(λ))dF (μ) = 0

for all λ ∈ �. Therefore, we can use implicit differentiation to show that

α′(λ) = − π ′
λ(α(λ))f (λ)

γ π ′′(α(λ)) + ∫ λ

λ
π ′′

μ(α(λ))dF (μ)
.

Notice that α(λ) = pH > pλ, implying that α′(λ) < 0. Moreover, α′(μ) < 0 for all μ with 
pμ < α(μ), implying that α(·) is initially decreasing (and strictly above pμ). The function 
eventually reaches a minimum (at which α(μ) = pμ), and then it is strictly increasing with 
α(μ) < pμ. Furthermore, it is easy to show that α(μ̂) < pH , so the minimizer of α(·) is smaller 
than μ̂, and α′(μ) > 0 for all μ ≥ μ̂.

Finally, fix any λ̂ ∈ �, and note that

γ [πH (pH ) − πH (α(λ̂))]

=
α(λ)∫

α(λ̂)

γ π ′
H (p)dp =

λ∫
λ̂

γ π ′
H (α(λ))α′(λ)dλ

=
λ∫

λ̂

⎛
⎜⎝−

λ∫
λ

π ′
μ(α(λ))dF (μ)

⎞
⎟⎠α′(λ)dλ =

λ̂∫
λ

λ̂∫
μ

π ′
μ(α(λ))α′(λ)dλdF(μ)

=
λ̂∫

λ

α(λ̂)∫
α(μ)

π ′
μ(p)dpdF(μ) =

λ̂∫
λ

[πμ(α(λ̂)) − πμ(α(μ))]dF(μ).

Therefore, for all λ̂ ∈ �, γπH (pH ) + ∫ λ̂

λ
πμ(α(μ))dF (μ) = γπH (α(λ̂)) + ∫ λ̂

λ
πμ(α(λ̂))dF (μ). 

♦

Proof of Theorem 4. The proof proceeds in several steps. For ease of notation, we drop the L̃C

superscripts throughout, and let α∗ denote the optimal period-two price. We can also write the 
objective in (S̃R

′
)—ignoring the 

∫
�

x1(λ)U12(v, λ)dF (λ) term that does not depend on α—as

	2(α) := γπH (α) +
∫
�

[(1 − x1(λ))πλ(α) + x1(λ)πλ(min{α, k1(λ)})]dF(λ)

= γπH (α) +
∫
�

πλ(k̄1(λ))dF (λ).
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The following series of claims derive properties of the optimal cutoffs k̄1 corresponding to α∗.

Claim. There exists some λ′ > λ such that k̄1(λ
′) > pH .

Proof of Claim. Suppose that k̄1(λ) ≤ pH for all λ. Since α∗ > pH , this implies that no buyers 
delay or recontract, so x1(λ) = 1. But then this implies that the seller’s period two payoff is

	2(α
∗) = γπH (α∗) +

∫
�

πμ(k1(μ))dF (μ)

< γπH (pH ) +
∫
�

πμ(k1(μ))dF (μ) = 	2(pH ),

where the inequality follows from the fact that pH = arg maxα{πH (α)} and the strict concavity 
of πH . This contradicts the sequential rationality of α∗. ♦

Claim. Let λ∗ be such that pλ∗ = α∗. We must have k̄1(λ) = α∗ for all λ < λ∗.

Proof of Claim. Suppose not; that is, suppose that λ̂ := sup{λ|k̄1(λ) = α∗} is such that λ̂ < λ∗. 
(Note that if k̄1(λ) < α∗ for all λ ∈ �, we simply let λ̂ = λ.) Also, define λ̃ := sup{λ|k̄1(λ) ≥
max{pH , pλ}}, and note that we must have λ̃ ∈ [λ̂, λ∗).

With these definitions in mind, we let α′ := max{pH , pλ̃} < α∗. Note that k̄1(μ) ≥ α′ for all 
μ ≤ λ̃, and k̄1(μ) < α′ := max{pH , pλ̃} for all μ > λ̃. Therefore,

	2(α
′) = γπH (α′) +

λ̃∫
λ

πμ(α′)dF (μ) +
λ̄∫

λ̃

πμ(k̄1(μ))dF (μ)

> γπH (α∗) +
λ̃∫

λ

πμ(k̄1(μ))dF (μ) +
λ̄∫

λ̃

πμ(k̄1(μ))dF (μ) = 	2(α
∗),

where the inequality follows from the strict concavity of the π functions and the fact that pH <

α′ < α∗ and pμ < α′ < k̄1(μ) for all μ < λ̃. This contradicts the sequential rationality of α∗. ♦

Claim. Define μ∗ by α(μ∗) = α∗, where α(·) is as defined in Remark A. Then k̄1(λ) = α∗ for all 
λ < μ∗.

Proof of Claim. Suppose not; that is, suppose that λ̂ := sup{λ|k̄1(λ) = α∗} is such that λ̂ < μ∗. 
Note that the previous claim implies that λ̂ ≥ λ∗. In addition, since pλ∗ = α∗ > pH , the properties 
of α(·) (see Remark A above) imply that α(μ) < pμ for all μ ≥ λ̃.

Let λ̃ := sup{λ|k̄1(λ) ≥ α(λ)}, and note that we must have λ̃ ∈ [λ̂, μ∗). In addition, note that 
k̄1(λ) ≥ α(λ̃) for all λ < λ̃, while k̄1(λ) < α(λ̃) for all λ > λ̃. Then

	2(α
∗) = γπH (α∗) +

∫
�

πμ(k̄1(μ))dF (μ)

= γπH (α∗) +
λ∗∫

πμ(α∗)dF (μ) +
λ̃∫

∗
πμ(k̄1(μ))dF (μ) +

λ̄∫
πμ(k̄1(μ))dF (μ)
λ λ λ̃
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≤ γπH (α∗) +
λ∗∫

λ

πμ(α∗)dF (μ) +
λ̃∫

λ∗
πμ(α∗)dF (μ) +

λ̄∫
λ̃

πμ(k̄1(μ))dF (μ)

< γπH (α(λ̃)) +
λ∗∫

λ

πμ(α(λ̃))dF (μ) +
λ̃∫

λ∗
πμ(α(λ̃))dF (μ) +

λ̄∫
λ̃

πμ(k̄1(μ))dF (μ)

= 	2(α(λ̃)),

where the first equality rearranges the integral; the first inequality follows from observing that 
k̄1(μ) ≤ α∗ < pμ for all μ > λ∗ (where recall that pλ∗ = α∗); the next inequality from the def-

inition of α(λ̃) as the maximizer of γπH (p) + ∫ λ̃

λ
πμ(p)dF (μ); and the final equality from the 

definition of the seller’s continuation payoffs. This, of course, contradicts the sequential rational-
ity of α∗. ♦

With these claims in hand, it is easy to see that pointwise maximization of the objective 
function in (P̃ ′) (given the period-two price α∗ > pH ) yields cutoffs

k̄∗
1(λ) =

{
α∗ if λ < μ∗,
min{α∗, kND(λ)} if λ ≥ μ∗,

where the minimum operator arises from the observation that (IC11) implies that k̄1 is decreasing.

Claim. Define μ̃ := (kND)−1(α∗). We must have μ̃ ≤ μ∗, where α(μ∗) = α∗.

Proof of Claim. Define λ̃ := max{μ∗, μ̃}, and note that all λ ≤ λ̃ are either delayed or receive 
contracts corresponding to the cutoff α∗ (either via their initial contract or by recontracting), 
while for all λ > λ̃ we must have x∗

1 (λ) = 1 and k∗
1(λ) = kND(λ) < α∗. Thus, for any α ≤ α∗, we 

have

	∗
2(α) = γπH (α) +

∫
�

[(1 − x∗
1 (λ))πλ(α) + x∗

1 (λ)πλ(min{α, k∗
1(λ)})]dF(λ)

= γπH (α) +
λ̃∫

λ

πλ(α)dF (λ) +
λ̄∫

λ̃

πλ(min{α, kND(λ)})dF (λ)

= γπH (α) +
max{(kND)−1(α),λ̃}∫

λ

πλ(α)dF (λ) +
λ̄∫

max{(kND)−1(α),λ̃}
πλ(k

ND(λ))dF (λ)

So, if λ̃ > (kND)−1(α), it is easy to see that

∂	∗
2(α)

∂α
= γπ ′

H (α) +
λ̃∫

λ

π ′
λ(α)dF (λ).
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On the other hand, if λ̃ ≤ (kND)−1(α), then

∂	∗
2(α)

∂α
= γπ ′

H (α) +
(kND)−1(α)∫

λ

π ′
λ(α)dF (λ).

Thus, for all α < α∗,

∂	∗
2(α)

∂α
= γπ ′

H (α) +
max{(kND)−1(α),λ̃}∫

λ

π ′
λ(α)dF (λ),

implying that the left-hand derivative at α∗ exists and is given by

∂−	∗
2(α

∗)
∂α

= γπ ′
H (α∗) +

λ̃∫
λ

π ′
λ(α

∗)dF (λ).

Clearly, we must have 
∂−	∗

2(α∗)
∂α

≥ 0; if not, then the period-two profits can be increased by 
infinitesimally decreasing the period-two price below α∗, contradicting its optimality. So suppose 

that 
∂−	∗

2(α∗)
∂α

> 0, and define an alternative contract (denoted with a ∗∗ superscript) with

x∗∗
1 (λ) =

{
0 if λ ≤ λ̃,

1 if λ > λ̃; and{
p∗∗

11 (λ),p∗∗
12 (v,λ), q∗∗

1 (v,λ)
} = {

p∗
11(λ),p∗

12(v,λ), q∗
1 (v,λ)

}
for all λ > λ̃. Then in period two, the seller’s problem is to maxα{	∗∗

2 (α)}, where

	∗∗
2 (α) = γπH (α) +

λ̃∫
λ

πλ(α)dF (λ) +
λ̄∫

λ̃

πλ(min{α, kND(λ)})dF (λ).

It is easy to see that 	∗∗
2 (α) = 	2(α) for all α ≤ α∗; moreover, 	∗∗

2 is continuous and differ-

entiable at α∗. Thus, since 
∂−	∗

2(α∗)
∂α

> 0, this implies that the optimal second period price under 
the ∗∗ contract is α∗∗ > α∗. Thus, 	∗∗

2 (α∗∗) > 	∗∗
2 (α∗) = 	2(α

∗), so the new contract yields 
strictly greater period-two profits than the original ∗ contract. Notice, however, that the contracts 
are identical for all types λ > λ̃, implying that first-period revenues are identical; thus, the ∗∗ con-
tract yields a strictly greater overall payoff than the original contract, contradicting the latter’s 
optimality.

Thus, we must have 
∂−	∗

2(α∗)
∂α

= 0 at the optimal second-period price, and therefore

γπ ′
H (α∗) +

max{μ∗,μ̃}∫
λ

π ′
λ(α)dF (λ) = 0.

For this condition to be consistent with the definition of μ∗, it must be the case that μ̃ ≤ μ∗. ♦
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Thus, the optimal cutoff rule takes on the desired properties. Finally, note that it is feasible for 
the seller in (R) (the program characterizing the optimal no-recontracting contract) to replicate 
this optimal cutoff we have characterized above by delaying all buyers in the interval [λ, μ∗]. 
Therefore, any allocation rule implementable with recontracting is also implementable in its 
absence, implying that the solution to (R) must yield a greater value; that is, we must have 
	L̃C ≤ 	LC . �
Proof of Proposition 5. Note that Assumption 2 implies that 

∫ λH

λ
πμ(α)dF (μ) is strictly con-

cave. Therefore, pH < arg maxα{∫ λH

λ
πμ(α)dF (μ)} implies that pH < α(λH ) (where α(·) is 

defined as in Remark A).
So define λ̂ by α(λ̂) = kND(λ̂), and note that this type is well-defined since kND(·) is strictly 

decreasing and kND(λH ) = pH < α(λH ). In addition, let α̂ := α(λ̂), and notice that α̂ > pH .
Fix any α′ ∈ [pH , α̂], and denote by λ′ the type such that α(λ′) = α′. For any α′′ < α′, we 

have

γπH (α′′) +
∫
�

πμ(min{α′′, kND(μ)})dF (μ)

= γπH (α′′) +
(kND)−1(α′′)∫

λ

πμ(α′′)dF (μ) +
λ̄∫

(kND)−1(α′′)

πμ(kND(μ))dF (μ)

< γπH (α′) +
λ′∫

λ

πμ(α′)dF (μ) +
(kND)−1(α′′)∫

λ′
πμ(α′′)dF (μ)

+
λ̄∫

(kND)−1(α′′)

πμ(kND(μ))dF (μ),

since α′ = α(λ′) is defined as the price maximizing the sum of the first two terms above. Now 
note that for all μ ∈ (λ′, (kND)−1(α′′)), pμ > α(μ) > α′ (where the observation that pμ > α(μ)

is due to Remark A), and pμ > α(μ) > kND(μ) > α′′. Therefore, πμ(min{α′, kND(μ)}) >
πμ(α′′) for all μ ∈ (λ′, (kND)−1(α′′)), implying that

γπH (α′′) +
∫
�

πμ(min{α′′, kND(μ)})dF (μ)

< γπH (α′) +
∫
�

πμ(min{α′, kND(μ)})dF (μ).

Therefore, it is sequentially rational to set a period-two price α′ when cohort-one buyers have 
been promised cutoffs k′

1(λ) := min{α′, kND(λ)}. (It is never optimal to set a price greater than α′
since it induces no recontracting while further reducing profits from cohort two.) Note, however, 
that these cutoffs correspond exactly to optimal contract from Theorem 2 when the seller has 
full commitment and sets (in advance) a period-two price equal to α′, and so the seller’s profit is 
equal to 	FC(α′), where 	FC(·) is as defined in Theorem 2.



928 R. Deb, M. Said / Journal of Economic Theory 159 (2015) 891–928
Since it is feasible for the seller (with limited commitment) to offer “full-commitment-
equivalent” contracts for prices α ∈ [pH , α̂], and it is easy to show that ∂	FC

∂α
(pH ) > 0, it must 

therefore be the case that the optimal contract here induces a period-two price strictly greater 
than pH . Therefore, the result of Theorem 4 applies immediately. �
Appendix B. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/
j.jet.2015.05.015.
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