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Abstract. We model new experience goods in the context of dynamic mechanism design. These

are goods for which an agent is unsure of her valuation but can learn it through consumption

experience. We consider a dynamic environment with a single buyer and seller in which contracting

occurs over T periods, where each time the agent consumes the object, she receives a signal which

allows her to revise her valuation. In this setting, experimentation with the product is strategic

both for the buyer and seller. We derive the efficient and seller optimal contracts and compare

them. We present a simple two period example which highlights some of the key features of the

model. Finally, the methodology developed in the paper can be used to design efficient and optimal

contracts in a multi-buyer setting with learning, where each buyer has single unit demand and there

is a single object for sale in each period.
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1. Introduction

Mechanism design is perhaps the most prominent method used by economists to design contracts
and study price discrimination in a variety of different settings. However, the majority of the
literature focuses on static models in which contracting occurs only in a single period and assumes,
that the agents know their valuations at the time at which they agree to the contract. Recently,
there have been exciting developments which extend some standard results of static mechanism
design theory to a general dynamic setting. In dynamic mechanism design, the agents’ valuations
follow a stochastic process, which implies that they have new private information at each period.
The contract offered by the principal in a given period depends not only on the current report by
an agent but also on all previous reports as well. Athey and Segal (2007) and Bergemann and
Välimäki (2008) study the design of efficient mechanisms in such a dynamic context. In contrast,
Pavan, Segal and Toikka (2008) (henceforth referred to as PST) derive a seller optimal mechanism
for multiperiod contracting, extending the results of Myerson (1981) to a dynamic setting. They
study incentive compatibility in a very general environment where agents’ types are allowed to
evolve in an unrestricted way, decisions affect the type distribution and the payoff to the agent
need not be separable across time.
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This paper studies a multi period contracting problem with learning. We set up a model where an
agent would like to contract with the principal for T periods. At each period the agent has single
unit demand for the object, the valuation of which evolves over time. If the agent consumes the
object at any period, she receives a signal from her consumption experience which allows her to
update her valuation for the object. This is the key difference between a model of learning and the
standard dynamic mechanism design problem. In standard dynamic mechanism design the agent’s
valuation evolves over time whether or not she consumes the object. In our setting, valuations
are only updated by consumption and hence there is a potential benefit to experimentation for
the buyer. Moreover, if the seller expects the buyer to like the product after she tries it, she can
extract surplus from the buyer for allowing her to experiment and update her valuation. Hence,
experimentation affects both the buyer’s and seller’s incentives and hence social welfare and seller
revenue.

This model is relevant to a number of commonly occurring situations. Introductory pricing is a
well-known phenomenon where a seller offers a low price initially to the buyer, so that the buyer
can learn the attributes of the good. After the introductory pricing period, the seller typically
offers a different price to the buyer who may or may not choose to continue consuming the product.
An implicit motivation of such behavior is that the buyer may be imperfectly informed or simply
unaware about her valuation for the product but by allowing her to experiment for a low price, she
can revise her valuation through consumption experience. Such situations are rife in the real world.
We observe cable television companies offering discounts for the first few months of service, gyms
which allow one to try the equipment for free for the first few weeks and software which offer a
free initial trial period following which a license must be purchased to continue using the software.
Interestingly, our model predicts that, in general, such pricing is not revenue maximizing.

Specifically, we model a multi-period environment with a single buyer and seller. The buyer has an
initial private valuation θ1 for the object which is unobserved by the seller. If the buyer consumes
the object in any period t, she receives a signal ξt from her experimentation which allows her to
reassess the value of the object and then decide whether to consume it again in the subsequent
periods. The signal ξt is unobserved by the seller. At each period the buyer reports a message
to the seller if she has new private information, i.e., a revised valuation for the object. The seller
commits to a T period contract at period 1. This contract offers a menu of prices and probabilities
of receiving the object at each period t, which depends on not only the period t message (if there
is new private information) but also on all previous messages. Lastly, we assume that the buyer
can break the contract and walk away at any period. We derive the socially efficient contract and
the revenue maximizing contract for the seller.

This problem bears resemblance to the multi-armed bandit problem. The multi-armed bandit prob-
lem is a statistical decision model of an agent trying to optimize her decisions while simultaneously
improving her information. It can be thought of in terms of a gambler who sequentially chooses
which of K different arms of a slot machine to play so as to maximize her reward. Choosing an arm
leads to an instantaneous payoff but the process which determines the payoff evolves during the
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course of play. The key feature is that the distribution of returns from an arm only change when it
is chosen. Hence, there is a trade-off between exploring different arms to discover the optimal one
and exploiting the arm which is known to give the best payoff at the present time (see Bergemann
and Välimäki (2006) for a survey of the economics literature on bandit problems). In our setting,
the buyer experiments by consuming the product at a price. This experimentation leads her to
update her value and hence her payoff. Of course, she always has a ‘safe arm’ which offers a payoff
of 0, which is the option of breaking the contract. The key difference, however, is that in our
setting, experimentation is strategic for both the buyer and the seller and as a result incentives
need to be aligned on both sides of the market. A surprising result is that like a two-armed bandit
problem, the seller optimal contract is a stopping rule.

PST present a special case of the learning model in this paper as an application of their results.
They assume that types evolve according to an AR(1) process and that the seller cannot offer
a probabilistic contract. Moreover, they make qualitative arguments regarding the optimal and
efficient contracts and do not derive closed form solutions. By contrast, this paper allows for more
general evolution of types and allows the seller to offer a probabilistic contract. Our closed form
solution confirms their intuition in this general setting. Lastly, it should be pointed out that the
presentation of this paper bears closest resemblance to Pavan (2007) which is an older working paper
version of PST. For completeness, we would like to refer the reader to a few other important papers
in the mechanism design literature which are similar in spirit to our work- Baron and Besanko
(1984), Battaglini (2005), Courty and Li (2000) and Ëso and Szentes (2007), to name but a few.

The paper is organized as follows. Section 2 describes the framework of the model and some key
assumptions. Section 3 derives the socially efficient contract. Section 4 sets up the seller’s revenue
maximization problem and derives its closed form solution. Section 5 presents a simple 2 period
example which highlights some of the important features of our results. Section 6 discusses the
assumption of independent shocks made in this paper. Finally, section 7 discusses some simple
extensions of our model and provides concluding remarks. The appendix contains some of the
proofs.

2. The Model

The model consists of a single buyer and a single seller. Where not explicitly mentioned the buyer
is referred to using feminine pronouns and the seller using masculine pronouns. Contracting occurs
over T time periods where individual time periods are denoted by t ∈ {1, 2, . . . , T}. We assume
that both the buyer and the seller are risk neutral and that the seller has a cost of zero (assuming
zero seller cost is purely for ease of exposition as the results in the paper generalize trivially to
nonzero seller cost). The discount factor is given by δ ∈ [0, 1].

The valuation of the buyer at time t is given by θt. At period 1, the buyer realizes an initial valuation
which is unobserved by the seller. This value is denoted by θ1 ∈ Θ where Θ is the bounded interval
[θ1, θ1] ⊂ R. θ1 is drawn from a distribution F , which is assumed to be strictly increasing on the
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support Θ. If the buyer consumes the object at a time t she receives a signal from her consumption
experience which allows her to revise her valuation. The signal ξt ∈ Ξt ≡ Ξ ≡ (−∞,∞) is
drawn independently from a distribution G.1 We will use Ξt and Ξ interchangeably for notational
convenience, but the meaning will remain clear. Since we make no assumptions about the support
of G, this assumption of ξt being unbounded is without loss of generality.2

Let Ct = {ct
1, . . . , c

t
|Ct|} denote the set of time periods up to and including period t − 1, or equiv-

alently, at the beginning of period t, where the buyer consumes the object. We denote the set of
all possible consumption histories Ct by C t ≡ 2{1,...,t−1}. For example, at the beginning of the fifth
period, if the buyer had consumed the object in periods 1,2 and 4, then C5 = {c5

1, c
5
2, c

5
4} = {1, 2, 4}.

For ease of notation we define the vectors ξCt
and ξt as follows

ξCt
= (ξct

1+1, . . . , ξct
|Ct|+1)

ξt = (ξ2, . . . , ξt)

ξCt
denotes the vector of signals the buyer receives up to period t due to consumption history Ct.

In our example when C5 = {1, 2, 4}, ξC5
= (ξ2, ξ3, ξ5).

Values evolve according to flow valuation functions v, which depend on the initial valuation θ1 and
subsequent signals ξt. Hence if the buyer receives r− 1 signals, vr is defined as vr : Θ×Ξr−1 → R.
We assume these flow value functions are Markov, that is, for any θ1, ξ

r and θ̃1, ξ̃
r such that

vr(θ1, ξ
r) = vr(θ̃1, ξ̃

r), it must be the case that for all s > r

(A0) vs(θ1, ξ
r, ξr+1, . . . , ξs) = vs(θ̃1, ξ̃

r, ξr+1, . . . , ξs)

We can now define period t flow valuation θt in terms of the initial value and the subsequent
consumption history Ct (with r = |Ct|) by using flow valuation functions v.

θt = vCt

t (θ1, ξ
Ct

) = vr(θ1, ξ
Ct

)

This function defines how the buyer’s flow valuation evolves as she receives new signals from her
experimentation. It is assumed that the seller knows the functions v and the distributions F and
G. We will make the following key assumptions about the distribution of initial value F and flow
value functions v.

(A1) The density f of cdf F is log concave, implying the monotone hazard rate condition.
(A2) vr is differentiable and strictly increasing in all arguments.
(A3) For 2 ≤ r ≤ s, limξr→∞ vs(θ1, ξ

s) →∞ and limξr→−∞ vs(θ1, ξ
s) → −∞.

(A4) vs(θ1, ξ
s) are concave in θ1 and ∂2vs(θ1,ξs)

∂θ1∂ξr
≤ 0 for any (θ1, ξ

s), r ≤ s.
(A5) For any r ≥ 3, any s ≥ r and any (θ1, ξ

r, ξr+1, . . . , ξs)

∂2vs(θ1, ξ
r, ξr+1, . . . , ξs)

∂θ1∂ξr−1

∂vr(θ1, ξ
r)

∂ξr
≤ ∂2vs(θ1, ξ

r, ξr+1, . . . , ξs)
∂θ1∂ξr

∂vr(θ1, ξ
r)

∂ξr−1

1We discuss this assumption in sections 6 and 7.
2The assumption implies that the mechanism must be defined for reported values that are potentially outside the
support of G. However, in equilibrium the only values that the buyer will report will lie in the support.
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Similarly for r = 2 and any (θ1, ξ2, . . . ξs), s ≥ 2

∂2vs(θ1, ξ2, . . . , ξs)
∂θ2

1

∂v2(θ1, ξ2)
∂ξ2

≤ ∂2vs(θ1, ξ2, . . . , ξs)
∂θ1∂ξ2

∂v2(θ1, ξ2)
∂θ1

These assumptions are identical to those required by Pavan (2007). Assumption A1 is the standard
monotone hazard rate assumption used in much of the mechanism design literature. Assumptions
A2 and A3 are natural properties of a value function and are hence innocuous. Assumption A4 is
an intuitive concavity condition, which one would expect a dynamic valuation function to satisfy.
Assumption A5, admittedly has no obvious economic interpretation. It is purely a technical as-
sumption required for our results. As a justification, we observe that a number of natural functions
satisfy our assumptions. Consider for example the following value functions.

θt = vt(θ1, ξ
t) = θ1 +

t∑
i=1

ξt(1)

θt = vt(θ1, ξ
t) = αt

1θt−1 + · · ·+ αt
kθt−k + ξt(2)

θt = vt(θ1, ξ
t) = θ1 ×

t∏
i=1

ξt(3)

The flow value function (1) is the random walk case and is a special case of a general linear
autoregressive process of order k (AR(k)), in which values are defined recursively by equation (2).
Finally, (3) is an example of a value function where the shocks are multiplicative.

We now define the message space. At period 1, the set of messages is denoted by M1. At any period
t > 1, if the buyer receives the object at period t − 1, she receives a signal ξt about her valuation
from her consumption experience and she can report a message from message space Mt. If she does
not receive the object at t − 1 then she has no new private information and hence does not make
a report. The seller commits to a mechanism consisting of a series of functions q, p, which depend
on the current time period t, the history of buyer consumption Ct and the history of reported
messages. q denotes the probability of receiving the object and p is the price. More formally

qCt

t : M1 ×Mct
1+1 × · · · ×Mct

r+1 → [0, 1]

pCt

t : M1 ×Mct
1+1 × · · · ×Mct

r+1 → R

where r = |Ct|

Returning to the above 5 period example, where C5 = {1, 2, 4}. At period 5, the mechanism offers a
contract (qC5

5 , pC5

5 ) where qC5

5 : M1×M2×M3×M5 → [0, 1] and similarly pC5

5 : M1×M2×M3×M5 →
R. In other words since the buyer does not receive the object in period 3, she has no new private
information, and hence does not report in period 4. However, she ends up consuming the object in
period 4 and therefore once again makes a report in period 5.

Note that while we force the seller to commit to a contract at period 1, we allow the buyer to
walk away and end the contract at any time period. Because the contract cannot be renegotiated,
this does not give the buyer additional bargaining power by threatening to walk away. It merely
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forces the contract to be individually rational for the buyer at all time periods. The timing and
the contracting are made more explicit below.

• The buyer learns her initial value θ1.
• The seller offers a mechanism given by (q1, p1), (qC2

2 , pC2

2 ), . . . , (qCT

T , pCT

T ) for all C2 ∈
C 2, . . . , CT ∈ C T .

• The buyer reports a message m1 ∈ M1.
• Having reported m1, she is offered the object with probability q1(m1) with corresponding

transfer p1(m1). If she agrees then the contract is enacted, otherwise, if she refuses to
participate then both she and the seller get a payoff of 0 and the contract terminates.

• If she receives the object (if q1(m1) < 1, she might not), she receives signal ξ2 through her
consumption experience. If she doesn’t receive the object, she gets no further information.

• If she ends up receiving the object in period 1, she reports a message m2 ∈ M2 and
is offered qC2

2 (m1,m2), pC2

2 (m1,m2) where C2 = {1}. If she agrees then the contract is
enacted, otherwise, if she refuses to participate then both she and the seller get a payoff of
0 in period 2 and the contract terminates.

• If she does not end up receiving the object in period 1, she is offered qC2

2 (m1), pC2

2 (m1) where
C2 = φ. If she agrees then the contract is enacted, otherwise, if she refuses to participate
then both she and the seller get a payoff of 0 in period 2 and the contract terminates.

• This process continues for the duration T or until the buyer decides to break the contact.

Finally, we observe that since the seller commits to the full T period mechanism, the Revelation
Principle applies and we need only consider direct mechanisms. In other words, we need only
consider mechanisms where M1 ≡ Θ and Mt ≡ Ξt. In all subsequent sections we analyze only the
direct mechanisms

qCt

t : Θ× Ξct
1+1 × · · · × Ξct

r+1 → [0, 1]

pCt

t : Θ× Ξct
1+1 × · · · × Ξct

r+1 → R

where r = |Ct|

PST study a special case of this learning model. They assume that the initial valuation and
subsequent shocks are normally distributed. In their setting, the t period valuation θt is a weighted
average of value θt−1 and signal ξt. Clearly this is a special case of our setting. Moreover, they also
assume that the seller offers a contract qt at each period where qt ∈ {0, 1}. In other words they do
not allow the seller to offer probabilistic contracts to the buyer. Lastly, they do not derive closed
form solutions for the efficient and seller optimal contract which is in contrast to this paper.
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3. The Efficient Policy

We start off by deriving the efficient policy. Since the seller has no cost, the ex-ante efficient policy
maximizes the following surplus function

θ1q1(θ1) +
T∑

t=2

∑
Ct∈C t

δt

∫
Ξ2

. . .

∫
ΞT

µq(Ct)qCt

t (θ1, ξ
Ct

)vCt

t (θ1, ξ
Ct

)dG(ξ2) . . . dG(ξT )

Where µq(Ct) is the probability that history of consumption Ct occurs as a result of contract q.
Hence,

µq(Ct) =
t∏

s=2

wDs

s (θ1, ξ
Ds

)

where Ds = Ct ∩ {2, . . . , s}

and

wDs

s (θ1, ξ
Ds

) =

{
qDs

s (θ1, ξ
Ds

) if s ∈ Ct

1− qDs

s (θ1, ξ
Ds

) if s /∈ Ct

We now derive the efficient contract by backward induction. At time period T , for any history of
consumption CT , the efficient contract must be

qCT

T (θ1, ξ
CT

) =

{
1 if vCT

T (θ1, ξ
CT

) ≥ 0
0 otherwise

Similarly, at time period T − 1, for any history of consumption CT−1, the efficient contract will be

qCT−1

T−1 (θ1, ξ
CT−1

) =


1 if vCT−1

T−1 (θ1, ξ
CT−1

)+
δ
∫
ΞT

qCT

T (θ1, ξ
CT−1

, ξT )vCT

T (θ1, ξ
CT−1

, ξT )dG(ξT ) ≥ 0
0 otherwise

where CT = CT−1 ∪ {T − 1} and qT is defined above. We observe that it is never efficient to
not allocate the object in period T − 1 and then allocate it in period T . This is because, from
the definition of qT , the second term δ

∫
ΞT

qCT

T (θ1, ξ
CT−1

, ξT )vCT

T (θ1, ξ
CT−1

, ξT )dG(ξT ) is always
non-negative. Hence, if the object is not allocated in period T − 1, it must be the case that
vCT−1

T−1 (θ1, ξ
CT−1

) < 0 and hence the object will not be allocated in period T either. Conversely,
notice that the efficient policy could allocate the object to the consumer even though her period
T − 1 flow valuation vCT−1

T−1 (θ1, ξ
CT−1

) is negative. This is because there could be positive welfare
gains from experimentation.

Lastly, we also observe that both qT−1 and qT never take a value between 0 and 1. When
vCT

T (θ1, ξ
CT

) = 0, qCT

T could potentially take a value between 0 and 1 but this will be outcome
equivalent to qCT

T = 1. The same argument can be applied to qCT−1

T−1 .

This argument can be backward inducted to period 1. We denote histories St = {1, . . . , t − 1}.
These are histories at time t where the buyer gets the object in every period up to t. Hence, at
these histories the value function vSt

t is simply equal to vt.
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Proposition 1. The efficient contract is given by the following quantities.

qCT

T (θ1, ξ
CT

) =


1 if CT = ST = {1, . . . , T − 1} and

vT (θ1, ξ
ST

) ≥ 0
0 otherwise

qCt

t (θ1, ξ
Ct

) =


1 if Ct = St = {1, . . . , t− 1} and

vt(θ1, ξ
St

)+∑T
s=t+1

∫
Ξt+1

. . .
∫
ΞT

δs−t
(∏s

r=t+1 qSr

r (θ1, ξ
Sr

)
)
vs(θ1, ξ

Ss
)dG(ξt+1) . . . dG(ξT ) ≥ 0

0 otherwise

The efficient contract will allocate the object to the buyer with probability 1 as long as the sum of
their value and their expected value from experimentation is non-negative. The efficient contract
induces efficient experimentation, that is, if the flow value vt of the buyer falls below 0, she is
allowed to experiment if her value is expected to improve with experimentation. Also the efficient
contract is a stopping rule where if the buyer does not receive the object in period t she will not
receive it in any subsequent period.

4. The Seller Optimal Mechanism

In this section we will derive the seller optimal contract for 2 periods. This will highlight the key
steps of the proof without the reader having to deal with complicated notation. We will state the
result for the general T period case at the end of the section and provide the proof of incentive
compatibility in the appendix.

We start off by defining the buyer’s utility at period 2. There are two possible histories which we
denote by C2

1 = {1} and C2
2 = φ. When the buyer receives the object in period 1 having reported θ̂1

(with true value θ1), she receives a signal given by ξ2. Her utility in period 2 is then given in terms
of her true valuations θ1, ξ2, reported valuations θ̂1, ξ̂2 and history of consumption C2

1 as follows

Ũ
C2

1
2 (θ1, ξ2; θ̂1, ξ̂2) = v2(θ1, ξ2)q

C2
1

2 (θ̂1, ξ̂2)− p
C2

1
2 (θ̂1, ξ̂2)

The tilde superscript is used for utility functions where the buyer has new information to report.
The semicolon is used to separate the true from the reported values. If she does not receive the
object her utility at period 2 is simply given by

Û
C2

2
2 (θ1; θ̂1) = θ1q

C2
2

2 (θ̂1)− p
C2

2
2 (θ̂1)

If the buyer received the object at t = 1 by reporting value θ̂1 and has realized true value and signal
θ1, ξ2, the highest utility she can get at t = 2 is given by the solution to the following optimization
problem.

(4) Û
C2

1
2 (θ1, ξ2; θ̂1) = max

ξ̂2

{
v2(θ1, ξ2)q

C2
1

2 (θ̂1, ξ̂2)− p
C2

1
2 (θ̂1, ξ̂2)

}
The hat superscript on utility functions is used denote the maximum obtainable utility for the
buyer, contingent on both the true values of the signals and the previously reported values of the
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signals. In other words
Û

C2
1

2 (θ1, ξ2, ; θ̂1) = max
ξ̂2

Ũ
C2

1
2 (θ1, ξ2; θ̂1, ξ̂2)

We now define incentive compatibility in this context.

Definition 4.1 (Incentive Compatibility). A mechanism (q, p) is incentive compatible if truthtelling
is optimal for the buyer at period 1 and truthtelling is optimal for all other periods t (where she has
new private information to report) conditional on having reported truthfully in the past.

This is clearly a weaker requirement than forcing truthtelling to be optimal regardless of past
reports. Formally, if the buyer reveals her value truthfully at t = 1 and receives the object then
truth telling is incentive compatible at t = 2 if

(5) Ũ
C2

1
2 (θ, ξ; θ, ξ) = Û

C2
1

2 (θ, ξ; θ) = U
C2

1
2 (θ, ξ)

where U2(θ, ξ) is concise notation for utility from truth telling. Clearly, when she does not receive
the object she has no new private information and hence there are no incentive issues at period 2.
We define the expected utility of the buyer having realized value θ at t = 1 and reporting optimally
as follows

(6) Û1(θ1) = max
θ̂1

{
θ1q1(θ̂1)−p1(θ̂1)+ δq1(θ̂1)

∫
Ξ

Û
C2

1
2 (θ1, ξ2; θ̂1)dG(ξ2)+ δ(1− q1(θ̂1))Û

C2
2

2 (θ1; θ̂1)
}

Now, we can define the utility from truth telling in both periods as follows.

U1(θ1) = θ1q1(θ1)− p1(θ1) + δq1(θ1)
∫

Ξ
U

C2
1

2 (θ1, ξ2)dG(ξ2) + δ(1− q1(θ1))U
C2

2
2 (θ1)

The revenue of the seller when the buyer reports truthfully in both periods is given by

(7)
∫

Θ

[
p1(θ1) + δq1(θ1)

∫
Ξ

p
C2

1
2 (θ1, ξ2)dG(ξ2) + δ(1− q1(θ1))p

C2
2

2 (θ1)
]
dF (θ1)

A mechanism is said to be incentive compatible if truth telling maximizes expected utility for the
buyer in period 1 and truth telling is also optimal in period 2, conditional on having reported truth-
fully in period 1. In other words, U1(θ1) = Û1(θ1) and (5) should hold simultaneously. Individual
rationality requires that U1(θ1) ≥ 0, U

C2
1

2 (θ1, ξ2) ≥ 0 and U
C2

2
2 (θ1) ≥ 0 for all (θ1, ξ2) ∈ Θ× Ξ2.

The seller designs an optimal contract by solving the following problem.

max
q1(·),p1(·),q2(·,·),p2(·,·)

∫
Θ

[
p1(θ1) + δq1(θ1)

∫
Ξ2

p
C2

1
2 (θ1, ξ2)dG(ξ2) + δ(1− q1(θ1))p

C2
2

2 (θ1)
]
dF (θ1)

subject to U1(θ1) = Û1(θ1), U2(θ1, ξ2) = Û2(θ1, ξ2; θ1),

U1(θ1) ≥ 0, U
C2

1
2 (θ1, ξ2) ≥ 0, U

C2
2

2 (θ1) ≥ 0

In order to solve this problem we use a similar reverse engineering process as the one in Ëso
and Szentes (2007). We first derive necessary conditions for incentive compatibility and define
a relaxed optimization problem in which the seller is maximizing his revenue subject to these
necessary conditions.
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We start by examining the incentive constraint in period 2. Using the standard technique of
Myerson (1981), equation (4) implies that a necessary and sufficient condition for truth telling at
t = 2 given truthful reporting at t = 1 is

(ENV2) U
C2

1
2 (θ1, ξ2) = U

C2
1

2 (θ1, ξ2
) +

∫ ξ2

−∞

∂v(θ1, ξ̃2)
∂ξ̃2

q
C2

1
2 (θ1, ξ̃2)dξ̃2

where U
C2

1
2 (θ1, ξ2

) = limξ2→−∞ U
C2

1
2 (θ1, ξ2). We can use the envelope theorem to differentiate3

equation (6) with respect to θ1 to get

(8)
dU1(θ1)

dθ1
= q1(θ̃1) + δq1(θ̃1)

∫
Ξ2

∂Û
C2

1
2 (θ1, ξ2; θ̃1)

∂θ1
dG(ξ2) + δ(1− q1(θ1))

∂Û
C2

2
2 (θ1; θ̃1)

∂θ1

where θ̃1 is assumed to be the maximizer of (6). We can use the envelope theorem again on (4)
yielding

∂Û
C2

1
2 (θ1, ξ2; θ̃1)

∂θ1
=

∂v2(θ1, ξ2)
∂θ1

q
C2

1
2 (θ̃1, ξ̃2)

where ξ̃2 is assumed to be the maximizer of (4). We can do the same for Û
C2

2
2 . Plugging these into

equation (8) we arrive at a necessary condition for truth telling:

(9)
dU1(θ1)

dθ1
= q1(θ1) + δq1(θ1)

∫
Ξ2

∂v2(θ1, ξ2)
∂θ1

q
C2

1
2 (θ1, ξ2)dG(ξ2) + δ(1− q1(θ1))q

C2
2

2 (θ1)

While this condition is necessary, it is not, in general, sufficient for truth telling to be incentive
compatible. This is in contrast with the static model and this observation has also been made by
Ëso and Szentes (2007) and Pavan (2007). (9) integrates to

(ENV1) U1(θ1) = U1(θ1)+
∫ θ1

θ1

[
q1(t)+ δq1(t)

∫
Ξ2

∂v(t, ξ2)
∂t

q
C2

1
2 (t, ξ2)dG(ξ2)+ δ(1− q1(t))q

C2
2

2 (t)
]
dt

We can now rewrite revenue equation (7) in terms of the buyer’s utility and define the seller’s
revenue as∫

Θ

[
θ1q1(θ1) + δq1(θ1)

∫
Ξ2

v(θ1, ξ2)q
C2

1
2 (θ1, ξ2)dG(ξ2) + δ(1− q1(θ1))θ1q

C2
2

2 (θ1)− U1(θ1)
]
dF (θ1)

We now define the relaxed problem for the seller. In this problem he maximizes his revenue subject
to the necessary conditions for incentive compatibility that we have derived:

max
q1(·),U1(·),q2(·,·),UC2

2 (·,·)

∫
Θ

[
θ1q1(θ1) + δq1(θ1)

∫
Ξ2

v2(θ1, ξ2)q
C2

1
2 (θ1, ξ2)dG(ξ2) + δ(1− q1(θ1))θq

C2
2

2 (θ1)

−U1(θ1)
]
dF (θ1)

subject to (ENV1), (ENV2), U1(θ1) ≥ 0, U
C2

1
2 (θ1, ξ2) ≥ 0, U

C2
2

2 (θ1) ≥ 0

3We derive this condition explicitly in the appendix as there is no immediately obvious reason to assume that the
buyer’s utility is differentiable. This derivation will also show why the envelope condition is necessary but not
sufficient for incentive compatibility.
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By substituting equation (ENV1) into the objective function of the above relaxed problem and
integrating by parts, we can rewrite the objective function as∫

Θ

[ (
θ1 −

1− F (θ1)
f(θ1)

)
q1(θ1) +(10)

δq1(θ1)
∫

Ξ2

(
v2(θ1, ξ2)−

∂v2(θ1, ξ2)
∂θ1

1− F (θ1)
f(θ1)

)
q
C2

1
2 (θ1, ξ2)dG(ξ2) +

δ(1− q1(θ1))(θ1 −
1− F (θ1)

f(θ1)
)
q
C2

2
2 (θ1)− U1(θ1)

]
dF (θ1)

It is then immediate that the solution to the relaxed problem is independent of participation and
incentive constraints for period 2. These constraints are only relevant for deriving the prices. The
following solution of the relaxed problem then follows

Proposition 2. The solution to the two period seller’s relaxed problem is given by U1(θ1) = 0 and
the following allocation rules:

q
C2

1
2 (θ1, ξ2) =

{
1 if v2(θ1, ξ2)− 1−F (θ1)

f(θ1)
∂v2(θ1,ξ2)

∂θ1
≥ 0

0 otherwise

q
C2

2
2 (θ1) = 0

q1(θ1) =

{
1 if

[
θ1 − 1−F (θ1)

f(θ1)

]
+δ

∫
Ξ

[
v2(θ1, ξ2)− 1−F (θ1)

f(θ1)
∂v2(θ1,ξ2)

∂θ1

]
q
C2

1
2 (θ1, ξ2)dG(ξ2) ≥ 0

0 otherwise

These quantities are derived by pointwise maximization of the seller revenue function (10). This
can be seen as follows. The second term of (10) is clearly maximized when q

C2
1

2 (θ1, ξ2) is given as
above. The third term is maximized when

q
C2

2
2 (θ1) =

{
1 if θ1 − 1−F (θ1)

f(θ1) ≥ 0

0 otherwise

But then the optimal selection of q1 when will be given by

q1(θ1) =


1 if

[
θ1 − 1−F (θ1)

f(θ1)

]
+δ

∫
Ξ2

[
v2(θ1, ξ2)− 1−F (θ1)

f(θ1)
∂v2(θ1,ξ2)

∂θ1

]
q
C2

1
2 (θ1, ξ2)dG(ξ2)

≥ δ
[
θ1 − 1−F (θ1)

f(θ1)

]
q
C2

2
2 (θ1)

0 otherwise

But from the derived value of q
C2

1
2 , it is always the case that[

θ1 −
1− F (θ1)

f(θ1)
]
+δ

∫
Ξ2

[
v2(θ1, ξ2)−

1− F (θ1)
f(θ1)

∂v2(θ1, ξ2)
∂θ1

]
q
C2

1
2 (θ1, ξ2)dG(ξ2)δ ≥

[
θ1 −

1− F (θ1)
f(θ1)

]
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as the second term on the left hand side is always non-negative. Moreover, since 0 ≤ q
C2

2
2 ≤ 1, it is

always the case that[
θ1 −

1− F (θ1)
f(θ1)

]
+δ

∫
Ξ2

[
v2(θ1, ξ2)−

1− F (θ1)
f(θ1)

∂v2(θ1, ξ2)
∂θ1

]
q
C2

1
2 (θ1, ξ2)dG(ξ2) ≥ 0

=⇒
[
θ1 −

1− F (θ1)
f(θ1)

]
+δ

∫
Ξ2

[
v2(θ1, ξ2)−

1− F (θ1)
f(θ1)

∂v2(θ1, ξ2)
∂θ1

]
q
C2

1
2 (θ1, ξ2)dG(ξ2)

≥ δ
[
θ1 −

1− F (θ1)
f(θ1)

]
q
C2

2
2 (θ1)

Hence, whenever q1(θ1) = 0 or history C2
2 occurs it must be the case that θ1 − 1−F (θ1)

f(θ1) < 0 or

q
C2

2
2 (θ1) = 0. Hence, it is outcome equivalent for the seller to define q

C2
2

2 (θ1) as identically 0. This
will yield the expression for q1 in the proposition.

Notice, that the seller optimal contract like the efficient contract, is a stopping rule. If it is not
optimal for the seller to allocate the object to the buyer in the first period it will not be optimal
to allocate it to her in the second period. Moreover, in the optimal contract q’s do not take values
between 0 and 1. It is straightforward to generalize the intuition of the 2 period result to arbitrary
T periods. The T period optimal contract will also be a stopping rule such that if the buyer does
not get the object in period t, she will not get the object in any period s > t. Once again, we
denote histories St = {1, . . . , t − 1}. Recall, these are histories at time t where the buyer gets the
object in every period up to t. Hence, at these histories the value function vSt

t is simply equal to
vt.

Proposition 3. The solution to the T period seller’s relaxed problem is given by U1(θ) = 0 and
the following allocation rules:

qCT

T (θ1, ξ
CT

) =


1 if CT = ST = {1, . . . , T − 1} and

vT (θ1, ξ
ST

)− 1−F (θ1)
f(θ1)

∂vT (θ1,ξST
)

∂θ1
≥ 0

0 otherwise

qCt

t (θ1, ξ
Ct

) =



1 if Ct = St = {1, . . . , t− 1} and[
vt(θ1, ξ

St
)− ∂vt(θ1,ξSt

)
∂θ1

1−F (θ1)
f(θ1)

]
+∑T

s=t+1

∫
Ξt+1

. . .
∫
ΞT

δs−t
(∏s

r=t+1 qSr

r (θ1, ξ
Sr

)
)[

vs(θ1, ξ
Ss

)− ∂vs(θ1,ξSs
)

∂θ1

1−F (θ1)
f(θ1)

]
dG(ξt+1) . . . dG(ξT ) ≥ 0

0 otherwise

The proof of this result uses the identical backward induction procedure of the 2 period case
presented in this section and is hence omitted. Interestingly, note that the seller optimal contract
is identical to that of the efficient contract with the flow values replaced by the virtual flow values.

In the dynamic setting the virtual flow values are given by vt(θ1, ξ
St

) − 1−F (θ1)
f(θ1)

∂vt(θ1,ξSt
)

∂θ1
. These

values depend only on first period distribution F and not on G. This reflects the fact that the
seller commits to the contract at period 1. The distributions G however do affect the optimal and
efficient contract as they represent the value of experimentation.
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Finally, we need to show that we can find prices so that the solution to the relaxed problem can be
implemented in an incentive compatible way. This is summarized by the following proposition the
proof of which is in the appendix.

Proposition 4. The quantity schedules of the incentive compatible, individually rational seller
optimal contract coincide with that of the relaxed problem stated in proposition (3). In other words,
we can find prices to implement the quantity schedules of (3) such that the resulting mechanism
gives both the buyer and the seller the same utility and is incentive compatible.

5. A Two Period Example

In this section we discuss a simple example of the above model. This example highlights some
of the key features of the model. We assume that initial valuation θ1 is drawn from the uniform
U[0, 1] distribution (which is log concave and hence satisfies the monotone hazard rate condition).
If the buyer receives the object then her signal ξ2 is drawn from the U[−1, 1] distribution. The
value function v2 is assumed to be additive and is given by v2(θ1, ξ2) = θ1 + ξ2. Thus the signal
can both decrease or increase the value in period 2; in particular, it can drive the buyer’s valuation
below 0. Linear v2 clearly satisfies the assumptions we need for our results. We can now derive the
optimal allocations:

q1(θ1) =

{
1 if θ1 ≥ θl

0 otherwise

q2(θ1, ξ2) =

{
1 if ξ2 ≥ 1− 2θ1

0 otherwise

and the corresponding optimal prices

p1(θ1) =

{
θl + δ

2 [θ2
l + θ2

1] if θ1 ≥ θl

0 otherwise

p2(θ1, ξ2) =

{
1− θ1 if ξ2 ≥ 1− 2θ1

0 otherwise

where θl =
√

1 + δ − 1
δ

It is interesting to note that the buyer with the lowest value who receives the object (the buyer
with value θl) pays more for the object than her value. Hence, in the optimal mechanism the seller
does not offer a low introductory price in period 1 which allows everyone to revise their valuation
for the product. Rather, he does not offer the product to buyers of lowest valuations and instead
levies a charge for the consumption experience. Of course, it is possible to construct a different
example of the model such that θl = θ, so that the seller sells the object to the entire market.
However, even in this case the buyer with the lowest valuation (who gets the object) will pay at
least her value in period 1 to try the object. This behavior is individually rational because she has
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the option to terminate the contract at period 2, hence, expects at least a weak increase in her
valuation in period 2 and as a result her expected utility in period 1 is non-negative.

Notice, also that the cutoff value θl is decreasing in δ. When δ approaches 0, θl approaches 1/2
which is the cutoff value of the static optimal auction of Myerson (1981). This is because when δ

approaches 0, neither the buyer nor the seller (initially) cares about the next period and the seller
tries to extract as much revenue as possible at t = 1. As δ increases, the cutoff value θl begins to
fall. This reflects the fact that the seller values revenue from future participation and also the fact
that the buyer benefits more from experimentation.

The price charged by the seller in period 1 is strictly increasing in the announced valuation. The
price in period 2 is independent of the signal ξ2 and is decreasing in the θ1 announced by the buyer
in period 1. This mechanism is intuitively incentive compatible due to the following reason. For
buyers with high valuation, there is a high probability that they would like to purchase the product
in period 2 after observing ξ2. Announcing a high valuation guarantees them a relatively low price
tomorrow as the price in period 2 depends only on the θ1 announced in period 1. Buyers with low
valuations prefer to consume the product in period 1 for a low price and as a result face a relatively
higher price in period 2. However, since they feel it is unlikely that they will like the product once
they try it, they are content simply to try it at a low price.

The optimal contract is clearly inefficient. In this setting an efficient contract would allocate the
object to the buyer with probability 1 if her valuation θ1 is strictly greater than 0 in period 1. In
period 2, the efficient contract would allocate the object to the buyer with probability 1, if her
revised valuation v2(θ1, ξ2) is strictly greater than 0. In contrast, the optimal contract does not
allocate the object the buyers with valuation below θl in period 1, and to buyers with valuation
v2(θ1, ξ2) less than 1 − θ1 in period 2. The intuition for this is identical to that of the optimal
auction in a static setting.

6. Independent Shocks

In this section we briefly address the assumption of independent shocks. We assumed that the
distribution G of ξt is independent of the distribution F of θ1. This assumption is actually less
restrictive than it may initially appear. We discuss the implication of this assumption when T = 2
as discussed in Ëso and Szentes (2007). Again restricting the discussion to 2 periods makes it easy
to interpret the nature of the assumption. The intuition in this section has been generalized to T

periods by PST.

Let H(θ2|θ1) be the distribution of period 2 values conditional on realized period 1 value and let
h(θ2|θ1) be the associated pdf. The following is an insightful result from Ëso and Szentes (2007).

Lemma 6.1 (Ëso and Szentes (2007)). Suppose the distribution H(θ2|θ1) of θ2 conditional on θ1

is continuous and strictly increasing in θ2. Then there exists a real valued function v and a random
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variable ξ2 where ξ2 and θ1 are independent such that

θ2 = v2(θ1, ξ2)

The intuition of this result stems from the following observation. We can define ξ2 = H(θ2|θ1).
Then ξ2 is distributed uniformly U[0, 1] and is independent of θ1. The value function v2 can then
be defined as v2(θ1, ξ2) = H−1

θ1
(ξ2) where H−1

θ1
(ξ2) = θ2 such that H(θ2|θ1) = ξ2. The function

is invertible because we assumed H was continuous and strictly increasing. So in general, this
assumption is not restrictive at all.

However, for our results we require the additional assumptions A2-A4 on the value function v2

(assumption A5 is not required when T = 2). Hence, we need additional assumptions on the
stochastic process H. The following assumptions also derived by Ëso and Szentes (2007), on the
stochastic process are sufficient for our results.

A6 H(θ2|θ1) is continuous and strictly increasing in θ2.
A7 For θ′1 > θ1, H(θ2|θ′1) first order stochastically dominates H(θ2|θ1) or in other words

∂H(θ2|θ1)/∂θ1 < 0.
A8 ∂H(θ2|θ1)/∂θ1

h(θ2|θ1) is increasing in θ2.

A9 ∂H(θ2|θ1)/∂θ1

h(θ2|θ1) is increasing in θ1.

PST show that for arbitrary T periods, the sufficient condition to satisfy assumptions A2 − A5,
is first order stochastic dominance and that ∂Ht(θt|θt−1)/∂θt−1

ht(θt|θt−1) is increasing in both θt and θt−1 ,
where Ht is the conditional distribution of θt given θt−1. These assumptions are satisfied by many
stochastic processes. Therefore, while the assumption of independent shocks does result in a loss of
generality, we do not find it to be excessively restrictive and hence, assuming independent shocks
is not as severe a constraint as it may have initially seemed.

7. Extensions

The model presented in this paper can be extended in a fairly straightforward way to the case of N

buyers competing for a single object in each period, over the course of T periods. Only the buyer
who wins the object in a given period gets to consume the object and hence update her valuation
through her consumption experience. At period t, the optimal contract will award the object the
buyer with the highest expected discounted sum of virtual flow values. The closed form solutions
though are extremely complicated as we need to consider a large set of possible histories. It is
possible for a buyer to win an object in period t, receive a bad signal and lose the object in period
t+1, only to win it again in period t+2 after the buyer who won in t+1 also receives a bad signal.
This is in contrast to the case of the single buyer which is simply a stopping rule.

Sponsored search in particular and advertising in general is an example of a real life situation of
such an auction model with learning. Advertisements, by their very nature, are products where
the advertiser cannot accurately asses the value of advertising before placing the ad. Hence, the
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expected value of an ad to an advertiser could potentially differ drastically before and after placing
the ad. Sponsored search auctions are dynamic in nature, with the competing advertisers constantly
updating their valuations over time. There is a current and ongoing economics literature which
studies sponsored search (see Edelman et al. (2007), Varian (2007), Borgers et al. (2007) and
Nazerzadeh et al. (2007) to name but a few papers). Of course, while our model captures the
learning aspect of advertising it ignores the fact that advertisers often have more than one option
in each period. In sponsored search auctions, bidders who lose the auction for the best link position
can potentially win the second best position and so on. A model that captures both this aspect
and learning is a subject of future research.

Finally, it is also possible to extend the model in such a way so that the distribution of shocks
G is not the same in all periods. The analysis will go through identically if we assume that the
first time the buyer consumes the product her signal comes from distribution G1, the second time
from distribution G2 and so on. Notice that this is not the same as saying that if she consumes
the product in period t− 1 she will receive a signal from distribution Gt. If the distribution of the
signals were a function of the time period as opposed to the number of times the buyer consumes
the object then the optimal contract need not be a stopping rule. Consider the former case, where
distribution Gt has a very low mean and Gt+1 has a very high mean. At period t − 1, it may be
optimal for the seller not to allocate the object to the buyer as then she will probably receive a
low signal from Gt and instead allocate it to her in period t allowing her to receive the high signal
from Gt+1 and hence allowing the seller to extract more surplus.

Appendix A. Deriving the Envelope Condition

We now explicitly derive the envelope condition at period 1. Consider the utility to the buyer from
reporting truthfully at period 1.

U1(θ1) = θ1q1(θ1)− p1(θ1) +
T∑

t=2

∑
Ct∈C t

δt

∫
Ξ2

. . .

∫
ΞT

µq(Ct)
[
qCt

t (θ1, ξ
Ct

)vCt

t (θ1, ξ
Ct

)− pCt

t (θ1, ξ
Ct

)
]
dG(ξ2) . . . dG(ξT )(11)

where µq(Ct−1) is the probability that history of consumption Ct−1 occurs as a result of contract
q and reporting θ1 in period 1 and truthful reporting thereafter. If instead she reports θ′1 in period
1 and subsequently reports truthfully she gets

θ1q1(θ′1)− p1(θ′1) +
T∑

t=2

∑
Ct∈C t

δt

∫
Ξ2

. . .

∫
ΞT

µ′q(C
t)

[
qCt

t (θ′1, ξ
Ct

)vCt

t (θ1, ξ
Ct

)− pCt

t (θ′1, ξ
Ct

)
]
dG(ξ2) . . . dG(ξT )

where µ′q(C
t) is the probability that history of consumption Ct occurs as a result of contract q and

reporting θ′1 in period 1 and truthful reporting thereafter. Notice that in the above expression the
buyer does not report strategically after period 1. There is no reason to believe that truthtelling
is optimal after the buyer has misreported in the first period. Incentive compatibility implies that
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the (11)≥(12). Rearranging

U1(θ1)− U1(θ′1) ≥ (θ1 − θ′1)q1(θ′1) +
T∑

t=2

∑
Ct∈C t

δt

∫
Ξ2

. . .

∫
ΞT

µ′q(C
t)qCt

t (θ′1, ξ
Ct

)
[
vCt

t (θ1, ξ
Ct

)(12)

−vCt

t (θ′1, ξ
Ct

)
]
dG(ξ2) . . . dG(ξT )

Exchanging the roles of θ1 and θ′1 we get

U1(θ1)− U1(θ′1) ≤ (θ1 − θ′1)q1(θ1) +
T∑

t=2

∑
Ct∈C t

δt

∫
Ξ2

. . .

∫
ΞT

µq(Ct)qCt

t (θ1, ξ
Ct

)
[
vCt

t (θ1, ξ
Ct

)(13)

−vCt

t (θ′1, ξ
Ct

)
]
dG(ξ2) . . . dG(ξT )

Dividing both sides of (12) and (13) by θ1 − θ′1 and taking the limit θ′1 → θ1 we get the required
envelope condition.

dU1(θ1)
dθ1

= q1(θ1) +

T∑
t=2

∑
Ct∈C t

δt

∫
Ξ2

. . .

∫
ΞT

µq(Ct)
[
qCt

t (θ1, ξ
Ct

)
∂vCt

t (θ1, ξ
Ct

)
∂θ1

]
dG(ξ2) . . . dG(ξT )

Appendix B. Proof of Incentive Compatibility

Proof. The optimal contract has qCt

t = 0 for all Ct 6= St. Clearly, it must also be the case that
pCt

t = 0 for all Ct 6= St. Hence, revenues for the seller and utility for the buyer will only contain
the terms qSt

t , pSt

t . In this proof we will refer to qSt

t , pSt

t simply as qt, pt. This makes the proof
considerably more intuitive as we have to deal with less notation. We need to show that there are
prices which make the solution to the relaxed problem incentive compatible. We first need to check
the following monotonicity condition. This condition is the following.

(1) Quantity schedules qt are nondecreasing in each argument.

(2) For any t ≥ 2 and any s ≥ t + 1 and any (θ1, ξ
t−1, ξt, ξt+1) and (θ1, ξ

t−1, ξ̃t, ξ̃t+1) such that
vt+1(θ1, ξ

t−1, ξt, ξt+1) = vt+1(θ1, ξ
t−1, ξ̃t, ξ̃t+1),

qs(θ1, ξ
t−1, ξt, ξt+1, . . . , ξs) ≤ (≥)qs(θ1, ξ

t−1, ξ̃t, ξ̃t+1, . . . , ξs)

if and only if ξt ≤ (≥)ξ̃t and vice versa.

(3) Similarly, for any (θ1, ξ2) and (θ̃1, ξ̃2) such that v2(θ1, ξ2) = v2(θ̃1, ξ̃2),

qs(θ1, ξ2, . . . , ξs) ≤ (≥)qs(θ̃1, ξ̃2, . . . , ξs)

if and only if θ1 ≤ (≥)θ̃1.
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It is straightforward to observe that A1-A4 imply that the quantity schedules are nondecreasing in
each argument. Hence, we only need to show monotonicity properties (2) and (3) as above. We will
show property (2) and (3) will follow similarly. We do this by backward induction on the quantity
schedules. We will show the ξt ≤ ξ̃t case and the ξt ≥ ξ̃t case is analogous. Pavan (2007) shows
that the assumptions A1-A5 imply that

vs(θ1, ξ
t−1, ξt, ξt+1, . . . , ξs)−

∂vs(θ1, ξ
t−1, ξt, ξt+1, . . . , ξs)

∂θ1

1− F (θ1)
f(θ1)

≤

vs(θ1, ξ
t−1, ξ̃t, ξ̃t+1, . . . , ξs)−

∂vs(θ1, ξ
t−1, ξ̃t, ξ̃t+1, . . . , ξs)

∂θ1

1− F (θ1)
f(θ1)

whenever vt+1(θ1, ξ
t−1, ξt, ξt+1) = vt+1(θ1, ξ

t−1, ξ̃t, ξ̃t+1) and ξt ≤ ξ̃t. In particular this implies that
the above holds for s = T and hence qT satisfies the monotonicity condition. Now since

vT (θ1, ξ
t−1, ξt, ξt+1, . . . , ξT )− ∂vT (θ1, ξ

t−1, ξt, ξt+1, . . . , ξT )
∂θ1

1− F (θ1)
f(θ1)

≤

vT (θ1, ξ
t−1, ξ̃t, ξ̃t+1, . . . , ξT )− ∂vT (θ1, ξ

t−1, ξ̃t, ξ̃t+1, . . . , ξT )
∂θ1

1− F (θ1)
f(θ1)

and

vT−1(θ1, ξ
t−1, ξt, ξt+1, . . . , ξT−1)−

∂vT−1(θ1, ξ
t−1, ξt, ξt+1, . . . , ξT−1)

∂θ1

1− F (θ1)
f(θ1)

≤

vT−1(θ1, ξ
t−1, ξ̃t, ξ̃t+1, . . . , ξT−1)−

∂vT−1(θ1, ξ
t−1, ξ̃t, ξ̃t+1, . . . , ξT−1)

∂θ1

1− F (θ1)
f(θ1)

and

qT (θ1, ξ
t−1, ξt, ξt+1, . . . , ξT ) ≤ qT (θ1, ξ

t−1, ξ̃t, ξ̃t+1, . . . , ξT )

This implies that qT−1(θ1, ξ
t−1, ξt, ξt+1, . . . , ξT−1) ≤ qT−1(θ1, ξ

t−1, ξ̃t, ξ̃t+1, . . . , ξT−1). This argu-
ment can be further inducted backwards to show that the monotonicity conditions are satisfied by
all qt.

We are now in a position to derive prices so that the resulting contract is incentive compatible.
From the definition of buyer utilities we can inductively derive the transfers. In other words, we
use the following equations

UT (θ1, ξ
T ) = vT (θ1, ξ

T )qT (θ1, ξ
T )− pT (θ1, ξ

T )

and

Ut(θ1, ξ
t) = vt(θ1, ξ

t)qt(θ1, ξ
t)− pt(θ1, ξ

t) + δqt(θ1, ξ
t)

∫
Ξt+1

Ut+1(θ1, ξ
t, ξt+1)dG(ξt+1)

We first observe that if the buyer reported truthfully up to period T it is immediate that she will
report ξT truthfully as well. This is because the envelope condition for the final period is necessary
and sufficient for incentive compatibility (see Myerson (1981)). However, as we have pointed out,
for any t < T , the envelope condition is merely necessary for incentive compatibility.

We proceed inductively by choosing an arbitrary t < T and assuming that the contract is incentive
compatible for periods s > t. This implies that if the buyer reports truthfully till period t, then the
best she can do is to report truthfully for any subsequent period. Now we show that it is optimal
for the buyer to report truthfully at period t having reported truthfully till period t− 1. If instead,
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she reports ξ̂t 6= ξt in period t, she gets

Ût(θ1, ξ
t−1, ξt; θ1, ξ

t−1, ξ̂t) = vt(θ1, ξ
t)qt(θ1, ξ

t−1, ξ̂t)− pt(θ1, ξ̂
t) +

δqt(θ1, ξ
t−1, ξ̂t)

∫
Ξt+1

Ût+1(θ1, ξ
t, ξt+1; θ, ξt−1, ξ̂t)dG(ξt+1)

Now note that

Ût(θ1, ξ
t−1, ξt; θ1, ξ

t−1, ξ̂t) =

Ut(θ1, ξ
t−1, ξ̂t) + [vt(θ1, ξ

t)− vt(θ1, ξ̂
t)]qt(θ1, ξ

t−1, ξ̂t) +

δqt(θ1, ξ
t−1, ξ̂t)

∫
Ξt+1

[
Ût+1(θ1, ξ

t, ξt+1; θ, ξt−1, ξ̂t)− Ut+1(θ1, ξ
t−1, ξ̂t, ξt+1)

]
dG(ξt+1)

Hence we can rewrite the incentive constraint as

Ut(θ1, ξ
t−1, ξt)− Ut(θ1, ξ

t−1, ξ̂t) ≥(14) ∫ ξt

ξ̂T

[
∂vt(θ1, ξ

t−1, ξ̃t)
∂ξ̃t

qt(θ1, ξ
t−1, ξ̂t)

]
dξ̃ +

δqt(θ1, ξ
t−1, ξ̂t)

∫ ξt

ξ̂T

[∫
Ξt+1

∂Ût+1(θ1, ξ
t−1, ξ̃t, ξt+1; θ, ξt−1, ξ̂t)

∂ξ̃t

dG(ξt+1)
]
dξ̃t

Taking the difference between utilities and using the envelope theorem at period t yields

Ut(θ1, ξ
t−1, ξt)− Ut(θ1, ξ

t−1, ξ̂t) =(15) ∫ ξt

ξ̂t

{
∂vt(θ1, ξ

t−1, ξ̃t)
∂ξ̃t

qt(θ1, ξ
t−1, ξ̃t) +

qt(θ1, ξ
t−1, ξ̃t)

∫
Ξt+1

. . .

∫
ΞT

[
δ
∂vt+1(θ1, ξ

t−1, ξ̃t, ξt+1)
∂ξ̃t

qt+1(θ1, ξ
t−1, ξ̃t, ξt+1) + · · ·+

δT−t ∂vT (θ1, ξ
t−1, ξ̃t, ξt+1, . . . , ξT )

∂ξ̃t

( T∏
s=t+1

qs(θ1, ξ
t−1, ξ̃t, . . . , ξs)

)]
dG(ξt+1) . . . dG(ξT )

}
dξ̃t

Similarly the envelope theorem at period t + 1 yields

∂Ût+1(θ1, ξ
t−1, ξ̃t, ξt+1; θ1, ξ

t−1, ξ̂t)
∂ξ̃t

=(16)

∂vt+1(θ1, ξ
t−1, ξ̃t, ξt+1)

∂ξ̃t

qt+1(θ1, ξ
t−1, ξ̂t, ξ̂

∗
t+1(ξ̃t)) +

δqt+1(θ1, ξ
t−1, ξ̂t, ξ̂

∗
t+1(ξ̃t))

∫
Ξt+2

∂Ût+2(θ1, ξ
t−1, ξ̃t, ξt+1, ξt+2; θ1, ξ

t−1, ξ̂t, ξ̂
∗
t+1(ξ̃t))

∂ξ̃t

dG(ξt+2)

where ξ̂∗t+1(ξ̃t) is the optimal report in period t + 1 given that she reported ξ̂t in period t. ξ̂∗t+1(ξ̃t)
is the implicit solution to the equation vt+1(θ1, ξ

t−1, ξ̂t, ξ̂
∗
t+1) = vt+1(θ1, ξ

t−1, ξ̃t, ξt+1). The reason
for this is the following. Assume that the true signals observed by the buyer up to period t + 1 are
θ1, ξ

t−1, ξ̂t, ξ̂
∗
t+1(ξ̃t). Then if the buyer reports truthfully up to period t it must be optimal for the

buyer to truthfully report ξ̂∗t+1(ξ̃t) in period t+1 by the inductive hypothesis. But from the definition
of ξ̂∗t+1(ξ̃t), the buyer’s valuation in period t+1 is vt+1(θ1, ξ

t−1, ξ̂t, ξ̂
∗
t+1(ξ̃t)) = vt+1(θ1, ξ

t−1, ξ̃t, ξt+1).
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Hence, when the buyer has this value it is optimal for her to report ξ̂∗t+1(ξ̃t) when she misreports
ξ̂t in period t.

We can now plug (16) into the right hand side of (14) and we get∫ ξt

ξ̂T

[
∂vt(θ1, ξ

t−1, ξ̃t)
∂ξ̃t

qt(θ1, ξ
t−1, ξ̂t) +

qt(θ1, ξ
t−1, ξ̂t)

∫
Ξt+1

. . .

∫
ΞT

{
δ
∂vt+1(θ1, ξ

t−1, ξ̃t, ξt+1)
∂ξ̃t

qt+1(θ1, ξ
t−1, ξ̂t, ξ̂

∗
t+1(ξ̃t)) +

δ2 ∂vt+2(θ1, ξ
t−1, ξ̃t, ξt+1, ξt+2)

∂ξ̃t

qt+1(θ1, ξ
t−1, ξ̂t, ξ̂

∗
t+1(ξ̃t))qt+2(θ1, ξ

t−1, ξ̂t, ξ̂
∗
t+1(ξ̃t), ξt+2) + · · ·+

δT−t ∂vT (θ1, ξ
t−1, ξ̃t, ξt+1, . . . , ξT )

∂ξ̃t

( T∏
s=t+1

qs(θ1, ξ
t−1, ξ̂t, ξ̂

∗
t+1(ξ̃t), . . . , ξs)

)}
dG(ξt+1) . . . dG(ξT )

]
dξ̃t

We can compare the above expression with (15). The monotonicity property ensures that the
incentive compatibility condition (14) is satisfied and this completes the proof. �
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