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IN THIS SUPPLEMENT, WE FIRST PRESENT AN EXAMPLE that shows that Theo-
rem 1 breaks down when the type space is countably infinite. We then present
a few extensions to the results in the paper.

Throughout this supplement, we conduct the analysis for an arbitrary agent
i, fix v−i ∈ V−i, and, for notational convenience, we suppress the dependence on
v−i. Recall that we can do so because the incentive compatibility requirement
is for each agent i and all possible reports v−i of the other agents.

NONEQUIVALENCE WITH COUNTABLY INFINITE TYPES

We construct an example of a type space with countably infinite types and a
social choice function (SCF) where the latter can be implemented by a contin-
gent contract but not by a linear contract. We begin by showing that acyclicity
is sufficient for implementability even when types are countably infinite.

LEMMA A: Suppose the type space is countable. If an SCF is acyclic, it can be
implemented (using a contingent contract).

PROOF: Consider an SCF f . We need to show that there exists a contingent
contract si such that for every vi� v

′
i ∈ Vi, we have

s
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vi
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� v′

i

)
�(S1)

We will define an incomplete binary relation �s, ∼s over tuples {vi(f (v′
i))� v

′
i}

for all vi� v′
i ∈ Vi. These tuples correspond to a type vi making a report of v′

i.
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We define �s as the transitive closure of �s0 . Formally, we say {vi(f (v′
i))�

v′
i} �s {v̂i(f (v̂′

i))� v̂
′
i} if there exists a finite sequence {{v1

i (f (v
′1
i ))� v

′1
i }� � � � �
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where Rk ∈ {�s0�∼s} and at least one Rk ≡�s0 . It is easy to argue that acyclicity
of f implies that the relation �s is irreflexive.

Since �s is irreflexive and transitive and Vi is countable, we can then use a
standard representation theorem (Fishburn (1970)) that guarantees the exis-
tence of a function si that respects �s. Q.E.D.

Note that scaled cycle monotonicity (s.c.m.) is sufficient for implementation
by a linear contract even for uncountably infinite type spaces (Proposition 2).
In the example below, acyclicity is satisfied but s.c.m. is not.

EXAMPLE A: Consider a single agent with the countably infinite type space

V1 = {
v2

1� v
3
1� � � �

} ∪ {
v∞

1

}
�

Suppose the set of alternatives A has equal cardinality and consider an SCF f
that satisfies

f
(
vk1

) �= f
(
vk

′
1

)
for all k �= k′�

Define the type space such that

vk1
(
f
(
vk

′
1

)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
k′ � if k′ <k�

1
k
� if k′ = k�

1
2k′ � if k′ >k�

0� if k′ = ∞�

Finally, we define payoff for type v∞
1 as

v∞
1

(
f
(
vk

′
1

)) =
⎧⎨
⎩

2
k′ � if k′ < ∞�

1� otherwise.

It is easy to see that f is acyclic. This is because vk1 � vk
′

1 for all k′ <k≤ ∞ as
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′
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)) = 2
k′ >
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(
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′
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Moreover, when k< k′ <∞, then vk1 � vk
′

1 as

vk1
(
f
(
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′
1

)) = 1
2k′ <

1
k′ = vk

′
1

(
f
(
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′
1

))
�

Finally, vk1 � v∞
1 ,

vk1
(
f
(
v∞

1

)) = 0 < 1 = v∞
1

(
f
(
v∞

1

))
�

Lemma A shows that acyclicity remains a sufficient condition for imple-
mentability if the type space is countable and, hence, f can be implemented
using a contingent contract.

We now show that f cannot be implemented by a linear contract. Let us
assume to the contrary that it is implementable by (r1� t1). Then adding the two
incentive compatibility conditions for types vk1 and v∞

1 misreporting as each
other, we get

r1

(
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)[
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f
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f
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))] ≥ 0
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∞
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k
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k
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= 1

k
�

Similarly, incentive compatibility for types vk1 and vk+1
1 implies
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(
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2(k+ 1)
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k

�

Multiplying inequalities for succeeding k= 2� � � � �K − 1, we get

r1(v
K
1 )

r1(v
2
1)

≥ 2K−3K�

Combining inequalities, we get

r1

(
v∞

1

) ≥ r1(v
K
1 )

K
≥ 2K−3r1

(
v2

1

)
�
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Taking the limit K → ∞, we observe that the right side diverges, which implies
that r1(v

∞
1 ) must be ∞, which is a contradiction. Hence, f cannot be imple-

mented using a linear contract.

PARTIALLY CONTRACTIBLE PAYOFFS

We note that on many occasions the entire payoff may not be contractible.
However, our results will continue to hold in some such situations. Suppose
the payoff of an agent has a contractible and a noncontractible component.
We assume that the noncontractible component of the payoff is a monotone
function of the contractible component and the alternative chosen. Formally,
type vi now reflects the contractible component of agent i’s payoff over various
alternatives.

There is a map

gi :R×A→ R

that gives the noncontractible payoff of agent i. We assume that gi is nonde-
creasing in the first argument.

Consider an SCF f . Given a contingent contract si, the net payoff of agent i
by reporting v′

i with true type vi is given by

si
(
vi

(
f
(
v′
i

))
� v′

i

) + gi

(
vi

(
f
(
v′
i

))
� f

(
v′
i

))
�

Here, we consider linear contracts where the royalty term is not bounded from
above (by 1) or ri :Vi → (0�∞). Given a linear contract (ri� ti), the net payoff
of agent i by reporting v′

i with true type vi is given by

ri
(
v′
i

)
vi

(
f
(
v′
i

)) + gi

(
vi

(
f
(
v′
i

))
� f

(
v′
i

)) − ti
(
v′
i

)
�

We will show that Theorem 1 continues to hold even under this setting. Since
Theorem 1 continues to hold, with an appropriate redefinition of aggregate
payoff maximizers, we can also show that Theorem 2 holds.

As before, for any SCF f , we define the binary relation �f as follows. For
any vi� v

′
i ∈ Vi, we say vi �f v′

i if vi(f (v
′
i)) > v′

i(f (v
′
i)). We also define the bi-

nary relation �f as follows. For any vi� v
′
i ∈ Vi, we say vi �f v′

i if vi(f (v
′
i)) ≥

v′
i(f (v

′
i)).

DEFINITION A: An SCF f is acyclic if for any sequence of types v1
i � � � � � v

k
i

with v1
i �f v2

i �f · · · �f vki , we have vki �
f v1

i .

As before, we can show the necessity of acyclicity.

LEMMA B: If an SCF is implementable by a contingent contract, then it is
acyclic.
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PROOF: Suppose SCF f is implementable by a contingent contract si. Con-
sider any sequence of types v1

i � � � � � v
k
i with v1

i �f v2
i �f · · · �f vki . Choose

j ∈ {1� � � � �k− 1}. Since f is implementable by si, we get that

si
(
v
j
i

(
f
(
v
j
i

))
� v

j
i

) + gi

(
v
j
i

(
f
(
v
j
i

))
� f

(
v
j
i

))
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(
v
j
i

(
f
(
v
j+1
i

))
� v

j+1
i

) + gi

(
v
j
i

(
f
(
v
j+1
i

))
� f

(
v
j+1
i

))
≥ si

(
v
j+1
i

(
f
(
v
j+1
i

))
� v

j+1
i

) + gi

(
v
j+1
i

(
f
(
v
j+1
i

))
� f

(
v
j+1
i

))
�

where the second inequality used the fact that vji �f vj+1, si is increasing in the
first argument, and gi is nondecreasing in the first argument. Hence, we get
that for any j ∈ {1� � � � �k− 1}, we have

si
(
v
j
i

(
f
(
v
j
i

))
� v

j
i

) + gi

(
v
j
i

(
f
(
v
j
i

))
� f

(
v
j
i

))
(S2)

≥ si
(
v
j+1
i

(
f
(
v
j+1
i

))
� v

j+1
i

) + gi

(
v
j+1
i

(
f
(
v
j+1
i

))
� f

(
v
j+1
i

))
�

Adding inequality (S2) for all j ∈ {1� � � � �k− 1} and telescoping, we get

si
(
v1
i

(
f
(
v1
i

))
� v1

i

) + gi

(
v1
i

(
f
(
v1
i

))
� f

(
v1
i

))
(S3)

≥ si
(
vki

(
f
(
vki

))
� vki

) + gi

(
vki

(
f
(
vki

))
� f

(
vki

))
�

Since f is implementable, we have si(v
k
i (f (v

k
i ))� v

k
i ) + gi(v

k
i (f (v

k
i ))� f (v

k
i )) ≥

si(v
k
i (f (v

1
i ))� v

1
i )+gi(v

k
i (f (v

1
i ))� f (v

1
i )). This along with inequality (S3) gives us

si
(
v1
i

(
f
(
v1
i

))
� v1

i

) + gi

(
v1
i

(
f
(
v1
i

))
� f

(
v1
i

))
(S4)

≥ si
(
vki

(
f
(
v1
i

))
� v1

i

) + gi

(
vki

(
f
(
v1
i

))
� f

(
v1
i

))
�

Now assume, for contradiction, vki �f v1
i . Then vki (f (v

1
i )) > v1

i (f (v
1
i )). Since si

is strictly increasing in the first argument and gi is nondecreasing in the first
argument, we get that

si
(
vki

(
f
(
v1
i

))
� v1

i

) + gi

(
vki

(
f
(
v1
i

))
� f

(
v1
i

))
(S5)

> si
(
v1
i

(
f
(
v1
i

))
� v1

i

) + gi

(
v1
i

(
f
(
v1
i

))
� f

(
v1
i

))
�

This is a contradiction to inequality (S4). Q.E.D.

We now proceed to show that the remainder of the proof of Theorem 1
can be adapted straightforwardly. First, we define some terminology. For any
vi� v

′
i ∈ Vi, let

d
(
vi� v

′
i

) := vi
(
f (vi)

) − v′
i

(
f (vi)

)



6 R. DEB AND D. MISHRA

and

d′(vi� v′
i

) := gi

(
vi

(
f (vi)

)
� f (vi)

) − gi

(
v′
i

(
f (vi)

)
� f (vi)

)
�

DEFINITION B: An SCF f is generalized scaled cycle monotone if there exists
λi :Vi → (0�∞) such that for every sequence of types (v1

i � � � � � v
k
i � v

k+1
i ≡ v1

i ),
we have

k∑
j=1

[
λi

(
v
j
i

)
d
(
v
j
i � v

j+1
i

) + d′(vji � vj+1
i

)] ≥ 0�

PROPOSITION A: An SCF f is implementable by a linear contract if and only
if it is generalized scaled cycle monotone.

PROOF: The necessity of generalized scaled cycle monotonicity follows by
adding any cycle of incentive constraints. For sufficiency, suppose f satisfies
generalized scaled cycle monotonicity. Let λi :Vi → (0�∞) be the correspond-
ing multiplier. Then, by the Rochet–Rockafellar theorem, there exists a map
W :Vi → R such that for every vi� v

′
i ∈ Vi, we have

W (vi)−W
(
v′
i

) ≤ [
λi(vi)d

(
vi� v

′
i

) + d′(vi� v′
i

)]
�(S6)

Now, for any vi ∈ Vi, let

ti(vi) := λi(vi)vi
(
f (vi)

) + gi

(
vi

(
f (vi)

)
� f (vi)

) −W (vi)�

Now, substituting in inequality (S6), we get for every vi� v
′
i ∈ Vi,

W (vi)−W
(
v′
i

) = λi(vi)vi
(
f (vi)

) + gi

(
vi

(
f (vi)

)
� f (vi)

) − ti(vi)

− λi

(
v′
i

)
v′
i

(
f
(
v′
i

)) − gi

(
v′
i

(
f
(
v′
i

))
� f

(
v′
i

)) + ti
(
v′
i

)
≤ λi(vi)vi

(
f (vi)

) − λi(vi)v
′
i

(
f (vi)

)
+ gi

(
vi

(
f (vi)

)
� f (vi)

) − gi

(
v′
i

(
f (vi)

)
� f (vi)

)
�

Canceling terms, we get

λi

(
v′
i

)
v′
i

(
f
(
v′
i

)) + gi

(
v′
i

(
f
(
v′
i

))
� f

(
v′
i

)) − ti
(
v′
i

)
≥ λi(vi)v

′
i

(
f (vi)

) + gi

(
v′
i

(
f (vi)

)
� f (vi)

) − ti(vi)�

This gives us the desired incentive constraints. Q.E.D.

We will now show that if f is acyclic, then it is generalized scaled cycle mono-
tone. To do so, we first observe that if f is acyclic, then we can apply Lemma 2
to claim that the type space can be f -order-partitioned. Now, we can use this to
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construct a λi :Vi → (0�∞) map recursively. Let (V 1
i � � � � � V

K
i ) be an f -ordered

partition of Vi. First, we set for all vi ∈ V K
i ,

λi(vi) := 1�

Having defined λi(vi) for all vi ∈ V k+1
i ∪· · ·∪V K

i , we define λi(vi) for all vi ∈ V k
i .

Let C be any cycle of types (v1
i � � � � � v

q
i � v

1
i ) involving types in V k

i ∪· · ·∪V K
i with

at least one type in V k
i and at least one type in V k+1

i ∪ · · · ∪ V K
i . Let C be the

set of all such cycles. Now define for each cycle C ≡ (v1
i � � � � � v

q
i � v

q+1
i ≡ v1

i ) ∈ C,

L(C) :=
∑

v
j
i∈C∩(V k+1

i ∪···∪V K
i )

λi

(
v
j
i

)
d
(
v
j
i � v

j+1
i

) +
q∑

j=1

d′(vji � vj+1
i

)

and

�(C) :=
∑

v
j
i∈V k

i ∩C

d
(
v
j
i � v

j+1
i

)
�

Now, consider two possible cases.
• If L(C)≥ 0 for all C ∈ C, then set λi(vi)= 1 for all vi ∈ V k

i .
• If L(C) < 0 for some C ∈ C, we proceed as follows. Since Vi is f -order-

partitioned, for every vi ∈ V k
i and v′

i ∈ (V k+1
i ∪ · · · ∪ V K

i ), we have d(vi� v
′
i) > 0

(Property P2). Similarly, for every vi� v
′
i ∈ V k

i , we have d(vi� v
′
i) ≥ 0 (Property

P1). Then, for every C ∈ C, we must have �(C) > 0, since it involves at least
one type from V k

i and at least one type from (V k+1
i ∪ · · · ∪ V K

i ). Now, for every
vi ∈ V k

i , define

λi(vi) := max
C∈C

−L(C)

�(C)
�

We thus recursively define the λi map.

PROPOSITION B: If f is acyclic, then λi makes f generalized scaled cycle mono-
tone.

PROOF: Consider any cycle C ≡ (v1
i � � � � � v

q
i � v

q+1
i ≡ v1

i ). We will show that

q∑
j=1

λi

(
v
j
i

)
d
(
v
j
i � v

j+1
i

) + d′(vji � vj+1
i

) ≥ 0�(S7)

If C ⊆ V K
i , then d(v

j
i � v

j+1
i ) ≥ 0, d′(vji � v

j+1
i ) ≥ 0, and λi(v

j
i ) = λi(v

j+1
i ) for all

v
j
i � v

j+1
i ∈ C. Hence, inequality (S7) holds. Now, suppose inequality (S7) is

true for all cycles C ⊆ (V k+1
i ∪ · · · ∪ V K

i ). Consider a cycle C ≡ (v1
i � � � � � v

q
i �



8 R. DEB AND D. MISHRA

v
q+1
i ≡ v1

i ) involving types in (V k
i ∪ · · · ∪ V K

i ). If each type in C is in V k
i , then

again d(v
j
i � v

j+1
i ) ≥ 0, d′(vji � v

j+1
i ) ≥ 0, and λi(v

j
i ) = λi(v

j+1
i ) for all vji � v

j+1
i ∈ C.

Hence, inequality (S7) holds. By our hypothesis, if all types in C belong to
(V k+1

i ∪ · · · ∪ V K
i ), then again inequality (S7) holds. So assume that C is a

cycle that involves at least one type from V k
i and at least one type from

(V k+1
i ∪ · · · ∪ V K

i ). Let λi(vi)= μ for all vi ∈ V k
i . By definition,∑

v
j
i∈C

[
λi

(
v
j
i

)
d
(
v
j
i � v

j+1
i

) + d′(vji � vj+1
i

)] =L(C)+μ�(C) ≥ 0�

where the last inequality follows from the definition of μ. Hence, inequal-
ity (S7) again holds. Proceeding like this inductively, we complete the proof.

Q.E.D.

To summarize, we have shown the following result.

THEOREM A: Consider the partially contractible environment and suppose the
type space is finite. Then, for any SCF f , the following statements are equivalent:

(i) f is implementable by a contingent contract.
(ii) f is acyclic.
(iii) f is generalized scaled cycle monotone.
(iv) f is implementable by a linear contract.

AN INFINITE TYPE SPACE WHERE THE EQUIVALENCE HOLDS

We now show that the equivalence established in Theorem 1 extends to a
model with uncountably infinite type spaces under additional conditions. We
make the following assumptions.

B1. The set of alternatives A is a metric space.
B2. The set of types Vi is a compact metric space and each vi ∈ Vi is contin-

uous in a.
B3. The SCF f (·) is continuous in vi.

THEOREM B: Suppose assumptions B1–B3 hold and, additionally, suppose an
SCF f can be implemented by a contingent contract si that is twice continuously
(partially) differentiable in the first argument. Then f can also be implemented by
a linear contract.

PROOF: We are given that f can be implemented by a contingent contract
si :R × Vi → R that is twice continuously differentiable in the first argument.
We first show that this implies that f can also be implemented by a contingent
contract s̃i that is convex in the first argument. Consider the following trans-
formation of s:

s̃i = eγsi � where γ > 0�
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Clearly, since s̃i is a monotone transformation of si, it is both strictly increas-
ing in the first argument and incentive compatible. Therefore, it also imple-
ments f . We denote partial derivatives of s̃i with respect to the first argument
by ∂s̃i

∂ui
.

Since si is twice differentiable in the first argument, so is s̃i and its second
partial derivative is given by

∂2s̃i

∂u2
i

= γeγsi
(
∂s̃i

∂ui

)2(
∂2s̃i/∂u

2
i

(∂s̃i/∂ui)
2 + γ

)
�

Now, since Vi is compact, f is continuous, and si is twice continuously differ-
entiable in the first argument, this implies that

∂2s̃i(vi(f (v
′
i))� v

′
i)/∂u

2
i

(∂s̃(vi(f (v
′
i))� v

′
i)/∂ui)

2 is bounded from below for all vi� v′
i ∈ Vi�

This is because the above function is continuous on the compact set Vi × Vi

and, hence, must attain a minimum.
This in turn implies that there exists a large and finite γ > 0 such that s̃i is

convex in the first argument. Incentive compatibility and convexity of s̃i applied
in turn then yield the inequality, for all vi� v′

i ∈ Vi,

s̃i
(
vi

(
f (vi)

)
� vi

)
≥ s̃i

(
vi

(
f
(
v′
i

))
� v′

i

)
≥ s̃i

(
v′
i

(
f
(
v′
i

))
� v′

i

) + ∂s̃(v′
i(f (v

′
i))� v

′
i)

∂ui

[
vi

(
f
(
v′
i

)) − v′
i

(
f
(
v′
i

))]
�

Now set multipliers λi(v
′
i) = ∂s̃i(v

′
i(f (v

′
i))�v

′
i)

∂ui
> 0 for all v′

i ∈ Vi and notice that f

will satisfy scaled cycle monotonicity with these multipliers. Of course, this im-
plies that f can be implemented by a linear contract (Proposition 2), which
completes the proof. Q.E.D.

IMPLEMENTATION IN A LINEAR ONE DIMENSIONAL UNCOUNTABLE MODEL

In this section, we describe a simple model of a one dimensional type space
with uncountable types, where 2-acyclicity is sufficient.

We assume that the set of alternatives A is finite. Additionally, we assume
that types are one dimensional and linear. Formally, for every alternative a ∈
A, there exists κa ≥ 0 and γa such that for all i,

vi(a) = κavi + γa� where vi ∈ Vi ⊆ R�

The following theorem is the characterization result.
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THEOREM C: Suppose A is finite and the types are one dimensional and linear.
Then the following conditions on an SCF f are equivalent:

(i) f satisfies 2-acyclicity.
(ii) f is scaled 2-cycle monotone.
(iii) f is implementable by a linear contract.
(iv) f is implementable by a contingent contract.

PROOF: (i) ⇒ (ii). Define the map ν :A→ R+ as follows. For every a ∈ A,

ν(a) =
⎧⎨
⎩

1
κa

� if κa �= 0,

0� if κa = 0.

Further, define ν∗ := maxa∈A ν(a) and V 0
i := {vi ∈ Vi :κf(vi) = 0}. Now define

ri :Vi → (0�1] as follows. Fix an ε ∈ (0�1]. For every v1 ∈ Vi,

ri(vi)=
{
ε ∀vi ∈ V 0

i �
ν(f (vi))

ν∗ ∀vi ∈ V \ V 0
i �

Now note that if vi ∈ V 0
i , then ri(vi)κf(vi) = 0, and if vi ∈ V \ V 0

i , then
ri(vi)κf(vi) = 1

ν∗ . Hence, for every v ∈ V 0
i and v′ ∈ V \ V 0

i , we have

ri
(
v′
i

)
κf(v′

i)
> ri(v)κf(vi)�(S8)

Now consider any vi� v
′
i ∈ V . Since f is 2-acyclic, it means v′

i �f vi implies
vi �f v′

i. Equivalently, (v′
i −vi)κf(vi) ≥ 0 implies (v′

i −vi)κf(v′
i)

≥ 0. Equivalently,
if vi > v′

i and κf(vi) = 0, then κf(v′
i)

= 0. This further means that if vi ∈ V 0
i and

v′
i < vi, then v′

i ∈ V 0
i . Hence, using inequality (S8), we get that if v′

i > vi, then

ri
(
v′
i

)
κf(v′

i)
≥ ri(vi)κf(vi)�(S9)

Now, for any vi� v′
i ∈ V with v′

i > vi, scaled 2-cycle monotonicity requires that(
v′
i − vi

)(
ri
(
v′
i

)
κf(v′

i)
− ri(vi)κf(vi)

) ≥ 0�(S10)

This is true because of inequality (S9).
(ii) ⇒ (iii). Using Proposition 2, it is enough to show that if f is scaled 2-cycle

monotone, then it is scaled cycle monotone. Because f satisfies scaled 2-cycle
monotonicity, for any v′

i > vi, inequality (S10) is satisfied. But this implies that
inequality (S9) is satisfied.

Assume for contradiction that f fails scaled cycle monotonicity. Let k be the
smallest integer such that f fails scaled k-cycle monotonicity. Since f satisfies
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scaled 2-cycle monotonicity, k≥ 3. This means for every ri :Vi → (0�1] and for
some finite sequence of types (v1

i � � � � � v
k
i ), we have

k∑
j=1

�f�ri
(
v
j
i � v

j+1
i

)
< 0�

where vk+1
i ≡ v1

i and �f�ri (v
j
i � v

j+1
i ) := ri(v

j
i )[vji (f (vji )) − v

j+1
i (f (v

j
i ))]. Consider

a ri :Vi → (0�1]. Let v
j
i > v

p
i for all p ∈ {1� � � � �k} \ {j}. We will show that

�f�ri (v
j−1
i � v

j
i )+ �f�ri (v

j
i � v

j+1
i )− �f�ri (v

j−1
i � v

j+1
i )≥ 0. To see this,

�f�ri
(
v
j−1
i � v

j
i

) + �f�ri
(
v
j
i � v

j+1
i

) − �f�ri
(
v
j−1
i � v

j+1
i

)
= v

j
i

[
ri
(
v
j
i

)
κ
f(v

j
i )

− ri
(
v
j−1
i

)
κ
f(v

j−1
i )

]
+ v

j+1
i

[
ri
(
v
j+1
i

)
κ
f(v

j+1
i )

− ri
(
v
j
i

)
κ
f(v

j
i )

]
− v

j+1
i

[
ri
(
v
j+1
i

)
κ
f(v

j+1
i )

− ri
(
v
j−1
i

)
κ
f(v

j−1
i )

]
= (

v
j
i − v

j+1
i

)[
ri
(
v
j
i

)
κ
f(v

j
i )

− ri
(
v
j−1
i

)
κ
f(v

j−1
i )

]
≥ 0�

where the last inequality follows from the fact that v
j
i > v

j+1
i and applying

inequality (S9). Since f satisfies scaled (k − 1)-cycle monotonicity, we know
that �f�ri (v1

i � v
2
i )+ · · ·+ �f�ri (v

j−2
i � v

j−1
i )+ �f�ri (v

j−1
i � v

j+1
i )+ �f�ri (v

j+1
i � v

j+2
i )+ · · ·+

�f�ri (vki � v
1
i )≥ 0. But because of the last inequality, we must have

k∑
j=1

�f�ri
(
v
j
i � v

j+1
i

) ≥ 0�

which gives us a contradiction.
Of course, (iii) ⇒ (iv) and Lemma 1 establishes that (iv) ⇒ (i). This con-

cludes the proof. Q.E.D.

REMARK: A closer look at the proof of Theorem C reveals that if κa > 0
for all a ∈ A, then for every SCF f , V 0

i = ∅, and, hence, every SCF f satis-
fies 2-acyclicity vacuously. Thus, every SCF can be implemented using a linear
contract.

SUFFICIENCY OF 2-ACYCLICITY IN A LINEAR TWO DIMENSIONAL
COUNTABLE MODEL

In this section, we consider a linear two dimensional generalization of the
model in the previous section. Formally, for every alternative a ∈ A, there ex-
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ists κa1 ≥ 0, κa2 > 0, and γa such that for all i,

vi(a)= vi1κa1 + vi2κa2 + γa� where vi ∈ Vi ⊆R�

The proof will use the normalized vector for an alternative a ∈ A, which we
denote by

κa =
(
κa1

κa2

�1
)
�

Note that since we have restricted κa2 > 0,1 the above normalized vector is well
defined.

The next result shows that 2-acyclicity is sufficient for implementability in
the linear two dimensional environment. The proof shows that 2-acyclicity im-
plies acyclicity. Thus, from Lemma A, we can conclude that in countable type
spaces, 2-acyclicity is sufficient for implementability.

THEOREM D: Suppose the type space is countable. Then an SCF f is imple-
mentable in the linear two dimensional environment if and only if it is 2-acyclic.

PROOF: We need to show that 2-acyclicity implies k-acyclicity for all k. We
will proceed by induction on k. The base case of k = 2 is trivially true. As the
induction hypothesis, we assume the implication holds for some k> 2. We will
now show the induction step that 2-acyclicity implies k+ 1-acyclicity.

Suppose f is 2-acyclic. Consider a sequence v1
i � � � � � v

k+1
i with the following

properties. For all j ∈ {1� � � � �k − 1}, each element is weakly greater than the
succeeding element and no element is strictly greater than any previous ele-
ment in the sequence. Formally,

v
j
i � v

j+1
i and v

j+1
i � v

j′
i for all j′ ∈ {1� � � � � j}�

which is equivalent to

κ
f(v

j+1
i )

(
v
j
i − v

j+1
i

) ≥ 0 and

κ
f(v

j′
i )

(
v
j+1
i − v

j′
i

) ≤ 0 for all j′ ∈ {1� � � � � j}�

Additionally, without loss of generality, we can take the inequality to be strict
for v1

i :

v1
i � v2

i or that κf(v2
i )

(
v1
i − v2

i

)
> 0�

1This assumption is required for the result. It is possible to construct a simple counterexample
if we allow κa2 = 0.
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The induction hypothesis (k-acyclicity) then implies that

v
j′
i � v1

i or that κf(v1
i )

(
v
j′
i − v1

i

)
< 0 for all j′ ∈ {2� � � � �k}�

Finally, vk+1
i is such that

vki � vk+1
i or κf(vk+1

i )

(
vki − vk+1

i

) ≥ 0�

The induction hypothesis implies that

vk+1
i � v

j′
i for all j′ ∈ {2� � � � �k} or

κ
f(v

j′
i )

(
vk+1
i − v

j′
i

) ≤ 0 for all j ∈ {2� � � � �k}�

It is sufficient to show that for such sequences it must be that

vk+1
i � v1

i or κf(v1
i )

(
vk+1
i − v1

i

)
< 0�

We consider two cases, depending on how the first component of the nor-
malized vector κf(v1

i )
compares to the first components of the vectors κ

f(v
j
i )

for
j ∈ {2� � � � �k+ 1}.

CASE I: The first component of κf(v1
i )

is the largest or smallest in the se-
quence.

This implies that either (i) the first component of κf(vk+1
i ) lies between the

first components of κf(v1
i )

and κf(v2
i )

or that (ii) the first component κf(v2
i )

lies
between the first components of κf(v1

i )
and κf(vk+1

i ).
Consider subcase (i) first. Here there must be an α ∈ [0�1] such that

κf(vk+1
i ) = ακf(v1

i )
+ (1 − α)κf(v2

i )
. Then it must be that v1

i � vk+1
i , which can be

seen from the series of inequalities

κf(vk+1
i )

(
v1
i − vk+1

i

) = κf(vk+1
i )

(
v1
i − vki

) + κf(vk+1
i )

(
vki − vk+1

i

)
≥ (

ακf(v1
i )

+ (1 − α)κf(v2
i )

)(
v1
i − vki

)
= ακf(v1

i )

(
v1
i − vki

) + (1 − α)κf(v2
i )

(
v1
i − v2

i

)
+ (1 − α)κf(v2

i )

(
v2
i − vki

)
> 0�

Note that the strictness follows from the fact that either or both of the first two
terms in the above must be strictly positive depending on the value of α. But
then applying 2-acyclicity to the sequence {v1

i � v
k+1
i } implies that vk+1

i � v1
i .
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Now consider subcase (ii). Here there must be an α ∈ [0�1] such that κf(v2
i )

=
ακf(v1

i )
+ (1 − α)κf(vk+1

i ). Observe that

κf(v2
i )

(
v1
i − vk+1

i

) = κf(v2
i )

(
v1
i − v2

i

) + κf(v2
i )

(
v2
i − vk+1

i

)
> 0�

which in turn implies that

ακf(v1
i )

(
v1
i − vk+1

i

) + (1 − α)κf(vk+1
i )

(
v1
i − vk+1

i

)
> 0�

Hence, it must be that either κf(vk+1
i )(v

1
i − vk+1

i )≤ 0 and κf(v1
i )
(v1

i − vk+1
i ) > 0,

in which case this subcase is completed, or that κf(vk+1
i )(v

1
i − vk+1

i ) > 0. In the
latter case, we can once again apply 2-acyclicity to the sequence {v1

i � v
k+1
i } and

get the desired relation vk+1
i � v1

i .

CASE II: The ratio of the components in κf(v1
i )

lies between some κ
f(v

j
i )

and
κ
f(v

j+1
i )

, where j ∈ {2� � � � �k}. Then there must be an α ∈ [0�1] such that κf(v1
i )

=
ακ

f(v
j
i )

+ (1 − α)κ
f(v

j+1
i )

. Then

κf(v1
i )

(
v1
i − vk+1

i

) = κf(v1
i )

(
v1
i − v

j
i

) + κf(v1
i )

(
v
j
i − vk+1

i

)
>

(
ακ

f(v
j
i )

+ (1 − α)κ
f(v

j+1
i )

)(
v
j
i − vk+1

i

)
≥ (1 − α)κ

f(v
j+1
i )

(
v
j
i − vk+1

i

)
= (1 − α)κ

f(v
j+1
i )

(
v
j
i − v

j+1
i

)
+ (1 − α)κ

f(v
j+1
i )

(
v
j+1
i − vk+1

i

)
≥ 0�

which completes the proof. Q.E.D.
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