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a b s t r a c t

In this paper, we examine how the geometry underlying revealed preference determines the set of
preferences that can be revealed by choices. Specifically, given an arbitrary binary relation defined on a
finite set,we ask if andwhen there exists a data setwhich can generate the given relation through revealed
preference. We show that the dimension of the consumption space affects the set of revealed preference
relations. If the consumption space has more goods than observations, any revealed preference relation
can arise. Conversely, if the consumption space has low dimension relative to the number of observations,
then there exist both rational and irrational preference relations that can never be revealed by choices.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Classical revealed preference theory provides a simple, intu-
itive and nonparametric way of testing the most basic assumption
of economics—that agents are rational. In this approach, observed
choices by individuals ‘‘reveal’’ a (potentially incomplete) prefer-
ence relation over the set of consumption bundles. It is well known
that the necessary and sufficient condition for the observed choices
of an individual to be consistent with utility maximization is that
the preference relation revealed by the choices should be acyclic
or equivalently should satisfy the Generalized Axiom of Revealed
Preference or GARP (Varian, 1982). There is a large body of empiri-
cal work that checks this condition in a variety of different settings
both in the field and in the lab (references can be found in the sur-
vey by Varian, 2007).

Revealed preference in the standard consumption setting is a
geometric property—a chosen bundle is revealed preferred to all
the bundles that were affordable but not chosen. Put differently,
revealed preference is determined by where points correspond-
ing to choices lie in the consumption space relative to the planes
determined by the budgets. A bundle is revealed preferred to an-
other if the latter lies underneath the budget plane on which the
former lies. In this paper, we examine how this geometry underly-
ing revealed preference determines the set of possible preference
relations that can be revealed by choices. This provides ex-ante
information about the preference relations that are possible given
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the number of goods and the number of observations in the
data and this can be useful for experimental design. Formally,
suppose we are given a set {1, . . . ,N} with a relation ≻ defined
on it. We ask whether there exists a price consumption data set
{pi, xi}Ni=1 consisting of K goods such that for all i ≠ j, pixi > pixj
whenever i ≻ j and pixi < pixj whenever i ⊁ j. The analysis of
the above question involves examining whether budget sets can
be chosen to intersect in appropriate ways to allow for choices of
consumption bundles which will generate relation ≻ through re-
vealed preference.

All possible relations may not arise from revealed preference
as it may not be possible to separate the consumption space into
the required number of regions using ‘‘downward sloping’’ budget
planes. Hence, the set of possible revealedpreference relationsmay
depend on the dimension K of the consumption space. A higher di-
mensional consumption space may allow for the budget planes to
separate more regions in the space potentially leading to a larger
set of revealed preference relations. The main aim of this paper is
to examine the relationship between the number of goods in a data
set and the set of relations that can be generated through revealed
preference. It is well known that when there are only two goods
(K = 2), theWeak Axiom of Revealed Preference (WARP) is equiv-
alent to GARP (Rose, 1958). This implies that when K = 2, there
cannot be choices that satisfy WARP but violate GARP which, of
course, is possible for K ≥ 3.1 However, little is known about the
relationship between the set of possible revealed preference rela-
tions and the dimension of the consumption space when K ≥ 3.

1 For example, a relation which is cycle consisting of three elements can never be
generated by revealed preference when K = 2.

http://dx.doi.org/10.1016/j.jmateco.2013.11.005
http://www.elsevier.com/locate/jmateco
http://www.elsevier.com/locate/jmateco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmateco.2013.11.005&domain=pdf
mailto:rahul.deb@utoronto.ca
mailto:mallesh@econ.upenn.edu
http://dx.doi.org/10.1016/j.jmateco.2013.11.005


204 R. Deb, M.M. Pai / Journal of Mathematical Economics 50 (2014) 203–207
Fig. 1. Budget sets from Andreoni and Miller (2002).

We show that when the dimension of the consumption space
is large relative to the number of observations, revealed prefer-
ence can generate any relation and conversely, certain rational and
irrational preferences cannot be revealed by choices if the con-
sumption space has low dimension relative to the number of ob-
servations.

As we will elaborate below, we feel that the results in this
paper are useful for the design of experiments for models, the tests
of which depend on revealed preference. A different but related
problem which has received substantial recent attention is how
to interpret the results of GARP tests. Suppose a researcher is
interested in testing rationality on a given data set by checking
for GARP violations. If the choices satisfy GARP, is it because the
consumer is rational or is it because the budget sets provided little
opportunity for rejecting rationality? Conversely, if the choices
reject GARP, is there a simple way to interpret the degree of
irrationality? These questions are addressed in a number of papers
which have suggested both power (for example, Andreoni et al.,
2013) and goodness of fit measures (for example, Beatty and
Crawford, 2011) for a given collection of budget sets faced by a
consumer. These measures are ideal to interpret results of GARP
tests on a given price consumption data set.

By contrast, in experimental settings, the researcher is free to
choose the budget sets, the dimension of the consumption space
and the number of observations. Here, the experimental setup
cannot be informedby the subject choiceswhich are yet to bemade
at the design stage. As an example, consider the influential altruism
experiment of Andreoni andMiller (2002). In this experiment, they
varied relative prices and budgets and made individuals choose
between keeping money for themselves and giving it to another
subject. They then tested if charitable giving is rational. Fig. 1
shows the eight budget sets that they presented to their subjects.
To provide a measure of the degree of irrationality of the subjects’
choices, one of the statistics they reported was the number of
WARP violations. They find that the choices of most irrational
subjects contain only a single WARP violation (see Table 2 in their
paper).

Suppose a researcher is interested in designing an experiment
to study the irrationality of subjects measured by the number
of WARP violations. What budget sets should be provided to the
subjects? Presumably, the design should allow for choices which
result in a large number ofWARP violations. Clearly, the theoretical
upper bound for the number of WARP violations in a subject’s
choices is achieved when every pair of her choices violate WARP.
Fig. 2 shows that it is possible to provide subjects with budget sets
on which such choices are possible. Here budget sets are chosen as
different tangents to a given arc. Notice that if a subject’s choices
Fig. 2. MaximumWARP violations.

were the tangent point (or close to it) then every consumption
bundle would be strictly revealed preferred to every other. In
other words, every pair of such choices would violate WARP.
Hence, by providing these budget sets to subjects, it is at least
theoretically possible to observe choiceswith themaximal amount
of irrationality. By contrast, consider the budget sets in Fig. 1
which were chosen by Andreoni and Miller. Note that the bold
blue budget sets are such that any choices made on these budget
sets will satisfy WARP. Hence, the most possible WARP violations
that can be observed on these budgets sets are far fewer than the
theoretical maximum.

Of course, testing GARP is just one instance of a test involving
the revealed preference relation. Knowledge of the set of relations
that can arise is important in experimental design formore general
models as well. As an example, consider the design of an experi-
ment to test the multiple rationale model of Kalai et al. (2002). In
this model, an agent’s preference depends on states. For instance,
an agent may have different preferences depending on whether
she is in a happy or a sad state. If these different states are un-
observed by the researcher, then the observed choices from such
an individual may be construed as irrational. Formally, in this set-
ting, an individual has M rationales if there are M different states
and the agent has a distinct utility function corresponding to each
state. A data set is said to be ‘‘rationalized by M rationales’’ if each
observed choice is the utility maximizing bundle corresponding to
one of these preferences. The revealed preference test for M ra-
tionales simply involves partitioning the data intoM subsets, such
that GARP is satisfied on each of these subsets separately. A good
experimental design for such general models should allow for the
possibility that the hypotheses we want to test for can possibly
arise from choices on the given budget sets. In particular, an im-
portant design choice is the number of goods in the subjects’ choice
sets.

As briefly mentioned above, our contribution is in the form of
two theorems. In the first, we show that as long as the data set
contains as many goods as observations (K ≥ N), every possible
binary relation can be generated using revealed preference. The
proof is constructive and demonstrates how to generate a data
set corresponding to a given relation. This can be viewed as a
positive result for designing experiments which test properties of
the revealed preference relation.

While the above result is positive, it suggests that there may be
a connection between the number of goods and the nature of pref-
erences that can be revealed by choices. Our second result shows
that this is indeed the case. We prove that for every K , there ex-
ists a binary relation ≻ defined on a set with N = O(2K ) elements
such that there is no price consumption data set consisting of N
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observations with K goods which generates ≻ through revealed
preference. This result suggests that the number of goods in a data
set may be an important choice variable for experimental design
when testing general choice models.

Interestingly, we can construct relations on sets of size N =

O(2K ) which are acyclic but nevertheless cannot be generated if
the consumption space has dimension K . This shows that a data
set with a low number of goods relative to observations rules out
not only certain preferences which violate GARP but also rules out
certain preferences for which GARP is satisfied.

2. Preliminaries

The number of goods is denoted by K . We denote price vectors
by p and consumption bundles by x. An observed data set is a
finite set of price, consumption vectors D = {(pi, xi)}Ni=1, where
(pi, xi) ∈ RK

++
× (RK

+
\ {0}) and 1 ≤ N < ∞. pki and xki denote the

price and quantity consumed of the kth good in the ith observation,
respectively. Utility functions are given by U : RK

+
\ {0} → R+.

Given a data setD, a consumption bundle xi is said to be revealed
preferred to another bundle xj if the latter was affordable under
prices pi but was not chosen. Formally, xi is revealed preferred to xj
if pixi ≥ pixj. If the inequality is strict, then revealed preference
is said to be strict. The Generalized Axiom of Revealed Preference
(GARP) of Varian (1982) requires the revealed preference relation
to be acyclic in the following sense.

Definition 2.1 (GARP). Suppose we are given an arbitrary data set
D = {(pi, xi)}Ni=1. For any two consumption bundles xi, xj we
say that xiR0xj if xi is revealed preferred to xj. We say xiRxj if for
some sequence of observations (x1, x2, . . . , xm), we have xiR0x1,
x1R0x2, . . . , xmR0xj (R is the transitive closure of R0). The data set
D satisfies GARP if

xiRxj H⇒ pjxj ≤ pjxi ∀i, ∈ {1, . . . ,N} where i ≠ j.

Weuse≻ to denote an arbitrary binary relation defined on a set
{1, . . . ,N}. We now define formally what is meant by a relation
being generated by revealed preference.

Definition 2.2 (Generating a Relation).Adata set {(pi, xi)}Ni=1 is said
to generate relation ≻ defined on a set {1, . . . ,N} if for all i ≠ j

pixi > pixj if i ≻ j and pixi < pixj if i ⊁ j.

Notice that in the above definition we require xi to be strictly
revealed preferred to xj whenever i ≻ j. None of our results are
affected by replacing the strict by a weak inequality. Our choice of
the strict inequality reflects the fact that in real data it is almost
never the case that two different choice bundles cost exactly the
same amount. Also note that the definition is in terms of the di-
rect revealed preference relation R0 and not in terms of the indi-
rect revealed preference relation R. This reflects the fact that we
are agnostic about whether the underlying consumer is a standard
utility maximizer or whether, for instance, she has multiple ratio-
nales. Hence, the transitivity of preferences (implicit in the relation
R) is not a natural assumption for our setting.

Before proceeding to our results, we state the classic result of
Varian (1982) which states that a data set is consistent with utility
maximization if and only if it satisfies GARP.

Theorem 1 (Varian, 1982). Let D = {(pi, xi)}Ni=1 be a price consump-
tion data set. The following are equivalent:
(1) Data set D is consistent with utility maximization. In other words,

there exists a nonsatiated utility function U such that for each ob-
servation i

U(x′) ≤ U(xi), for all x′ satisfying pix′
≤ pixi.

(2) Data set D satisfies GARP.
3. Results

Our first result states that revealed preference can generate any
binary relation as long as the number of goods is at least as many
as the number of observations.

Theorem 2. Given an arbitrary relation≻defined on a set {1, . . . ,N}.
There exists a data set {(pi, xi)}Ni=1 consisting of N goods (K = N)
which generates ≻.

Proof. We label each good in a bundle by using a superscript. Thus,
the jth good in the ith observation is representedby xji, and theprice
of the jth good in the ith observation by pji, where 1 ≤ i, j ≤ N .

We now construct the data set D = {(pi, xi)}Ni=1 as follows

pii = 1 xii = 1

pji = 0 xji = 0 if j ≠ i and j ≻ i

pji = 0 xji = 2 if j ≠ i and j ⊁ i.

(1)

We now check to see if this data set indeed generates ≻. For an
arbitrary i ≠ j, if we have i ≻ j then

pixi = piix
i
i = 1

pixj = piix
i
j = 0

H⇒ pixi > pixj.

Similarly if we have i ⊁ j then

pixi = piix
i
i = 1

pixj = piix
i
j = 2

H⇒ pixi < pixj.

Clearly the above data set generates the relation ≻. However, the
proof is not complete because we do not allow the observed data
to contain zero prices. But of course, it is easy to replace every
instance of a 0 price by a small enough positive ε > 0 in Eq. (1).
Since the above inequalities are strict, for a small enough ε, they
will not be violated and this completes the proof. �

Theorem2 shows that any relation canbe generated by revealed
preference; however, it requires the number of goods in the data
set to be increasing in the size of the panel. Note that, it does not
claim thatN is theminimumnumber of goods required to generate
any relation defined on a set of size N . This immediately leads to
two questions. What is the minimum number of goods required to
generate any relation and does this minimum number depend on
N? While we do not have an answer to the first question we can
provide an answer to the latter. Our second result shows that for
every K , there are relations≻ defined on a set of size N > K which
cannot be generated when the observed data has K goods.

Theorem 3. For any K ≥ 2, there is a relation ≻ defined on a set of
size N = O(2K ) such that no data set consisting of N observations and
K goods can generate relation ≻. Moreover, relation ≻ can be chosen
to be acyclic.

The above result implies that there does not exist a dimension
of the consumption spaceK such that all relations can be generated
irrespective of the number of observations N . This in turn implies
that experiments in which subjects are presented with many
choice problems should perhaps have a larger number of goods.
As wementioned in the Introduction, the fact that there are acyclic
relations that cannot be generated shows that a consumption space
of low dimension rules out certain rational preferences along with
certain irrational preferences.
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4. Concluding remarks

In this paper, we studied the extent to which the geometric
basis of revealed preference affects the set of underlying relations
it can generate. We showed that every possible relation can be
generated if there are enough goods in the data relative to the
number of observations. Conversely, we showed that when this is
not the case, there are situations where certain relations cannot be
generated by any data set.

As revealed preference theory develops for more sophisticated
choice models, we feel that an important result would be a com-
plete characterization of the set of relations that can potentially be
generated for a givenN, K (whereN > K ).We leave this ambitious
problem for future research.
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Appendix. Proof of Theorem 3

We begin the proof by defining an auxiliary problem. Suppose
we are given a relation ≻ and N consumption bundles {xi}Ni=1 each
with the K goods. When are there prices {pi}Ni=1, pi ∈ RK

++
, such

that {(pi, xi)}Ni=1 generates exactly the relation ≻? This is essen-
tially the problemwe are studying in the paper, but it assumes that
consumption bundles are observed.

Mathematically, prices that generate ≻ will exist if the fol-
lowing system of linear inequalities has a solution for all i, j ∈

{1, . . . ,N} where i ≠ j.

pi · (xi − xj) > 0 when i ≻ j, (2a)

pi · (xj − xi) > 0 when i ⊁ j, (2b)

pi ≫ 0. (2c)
Wewill nowuse a version of Farkas’ lemmawhichwill allowsus

to examine the Farkas alternative of the above system. This lemma
is stated below.

Lemma 1. For any matrix A ∈ Rm×n, either there exists a y ∈ Rn

such that:

Ay =

0
...
0

 , [1 · · · 1]y = 1, y ≥

0
...
0

 ,

or there exists a x ∈ Rm such that:

xTA ≫ [0 · · · 0] .

Proof. Let i ∈ Rn, i =

1
.
.
.
1

 , 0 ∈ Rm, 0 =

0
.
.
.
0

. The original

system can be written as:
A
iT


y =


0
1


, y ≥ 0.

By the Farkas lemma (see, e.g. Theorem 2.4 of Vohra, 2005),
either the system above is feasible or there exists a solution x̃ ∈

Rm+1 to the system:

x̃T

A
iT


≥ [0 · · · 0] , (3)

x̃T

0
1


< 0. (4)
Rewriting x̃T = [x, x̂] where x ∈ Rm, x̂ ∈ R, we see that (4) is
equivalent to x̂ < 0. Substituting this into (3), we get

xTA ≥ [−x̂ − x̂ . . . − x̂] ≫ [0 · · · 0] ,

which concludes the proof. �

We now use Lemma 1 to take the Farkas alternative for the
above system (2a)–(2c). We denote the dual variable for the in-
equality corresponding to the directed pair i ≻ j as yij, and the dual
variable corresponding to the price of the kth good in the ith ob-
servation pki as ηk

i . The Farkas alternative is:
N
i=1


j≠i

yij +
N
i=1

K
k=1

ηk
i = 1,

{j|i≻j}

yij(xki − xkj ) +


{j|i⊁j}

yij(xkj − xki ) + ηk
i = 0

for all 1 ≤ i ≤ N, 1 ≤ k ≤ K ,

yij, ηk
i ≥ 0 for all 1 ≤ i ≠ j ≤ N, 1 ≤ k ≤ K .

We eliminate the η variables to get an equivalent systemwhich
consists of fewer unknowns:

N
i=1


j≠i

yij > 0,
{j|i≻j}

yij(xki − xkj ) +


{j|i⊁j}

yij(xkj − xki ) ≤ 0

for all 1 ≤ i ≤ N, 1 ≤ k ≤ K ,

yij ≥ 0 for all 1 ≤ i ≠ j ≤ N.

The intuition of this elimination is straightforward. There can be
no solution to the original systemwhere

N
i=1


j≠i yij = 0. This is

because if any ηk
i is positive then at least one yij must be positive

to satisfy the second equation.
Therefore, given consumption bundles {xi}Ni=1, there exist prices

which generate the relation ≻ if and only if the above system has
no solution. Going one step further, therefore, given a relation ≻,
if the above system has a solution for all choice of x, then there is
no data set with K goods which can generate ≻. We collect this
observation in the following lemma.

Lemma 2. Suppose we are given a relation ≻. There does not exist
a data set {(pi, xi)}Ni=1, generating the relation ≻ if and only if the
following system has a solution for every {xi}Ni=1 ∈ RNK

+
.

N
i=1


j≠i

yij > 0,
{j|i≻j}

yij(xki − xkj ) +


{j|i⊁j}

yij(xkj − xki ) ≤ 0

for all 1 ≤ i ≤ N, 1 ≤ k ≤ K ,

yij ≥ 0 for all 1 ≤ i ≠ j ≤ N.

We now construct a relation ≻ which cannot be generated
based on the following two observations.

Observation 1. The Farkas system has a solution if and only if the
following subsystem has a solution for some i:
j≠i

yij > 0, (5a)
{j|i≻j}

yij(xki − xkj ) +


{j|i⊁j}

yij(xkj − xki ) ≤ 0

for all 1 ≤ k ≤ K , (5b)
yij ≥ 0 for all 1 ≤ j ≠ i ≤ N. (5c)
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Proof. When the above system has a solution, we can set the
remaining yi′j’s to 0 for all other i′ ≠ iwhichwould yield a solution
to the original problem. �

Observation 2. Given K vectors {v1, . . . , vK } each in RK , the
following system has a non-zero solution for λi’s (equivalently
{λi}

K
i=1 ∈ RK

\ {0}):

K
i=1

λivi ≤ 0.

Proof. If the given vectors are linearly independent, any vectors
in the negative orthant can be generated by non-trivial linear
combinations. If the given vectors are linearly dependent, there
will be a non-trivial solution for the above expression holdingwith
equality. �

We are now in a position to prove Theorem 3.

Proof of Theorem 3. We will construct a relation ≻ defined on a
set of size N = 2K+1

+ K + 1 and we will show that it cannot be
generated by any data set consisting of N observations each with
K goods.

In the proof, we will describe the essential pairs of the relation
≻. For all remaining pairs i, j ∈ {1, . . . ,N}, we can either assign
i ≻ j or i ⊁ j without affecting the proof. If we assign i ⊁ j for all
remaining i, j, then the relation ≻ will be acyclic.

The construction is as follows. We describe how the last 2K+1

elements {K + 2, . . . ,N} are related to the first K + 1 elements
{1, . . . , K + 1}. Consider each vector e = (e1, . . . , eK ) ∈ {0, 1}K .
This vector can be thought of as a binary representation of an
integer and we denote the integer represented by the binary
number e as E. We can now specify the crucial part of the relation
≻ corresponding to each e.

• K + 2E + 2 ≻ 1.
• K + 2E + 3 ⊁ 1.
• For each 2 ≤ i ≤ K + 1:

– If ei = 0 : K + 2E + 2 ≻ i and K + 2E + 3 ≻ i.
– If ei = 1 : K + 2E + 2 ⊁ i and K + 2E + 3 ⊁ i.

We now show that given the above the relation, the system
(5a)–(5c) will have a solution for some i ∈ {K +2, . . . , 2K

+K +1}
for every set of consumption bundles {xi}Ni=1. We first define for all
j = 1, . . . , K ,

vj = (x1 − xj+1).

By our construction of relation ≻, we have ensured that ev-
ery possible combination of vectors {(−1)eivi}

K
i=1 where e =

(e1, . . . , eK ) ∈ {0, 1}K is present on the left side of inequality (5b).
We can then use Observation 2 which says that there is a non-
trivial solution for λ to the following inequality:
K

i=1

λivi ≤ 0.

Wenow use the signs of the λ’s to choose an e. For all 1 ≤ i ≤ K

ei =


0 if λi ≥ 0,
1 if λi < 0.

Recall, E is the integer corresponding to binary number e de-
fined above. If

K
j=1 λj < 0 we take i = K + 2E + 2 and sign

variable s = 0; else we take i = K + 2E + 3 and sign variable
s = 1. We now define yij′ for 1 ≤ j′ ≤ K + 1 as

yi1 =

 K
j=1

λj

 ,
yij′ =

λj′−1
 for all 2 ≤ j′ ≤ K + 1.

We set all remaining y’s to 0. Formally,

yij = 0 for all j > K + 1, and
yln = 0 for all l ≠ i, 1 ≤ n ≤ N.

We now show that this choice of y leads to a solution of (5a)–(5c)
for the above chosen i. Inequalities (5c) are satisfied as the chosen
y’s are nonnegative and inequality (5a) is satisfied due to Observa-
tion 2. It remains to be shown that inequality (5b) is satisfied.

We simplify the left side of inequality (5b) for our choice of i
and an arbitrary 1 ≤ k ≤ K as follows:
{j|i≻j}

yij(xki − xkj ) +


{j|i⊁j}

yij(xkj − xki )

= (−1)syi1(xki − xk1) +


{l|el=0}

yil+1(xki − xkl+1)

+


{l|el=1}

yil+1(xkl+1 − xk1)

= (−1)syi1(xki − xk1) +


{l|el=0}

yil+1(xki − xk1 + xk1 − xkl+1)

+


{l|el=1}

yil+1(xkl+1 − xk1 + xk1 − xki )

= (−1)syi1(xki − xk1) +


{l|el=0}

yil+1(xki − xk1 + vk
l )

+


{l|el=1}

yil+1(−vk
l + xk1 − xki )

= (−1)s
 K
l=1

λl

 (xki − xk1) +

K
l=1


λl(xki − xk1) + λlv

k
l


=

K
l=1

λlv
k
l

≤ 0.

Thus for any choice of {xi}Ni=1, we can find an i such that (5a)–(5c)
has a solution. Thus ≻ cannot be generated with K goods and this
completes the proof. �
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