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1. INTRODUCTION

There is a large body of research in economic theory devoted to understanding intertemporal
price discrimination. A significant proportion of this literature studies incentives which cause the
seller to lower his price over time, a phenomenon which is common in practice. However, in many
instances, sellers choose to raise their prices instead. Perhaps the most common example of such
a pricing strategy is introductory pricing where new products are offered at a discount when they
are launched after which the price is raised. Additionally, the seller often commits to the price
increase by advertising both the expiry date of the introductory price and the subsequent regular
price that will be charged. If a buyer has rational expectations, then there is no reason to expect a
buyer with a constant valuation to wait and buy the product at a higher price. One explanation
for introductory pricing is that the seller may have capacity constraints (see for instance Dana
1998, Gale & Holmes 1993). However, in certain settings, scarce capacity may not play a role.
For instance, capacity constraints are absent for digital goods such as movie downloads, MP3s,
software etc. where introductory pricing is often observed (by Amazon, iTunes, Google play etc.).
In this paper, we provide a different explanation. We develop a model in which the buyer has
a stochastic valuation and we derive conditions under which introductory pricing is the optimal
pricing strategy for the seller.

A consumer’s valuation can be influenced by a variety of different media such as product re-
views, advertising, word of mouth etc. In practice, the seller can observe neither when the buyer’s
valuation changes as a result of new information nor what the revised valuation is. No seller can
plausibly hope to know when his customers have read or will read a product review or for that
matter which review they read and as a result what their revised valuation will be. Additionally,
a buyer’s valuation could simply be affected by her mood, by an impulse to make a purchase or
by other such behavioral factors.

The canonical intertemporal pricing model considers a buyer with a private valuation that does
not change across time. In this model, the seller offers a price path and the game ends whenever
the buyer chooses to purchase the good. The fact that the buyer chooses not to purchase the good
at a certain time provides incentives for the seller to lower his price in the future to serve the
buyer, who has revealed that she has a low valuation. However, when prices fall over time, it
induces some buyers with rational expectations to delay their purchases. When the monopolist
cannot commit to a sequence of prices, this intertemporal competition can be severe. The Coase
conjecture (formally shown by Stokey (1981), Gul et al. (1986) for stationary strategies) states that,
without commitment, it may not be possible for the monopolist to exercise any market power
whatsoever. When the seller can make offers frequently, the competitive market outcome occurs
despite the fact that the durable good is being supplied by a monopolist. There has been a large
body of work examining market conditions under which the Coase conjecture does and does not
apply.

A complementary line of research studies optimal pricing when the seller has commitment
power. Here, the seminal work is Stokey (1979), who argued that when the monopolist can com-
mit to a sequence of prices at the beginning of time, he chooses to offer the constant monopoly
price at each time period. Hence, he makes sales only in the first instant, forgoing all future sales.
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This is a surprising result as the monopolist could potentially commit to dropping prices only
in the distant future thereby making future sales while minimizing intertemporal competition.
Hence, her result shows that the driving concern for the monopolist is to restrict the buyer’s op-
tion value (from postponing her purchasing decision), to the extent that he makes no future sales,
in order to dissuade the buyer from waiting. Since every equilibrium of the pricing game without
commitment can be implemented by the seller when he has commitment power, the seller cannot
expect to get more than the single period monopoly profit in equilibrium (with or without com-
mitment). As a result, the solution with commitment constitutes an upper bound for the revenue
the seller can receive in equilibrium. This upper bound can be useful as Ausubel & Deneckere
(1989) show that a sufficiently patient seller can get arbitrarily close to the single period monopoly
profit even without being able to commit.

The above results depend critically on the assumption that the buyer’s valuation is constant
across time. In this paper, we study the intertemporal pricing problem of a seller trying to sell a
durable good over an infinite horizon to a buyer with a stochastic value. The buyer’s initial private
value changes due to the arrival of an unanticipated stochastic shock. Conditional on receiving the
shock, she draws a new independent private valuation. Both the time of arrival of the shock and
the resulting valuation are not known ex-ante by either the buyer or the seller. The shock arrives
via an exponential process and the seller does not observe when the buyer’s valuation changes.
This shock models behavioral factors or the arrival of information that may result in the buyer
reassessing her value of the good.

In such a model, the seller’s optimal pricing policy can potentially take a very complex form.
Surprisingly, we show that there are conditions under which introductory pricing becomes the
optimal way to price discriminate when the seller has commitment power. Formally, the seller
charges a low “introductory” price at the first instant and then charges a fixed higher “regular”
price at all points of time thereafter. If a buyer does not purchase at the first instant, she will only
buy the good in the future if she receives the shock and her resulting valuation is higher than the
regular price. Since the buyer can receive the shock at any time, the seller makes a sale at all points
of time with strictly positive probability. As we discussed above, Stokey (1979) shows that when
the buyer’s valuation is constant, the seller’s optimal contract is equivalent to that of a static single
period monopoly problem. By contrast, we show that the solution to the single shock model is
essentially the solution to a two period model where the buyer has a new independent private
valuation in each period.

There are considerable technical difficulties associated with deriving the profit maximizing
price path. Optimal behavior by the buyer involves solving a complex optimal stopping prob-
lem that depends on the prices set by the seller and the seller must take the strategic behavior
of the buyer into account when deriving optimal prices. Moreover, the expected distribution of
buyer types at any time also depends on the entire price path and on the time that the buyer re-
ceived the shock - an event that is unobserved by the seller. We argue that it is difficult for the
seller to solve this optimal control problem and define instead an appropriate “relaxed problem.”
In this relaxed problem, we assume that the seller can observe the shock and can condition his
prices on this information (these conditional price functions are committed to at the beginning of
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time). This removes one level of asymmetric information, namely, the arrival time of the shock.
The seller can always do weakly better in the relaxed problem as he can choose to ignore this extra
information. We show that when the solution to the relaxed problem features increasing prices,
the same revenue can be achieved by the seller without observing the arrival of the shock.

1.1. Related Literature

As we mentioned above, this paper is related to the literature on durable goods pricing. The
original papers in this literature made two critical assumptions: That no new buyers enter the
market and that the valuation of the buyer is constant across time. Conlisk et al. (1984) and Sobel
(1991) relax the former assumption by allowing the entry of an identical cohort of new buyers in
each period. Board (2008) introduces a model in which new heterogeneous consumers can enter in
each period and he derives the optimal seller contract under commitment. By contrast, there are
considerably fewer papers that relax the latter assumption of constant valuations. Conlisk (1984)
and Biehl (2001) analyze a two period, two type model. Conlisk derives the optimal contract with
and without commitment, whereas Biehl compares sales to leasing and shows that under certain
parameter values sales may dominate leasing.

Nocke et al. (2011) examine a two period model with stochastic values and derive conditions
under which advance purchase discounts are optimal when the seller can commit. Of course, in
their two period setting, the only possible pricing strategy for the seller is to post two prices, one
for each period. Hence, their analysis focuses on isolating the conditions under which a lower first
period price is optimal. By contrast, one of the main contributions of this paper is to show that
despite being able to use complicated pricing paths over an infinite horizon, the seller may find it
optimal to use a simple pricing strategy consisting of only two prices.

The model in this paper most closely resembles that of Fuchs & Skrzypacz (2010). In their
model, there is a single exogenous event that arrives from an exponential process and which termi-
nates the game. Upon termination, the seller and the buyer receive payoffs given by an exogenous
function that depends on the buyer’s private valuation. They derive the stationary equilibrium
when the seller cannot commit to the price path and show that the revenue of the seller is driven
down to his outside option as the time between successive offers goes to 0. Apart from the fact
that we study the optimal contract when the seller has commitment power, the single shock model
in this paper differs in two additional fundamental ways. Firstly, in this paper, upon arrival of the
event, the continuation values of the buyer and the seller are determined endogenously by the
prices set by the seller. Secondly, the seller does not observe the arrival of the event which, in
particular, implies the game does not stop at this point.

Finally, this paper is related to the literature on dynamic mechanism design stemming from the
works of Baron & Besanko (1984) and Courty & Li (2000) (see Bergemann & Said (2011) for a sur-
vey of recent work). This literature considers a mechanism design environment where a principal
is trying to dynamically contract with an agent who has changing private information. The litera-
ture differs from this paper in that the agent must make an irreversible decision at the beginning
of time as to whether she will contract with the principal or not. If she chooses not to, the game
ends. In other words, she is not allowed to wait for her value to change and then enter the contract
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which, of course, is the only decision that the agent makes in the durable goods context. However,
it should be pointed out that following this paper, there has been work examining environments
where agents with changing private information can delay their contracting decision. A notable
such work is Garrett (2013) who tries to explain price cycles by developing a stationary two type
Markov environment where buyers exogenously arrive and leave the market.

1.2. Organization

This paper has been organized into the following sections. Section 2 describes the model. In
Section 3, we describe some of the difficulties inherent in solving the seller’s problem and present
a relaxed approach which circumvents these issues. Section 4 presents the optimal contract and
discusses its properties. Finally, Section 5 provides some concluding remarks. The proofs not
included in the body of the paper are in the appendix.

2. THE MODEL

We consider a continuous time, infinite horizon model consisting of a single representative
buyer1 facing a monopolist seller where time is indexed by t ∈ [0, ∞). The seller wants to sell
a single unit of a perfectly durable good, the cost of which is assumed to be constant over time
and is normalized to 0. Due to this cost normalization, we use the terms revenue and profit inter-
changeably. The buyer stays in the market until she makes a purchase (if ever) and the game ends
when she does. We assume that both the seller and the buyer discount the future exponentially
with a common discount rate r ∈ (0, ∞).

The buyer’s type or valuation is denoted by θ. She draws an initial private valuation from
a distribution F0 at the beginning of time 0. There is an exogenous shock which arrives in the
market from an exponential distribution with parameter λ. If the shock arrives at the beginning of
time t, the buyer draws a new valuation independently from a distribution F1 and the valuation
is persistent thereafter. The seller can observe neither the arrival of the shock nor the realized
valuation. For i ∈ {0, 1}, the distributions Fi are assumed to have continuous densities fi which are
positive on the supports [θi, θi], where θi > 0. Note that this value process is such that the buyer’s
value is correlated across time (since it may not change) but the change itself is independent. A
similar stochastic process is considered by Skrzypacz & Toikka (2013) who refer to it as a renewal
process.2

The seller commits to a measurable price function p : [0, ∞) → [0, 1] at the beginning of time
0 with the aim of maximizing profits. The buyer observes this entire price path at time 0 and her
strategy consists of the time at which she will make a purchase conditional on whether the shock
has arrived or not. Note that we do not restrict the seller to offering continuous or differentiable
price paths which are commonly made assumptions in such models. As we mentioned in the
introduction, the optimal contract can feature introductory pricing (which is discontinuous) and
hence allowing for this generality reaps dividends.

1It is equivalent to think of the distribution of initial values representing a measure of infinitesimal buyers each of
whom receives the shock independently.
2The assumption of independent value changes has also been used in papers on sequential auctions such as
Engelbrecht-Wiggans (1994) and Said (2012).
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If the buyer purchases the good at time t and her value at that time is θ, she receives discounted
payoff e−rt[θ − p(t)] and the seller gets e−rt p(t). This formulation allows us to capture goods that
are storable for the seller but are single use for the buyers such as books or movies. Addition-
ally, this can also capture goods that are durable for the buyer. Here, θ represents the expected
discounted value (which, of course, incorporates the fact that the future value might change).3

We denote the maximal profit maximizing price corresponding to the distributions Fi by pFi .
Formally,

pFi = sup

{
argmax

p
p[1− Fi(p)]

}
.

The supremum above reflects the fact that, without additional assumptions, there may be multiple
prices which maximize monopoly profits.

The distribution Fi is said to satisfy the monotone hazard rate condition if fi(·)
1−Fi(·) is increasing.

This is a standard condition in mechanism design and pricing problems since Myerson (1981) and
is satisfied by most commonly used distributions. This assumption implies that the first order
condition of the monopolist’s profit function has a unique solution and, therefore, that there is a
unique profit maximizing price.

3. SOLVING THE SELLER’S PROBLEM

In this section, we identify the conditions under which introductory pricing is optimal. In or-
der to do so, we do not directly solve for the seller’s optimal price path in the original problem.
Instead, we first define a relaxed problem in which the seller has more information and then iden-
tify conditions under which the solution to the relaxed problem can be achieved without giving
the seller this additional information. The difficulty in solving the seller’s problem directly is that
we have to derive the profit maximizing price path taking into account the utility maximizing
behavior of the buyer. For a given price path p(·), the buyer decides when to purchase the good
(optimally stop) taking into account the fact that her value might, or already has, changed. This
optimal stopping problem corresponding to the buyer’s purchasing decision is itself a difficult
problem to solve in closed form. This is due to the stochasticity of the buyer’s value and be-
cause the seller is not restricted to offering monotone or continuous price paths.4 In the interest of
brevity, we have deliberately chosen to not set up the original problem of the seller directly. This
requires additional notation and offers no further insight.

In the relaxed problem, we assume that the seller observes the arrival of the shock to the buyer’s
valuation. Moreover, we allow the seller to condition the prices he offers on this information. Any
price path in the original problem can be implemented in the relaxed problem because the seller
can simply choose to ignore the information about the arrival of the shock. Hence, the highest

3If we interpret θ to be flow values, then the lifetime value corresponding to a given θ at t before the shock arrives is

just a linear transformation θ
r+λ + λ

r(r+λ)

∫ θ1
θ1

θ′dF1(θ
′). Similarly, if the shock has already arrived, then flow value θ at t

corresponds to a lifetime valuation of θ
r .

4Zuckerman (1986) and Stadje (1991) study a job search model with random wage draws in continuous time where
offers arrive stochastically. While they allow for multiple draws, they assume that the cost of job search is nondecreasing
in time which corresponds to nondecreasing prices p(·) in our context. To the best of our knowledge, the problem with
non-monotone costs has not been solved.
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revenue in the relaxed problem must be weakly greater than in the original. We will identify
conditions under which the solution to this relaxed problem features increasing prices where the
seller does not profit from the additional information. Therefore, under these conditions, the
solution to the relaxed problem coincides with the original problem.

While our primary focus is not on the relaxed problem, it should be pointed out that it is itself of
independent interest. This problem can model commonly occurring situations where a firm knows
that a certain observable event is imminent but does not know the exact time that this event will
occur. For instance, a firm may be aware that a rival is planning to release a product and that the
consumers’ willingness to pay might change due to this release (because of competition or other
factors). The rival’s product launch is observable and the firm can condition prices on this event.

Formally, in this relaxed problem, the seller commits at time 0 to conditional price functions
p0(·), p1(·, ·) where

p0(t) := Price offered at t if the buyer has not received the shock yet,

p1(t, t′) := Price offered at t′ if the buyer received the shock at t ≤ t′.

The seller commits to these functions at the beginning of the game with the intention of maximiz-
ing profits. The price at time 0 is p0(0). If the buyer has not received the shock until time t, the
price she faces is p0(t). If the buyer receives the shock at time t, she faces price p1(t, t) at t and
prices p1(t, t′) at all times t′ > t in the future. We assume that p0(·) is measurable with respect to
the Lebesgue measure on [0, ∞) and p1(·, ·) is measurable with respect to the Lebesgue measure
on [0, ∞)× [0, ∞). The buyer knows these price functions at the beginning of time and behaves
optimally in response. We denote the seller’s revenue in the relaxed problem by R.

We first observe that the seller’s maximum profit is higher in this relaxed problem than in the
original. Let p∗(·) be the optimal price path of the original problem. The seller can ignore in-
formation of the arrival of the shock by setting prices p0(t) = p∗(t) and p1(s, t) = p∗(t) for all
s ≤ t. Since this yields the same revenue as p∗, the maximal profit in the relaxed problem must be
weakly higher than the original.

The price functions p0(·), p1(·, ·) induce continuation payoffs for each type at each point of time
conditional on the information regarding the arrival (or not) of the shock. The continuation payoff
of a type θ who has not received the shock till time t is denoted by

V0(t, θ) := Continuation payoff of type θ at time t when the shock has not arrived.

In other words, V0(t, θ) is the payoff to a type θ from not purchasing the good at time t and
behaving optimally in the future where she will face different prices depending on when the shock
arrives. If the buyer receives the shock at time t, the continuation payoff of a type θ (which is
drawn as a realization of the shock) at time t′ ≥ t is denoted by

V1(t, t′, θ) := Continuation payoff of type θ at time t′ when the shock arrived at t.

We define Θ0(t) as the set of types remaining in the market at the beginning of time t conditional
on the buyer not having received the shock till t. Similarly, we define Θ1(t, t′) to be the set of types
remaining in the market at time t′ conditional on the buyer having received the shock at t.
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As is standard in mechanism design problems, it helps to eliminate prices and and maximize
over the space of allocations instead. The optimal buyer response to given price paths p0, p1 in
our model follows cutoff type behavior: If a type θ that hasn’t (has) received the shock finds it
optimal to purchase at a given time, so do all higher types θ′ > θ that are currently still in the
market and haven’t (have) received the shock. The fact that optimal behavior can be captured by
cutoff types is a standard result from the literature (see, for example, Lemma 1 in Board 2008).
This result extends to our setting as the buyer’s payoff is linear (in her valuation and the price)
and because, conditional on receiving the shock, the buyer draws a new value independently.

Hence, the allocations to the buyer can be captured by cutoff types which we denote by

c0(t) := sup{θ : θ ∈ Θ0(t) and θ −V0(t, θ) ≤ p0(t)},

c1(t, t′) := sup{θ : θ ∈ Θ1(t, t′) and θ −V1(t, t′, θ) ≤ p1(t, t′)}.

Cutoff type c0(t) represents the highest type left in the market that hasn’t received the shock
and is unwilling to purchase the good at p0(t). Notice that this does not imply that type c0(t) is
indifferent between purchasing at p0(t) or waiting. It is possible that p0(t) is high enough such
that all the remaining types in the market who haven’t made a purchase yet strictly prefer to wait
as opposed to buying at p0(t). c1(t, t′) is the analogous cutoff type at t′ when the shock arrived at
t. By definition,

c0(t) is non-increasing in t and c1(t, t′) is non-increasing in t′ for all t.

Note that, since c0(·) and c1(t, ·) are monotone, they are differentiable almost everywhere (hence-
forth abbreviated to a.e.).

It is possible derive an expression for the seller’s revenue solely in terms of the cutoffs c0(·)
and c1(·, ·). As mentioned earlier, this simplifies the problem as it allows us to ignore prices and
maximize over the cutoff space which already incorporates optimal buyer behavior. The cutoffs
can then be used to back out the optimal prices (which need not be unique), for instance, by simply
setting p0(t) = c0(t)−V0(t, c0(t)) and p1(t, t′) = c1(t, t′)−V1(t, t′, c1(t, t′)). When these particular
prices are chosen, the cutoff type is always indifferent between purchasing at t or delaying and
behaving optimally. In what follows, the prices are always assumed (without loss of generality)
to be chosen in this way.

As a first step in eliminating prices from the seller’s profit function, we derive an expression for
the continuation payoff of the cutoff type. For simplicity, the continuation payoff V0(t, c0(t)) of
the cutoff type c0(t) is denoted by shortened notation

V0(t) := V0(t, c0(t)).

Note that V0(t) must be continuous in t as otherwise the cutoff type c(t) could do strictly better
by infinitesimally delaying or preponing her purchase (depending on the direction of the discon-
tinuity). Similarly, we use

V1(t) :=
∫ θ1

θ1

V1(t, t, θ)dF1(θ),

to denote the expected continuation payoff if the buyer receives the shock at t.
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Now, suppose cutoff type c0(t) decides to delay her purchase to t + ∆t. Her payoff from this
would be ∫ t+∆t

t
λe(s−t)(r+λ)V1(s)ds + e−(r+λ)∆t[c0(t)− p0(t + ∆t)]

=
∫ t+∆t

t
λe(s−t)(r+λ)V1(s)ds + e−(r+λ)∆t[c0(t)− (c0(t + ∆t)−V0(t + ∆t))]

The first term is the expected utility of the buyer if the shock arrives between t and t + ∆t, and
the second term is the utility if it doesn’t and a purchase is made at t + ∆t. Since c(t) is indifferent
between purchasing at t and optimally delaying, this implies that V0(t) must be greater than the
above expression (which is the utility from a particular delayed purchase strategy) or

V0(t) ≥
∫ t+∆t

t
λe(s−t)(r+λ)V1(s)ds + e−(r+λ)∆t[c0(t)− (c0(t + ∆t)−V0(t + ∆t))].

This can be rearranged to

V0(t + ∆t)−V0(t) ≤ e−(r+λ)∆t[c0(t + ∆t)− c0(t)]−
∫ t+∆t

t
λe(s−t)(r+λ)V1(s)ds

+ (1− e−(r+λ)∆t)V0(t + ∆t). (1)

Similarly, by definition, type c0(t + ∆t) is in the market at t + ∆T. This must imply that this
type weakly prefers to wait until at least t + ∆t to purchase as opposed to purchasing early at t.
Formally, this can be written as

c0(t + ∆t)− (c0(t)−V0(t)) ≤
∫ t+∆t

t
λe(s−t)(r+λ)V1(s)ds + e−(r+λ)∆tV0(t + ∆t).

The left side of the inequality is the utility from purchasing at t at price p0(t) = c0(t)−V0(t) and
the right side is the expected utility from delaying for an additional ∆t. Rearranging, we get

V0(t + ∆t)−V0(t) ≥ [c0(t + ∆t)− c0(t)] + (1− e−(r+λ)∆t)V0(t + ∆t)

−
∫ t+∆t

t
λe(s−t)(r+λ)V1(s)ds. (2)

Dividing (1) and (2) on both sides by ∆t and taking the limit ∆t → 0, we conclude that V(t) is
differentiable a.e. (since c0 is differentiable a.e. and the right side of both inequalities converge to
the same limit). The derivative V ′(t) satisfies the differential equation

V ′0(t) = c′0(t) + (r + λ)V0(t)− λV1(t).

This equation solves to

V0(t) =
∫ ∞

t
λe−(r+λ)(s−t)V1(s)ds−

∫ ∞

t
e−(r+λ)(s−t)c′0(s)ds,

where we have used the fact that limt→∞ e−(r+λ)tV0(t) = 0 (this follows from the fact that V0(·) is
bounded). Finally, using integration by parts on the second term, we get

V0(t) =
∫ ∞

t
λe−(r+λ)(s−t)V1(s)ds− e−(r+λ)(s−t)c0(s)|∞t − (r + λ)

∫ ∞

t
e−(r+λ)(s−t)c0(s)ds,
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=
∫ ∞

t
λe−(r+λ)(s−t)V1(s)ds + c0(t)− (r + λ)

∫ ∞

t
e−(r+λ)(s−t)c0(s)ds. (3)

The continuation payoff of the cutoff type has two components. The first term is the expected
payoff over time from receiving the shock. The remaining terms constitute the payoff from waiting
and when the shock does not arrive.

We denote the expected surplus and expected revenue conditional on receiving a shock at time
t (but before values are realized) by S1(t) and R1(t). Note that these satisfy

R1(t) := S1(t)−V1(t).

The probability that the buyer is still in the market at the end of time t when the shock hasn’t
arrived is simply F0(c0(t)). Since, c0(·) is differentiable a.e. and F0 is differentiable, F0(c0(t)) is
differentiable a.e. with respect to t. Then, − dF0(c0(t))

dt is the flow mass of types who purchase the
good at time t.

We are now in a position to write the seller’s revenue R in the relaxed problem in terms of c0(·),
V0(·) and R1(·) as

R :=


∫ ∞

0
λe−(r+λ)tR1(t)F0(c0(t))dt︸ ︷︷ ︸

Expected revenue from sales after shock arrives

+ [1− F0(c0(0))][c0(0)−V0(0)]−
∫ ∞

0
e−(r+λ)t[c0(t)−V0(t)]

dF0(c0(t))
dt

dt︸ ︷︷ ︸
Expected revenue from sales before shock arrives

 .

The first term is the expected profit from sales after the shock arrives. This term is weighted by
the probability F0(c0(t)) that the buyer hasn’t made a purchase prior to t. The second term is the
expected profit from sales prior to the arrival of the shock. There is a mass of sales at 0 following
which the price at t is p0(t) = c0(t)−V0(t) and the flow mass of sales is − dF0(c0(t))

dt .
The seller maximizes R by choosing cutoff functions c0(·) which is nonincreasing and c1(·, ·)

which is nonincreasing in the second argument. Note that this is still a difficult problem to solve
as c1 is a function of two variables. We show that the choice space of the seller can be reduced to
two single variable functions which considerably simplifies the problem.

Plugging in c0(t) − V0(t) from (3), using integration by parts and finally plugging in c0(0) −
V0(0) also from (3), we get

R =
∫ ∞

0
λe−(r+λ)tR1(t)F0(c0(t))dt + [1− F0(c0(0))][c0(0)−V0(0)]

−
∫ ∞

0
e−(r+λ)t

[∫ ∞

t
(r + λ)e−(r+λ)(s−t)c0(s)ds− λ

∫ ∞

t
e−(r+λ)(s−t)V1(s)ds

]
dF0(c0(t))

dt
dt

=
∫ ∞

0
λe−(r+λ)tR1(t)F0(c0(t))dt + [1− F0(c0(0))][c0(0)−V0(0)]

−
∫ ∞

0

[∫ ∞

t
(r + λ)e−(r+λ)sc0(s)ds− λ

∫ ∞

t
e−(r+λ)sV1(s)ds

]
dF0(c0(t))

dt
dt

=
∫ ∞

0
λe−(r+λ)tR1(t)F0(c0(t))dt−

[∫ dF0(c0(t))
dt

dt
] [∫ ∞

t
(r + λ)e−(r+λ)sc0(s)ds− λ

∫ ∞

t
e−(r+λ)sV1(s)ds

] ∣∣∣∣∞
0

−
∫ ∞

0

[∫ dF0(c0(t))
dt

dt
] [

(r + λ)e−(r+λ)tc0(t)− λe−(r+λ)tV1(t)
]

dt + [1− F0(c0(0))][c0(0)−V0(0)]
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=
∫ ∞

0
λe−(r+λ)tR1(t)F0(c0(t))dt + [c0(0)−V0(0)]

−
∫ ∞

0
F0(c0(t))

[
(r + λ)e−(r+λ)tc0(t)− λe−(r+λ)tV1(t)

]
dt

=
∫ ∞

0
λe−(r+λ)t {R1(t)F0(c0(t))− [1− F0(c0(t))]V1(t)} dt + (r + λ)

∫ ∞

0
e−(r+λ)tc0(t)[1− F0(c0(t))]dt

=
∫ ∞

0
λe−(r+λ)t {S1(t)F0(c0(t))−V1(t)} dt + (r + λ)

∫ ∞

0
e−(r+λ)tc0(t)[1− F0(c0(t))]dt. (4)

Now notice that the maximum value of R can be derived by first maximizing with respect to c1(t, ·)
for a fixed c0(t) and then maximizing over c0(·). Additionally, note that c1 only appears in the first
term

∫ ∞
0 λe−(r+λ)t[S1(t)F0(c0(t))− V1(t)]dt from (4). The maximum for this term is achieved by

maximizing S1(t)F0(c0(t))−V1(t) pointwise for each time t.
We now observe that the term S1(t)F0(c0(t))− V1(t) is simply the profit of the seller from the

standard durable goods problem of Stokey (1979) where types are drawn from [θ1, θ1], the val-
uation corresponding to a type θ is F0(c0(t))θ. She shows that a constant price path maximizes
S1(t)F0(c0(t)) − V1(t). We can use her result to conclude that p1(t, t) = p1(t, t′) which in turn
implies c1(t, t) = c1(t, t′) for all t′ > t.

It should be pointed out that this observation is not obvious from the outset. At first glance,
it might seem that after the buyer receives a shock at t, we are effectively in the setting of Stokey
(1979) as the buyer’s value no longer changes. However, the critical difference is that the prices
set by the seller after the shock arrives at t determine the continuation payoffs and hence the
behavior of the buyer before t as well. The key insight of rewriting the seller’s revenue in the
form of expression (4) is that this additional effect can be captured by simply scaling S1(t) to
S1(t)F0(c0(t)). The economic intuition for this expression is provided in Section 4.1.

This observation implies that we can now reduce the dimension of the seller’s problem. The
seller now simply needs to choose cutoffs c0(t) and cutoffs c1(t, t) as it is not optimal for him
to make sales to any persistent types at a time t′ > t conditional on having observed a shock
at t. Notice that this also implies that in the optimal price path satisfies p1(t, t) = c1(t, t) or, in
words, that the cutoff type is equal to the price. For notational convenience, we can now use this
observation to drop the extra argument and denote c1(t, t) as simply c1(t).

This allows us to substitute the simplified expressions for the surplus and continuation payoff
conditional on the arrival of the shock,

S1(t) =
∫ 1

c1(t)
θdF1(θ) and V1(t) =

∫ 1

c1(t)

[
θ − c1(t)

]
dF1(θ) =

∫ 1

c1(t)

[
1− F1(θ)

f1(θ)

]
dF1(θ),

into (4) and write the seller’s maximization problem as

max
c0(·),c1(·)

{∫ ∞

0
λe−(r+λ)t

∫ 1

c1(t)

[
F0(c0(t))θ −

1− F1(θ)

f1(θ)

]
dF1(θ)dt + (r + λ)

∫ ∞

0
e−(r+λ)tc0(t)[1− F0(c0(t))]dt

}
,

(5)

such that c0(·) is nonincreasing.
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This is now a well defined calculus of variations problem. Notice now that the above problem
can be solved by the pointwise maximization of

λ
∫ θ1

c1(t)

[
F0(c0(t))θ −

1− F1(θ)

f1(θ)

]
dF1(θ) + (r + λ)c0(t)[1− F0(c0(t))] (6)

at each point of time t by choosing c0(t) and c1(t). Since these cutoffs are chosen from compact
sets and the maximand is continuous, the pointwise maximum must exist and, moreover, the set
of maximizers of (6) must be the same for all t. Let c∗0 and c∗1 be one such pair of maximizers. Then,
by setting c0(t) = c∗0 and c1(t) = c∗1 for all t, the monotonicity restriction on c0(·) is satisfied and
this would be a solution to (6). It is important to point out that the existence of a solution in such
problems can be hard to prove and often has to be assumed. Our approach is constructive in that
we show the existence of a solution by explicitly deriving it.

Since there are only two cutoffs in the relaxed problem, what we have effectively shown is that
the solution to the relaxed problem consists of two prices such that

p0(t) = p∗0 for all t ≥ 0

p1(t, t′) = p∗1 for all 0 ≤ t ≤ t′.

The seller chooses to make some sales in the first instant. If the buyer does not purchase in the
first instant, she waits until she receives the shock at some time t. If her value θ drawn from F1 is
greater than the price p∗1 she makes a purchase else she never buys the good. This is because the
seller never chooses to drop the price and serve any of the persistent types.

When there is an interior solution, the maximizer of (6) must satisfy the first order conditions.
These are obtained by differentiating (6) with respect to c0(t) and c1(t) to get

c∗0 −
1− F0(c∗0)

f0(c∗0)
=

λ

r + λ

∫ θ1

c∗1
θdF1(θ),

F0(c∗0)c
∗
1 −

1− F1(c∗1)
f1(c∗1)

= 0.

When F0, F1 both satisfy the monotone hazard rate condition, it is easy to observe that the solution
to the above first order conditions satisfies c∗0 ∈ (pF0 , θ0) and c∗1 ∈ (pF1 , θ1). This is intuitive. There
is an opportunity cost to making sales at the first instant, namely, that sales cannot be made to
those types in the future. Additionally, due to positive continuation values, the price must be
lower than the cutoff (p∗0 < c∗0). Both these forces compel the seller to make fewer sales at t = 0
than he would have as a static monopolist facing F0. Similarly, making more sales at any t is at
the expense of lowering profits from sales at t′ < t due to the increase in the continuation value.
Therefore, once again, the seller makes fewer sales after the arrival of the shock than he would
have in a static monopoly pricing problem with distribution F1.

4. OPTIMALITY OF INTRODUCTORY PRICING

Whenever one of the solutions to the relaxed problem has increasing prices, the solution to
the original problem is introductory pricing. Recall, that we have argued that the seller is always
weakly better in the relaxed problem as he has additional information that he can choose to ignore.
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Consider the following contract using the optimal prices from the relaxed problem. The seller
charges the price p∗0 at the first instant t = 0 and p∗1 at all t > 0 thereafter. When p∗1 > p∗0 , the
types that do not purchase at the first instant will not do so until they receive a new shock as the
prices have gone up but the continuation value is still the same. When they do receive a shock at
t, they will only make a purchase if the type θ they draw from F1 is greater than p∗1 . This behavior
is identical to the behavior of buyer in the relaxed problem. Hence, this price function yields the
same revenue for the seller as that in optimal solution to the relaxed problem. This argument
yields the main result of the paper.

Proposition 1. Suppose one of the solutions to the relaxed problem features increasing prices. Then, the
optimal price path in the original problem consists of two prices - an introductory price p∗0 at time 0 and
price p∗1 at all times t > 0. Additionally, when there is an interior solution, these prices induce cutoff types
c∗0 , c∗1 which are solutions to the following two equations

c∗0 −
1− F0(c∗0)

f0(c∗0)
=

λ

r + λ

∫ θ1

c∗1
θdF1(θ), (7)

F0(c∗0)c
∗
1 −

1− F1(c∗1)
f1(c∗1)

= 0. (8)

These cutoff types lie in the open intervals (pF0 , θ0) and (pF1 , θ1) respectively. Prices are given by

p∗0 =
1− F0(c∗0)

f0(c∗0)
+

λ

r + λ
c∗1 [1− F1(c∗1)],

p∗1 = c∗1 .

That the optimal contract can consist of increasing prices is intuitive. The increasing price im-
plies that if the buyer does not have a high enough valuation in the first instant to make a purchase,
she will not do so in the future unless she receives new information about the product that makes
her revise her valuation upwards. From the seller’s perspective, the standard intuition for the
durable goods monopoly problem applies. Intertemporal competition is too costly. The gain the
seller gets from serving a type who chose to not purchase at time 0 and who has not received a
shock is offset by the loss due to the additional rent he has to give the types who make a purchase
in the first instant. This is because the seller can only make sales to types that haven’t received the
shock by dropping the price and this increases the continuation payoff at time 0.

Once the seller infers that it is not optimal for him to make a sale to any type who did not
purchase at time 0 and who has not received a shock, the stationarity of the price after time 0
follows from the arrival process of the shock. The seller only wants to serve the buyer when she
receives a shock and her valuation as a result is sufficiently high. By an identical argument to that
given above, if the buyer receives a shock at time t and her type is too low to be served at time
t, the seller has no incentive to serve that type in the future. But since the shock arrives from an
exponential process, the expected duration of arrival of the shock is the same at every point of time
conditional on not having received it. Hence, in essence, the problem after period 0 is stationary.

It is clear from Proposition 1 that it is easy to construct numerous examples of F0 and F1 for
which the result applies. That said, it is important to point out that the above result does not
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require that the distribution F1 dominates F0 in a first order or other sense. Put differently, it is not
the case the price is higher after t = 0 simply because the the demand has gone up. It is possible
to have introductory pricing even when the distribution F1 corresponds to a lower demand than
F0 and has a lower monopoly price (pF1 < pF0). The following lemma characterizes one such case.

Lemma 1. Let F0(θ) = (θ − ε)α on support [ε, 1 + ε] and F1(θ) = θα on support [0, 1] for α > 0. Then
there is a ε > 0 such that for all ε ∈ [0, ε], introductory pricing is optimal.

In the above lemma, whenever ε > 0, the distribution F0 first order stochastically dominates
F1. Despite this, the seller may choose to set a low introductory price (when 0 ≤ ε ≤ ε). Note
that this family of distributions covers both the case where densities are increasing (α > 1) and
decreasing (α < 1). Finally, note that for this family of distributions, introductory prices are
optimal irrespective of the arrival or discount rate which, of course, is not true in general.

4.1. Equivalence to the Two Period Problem

As we have mentioned earlier, Stokey (1979) showed that seller’s maximum profit in the stan-
dard durable goods monopoly problem with constant buyer valuations is the same as what he can
achieve if he has only a single period in which to sell the good. We now argue that when there is
a single stochastic shock to the buyer’s value, the solution to the seller’s problem similarly coin-
cides with that of a two period problem. This analogy also makes the intuition for the optimality
of introductory pricing more transparent.

Consider a discrete time two period problem where the buyer draws an initial private valuation
in period 0 from F0 and a new independent private valuation from F1 in period 1. The common
discount rate is given by δ. The seller sets prices p0 in period 0 and p1 in period 1. These prices
induce cutoffs c0 and c1 in periods 0 and 1 respectively. Given that the game ends after period 1,
the buyer’s continuation value in this period is zero or c1 = p1.

Let the continuation payoff of the buyer in period 0 be given by V0. Since the buyer draws a
new valuation in period 1, this continuation payoff is type independent and satisfies

V0 = δ
∫ θ1

c1

[θ − c1]dF1(θ) = δ
∫ θ1

c1

1− F1(θ)

f1(θ)
dF1(θ).

The seller solves the following problem:

max
c0,c1
{[c0 −V0][1− F0(c0)] + δF0(c0)c1[1− F1(c1)]} . (9)

In the above expression, the expected revenue in period 0 is p0[1− F0(c0)] where p0 = c0 − V0.
The probability that the buyer reaches period 1 is F0(c0) and conditional on reaching period 1, the
expected revenue is given by p1[1− F1(p1)] = c1[1− F1(c1)]. Assuming an interior solution, the
solution satisfies the first order conditions with respect to c0 and c1, which are

c∗0 −
1− F0(c∗0)

f (c∗0)
= δ

∫ θ1

c∗1
θdF1(θ), (10)

F0(c∗0)c
∗
1 −

1− F1(c∗1)
f1(c∗1)

= 0 (11)
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respectively. It is immediate from the above first order conditions that the solution to such a two
period problem satisfies the same equations as those of the continuous time, single shock model
(7 and 8) where the discount rate is δ = λ/(r + λ).

We can now interpret these equations by comparing them to the first order condition of a stan-
dard static monopoly pricing problem where the seller has constant marginal costs. We first
rewrite the seller’s revenue maximization problem (9) in integral form (using integration by parts)
as

max
c0,c1


∫ θ0

c0

(
θ︸︷︷︸

Period 1 Surplus

− 1− F0(θ)

f (θ)︸ ︷︷ ︸
Period 1 Buyer’s Rent

)
dF0(θ) + δ

∫ θ1

c1

(
F0(c0)θ︸ ︷︷ ︸

Period 2 Surplus

− 1− F1(θ)

f1(θ)︸ ︷︷ ︸
Period 2 Buyer’s Rent

)
dF1(θ)

 .

In this two period problem, the cost of serving the buyer in period 0 is essentially the opportu-
nity cost of not serving her in period 1 instead. By decreasing the period 0 cutoff type c0, the seller
profits more from sales in period 0, however, this reduces the chance of making a sale in period 1.
Similarly, the cost of serving the buyer at price p1 = c1 in period 1 is the opportunity cost of the
continuation value it provides to the buyer in period 0. By decreasing c1, the seller increases his
revenue from sales in period 1 but he loses revenue in period 0 as now the continuation payoff to
the buyer has gone up. Notice that the period 1 surplus term is scaled by the probability of reach-
ing period 1. This reflects the fact that a sale can only be made in period 1 if the buyer chose not
to purchase in the first. However, the rents to the buyer in period 1 are not scaled. This is because
whether the buyer makes a purchase in period 0 or not, she gets at least her type independent
continuation payoff V0. In other words, these rents have to be paid to all types.

Equations (10) and (11) capture the above intuition. Consider the first order condition (10) with
respect to c0. The term on the left side of the equation is the marginal gain in revenue from serving
more types in period 0. The marginal cost of serving additional types in period 0 is the marginal
loss in expected surplus from period 1 as the probability of reaching period 1 goes down. All types
in period 0 (not just the types who purchase the object) receive the continuation payoff from the
price p1 in period 1 and hence the period 1 rent does not enter the equation.

Rewriting the first order condition (11) with respect to c1 as

F0(c0)

[
c1 −

1− F1(c1)

f1(c1)

]
= [1− F0(c0)]

[
1− F1(c1)

f1(c1)

]
,

provides a similar interpretation. The term on the left side is once again the (ex-ante) marginal
gain in revenue at period 1 from serving additional types. Since the seller is maximizing revenue
at the beginning of period 0, this term includes the probability that the buyer is still in the market
at period 1. Moreover, this term also accounts for the information rent to the buyer in the second
period. The term on the right accounts for the marginal impact a change in period 1 price has on
the rents (in the form of continuation values) to types at period 0.
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4.2. Comparative Statics

In this section, we argue that introductory pricing is more likely to arise when the seller’s ef-
fective discount factor λ/(r + λ) decreases. When the effective discount factor decreases, sales in
the future become less lucrative and so the seller prefers to make upfront sales at t = 0. The seller
can achieve this by reducing the incentive for the buyer to delay. This can be done by raising the
price at t > 0, however, this may not be necessary as the buyer now values the future less. The
following proposition states that if introductory pricing is optimal at a given effective discount
factor, it will remain optimal whenever the effective discount factor is lower.

Proposition 2. Suppose F0 and F1 satisfy the monotone hazard rate condition and that introductory pricing
is optimal for a given r, λ > 0. Moreover, suppose that there is an interior solution and that the first order
conditions have a unique solution for all r, λ > 0 such that λ

r+λ ≤
λ

r+λ . Then introductory pricing remains

optimal for all r, λ > 0 such that λ
r+λ ≤

λ
r+λ .

The proof of the above proposition shows that as the effective discount factor decreases, the
difference between the introductory and continuation price p∗0 − p∗1 increases (which implies that
our relaxed approach will continue to work). As an intermediate step, we show that the seller
makes more sales up front (c∗0 decreases) at the expense of later sales (c∗1 increases). A consequence
of this is that while p∗1 goes up, p∗0 can either increase or decrease in response to a change in the
effective discount factor. The ambiguous effect on p∗0 is driven by the fact that while the cutoff c∗0
goes does, the continuation payoff to the buyer goes down as well and recall that the price is given
by the difference between these two.

A few comments are in order on the additional conditions in the above proposition. In order to
get the comparative static, we need to work with the first order conditions. These characterize the
solution if, and only if, it is in the interior. However, the first order conditions may have multiple
solutions which prevents us from implicitly differentiating as, in this case, the solution may be
discontinuous in r, λ. That said, it appears that these conditions aren’t very stringent, in particular,
they are satisfied by the family of distributions in Lemma 1.5 Simulations seem to suggest that
these conditions hold in general for most commonly used distributions (with appropriately chosen
supports).

5. CONCLUDING REMARKS

In this paper, we developed a model of a monopolist seller of a durable good who faces a
buyer with a stochastic valuation. In the model, the buyer has an initial private value and then
subsequently receives new private information which arrives in the form of a single randomly
arriving shock. We show that, with commitment, introductory pricing can be optimal for the
seller. The main insight is that, despite having very complicated price paths at his disposal, the
seller can find it optimal to use a very simple pricing strategy. The result is driven by the fact
that, under certain conditions, it is optimal to make upfront sales by reducing the continuation
payoff of the buyer even at the expense of making fewer sales in the future. Surprisingly, the

5Note that the distribution F0(θ) = θα does not satisfy the monotone hazard rate condition globally when 0 < α < 1.
But it does satisfy the monotone hazard rate condition to the right of the monopoly price pF0 which is sufficient.
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solution to the problem turns out to be equivalent to a two period pricing problem (in which the
buyer draws an independent private value in each period) in the same way that the solution to
the standard durable goods monopoly problem (with persistent values) is equivalent to a static
monopoly problem (Stokey 1979).

A few comments about the robustness of the results are in order. The analysis in the paper was
done in continuous time primarily because it makes the intuition transparent and it simplifies al-
gebra. Additionally, it allows us to contrast our results to Stokey (1979) who also uses a continuous
time framework. The identical arguments in the paper will work for a discrete time environment
as well.

Unfortunately, it is very hard to characterize the seller’s optimal price path when introductory
pricing is not optimal. In this case, the relaxed approach in this paper will not work. When the
relaxed problem does not feature increasing prices, it is even hard to show that the seller’s optimal
price path is decreasing as we cannot rule out the optimality of nonmonotone price paths.6 This is
because the buyer’s optimal stopping decision for a nonmonotone price path at each t can depend
on the entire future price path as opposed to being summarized in time t cutoffs that depend on
the the price and the slope of the price path at t alone.

Finally, we end with a discussion of a few possible generalizations of the model. There are a
number of ways in which the model of the paper can be generalized. Perhaps the most obvious
way is to introduce some correlation in the buyer’s value after she receives the shock. Recall that
we assume that, conditional on receiving a shock, the new valuation is drawn independently. It
is possible to generalize the results to allow for ‘a small amount’ of correlation. For instance, the
buyer’s value after the shock can be taken to be a weighted sum of the original and new value
where the weight on the original value is small. Allowing for arbitrary amounts of correlation,
conditional on a shock, significantly complicates the analysis. The primary difficulty is that opti-
mal behavior may no longer be a cutoff strategy. A higher type may find it optimal to wait when
a lower type finds it optimal to purchase. As a result, we can no longer to work in the cutoff space
and optimal buyer behavior must be derived by solving complicated optimal stopping problems,
the solutions to which are not known in general.

Another way in which the analysis can be generalized is to consider the seller optimal equi-
librium when he cannot commit to the entire price path. As we have mentioned earlier, such a
model would be a generalization of Fuchs & Skrzypacz (2010) to an environment where the ar-
rival of shocks is unobserved by the seller and where the continuation payoffs are endogenous (as
opposed to be determined by a given exogenous function). This is an interesting but extremely
challenging problem which we leave for future research.

6It is possible to show that increasing price paths are no longer optimal.
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APPENDIX

Proof of Lemma 1. We will argue that when ε = 0, then p∗1 > p∗0 . The result then follows from
continuity as p∗1 must also be greater than p∗0 in a neighborhood ε ∈ [0, ε] of 0. Since F0(θ) =

F1(θ) = θα and pF0 = pF1 for ε = 0, we represent them as F and pF respectively for brevity.
We first make a few observations about the distribution F(θ) = θα. The virtual value

θ − 1− F(θ)
f (θ)

=
θα(α + 1)− 1

αθα−1 ,

for this class of distributions is negative when θ < pF and positive when θ > pF where pF =( 1
1+α

) 1
α . An implication of this is that both c∗0 , c∗1 are greater than pF since neither equation (7)

nor (8) can hold when c∗0 , c∗1 < pF as their left hand sides would be negative. Additionally, the
expression

F(θ)(1− F(θ))
f (θ)

=
1
α
(θ − θα+1),

is decreasing whenever θ ≥ pF.
Due to the fact that F1 = F2 and that the virtual values are strictly negative at θ = 0, the solution

lies in the interior. Then recall from Proposition 1 that prices p∗0 and p∗1 satisfy

p∗0 =
1− F(c∗0)

f (c∗0)
+

λ

r + λ
c∗1 [1− F(c∗1)]

and
p∗1 = c∗1 .

Subtracting, we get

p∗0 − p∗1 =
1− F(c∗0)

f (c∗0)
+

λ

r + λ
c∗1 [1− F(c∗1)]− c∗1

<
1− F(c∗0)

f (c∗0)
+ c∗1 [1− F(c∗1)]− c∗1 =

1− F(c∗0)
f (c∗0)

− c∗1 F(c∗1).

Now suppose the converse holds or that p∗0 − p∗1 > 0. This in turn implies that

1− F(c∗0)
f (c∗0)

− c∗1 F(c∗1) > 0

and that c∗0 > c∗1 since c∗0 ≥ p∗0 . Using the first order condition (8), we can substitute c∗1 =
1−F(c∗1)

F(c∗0) f (c∗1)
in the above inequality to get

1− F(c∗0)
f (c∗0)

> c∗1 F(c∗1)⇐⇒
F(c∗0)[1− F(c∗0)]

f (c∗0)
>

F(c∗1)[1− F(c∗1)]
f (c∗1)

.

But since c∗0 , c∗1 > pF, the above inequality implies that c∗0 < c∗1 which is a contradiction. Hence,
we have shown that p∗0 < p∗1 which completes the proof. �

Proof of Proposition 2. For this proof, we denote the implicit functions (c0 in terms of c1) defined
in both the first order conditions (7) and (8) as ca

0(c1), cb
0(c1) respectively. We first argue that

when the monotone hazard rate condition holds, these implicit functions are downward sloping(
dca

0(c1)
dc1

< 0, dcb
0(c1)
dc1

< 0
)

. In equation (7), an increase in c1 decreases the right side and therefore,
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the monotone hazard rate condition implies that c0 must go down in order for the equation to
hold. Similarly, in equation (8), the monotone hazard rate condition implies that an increase in c1

raises the left side and hence, c0 must go down in order for the equation to hold.
Now observe that ca

0(θ1) ≥ cb
0(θ1). This follows from ca

0(θ1) = pF0 and cb
0(θ1) = θ0. By assump-

tion, an interior solution exists for all λ < λ and, in particular for λ close to 0, which then implies
pF0 ≥ θ0 (from the solution to (7)). Additionally, since we have assumed that these equations have
a unique solution, the function ca

0 must cross cb
0 only once from below.

Now, when either λ increases or r decreases, the effective discount factor δ = λ
r+λ increases.

This implies that for all c1, ca
0(c1) increases while cb

0(c1) remains unaffected. Since, ca
0 and cb

0 are
both downward sloping and cross only once, this implies that an increase δ leads to an increase in
c∗0(δ) and a decrease in c∗1(δ). We use c∗0(δ), c∗1(δ), p∗0(δ) and p∗1(δ) to denote the optimal cutoffs
and prices corresponding to the effective discount factor δ.

Now suppose that introductory pricing is optimal for a given r, λ. Then for any δ ≤ λ
r+λ ,

p∗1(δ)− p∗0(δ) = c∗1(δ) + δ
∫ θ1

c∗1(δ)
(θ − c∗1(δ))dF1(θ)− c∗0(δ),

which in turn implies that

∂p∗1(δ)
∂δ

− ∂p∗0(δ)
∂δ

=
∂c∗1(δ)

∂δ︸ ︷︷ ︸
-ve

[1− δ(1− F1(c∗1(δ)))]︸ ︷︷ ︸
+ve

− ∂c∗0(δ)
∂δ︸ ︷︷ ︸
+ve

< 0.

In other words, if p∗1
(

λ
r+λ

)
≥ p∗0

(
λ

r+λ

)
for a given r, λ, then it follows that p∗1

(
λ

r+λ

)
≥ p∗0

(
λ

r+λ

)
for all r, λ such that λ

r+λ ≤
λ

r+λ . �
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