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Evaluating Strategic Forecasters†

By Rahul Deb, Mallesh M. Pai, and Maher Said*

Motivated by the question of how one should evaluate professional 
election forecasters, we study a novel dynamic mechanism design 
problem without transfers. A principal who wishes to hire only 
high-quality forecasters is faced with an agent of unknown quality. 
The agent privately observes signals about a publicly observable 
future event, and may strategically misrepresent information to 
inflate the principal’s perception of his quality. We show that the 
optimal deterministic mechanism is simple and easy to implement in 
practice: it evaluates a single, optimally timed prediction. We study 
the generality of this result and its robustness to randomization and 
noncommitment. (JEL C53, D72, D82)

A foolish consistency is the hobgoblin of little minds, adored by little 
statesmen and philosophers and divines.

—Ralph Waldo Emerson

Forecasting is an important industry whose experts’ services are utilized in a vari-
ety of different fields, including politics, sports, meteorology, banking, finance, and 
economics. Forecasters differ based on the quality of their predictions which, in turn, 
is determined by the accuracy of their information and their ability to process it. The 
career prospects of an expert depend on public perceptions of his ability, and hence a 
strategic forecaster may make predictions designed to inflate those perceptions. In this 
paper, we study the dynamic mechanism design problem of a principal who uses an 
expert’s predictions to determine whether that expert is worth hiring. In a nutshell, we 
are interested in determining the optimal method of screening strategic forecasters.
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For example, consider a governor or senator who is contemplating a presiden-
tial run in the next electoral cycle. She would like to hire a professional election 
forecaster to help her accurately determine the viability of her future candidacy. To 
evaluate the forecaster’s ability, she observes his predictions at various points in the 
current electoral cycle; she also eventually observes the current electoral outcome. 
What is the best way for her to determine whether the forecaster is worth hiring? 
The important factors that the politician needs to incorporate into her hiring decision 
are that (i) the forecaster’s information and the election outcome are both noisy sig-
nals of the underlying preferences of the electorate; (ii) the forecaster learns about 
those preferences more precisely as the election nears; and (iii) his predictions are 
strategically chosen to make himself appear to be of higher quality as he anticipates 
the career implications of his performance.

We develop a novel dynamic model to study these issues. In its simplest symmet-
ric, and binary form (on which the bulk of the paper focuses), the framework can be 
described as follows. There is a persistent, unknown state of the world governing the 
data-generating process. This unobserved state takes one of two values with equal 
probability. A binary public outcome, which is a potentially noisy signal of the under-
lying state, occurs at time  T + 1 . Leading up to that outcome, the agent (forecaster) 
privately learns about the state (and therefore the expected outcome) via a sequence 
of  T  noisy signals. These binary signals are correlated with the state but are otherwise 
conditionally independent and identically distributed. The agent is equally likely to 
be either a “good” or a “bad” type, where a good type observes more precise infor-
mation. At each point of time, the agent strategically reports his signal. After the 
outcome has been realized, the principal decides whether to hire the agent based on 
a mechanism that is announced (and committed to) at the beginning of the game. A 
mechanism in this context is a deterministic mapping from the history of reported 
signals and the eventual outcome to a hiring decision. Both parties care only about 
this hiring decision, as both the underlying state and the agent’s signals are payoff 
irrelevant. Their incentives diverge, however: the principal only wants to hire the 
good type, while the agent always wants to be hired, regardless of his private type.

The critical modeling assumptions of our environment are supported by the dis-
parate literatures that study forecasting in psychology, statistics, economics, and 
finance. Our underlying information structure, an unknown data-generating process 
that the forecaster learns over time, is a standard (albeit simplified) feature of statis-
tical models of forecasting (an up-to-date survey is Elliott and Timmermann 2016; 
recent empirical evidence on learning by professional forecasters can be found in 
Lahiri and Sheng 2008 and the papers that follow). Psychologists have shown that 
experts differ in their forecasting abilities and that better forecasters are consistently 
more accurate (see, for instance, the work described in Tetlock 2005 and Tetlock and 
Gardner 2015). Trueman (1994), Ottaviani and Sørensen (2006c), and others have 
argued that experts who differ by ability choose their forecasts with the intention 
of influencing clients’ assessments of that ability. At a high level, the key departure 
of this paper from this latter economics literature is that we incorporate a strategic 
principal (as opposed to a passive market) who optimally chooses her method of 
evaluating such strategic forecasters.

To understand the role played by incentives in this environment, it is instructive to 
examine the benchmark case where the principal does not know the agent’s type but 
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can observe his signals. Here, the principal can screen the agent, even in the absence 
of a public outcome, by using the variance of the observed signals: since the good 
type receives more precise information, he is more likely to receive signal profiles 
with a large proportion of identical signals (or, equivalently, profiles with lower 
signal variance). The public outcome provides another instrument for screening, 
as the good type’s signals are also more likely to match that outcome. The princi-
pal’s optimal hiring decision in this benchmark therefore combines accuracy and 
consistency by using two thresholds (Theorem 1). The agent is hired either when 
he is consistently accurate and receives enough signals that match the outcome (a 
simple majority of matches is not sufficient) or when he is consistently inaccurate 
and receives enough signals that do not match the outcome (a majority of matches 
is not necessary).1 Hence, when the agent cannot strategically misreport his signals, 
the principal screens using both the accuracy and the consistency of the agent’s 
information. Note that, given a profile of received signals, the order in which the 
signals arrive plays no role as they are generated from a conditionally i.i.d. process.

An immediate and important economic insight is that when the agent is free to 
report his signals strategically, the optimal mechanism does not screen using con-
sistency. The reason is quite intuitive: it is always possible for the agent to report 
consistent signals regardless of the actual information he receives. Instead, we show 
that it is optimal for the principal to screen using a combination of the accuracy of 
the agent’s signals along with the order in which they arrive. Specifically, our main 
result shows that the optimal deterministic mechanism takes the very simple form 
of a prediction mechanism: the principal optimally chooses a time period   T   ∗  ≤ T  to 
solicit a single prediction of the final outcome, and the agent is hired if and only if 
that prediction matches that outcome (Theorem 3).2 The principal utilizes the order 
in which the signals arrive by ignoring information that arrives after   T   ∗  .

This result has a number of features that are worth emphasizing. It may be sur-
prising to some readers (perhaps in light of the “testing experts” literature we dis-
cuss below) that screening is possible at all in this strategic environment, especially 
when the principal’s only screening instrument is a coarse hiring decision. Unlike 
the benchmark case, screening a strategic agent is not possible in the absence of a 
public outcome as the bad type is free to follow any reporting strategy. However, 
with a public outcome, screening becomes possible: since the good type receives 
more precise information, his prediction (if truthful) of the outcome in any period 
is more likely to be correct than the bad type’s. Thus, a hiring rule where the agent 
is picked if and only if his prediction in a given period turns out to be accurate is 
more likely (compared to the initial belief) to result in the hiring of the good type. 
Moreover, focusing on a single period’s prediction (and ignoring the agent’s reports 

1 The most transparent demonstration of why two cutoffs are optimal and the agent may be hired when suffi-
ciently inaccurate is the corner case where the good type’s signals are perfectly informative while both the public 
outcome and the bad type’s signals are completely uninformative. The likelihood that the bad type repeatedly 
receives the same signal is sufficiently small to ensure that the principal is happy to hire an agent with a perfectly 
consistent signal profile, regardless of whether it matches the (uninformative) outcome. 

2 It is worth stressing that this mechanism is optimal within the full class of deterministic direct revelation 
mechanisms that, in addition to the signals, also ask the agent to report his initial private type. Since such type 
reporting is not observed in practice and, as Lemma 1 shows, there is no loss of generality in dispensing with it, we 
deliberately focus on mechanisms that do not solicit this information. As we discuss later in Section VI, our results 
also generalize to the case where the agent has no initial private information. 
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at all other periods) also ensures that it is optimal for the strategic agent to sincerely 
predict the outcome he believes to be more likely.

As mentioned above, the optimal mechanism uses the order of signals for screening 
by discarding information that the agent receives after period   T   ∗  . To see why doing 
so might help the principal, suppose she instead always chooses to solicit predictions 
at the end of period  T  after the agent has acquired all possible information. When  
T  is large, both types of the agent learn the underlying state with high probability, 
which makes screening by predictions ineffective. Instead, the principal can choose to 
screen at an intermediate time period when the learning advantage for the good type 
(from receiving more precise information) is at its highest. An insight from the main 
result is that the principal is unable to improve screening in a deterministic mechanism 
(over and above soliciting a prediction) by using any information that arrives after  
period   T   ∗  .

A strength of the optimal mechanism is that it is very easy to describe and imple-
ment in practice. Moreover, we show that the same optimal outcome can be achieved 
even without commitment (Theorem 4), thereby making our results applicable in 
settings where the principal has little or no commitment power. This is another novel 
aspect of our framework as it is quite unusual for commitment power to not benefit 
the principal in a dynamic mechanism design environment.

In Section VI, we discuss the scope of the main insight driving our result by 
showing that it also applies to very general environments (Theorem 7). We show 
that the key assumption we need for the optimality of prediction mechanisms is 
that the public outcome is binary.3 As long as this assumption holds, prediction 
mechanisms remain optimal even if the agent’s type is drawn from a general space 
and the information he receives is generated from a general time-varying signal 
process. Additionally, even in this general environment, commitment is not required 
to implement the optimal mechanism. The simplicity of optimal mechanisms in so 
general a setting opens the door to further research on even richer models which 
have strategic forecasting as a component (and we discuss a few avenues for future 
research in our concluding remarks).

Finally, while our focus on deterministic hiring rules is driven by their suit-
ability for our motivating applications, randomization plays an interesting theo-
retical role in our environment. This is most easily demonstrated in the optimal 
stochastic mechanism for the special case of  T = 3  periods (Theorem 5). Here, we 
show how the principal fine-tunes her screening by hiring the agent with different 
(strictly positive) probabilities that depend on the order of signal arrivals in addi-
tion to the overall composition of the signal profile. Finally, we show that a suffi-
cient condition for the optimality of randomization is that the time horizon is long  
enough (Theorem 6).

Related Literature.—Expert forecasting is an important industry and the input 
of forecasters is often solicited for numerous decisions made by firms and policy-
makers alike. While the statistical work on evaluating forecasting models is well 
developed (see, for instance, the aforementioned survey Elliott and Timmermann 

3 We more carefully discuss the role this binary-outcome assumption plays in Section VIIC. 
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2016), there is relatively less research examining the incentives of strategic experts 
and how these incentives influence their forecasts (a recent survey of this work is 
Marinovic, Ottaviani, and Sørensen 2013). The theoretical work in this latter liter-
ature (see, for instance, Ottaviani and Sørensen 2006a, c) differs in that forecasters 
are evaluated by a rational, but otherwise passive, market and that the environment 
is static. This paper differs in that we consider a dynamic environment in which a 
strategic principal can alter the incentives of the forecaster by choosing her evalua-
tion criterion.

The literature on testing experts (starting with Foster and Vohra 1998; a recent 
survey is Olszewski 2015) shares a similar motivation. Here an abstract dynamic 
environment is considered and the focus is on determining the existence of a test 
which (i) cannot be passed by a strategic forecaster without knowledge of the true 
data-generating process and (ii) can be passed almost surely when the forecaster 
knows the process. Both our model and overall objective differ in that we allow 
the agent to be imperfectly informed about the data-generating process and that the 
principal’s goal is to design a mechanism that maximally separates the good fore-
caster from the bad, even if that screening is imperfect.

Since we consider a setting where a principal can commit to her hiring policy 
(based on sequential information received from the agent), our results are related 
to those in the literature on dynamic mechanism design. The binary private signals 
in our simplified model are a key feature of Battaglini (2005) and Boleslavsky and 
Said (2013), of which the latter also features private information about the signal 
process. These papers differ not only in their reliance on transfers but also in terms 
of the payoffs, the structure of the stochastic process governing signal evolution, 
and (as a result) the applications to which their models apply. Though it also differs 
along these latter dimensions, Guo and Hörner (2018) is more closely related as 
it also examines a dynamic mechanism design problem in a binary environment 
without transfers. In another strand of this literature, Aghion and Jackson (2016) 
show that tenure schemes can provide incentives for an agent to take actions that 
reveal his competence. However, their setting yields distinct economic insights 
as (among other differences) they rely on having multiple opportunities to learn 
about the agent’s competence as well as on principal preferences that depend on 
the agent’s actions instead of his underlying type. We will further discuss the rela-
tion of our results to the dynamic mechanism design literature in more detail in  
Section VIIA.

Finally, since we also examine the dynamic cheap talk setting where the prin-
cipal cannot commit, this paper is related to the literature studying how an agent 
with a privately known type builds reputation via dynamic communication. The 
key difference between our setting and this literature (in addition to the different 
applications modeled and the fact that we also characterize the full commitment 
optimum) is that our principal dynamically screens across types with differential 
rates of learning of a fixed underlying state. This is in contrast with Ottaviani 
and Sørensen (2006b) and Li (2007), where the agent is evaluated by a com-
petitive market and so his payoff is simply the posterior belief about his type. 
Alternatively, Morris (2001) considers a repeated, two-period setting where a 
principal makes a decision in each period based on the agent’s report. While both 
the principal and the agent in his setting have very different preferences from ours, 
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an important distinction is that our principal makes a single decision after cheap 
talk has ended.4

I. Model

We consider a  T -period, discrete time, finite horizon framework in which a prin-
cipal determines whether to hire an agent who is an expert forecaster. To make the 
main insights transparent, we define a simplified, symmetric version of the model on 
which the majority of the paper focuses. We discuss the full generality of the results 
in Section VI.

A. The Environment

State.—The forecaster is being judged on his ability to learn about an unknown 
state of the world  ω . This state, which governs the data-generating process, is equally 
likely to be either high ( h ) or low ( l   ), so the commonly known prior distribution of 
states is  Pr (ω = h) = Pr (ω = l ) = 1/2 .

Agent’s Private Information.—There is a single forecaster whose privately 
known type (his forecasting ability)  θ  can either be good ( g ) or bad ( b ) with 
equal likelihood; thus, the commonly known prior distribution of ability is 
 Pr (θ = g) = Pr (θ = b ) = 1/2 .5

In each period  t = 1, … , T  , the forecaster privately observes a binary signal   
s t   ∈ {h, l}  about the unknown state  ω . The accuracy of these signals (that is, the 
probability that each signal “matches” the true state) is

   α θ   ≔ Pr( s t   = ω | θ ). 

We assume that  1/2 <  α b   <  α g   < 1  , so that the type- g  agent’s signals are more 
precise than the type- b  agent’s.6 We write   s   t  ≔ ( s 1  ,  … ,  s t   )  to denote a sequence of  
t  signals.

Outcome.—At the end of period  T  , a publicly observed binary outcome  
r ∈ {h, l}  is realized. This outcome is correlated with the true state  ω ; we denote by 
 γ ∈  [1/2 , 1]   the probability with which the outcome  r  “matches” the true state  ω  , so

  γ  ≔ Pr(r = ω ) . 

4 This aspect is also reminiscent of Krishna and Morgan (2004) (and the papers that follow), where an additional 
long communication protocol is added to the canonical model of Crawford and Sobel (1982). 

5 Note that we do not require symmetry in either the state or type distributions for any of the results in the binary 
model. This assumption merely allows us to simplify the notation and shorten the proofs without compromising 
our main economic insights. 

6 We exclude the corner cases   α g   = 1  and   α b   = 1/2  to simplify our exposition, though our results continue 
to hold. 



3063DEB ET AL.: EVALUATING STRATEGIC FORECASTERSVOL. 108 NO. 10

The corner case where  γ = 1  corresponds to situations where the public outcome 
fully reveals the underlying state, while  γ < 1  reflects environments where that out-
come is only a noisy signal.7

B. The Game

In each period  t  , the agent strategically reports his signal    s ̃   t   ∈ {h, l}  , possibly as 
the realization of a mixed strategy (we will discuss implementations where the agent 
makes predictions instead of reporting signals in Section IIIC). Our main focus will 
be on the case where the principal has full commitment, but we will also examine 
what happens in the absence of commitment power.

Histories.—At the beginning of any period  t  ,   h  t  A  = ( s   t ,   s ̃     t−1  )  denotes the agent’s 
private history. This contains the  t  privately observed signals   s   t   and the  t − 1  
reports    s ̃     t−1   made prior to period  t . We use      A  =  ∪ t=1  T    ( {h, l}   t  ×  {h, l}   t−1 )   to denote 
the set of all histories for the agent.

The relevant history for the principal   h   P  = (  s ̃     T , r)  at which she makes a hiring 
decision contains the entire sequence of reports made by the agent in all  T  periods 
and the final outcome. We use      P  =  {h, l}   T+1   to denote the set of all such public 
histories.

Agent’s Strategy.—The type- θ  agent’s strategy   σ   θ   :      A   → Δ{h, l } determines 
the distribution of signal reports at each history. We will use the signal subscript 
  σ  s  θ  ( h  t  A )  to denote the probability that the agent reports signal  s ∈ {h, l} .

Principal’s Strategy.—We denote by   x r   (  s ̃     T  ) ∈ {0, 1}  the principal’s strategy at 
history  (  s ̃     T , r ) ∈     P  . It determines the probability with which she hires the agent as 
a function of the  T  reported signals    s ̃     T   and the outcome  r . We focus on deterministic 
hiring decisions for the principal as we feel that this is the more natural model-
ing assumption for the applications we consider. That said, randomization plays an 
interesting theoretical role in our model that we discuss in Section V.

When the principal has commitment power, we sometimes refer to  x  as a mech-
anism, although it does not correspond to a direct revelation mechanism (since  x  
does not condition on the agent’s private type  θ ). We restrict attention to this game 
as it more closely mirrors the applications of our model (forecasters do not typically 
report their types in practice); note, however, that this restriction is without loss of 
generality (as we show in Lemma 1).

Payoffs.—The payoffs only depend on the agent’s type and the hiring decision. 
The principal receives a payoff of  1  if she hires a good ( θ = g ) forecaster, a payoff 
of  −1  if she hires a bad ( θ = b ) forecaster, and a payoff of  0  otherwise. Essentially, 

7 Election outcomes are often affected by last-minute events uncorrelated with the electorate’s underlying pref-
erences. For example, bad weather on election day can significantly reduce voter turnout: see Gomez, Hansford, 
and Krause (2007) for more. Similarly, unanticipated in-game injuries often lead to upsets of the “better” team in 
a sporting event. 
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the principal’s goal is to maximize the difference in likelihood between hiring the 
two types.

The agent’s preferences are type independent: both types want to maximize the 
probability with which they are hired. To capture this, we assume that the agent 
receives a payoff of 1   if she is hired and a payoff of   0 if not.

Timing.—For easy reference, the following flow chart summarizes the game.

Nature draws 
unobserved 

state 
ω ∈ {h, l}; 

Agent 
privately 

learns type 
θ ∈ {g, b};

→

Agent observes 
private signal 

  s 1    ∈ {h, l }
and reports
   s ̃   1    ∈ {h, l };

→ ⋯ →

Agent observes 
private signal 

  s T    ∈ {h, l }
and reports
   s ̃   T    ∈ {h, l };

→

Outcome 
r ∈ {h, l  } 
publicly 
realized;

→

Principal 
makes 
hiring 

decision 
  x r    (   s ̃     T   );

→
Payoffs 

are 
realized.

II. Benchmark: Publicly Observed Signals

Before we analyze the game, we consider a simple benchmark in which the 
agent’s signals are publicly observed. Here, the agent is passive, and the only private 
information is his initial type. This benchmark helps highlight the issues inherent 
in trying to attain this “first-best” payoff for the principal when the agent must be 
incentivized to truthfully reveal his private signals.

A consequence of the payoff structure is that the principal’s ex ante expected 
payoff from any hiring decision  x  can be written as

  Π  ≔   ∑ 
r∈{h, l}

      ∑ 
 s   T ∈ {h, l}   T 

    Pr(r,  s   T  ) [Pr(θ = g | r,  s   T  )  − Pr(θ = b | r,  s   T  )]   x r   ( s   T  )

 =   1 _ 
2
     ∑ 
r∈{h, l}

      ∑ 
 s   T ∈ {h, l}   T 

    [Pr(r,  s   T  | θ = g)  − Pr(r,  s   T  | θ = b)]   x r   ( s   T  ), 

which is the difference in the expected probabilities that the  g  and  b  types of the 
agent are hired. Therefore, the optimal hiring decision in this benchmark is given by

(1)      x  r  FB  ( s   T  ) =  { 1  if  Pr (r,  s   T  | θ = g)  ≥ Pr (r,  s   T  | θ = b )     
0
  

otherwise
    .

Observe that the principal cannot benefit from randomizing her hiring decision in 
this first-best benchmark. In addition, the probabilities that determine the first-best 
hiring policy can be readily expressed in terms of the model primitives. In particu-
lar, since signals are conditionally i.i.d., only their frequencies (and not the specific 
order in which signals arrive) play a role. With this in mind, the probability of type  
θ  observing a signal profile   s   T   in which  n  signals that match the outcome is

 Pr  (  ∑ 
  t=1

  
T

     1 r  ( s t  ) = n | θ)   =   (  T     
n
  )    β n,T,θ   ,
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where

     β n,T,θ      ≔   γ   α  θ  n  (1 −   α θ     )   T−n   + (1 − γ)  α  θ  T−n  (1 −   α θ     )   n  

and we define   1 r   (  s t   )  to be the indicator function that takes the value 1 if the period- t  
signal matches the outcome (  s t   = r ) and 0 otherwise.

The first term of   β n,T,θ    corresponds to the cases where the outcome matches the 
underlying state (that is, when  r = ω ), while the second term corresponds to the 
complementary cases where the outcome does not match the state (that is, when  
r ≠ ω ). Since  Pr (r,  s   T  )  is constant across all signal profiles   s   T   with the same num-
ber of signals matching the outcome  r  , the first-best is then easy to state: hire an 
agent who receives exactly  n  signals that match the outcome if and only if the agent 
is more likely to be of type  g  than type  b  , so that

   Δ n,T    ≔  β n,T,g   −  β n,T,b   ≥ 0. 

To make the incentive issues in implementing   x   FB   explicit, we now provide a 
qualitative characterization of the first-best hiring policy in (1).

THEOREM 1: In the benchmark with publicly observable signals, the first-best hir-
ing policy   x   FB   can be characterized by two cutoffs    _ n    and   n _   with  T / 2 <   _ n   ≤ T   
and   n _  ≤ T −   _ n    such that

        x  r  
FB  (  s   T   ) =   { 1  if  ∑ t=1  

T     1 r  ( s t  ) ≥   _ n   or  ∑ t=1  
T     1 r  ( s t  ) ≤  n _      

0
  

otherwise
    .

Theorem 1 shows that it is not enough for a majority of the agent’s signals to 
correctly match the outcome; in general, this is neither necessary nor sufficient for 
being hired. Instead, that the principal screens using a combination of accuracy and 
consistency.

•  The agent is hired if he is consistently accurate, with at least    _ n    signals that 
match the outcome. When this match threshold is    _ n   > ⎡ (T + 1)/2 ⎤  , the agent 
may not be hired even when the majority of his signals match the outcome.

•  The agent is hired if he is consistently inaccurate, with at least  T −  n _   signals that 
do not match the outcome. When this mismatch threshold is   n _  ≥ 0  , the agent 
may be hired even when the majority of his signals mismatch the outcome.

•  The mismatch threshold is more stringent than the match threshold, as   
n _  ≤ T −   _ n   . Thus, greater consistency is required to compensate for inaccuracy.

For some intuition on why the first-best utilizes the mismatch cutoff   n _   , con-
sider the case where  γ = 1/2 , so that the outcome is uninformative about the true 
underlying state. Here, accuracy provides no information with which to evaluate 
the forecaster. Instead, the principal must exploit the fact that the good type is more 
consistent than the bad type: his more precise information is more highly correlated 
with the true state, and so his signal profile is likely to have lower variance. Thus, 
the first-best here relies only on consistency, and the two cutoffs are symmetric 
(i.e.,   n _  = T −   _ n   ).
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At the other extreme, when  γ = 1 , so that the outcome perfectly reveals the true 
underlying state, accuracy is meaningful as incorrect signals are now an indication 
that the agent is the bad type, and many incorrect signals are an even stronger indica-
tion, implying that   n _  < 0  and the agent is not hired when consistently inaccurate.8 
Consistency continues to be an important part of the first-best, however, especially 
when the signal precisions   α g    and   α b    are relatively large: separation of the two 
types can be improved by imposing a super-majority threshold of matching sig-
nals    _ n   > ⎡ (T + 1)/2 ⎤  so that a mere majority of correct signals is not sufficient.9

Observe that an immediate consequence of Theorem 1 is that strategic behavior by 
the agent precludes the implementation of the first-best policy when    _ n   > ⎡ (T + 1)/ 2 ⎤  
or when   n _  ≥ 0 . In the former case, the agent has an incentive to misreport signals 
after histories where he has already observed and truthfully reported  T −   _ n    signals 
of each type. Unless each of his  2  _ n   − T  remaining reports is identical (which is not 
guaranteed with truthful reporting), the agent has no chance of meeting the match 
threshold    _ n    and being hired. In the latter case, the agent is always hired for sure 
when he reports the same signal in all periods (regardless of whether it matches the 
outcome), and such consistency can always be mimicked. As a result, the principal 
achieves no separation whatsoever (both types will be hired with probability 1) in 
this case when faced with a strategic agent. Nontrivial screening is, however, always 
possible using the simple class of mechanisms (that are easy to implement in prac-
tice) that we present in the next section.

III. The Optimal Mechanism with Commitment

In this section, we consider the case where the principal can commit in advance 
to the mechanism  x . We begin by describing a simple class of mechanisms via which 
screening can always be achieved. As we will argue, the optimal mechanism also 
belongs to this class.

A. Prediction Mechanisms

A hiring policy  x  is a period- t  prediction mechanism if the agent is hired when-
ever the outcome  r  matches the state that is most likely, given the signals   s   t   reported 
through period  t . Put differently, the agent is asked to predict the final outcome at 
period  t  , and is hired whenever this prediction matches the outcome. Formally, a 
period- t  prediction mechanism can be implemented as a function of the reported 
signals as follows:

(2)       x r  (  s ̃     T  ) =  
⎧
 

⎪

 ⎨ 
⎪
 

⎩
 
1 if   ∑ t′≤t        1 r   (  s ̃   t′  ) > t / 2

    1 if   ∑ t′≤t        1 r   (  s ̃   t′  ) = t / 2 and   s ̃   t   = r     
0 otherwise

     .

8 For  γ < 1  , it is always possible to find   α g    and   α b    such that   n _  ≥ 0  , regardless of how close  γ  is to 1. 
9 In general, as either type’s signal precision   α θ    rises and incorrect signals become less likely, the match thresh-

old    _ n    increases and the first-best becomes less forgiving of mistakes. Meanwhile, the mismatch threshold   n _   may 
be nonmonotone in   α θ   : increasing the quality of an agent’s information decreases the variance of his signals while 
increasing their accuracy, and these two effects have countervailing impacts on the likelihood of signals consistently 
contradicting the public outcome. 
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In words, this mechanism hires the agent for sure when a strict majority of his 
reported signals up to  t  match the outcome. When the agent reports an equal num-
ber of  h  and  l  signals through period  t  (so both states are equally likely), then the  
period- t  report serves as a tie breaker and determines the hiring decision.10

It is straightforward to argue that truth-telling is optimal for both types  g  and  b  
in response to the mechanism defined in (2). To see this, note that the agent does 
not have an incentive to misreport before period  t  even if he could pick a reporting 
strategy    s ̃     t   after observing all  t  signals   s   t   (instead of having to report them sequen-
tially), as the majority of the signals corresponds to the outcome that is more likely 
to arise. Additionally, since the signals reported after period  t  do not affect the hiring 
decision, it is trivially optimal to report them truthfully. Finally, since the good type 
is always more likely to observe a majority of signals corresponding to the underly-
ing state, he will be hired with greater probability than the bad type, and hence this 
mechanism always achieves nontrivial screening.

The principal can optimize within this class of mechanisms by choosing the 
period in which she solicits a prediction. The next result shows that it may not be 
optimal for the principal to wait until the final period, but instead should limit the 
information observed by the agent.

THEOREM 2: There exists a   T ˆ   ≥ 1  such that the principal’s payoff from a  
period- t  prediction mechanism is increasing in  t  for all  t ≤  T ˆ    and decreasing in 
 t  for all  t ≥  T ˆ   .

The intuition for the nonmonotonicity of payoffs in  t  is simple. As  t  grows larger, 
both types learn about the underlying state more precisely. But in the limit as  t  
becomes arbitrarily large, both types learn the state perfectly and thus make the 
same prediction. As a result, screening becomes less effective, and for sufficiently 
long time horizons  T  , the principal prefers to solicit a prediction at an intermediate 
time when the learning advantage of the type- g  agent over his type- b  counterpart 
is at its highest. In what follows, we will use   T ˆ    to denote the optimal period for the 
principal to solicit the prediction.11

B. The Optimal Mechanism

In this section, we will argue that the optimal mechanism is a prediction mech-
anism. To begin, it is worth reiterating that the class of mechanisms we consider 
(functions of the reported signals alone) is a strict subset of the set of direct revela-
tion mechanisms. This is because the mechanisms  x  do not condition on the agent’s 
initial private type. While a restriction to such mechanisms can be justified by 
appealing to their realism, we now argue that this restriction is also without loss of 
generality: the principal can achieve the same payoff by maximizing over the class 
of (indirect) mechanisms  x  as she can from the optimal direct revelation mechanism.

10 Note that we can use other tie-breaking rules to implement the same outcome when   ∑  t ′  ≤t        1 r   (  s ̃    t ′     ) = t/2 . For 
instance, we can choose an arbitrary period   t ′   ≤ t  and hire the agent whenever    s ̃    t ′     = r . 

11 It is straightforward to show that   T ˆ    is decreasing in both   α g    and   α b   . Note that as   α g    grows larger, the type- g  
agent’s information becomes more precise quickly and his relative advantage over type  b  peaks sooner; meanwhile, 
as   α b    grows larger, the type- b  agent is able to “catch up” quickly to the type- g  agent. 
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A direct revelation mechanism   χ r   (θ,  s   T  )  ∈ {0, 1}  (or direct mechanism for 
short) determines the probability that the agent is hired as a function of his reported 
initial type  θ  , his profile of reported signals   s   T  , and the final outcome  r . Note that 
the revelation principle applies in this environment, so it is without loss to consider 
the message space  {g, b} ×  {h, l}   T  .12 The next result states that the principal cannot 
attain a higher payoff from using this larger class of direct mechanisms.

LEMMA 1: There is an optimal direct mechanism that does not depend on the 
reported type. Specifically, for any incentive-compatible direct mechanism  χ  , there 
is an indirect mechanism  x  with the following properties: 

 (i) The principal’s payoff from  x  is (weakly) higher than her payoff from  χ ; 

 (ii) The type- g  agent has an incentive to report his signals truthfully; and 

 (iii) The type- b  agent reports his signals optimally.

The intuition for this lemma is transparent. Fix any incentive-compatible direct 
mechanism  χ  that depends on the agent’s reported type. Incentive compatibility 
implies that it is optimal for the agent to report his initial type truthfully; in partic-
ular, the type- b  agent receives a lower payoff from initially misreporting his type 
as  g  and then optimally reporting his signals. So consider the indirect mechanism   
x r   ( · ) ≔  χ r   (g,  · ) . By definition, it is optimal for the good type to report his sig-
nals truthfully (property (ii)). Additionally, incentive compatibility of  χ  ensures that 
the bad type’s payoff is lower from  x  than from  χ . Since the principal’s payoff is 
increasing in type  g ’s payoff and decreasing in type  b ’s, this indirect mechanism will 
be no worse for her (property (i)). Finally, note that since  x  is not a direct mecha-
nism, we cannot a priori restrict attention to mechanisms where both types report 
their signals truthfully (made explicit by property (iii)).

Henceforth, when we refer to an optimal mechanism  x  , this will correspond to 
a mechanism that yields the highest payoff that the principal can achieve in the 
full space of direct mechanisms  χ . The next theorem characterizes the optimal 
mechanism.

THEOREM 3: Let   T   ∗  ≔ min  { T,  T ˆ   } . A period-  T   ∗   prediction mechanism is an 
 optimal mechanism.

There are several aspects of the result above that are worth emphasizing. First, the 
optimal mechanism takes a very simple form that is easy to implement in  practice, 
as it is both easy to time when predictions are solicited and to institute a hiring 
policy that depends on the accuracy of the predictions. Second, observe that the 
optimal mechanism has the property that truth-telling is optimal for both types of 
the agent. This property finds support from the empirical evidence on anonymous 

12 Strausz (2003) shows that the revelation principle does not always apply when the principal is restricted to 
deterministic mechanisms. However, it does apply in single-agent settings such as ours; for reference, we present a 
formal statement and proof in the online Appendix. 
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analyst surveys; for example, Marinovic, Ottaviani, and Sørensen (2013, p. 716) 
point out that, “According to industry experts, forecasters often seem to submit to 
the anonymous surveys the same forecasts they have already prepared for public 
(i.e.,  non-anonymous) release.” This is suggestive evidence for the fact that strategic 
forecasters in the real world predict truthfully as they have no reason to lie in anon-
ymous surveys.

Third, while the optimal period at which to solicit the prediction   T   ∗   depends on 
the underlying parameters, it does not do so in a fine-grained way. Put differently, 
the optimality of the period-  T   ∗   prediction mechanism will be robust to “small” inac-
curacies in the principal’s beliefs about the underlying parameters. Finally, while we 
will show the full generality of the insight driving the result above (in Section VI), 
it is worth mentioning that it is easy to incorporate asymmetries (in the prior belief 
regarding the state, the agent’s type distribution, and the principal’s payoffs from 
hiring the good or the bad type) within this simplified version of the model. The only 
change to the result above is that a trivial decision (to always or never hire the agent) 
may become optimal under some model parameters.

It might seem surprising that the optimal mechanism does not involve more 
elaborate screening. The reason is that the principal has limited instruments at her 
disposal and, as a result, incentive compatibility significantly restricts the set of 
effective mechanisms the principal can utilize. The characterization of the set of 
mechanisms that induce the good type- g  to report truthfully is the crucial step in the 
proof of Theorem 3 and is described in the following lemma.

LEMMA 2: A mechanism  x  induces truthful signal reporting from the type- g  agent 
if and only if it is one of the following mechanisms: 

 (i) A trivial mechanism: the  principal’s hiring decision does not depend on the 
agent’s reports, so that   x r  ( s   T  ) =  x r  (   s ˆ     T  )  for  r = h, l  and all   s   T ,   s ˆ     T  ∈  {h, l}   T  ; or 

 (ii) A period- t  prediction mechanism for some  1 ≤ t ≤ T . 

Consequently, a mechanism that induces truthful reporting by the type- g  agent also 
induces truthful reporting by the type- b  agent.

This lemma shows that incentive compatibility for type  g  (which, by Lemma 1, 
is a property of an optimal mechanism) implies that the only nontrivial mechanisms 
at the principal’s disposal are prediction mechanisms. Combined with Theorem 2’s 
payoff single-peakedness result, this implies Theorem 3. As we will argue further in 
Section VI, the insight in this lemma is remarkably general, applying immediately 
to substantially generalized versions of the model.

The following example is useful to develop intuition for the lemma. Suppose that 
a type- g  incentive-compatible mechanism  x  is such that, at some period- T  history, 
the hiring decision is a nontrivial function of the final period- T  report   s T    and the 
outcome  r ; that is, there is a sequence of signals   s   T−1   such that the hiring deci-
sions  ( x h   ( s   T−1 , h),  x l   ( s   T−1 , h))  after a report    s ̃   T   = h  differ from the hiring decisions 
 ( x h   ( s   T−1 , l ),  x l   ( s   T−1 , l ))  after a report    s ̃   T   = l . Since the hiring rule is determin-
istic, this is only possible when  ( x h   ( s   T−1 ,   s ̃   T   ),  x l   ( s   T−1 ,   s ̃   T   ))  equals either  (1, 0)  or 
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 (0, 1) .13 Incentive compatibility implies that, if  ( x h   ( s   T−1 ,  s T   ),  x l   ( s   T−1 ,  s T   )) = (1, 0)  , 
then the agent must believe the outcome  r = h  is more likely, as he could instead 
report   s  T  ′   ≠  s T    and face  ( x h   ( s   T−1 ,  s  T  ′  ),  x l   ( s   T−1 ,  s  T  ′  )) = (0, 1) . However, this essen-
tially implies that the agent is hired if and only if the outcome he believes to be 
more likely is realized; in other words, the mechanism is effectively soliciting a pre-
diction at this history and then hiring based on its accuracy. The proof of Lemma 2 
generalizes this argument to all histories.

C. Alternative Implementations and Interpretations of the Optimal Mechanism

In this section, we revisit our leading example (a political candidate seeking to 
hire a forecaster) to discuss alternate ways in which the optimal mechanism can be 
implemented. This discussion also allows us to demonstrate the flexibility of our 
framework to capture the various different forms that political forecasts often take. 
The period- t  prediction mechanism as defined in (2) captures the case where the 
agent reports his signal in each period: this can be interpreted as a pollster sequen-
tially releasing the predicted outcomes from each poll he conducts. (As we will 
argue in Section VI, the model can be generalized to allow for signals with a con-
tinuous support in which case this will correspond to releasing the poll results as a 
percentage instead of a prediction.) Here, the prediction from a period- t  poll corre-
sponds to his period- t  signal and not the cumulative information he has acquired.

Alternatively, political punditry often takes the form of an expert predicting who 
he thinks is more likely to win in each period after aggregating all his past infor-
mation. In this case, each report    s ̃   t    can be interpreted as a prediction of the final 
outcome and not a signal report. When the agent reports this way, the period- t  pre-
diction mechanism simply becomes

(3)   x r   (   s ̃     T  )  =  { 1   if    s ̃   t   = r   
0
  

 otherwise
    .

In words, this mechanism asks the agent to predict the final outcome at each period 
and hires the agent if and only if the period- t  prediction matches the outcome (all 
other reports are ignored). A strategic agent facing this mechanism will predict at 
period  t  whichever outcome he believes is more likely to eventually arise. This will 
simply be the outcome for which the agent has received more signals up to period  
t  (and he will be indifferent if he has received an equal number of  h  and  l  signals). 
This implementation clearly achieves the identical payoff to the principal as that in 
(2).

Finally, our framework is flexible enough to allow for the forecaster to make 
predictions on the odds of the likely winner (in the form of a percentage). Such 
predictions are made by forecasters like The Upshot of the New York Times or 
FiveThirtyEight by Nate Silver who aggregate information from various polls (and 

13 If   x h   (  s ˆ     T  ) =  x l   (  s ˆ     T  ) = 1  for some sequence    s ˆ     T   , then the agent can guarantee he is hired with probability  1  by 
always reporting    s ˆ     T   , regardless of his true signals. Since this potential deviation remains unused (as the type- g  agent 
is willing to report truthfully), the principal must therefore always (trivially) hire the agent. An analogous argument 
applies if there is some    s ˆ     T   with   x h   (  s ˆ     T  ) =  x l   (  s ˆ     T  ) = 0 . 
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their type determines the accuracy of this aggregation). To model this, we can sim-
ply alter the message space so that the agent is asked to make a percentage predic-
tion (of course, the revelation principle implies that enlarging the message space in 
this way does not alter the optimal mechanism). Here the period- t  prediction mech-
anism can be implemented by hiring the agent if and only if the outcome he predicts 
is more likely (in a percentage sense) in period  t  ends up occurring.

IV. The Optimal Mechanism without Commitment

In this section, we derive the equilibrium that maximizes the principal’s payoff 
when she cannot commit to her hiring policy  x . Of course, the principal is always 
weakly better off with commitment power as she can always choose to commit to 
whatever strategy she can play in its absence. We show that the principal can achieve 
the same payoff as in Theorem 3 even when she does not have commitment power. 
We view this as further support for the optimal mechanism in Theorem 3 as, in prac-
tice, the level of commitment possessed by principals may vary.

In the absence of commitment, our setting constitutes a dynamic cheap talk game. 
Here, the agent (the sender) can costlessly make either report in every period  t . 
The reports    s ̃     T   themselves are not payoff-relevant; instead, their only purpose is to 
inform the principal’s (the receiver) decision. The principal’s payoff-relevant infor-
mation is, instead, the agent’s private type, and (as in the standard cheap talk setting) 
the principal and agent have divergent preferences over the former’s action choice 
as a function of this type. Finally, rather than consider alternative message spaces 
or games, we will directly show that the principal can achieve the same payoff both 
with and without commitment power.

THEOREM 4: There is a sequential equilibrium of the game without commitment 
that yields the principal the same payoff as a period- t  prediction mechanism. In par-
ticular, this implies that the principal can achieve the same payoff as in the optimal 
mechanism with commitment.

Due to the simple structure of the optimal mechanism under full commitment, 
this result is remarkably straightforward to show. We now describe equilibrium 
strategies that replicate the outcome of a period- t  prediction mechanism. The princi-
pal’s strategy is to ignore all reports of the agent except that in period  t  , and she hires 
the agent if and only if his period- t  report matches the outcome. In response, both 
types of the agent babble in all periods except period  t  , where they report the signal 
corresponding to the outcome that they consider more likely to arise.

Formally, the principal’s strategy is

   x r   ( s   T  ) =  { 1 if   s t   = r   
0 otherwise

    .

For any   t ′   ≠ t  , the agent’s strategy is

   σ  h  θ   ( h   t ′    A  ) = 1 −  σ  l  θ  ( h   t ′    A ) =   1 _ 
2
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for all period-  t ′    agent histories; that is, he mixes both reports with equal probability. 
For a period  t  history   h  t  A  = ( s   t ,   s ̃     t−1  )  (recalling that   s   t   denotes the  t  observed signals 
and    s ̃     t−1   denotes the  t − 1  reports made prior to period  t ), the agent’s strategy is

     σ  h  θ   ( s   t ,   s ̃     t−1 ) = 1 −  σ  l  θ  ( s   t ,   s ̃     t−1  ) =  

⎧

 
⎪
 ⎨ 

⎪
 

⎩

 
1 if   ∑ t′≤t        1 h   ( s t′  ) > t / 2

      1 _ 
2
   if   ∑ t′≤t        1 h   ( s t′  ) = t / 2    

0 otherwise

     .

It is straightforward to see that these strategies constitute an equilibrium. Since 
the principal ignores the reports in all periods except  t  , the agent is indifferent at all 
such histories; in particular, babbling is therefore a best response. In addition, he is 
hired only if his period- t  report matches the outcome, so it is a best response for him 
to report whichever signal he has seen more often (and is indifferent if he has seen 
an equal number of  h  and  l  signals). Conversely, since the agent is babbling at all 
periods except  t  , it is a best response for the principal to ignore these reports. Finally, 
since the type- g  agent is more likely to correctly predict the outcome, it is optimal 
for the principal to hire the agent when his period- t  report matches the outcome.

Note that all possible signal reports are on-path in the agent’s strategy above. 
Thus, as in the canonical cheap talk setting of Crawford and Sobel (1982), standard 
refinements have no bite as there is no need to discipline off-path behavior. In par-
ticular, the equilibrium constructed above is a sequential equilibrium. To the best 
of our knowledge, there are no accepted refinements of dynamic cheap talk games; 
moreover, since our setting is quite different from the canonical setting, it is not 
clear how to extend the refinements designed specifically for the static Crawford and 
Sobel (1982) environment (most notably Chen, Kartik, and Sobel 2008). The design 
of such refinements for dynamic cheap talk games is an important topic of research 
but is beyond the scope of this paper.

V. Stochastic Mechanisms

In this section, we describe how the principal can utilize randomization to fine-
tune screening. Formally, the principal’s strategy, which we refer to as a stochastic 
mechanism when she has commitment, now has the entire unit interval as its range. 
We will use the same notation as before:   x r   (  s ̃     T  ) ∈ [0, 1]  denotes the probability 
with which she hires the agent as a function of the  T  reported signals    s ̃     T   and the out-
come  r . For brevity, we will sometimes drop the additional “stochastic” qualifier in 
this section when it is clear that we are referring to a stochastic mechanism.

The optimal mechanism is difficult to derive for arbitrary time horizons  T . This 
is primarily because the set of incentive-compatible stochastic mechanisms is much 
larger and harder to characterize than in the deterministic mechanism case. Similar 
issues are also encountered in dynamic mechanism design environments with trans-
fers (hence the restriction to deterministic mechanisms in Courty and Li 2000 or 
Krähmer and Strausz 2011, for instance). The main aim of this section is to show 
that the screening is more subtle with randomization for which the restriction to 
the special case of  T = 3  suffices. That said, we also provide a simple sufficient 
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 condition in for when randomization is a feature of the optimal stochastic mecha-
nism (Theorem 6).

A. The Role of Randomization When  T = 3 

In this subsection, we describe the optimal stochastic mechanism for the  T = 3  
period case and discuss its qualitative properties. This special case is convenient to 
highlight the role played by randomization as the optimal stochastic mechanism can 
be characterized and is easy to describe.

We begin by describing the first-best mechanism   x   FB   for the case where the 
agent’s signals (but not his initial type  θ ) are also observed by the principal. The 
following characterization of the set of possible match and mismatch thresholds 
(corresponding to Theorem 1) that can arise in   x   FB   is instructive as a point of con-
trast with the optimal mechanism. 

LEMMA 3: Suppose  T = 3 . Then the first-best mechanism   x   FB   is one of the 
following: 

 (i) Hire the agent if and only if all three of his signals are accurate (so    _ n   = 3  
and   n _  = −1 ); 

 (ii) Hire the agent if and only if all three of his signals are consistent (so    _ n   = 3  
and   n _  = 0 ); or 

 (iii) Hire the agent if and only if a majority of his signals match the outcome 
(so    _ n   = 2  and   n _  = −1 ). 

Observe that the first-best mechanism in case (iii) is simply a period-3 prediction 
mechanism, and is therefore implementable: the agent will predict the outcome cor-
responding to the majority of his signals. This case arises when   Δ 2, 3   ≥ 0  and the 
type- g  agent is more likely to observe exactly two matches than the type- b  agent. 
When this is not the case and   Δ 2, 3   < 0  , however, the first-best payoffs correspond-
ing to cases (i) and (ii) cannot be achieved as a strategic agent can easily feign 
consistency by simply “cascading” on his first signal. In such circumstances, the 
optimal mechanism (characterized in the following theorem) is distorted away from 
the first-best. 

THEOREM 5: Suppose  T = 3 . When   Δ 2, 3   ≥ 0  , the period-3 prediction mecha-
nism is an optimal stochastic mechanism. Conversely, when   Δ 2, 3   < 0  , the optimal 
 stochastic mechanism is given by

   x r   (  s   3  )   =     
⎧
 

⎪
 ⎨ 

⎪
 

⎩
 
1

  

if  s 1   =  s 2   = r
      1 __________________  

2(γ  α b   + (1 − γ)(1 −  α b  ))
    if  s 1   ≠  s 2   and  s 3   = r     

0

  

otherwise

    .

Faced with this mechanism, it is optimal for both types of the agent to truthfully 
report all signals.
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The optimal stochastic mechanism when  T = 3  hires the agent only if a major-
ity of his reported signals match the outcome. Moreover, when the type- b  agent is 
more likely to match exactly two of three signals than the type- g  agent (that is, when   
Δ 2, 3   < 0 ), the order of reported signals influences the hiring decision. Specifically, 
the optimal mechanism rewards early accuracy: in profiles where exactly two of the 
three reports match the outcome, the agent is hired with higher probability when the 
first two reports are correct than when one of them mismatches.

Intuitively, when   Δ 2, 3   < 0  , the principal would prefer not to hire the agent at 
histories where he truthfully reports only two signals matching the outcome (as such 
profiles are more likely for the type- b  agent). But as we have seen, deterministic 
mechanisms compel the principal to hire the agent at such profiles whereas, when 
the principal can randomize, she can reduce the hiring probability at such profiles 
without violating incentive compatibility.

To better understand how randomization permits such a reduction, it is helpful 
to reinterpret the hiring rule in Theorem 5 as an option mechanism: in the second 
period, the agent is offered the opportunity to make a prediction immediately or 
to delay his prediction to period 3. A correct prediction in period 2 is rewarded by 
hiring the agent for sure, while a correct prediction in period 3 is rewarded by hiring 
the agent with a probability strictly less than 1. (An incorrect forecaster is never 
hired, regardless of the timing of his prediction.) Faced with this option, an agent 
who has observed two identical signals will always make a prediction in period 2; 
no matter what he observes in the third period, the agent’s prediction will remain 
unchanged but his probability of being hired is lower. However, an agent who has 
observed contradictory signals is uncertain about the underlying state, and therefore 
benefits from delaying his prediction by a period. Indeed, the reduced probability 
of being hired in period 3 after mixed signals is chosen precisely to ensure that 
the type- b  agent is indifferent about delaying his prediction, while type  g ’s better 
information gives him a strict incentive to wait for an additional signal.14 Of course, 
since the type- g  agent is more likely to observe two matching signals in the first 
two periods, he is correspondingly more likely to make an early prediction (with a 
larger hiring probability), compounding his pure informational advantage over the  
type- b  agent.

Interestingly, it is possible to implement the optimal stochastic mechanism when   
Δ 2, 3   < 0  in a sequential equilibrium of the game without commitment. In particu-
lar, the type- b  agent’s indifference after contradictory signals (that is, after observ-
ing   s 2   ≠  s 1   ) permits the appropriate mixed strategy that rationalizes the principal’s 
randomization.15 It remains an open question, however, whether this property gen-
eralizes beyond the special case of  T = 3 .

It is instructive to briefly contrast the proof strategy for Theorem 5 with that for 
Theorem 3. First, observe that Lemma 1 also applies to stochastic mechanisms, so 
it is without loss to consider stochastic mechanisms where the type- g  agent reports 
truthfully while type  b  is allowed to optimally misreport. Unlike with deterministic 

14 Note that the randomization necessary to generate this indifference for the type- b  agent relies on the informa-
tiveness  γ  of the public outcome. This is in contrast to the case of deterministic mechanisms where, as long as the 
public outcome is equally accurate in both states of the world, the optimal prediction mechanism does not depend 
on  γ . 

15 Details of the equilibrium construction are available from the authors on request. 
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mechanisms, which showed that incentive compatibility for type  g  implies incentive 
compatibility for type  b  , incentive constraints in a stochastic mechanism may be less 
restrictive. In particular, there are stochastic mechanisms where truthful reporting of 
signals is incentive compatible for type  g  but not for type  b . Therefore, it is difficult 
to formulate a tractable version of the principal’s optimization problem. Our proof 
instead relies on an auxiliary problem that is both easier to solve and yields the prin-
cipal a greater payoff; we then show that resulting solution is in fact feasible in the 
original problem.

B. When Is Randomization Optimal?

We now provide a simple sufficient condition for the optimality of randomization.

THEOREM 6: The principal’s payoff from the optimal stochastic mechanism 
is strictly higher than that from the optimal (deterministic) mechanism when 
 T >  T ˆ   + 1 .

This result states that the principal strictly benefits from using randomization for 
sufficiently long time horizons. Intuitively, recall that the optimal (deterministic) 
mechanism for  T >  T ˆ    is a period-  T ˆ    prediction mechanism: in this mechanism, the 
principal ignores reports after   T ˆ   . In the optimal stochastic mechanism for  T = 3  , 
when the agent in period 2 has conflicting signals (and therefore thinks both out-
comes are equally likely), the principal can fine-tune screening by lowering the 
hiring probability (which is beneficial since type  b ’s higher signal variance implies 
he is more likely to receive an equal number of  h  and  l  signals) without destroying 
incentive compatibility. The principal can similarly lower the hiring probability at 
profiles in which the agent reports the same number of  h  and  l  signals (or in which 
the difference between  h  and  l  signals is one) by conditioning the mechanism on 
reports after period   T ˆ   . The agent prefers such a mechanism as it allows him the 
chance to better learn the underlying state.

It is hard to fully characterize the optimal stochastic mechanism for  T > 3  since 
incentive compatibility for type  g  alone is no longer sufficient to pin down type  b ’s 
reporting strategy. As a result, the derivation of the optimal mechanism must account 
for optimal misreporting, which makes the problem intractable. In the  T = 3  period 
case, it is possible to identify and individually account for histories at which the 
type- b  agent might have an incentive to misreport; when  T > 3  , however, the set of 
such histories becomes large, and this approach is no longer feasible.

VI. A More General Model

In this section, we show the generality of our main insight that prediction mech-
anisms are the optimal way to screen strategic forecasters. As we will argue, the 
critical assumption driving our result is that the outcome  r  that is being predicted 
is binary; every other assumption can be substantially generalized. We describe the 
key components of the model in their full generality below and deliberately overload 
the notation to make the generalization of each assumption explicit. The timing of 
the model remains unchanged.
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State.—There is an unknown underlying state  ω  drawn from an arbitrary set  Ω  that 
drives the data-generating process. State  ω  is distributed according to a  commonly 
known probability measure   p 0   ∈ Δ(Ω) . Notice that  Ω  need not be binary; this per-
mits the analysis, for instance, of environments where the state  ω  is the realized 
sample path of a general stochastic process.

Agent’s Private Information.—The agent’s type  θ  is drawn from an arbitrary 
(again, not necessarily binary) set  Θ . The commonly known prior distribution of  θ  
is given by   μ 0   ∈ Δ(Θ) .

In this general setting, we allow for the possibility that the agent does not per-
fectly observe his initial type, but instead learns about his forecasting ability over 
time.16 We model this by adding an additional signal: formally, in period  0  , the 
forecaster observes a single private signal  λ ∈ Λ  , where the set  Λ  is arbitrary. This 
signal  λ  is drawn from a (commonly known) measure   μ θ   ∈ Δ(Λ)  that may vary 
by type  θ . Thus, the case of a perfectly informed agent corresponds to  Λ = Θ  
and   μ θ   ( { θ} ) = 1  for all  θ ∈ Θ . On the other hand, the case where   μ θ   =  μ  θ ′       
for all  θ,  θ ′   ∈ Θ  , so the distribution of  λ  does not vary by type, corresponds to a 
“signal jamming” version of our model (similar to the career concerns literature fol-
lowing Holmström 1999) where both the principal and the agent start with the same 
information.

In each period,  t = 1, … , T  , the forecaster privately observes a noisy but infor-
mative signal   s t    , drawn from an arbitrary signal space   S t    , about the unknown state 
 ω . Signals are conditionally independent given the underlying state  ω  and the agent’s 
type  θ  , and   s t    is drawn from a distribution   α ω, θ, t   ∈ Δ( S t   ) . Note that both the signal 
spaces and distributions may vary over time.

Outcome.—As in the simplified model, a binary outcome  r ∈ {h, l}  is publicly 
realized at the end of period  T . We denote by   γ ω   ∈ [0, 1]  the probability of outcome  
h  arising when the true state is  ω . Note that the outcome remains a potentially noisy 
signal of the state, but the joint distribution is not restricted in any way.

Payoffs.—The agent of type  θ  now receives a payoff   u θ   > 0  from being hired, 
and a payoff of  0  if he is not. Note that this does not change the agent’s incentives 
compared to the simplified model in Section I as his objective is still to maximize 
the probability of being hired.

Finally, the principal’s payoff can also be made type-dependent: she receives a pay-
off   π θ    ∈ ℝ if she hires an agent of type  θ  , and a payoff of  0  from not hiring the agent.

Appropriate definitions of strategies and mechanisms generalize to this richer 
environment in the obvious way. The next result shows that prediction mechanisms 
remain optimal even in this very general environment. Note that the definition of a 
prediction mechanism as a function of reported signals will differ from that in (2) as 

16 In discussing the important directions for future research on strategic forecasters, Marinovic, Ottaviani, and 
Sørensen (2013, p. 717) state that a “key challenge lies in finding a tractable and sufficiently general multi-period 
environment with learning about the precision as well as about the state.” Our general model takes a step in this 
direction. 



3077DEB ET AL.: EVALUATING STRATEGIC FORECASTERSVOL. 108 NO. 10

the environment is no longer symmetric and the signal space is not binary. Instead, 
we make use of the alternative definition in (3).

THEOREM 7: In the general model, one of the following mechanisms is optimal:

 (i) A trivial mechanism: the principal’s hiring decision does not depend on the 
agent’s reports; or

 (ii) A period- t  prediction mechanism for appropriately chosen  t .

Additionally, the principal can implement the same outcome and thereby achieve the 
same payoff in a sequential equilibrium of the game without commitment.

As in the case of simplified model (Theorem 3), prediction mechanisms are 
optimal within the full class of direct revelation mechanisms. As we allow for 
more than two types, it is no longer possible to directly argue (as in Lemma 1) that 
the principal cannot benefit by asking the agent to report his type in a direct rev-
elation mechanism. Instead, our proof characterizes incentive-compatible direct 
mechanisms in this general setting. Effectively, we show that the only nontriv-
ial incentive-compatible direct mechanisms are prediction mechanisms and thus, 
finding the optimal mechanism only involves choosing the time at which to solicit 
the prediction. Of course, additional structure is necessary to fully characterize the 
optimal prediction period as a function of model parameters.

Essential to Theorem 7’s characterization of incentive compatibility is the 
assumption that the publicly observable outcome (that is, the information avail-
able to the principal when evaluating a forecast) is binary. Enriching the set of 
possible outcomes yields the principal a substantially more complex set of instru-
ments: agents could, for instance, be asked to make predictions about nested par-
titions of possible outcomes. This increased dimensionality of the set of possible 
mechanisms precludes a characterization of the principal’s optimal mechanism.

On the other hand, the result does not require us to take a stand on the relationship 
between the principal’s payoff and the information of the agent. For instance, we do 
not need to assume that “good” types (for which   π θ   > 0 ) receive better information 
than “bad” types (for which   π θ   < 0 ). Of course, some additional structure (like that 
we impose in our simplified model) is desirable to capture specific applications.

The critical assumptions of the general model in this section are supported 
by our leading application. The richness of the time-varying signal space cap-
tures the myriad different sources of information that are available to political 
pundits. Importantly, this application satisfies the key driving assumption of our 
model: political predictions are always about the eventual winner which is a 
binary outcome in the (effectively) two-party US political system. As we argued 
in  Section IIIC, our model is flexible enough to capture the variety of different 
forms that political predictions come in. It is worth noting that an election result 
taken as the difference in vote counts can be considered as a continuous out-
come variable; however, to the best of our knowledge, political forecasters always 
predict, and are judged on, election winners’ identities and not their margins  
of victory.
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VII. Discussion

In this section, we address a few important structural assumptions of the model. 
For ease of exposition, the discussion will employ the simplified setup of Section I.

A. The Role of Sequential Reporting

In the canonical dynamic mechanism design environment with transfers (see, for 
instance, Courty and Li 2000 or Pavan, Segal, and Toikka 2014), the fact that the 
agent receives his private information sequentially plays an important role for the 
tractability of the model. Because the agent has single dimensional private infor-
mation at the time of contracting, incentive compatibility is easier to characterize 
than in static, multidimensional mechanism design environments where the agent 
has acquired all his private information before contracting (Eső and Szentes 2017 
demonstrate the generality of this technique). An important underlying economic 
insight is that the principal benefits from being able to contract with an agent when 
her informational disadvantage is at its lowest as the agent has not acquired the 
entirety of his private information.

We now isolate the role played by sequential reporting in our model by drawing 
a contrast with the optimal stochastic mechanism in the static multidimensional 
version of our environment. In the static game, the agent’s strategy   σ   θ   is defined 
as follows: he first observes his  T  signals   s   T   and his strategy   σ   θ  ( s   T  ) ∈ Δ(  {h, l}   T  )  
determines the distribution over  T -vectors    s ̃     T  ∈  {h, l}   T   of signal reports. As before, 
the principal’s strategy  x(  s ̃     T , r ) ∈ [0, 1]  depends on the vector of reported signals 
and the outcome but observe that we also allow the principal to randomize. We refer 
to the principal’s strategy when she can commit as a static stochastic mechanism.

THEOREM 8: The optimal static stochastic mechanism yields the principal the 
same payoff as that from a period- T  prediction mechanism in the dynamic game 
with sequential reporting.17

The optimal static mechanism is equivalent to the period- T  prediction mecha-
nism in the dynamic environment. There are two aspects of Theorem 8 that are 
worth highlighting. The first is that, with long time horizons  T ≥  T ˆ    , the principal 
cannot prevent the agent from using the information he receives after period   T ˆ   . This 
is in contrast with Theorem 3 where the principal chooses to ignore reports after 
  T ˆ   . Recall also, that for the case of deterministic hiring policies, the principal does 
not even need commitment to maximize her payoff (Theorem 4). Thus, in our main 
setting of interest (deterministic mechanisms), the dynamics of agent learning plays 
a greater role than commitment.

Secondly, observe that it is not optimal for the principal to employ randomization 
in the static setting. This is in contrast with the optimality of randomization when 
the time horizon is long (Theorem 6). This latter aspect is also a feature of the 
sequential screening setting of Courty and Li (2000). There too, the principal may 

17 The proof of this result can be found in the online Appendix. 
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employ randomization with dynamic reporting but will not if restricted to using a 
static mechanism after the agent has acquired all his private information. This sim-
ilarity is captured by the Myersonian (1981) approach that we take in the proof of 
Theorem 8.

To summarize, simple mechanisms are optimal in our model unless the principal 
can randomize and the environment is dynamic. Put differently, both these aspects 
must be present simultaneously in order for the optimal mechanism to take a form 
more complex than a prediction mechanism.

B. Transfers

While our setting without transfers is appropriate for the applications we have 
in mind, it is natural to explore the theoretical implications of permitting them. We 
begin by discussing the optimal direct mechanism but, as we will argue below, it is 
also possible to implement this direct mechanism by with an indirect mechanisms 
that does not condition on the agent’s type. A direct mechanism with transfers con-
sists of two functions

   χ r   (θ,   s   T    ) ∈ {0, 1} and   τ r    (θ,   s   T    ) ∈ ℝ,

where  χ  is (as before) the hiring decision and  τ  is a transfer that also depends on the 
reported type, signals, and outcome. Both types receive (arbitrary) strictly positive 
utility from being hired and zero utility if they are not.

Since the signal distributions of both types are correlated, we can use the insight 
of Crémer and McLean (1988) to induce the agent to reveal his type with a zero 
expected transfer, thereby ensuring that the principal only hires the type- g  agent.18 
To see this, consider the mechanism

   χ r   (θ,  s   T  ) =  { 1 if θ = g   
0 if θ = b

   , and  τ r   (θ,  s   T  ) =  
⎧
 

⎪

 ⎨ 
⎪
 

⎩
 
κ  

_
 β   if θ = g and   s 1   = r

    κ β _  if θ = g and   s 1   ≠ r    
0   if θ = b

    ,

where   
_

 β  ,  β _ , κ > 0  and

  [  α g   γ + (1 −  α g   ) (1 − γ )  ] κ 
_

 β   − [  α g   (1 − γ )  + (1 −  α g   ) γ ] κ β _  = 0. 

In words, this mechanism hires the agent only if he reports type  g  , and the transfer 
depends on the reported period-1 signal. Moreover, this transfer is such that, if the 
agent reports type  g  , he receives  κ 

_
 β    if the first signal matches the outcome, makes 

a payment of  κ β _   to the principal if it does not, and has an expected payment from 
reporting truthfully (for a type- g  agent) of 0.

Now observe that reporting truthfully is optimal for type  g . He has no incentive 
to report his initial type as  b  , as he is hired with an expected transfer of zero if he 
is truthful. Moreover, he has no incentive to misreport his period-1 signal   s 1    as he 

18 Olszewski and Peski (2011) apply a general version of this insight to the “testing experts” problem discussed 
earlier. 
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receives a positive transfer when the report matches the outcome (and a negative 
transfer when it does not). Type  b  receives zero utility from truthful reporting. If, 
instead, the type- b  agent misreports his type, he will then find it optimal to report 
his period-1 signal   s 1    truthfully (for the same reason that type  g  does). However, 
type  b  will now have to make a strictly positive expected payment to the principal 
(as   α b   <  α g   ). Note that  κ  can always be chosen to be large enough so that this 
payment will be greater than the utility that type  b  gets from being hired. Thus, this 
mechanism achieves the best possible outcome for the principal.

Finally note that we can implement a similar outcome using the class of mech-
anisms that does not depend on the explicit announcement of the type (due to the 
presence of transfers, Lemma 1 does not apply here). The principal can always use 
the first signal report to proxy for the type announcement (for instance, interpreting   
s 1   = h  as an announcement that the agent is type  g  and vice versa). Having solic-
ited this information, the principal can choose her hiring rule and construct similar 
transfer lotteries as above using the signal reports   s t    from periods  t > 1  to ensure 
that only type  g  is hired at a zero expected transfer.

C. More than Two Outcomes

As we discussed in Section VI, the key assumption driving our results is that the 
eventual outcome being predicted is binary. Aside from our leading example of an 
election with two candidates, the binary outcome assumption is appropriate for a 
variety of other environments. For instance, binary forecasts are critical for defense 
and intelligence decisions made by governments (Does a given “rogue state” pos-
sess nuclear arms capabilities or not? Will protests and civil unrest in some country 
lead to regime change or not?), as well as for a broad range of economic decisions 
(Will a trade treaty be ratified or not? Will a proposed merger be approved by anti-
trust authorities or not?). That said, there is a broad range of important nonbinary 
events (election outcomes with more than two viable candidates, for instance, or 
continuous economic variables like the rate of GDP growth) for which professional 
forecasts are indispensable. In this section, we argue that prediction mechanisms are 
no longer generally optimal in such environments, and discuss some of the richness 
that arises from multiple outcomes.

In a sense, Theorem 5 (characterizing the optimal stochastic mechanism when  
T = 3 ) already demonstrates that prediction mechanisms are not generally optimal 
deterministic mechanisms in environments with rich outcome spaces. To see why, 
notice that a stochastic mechanism can be interpreted as a deterministic mecha-
nism with a public randomization device. For instance, consider an environment 
with the binary state and signal structure from Section I, but an enriched outcome 
space:  outcome  r = h  is replaced with a draw from the uniform distribution on  
(0, 1)  , while outcome  r = l  is replaced with a draw from the uniform distribution 
on  (−1, 0) . Since the signal structure is unchanged, the agent continues to learn 
only about the underlying state and, as a result, can only predict whether the final 
outcome is likely to be positive or negative. By conditioning on the specific realized 
value of the public outcome (and not just its sign), an optimal deterministic mech-
anism with this richer outcome space can perfectly replicate the optimal stochastic 
mechanism described in Theorem 5.
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It is worth highlighting that this argument does not require an outcome space 
as rich as that described above; indeed, adding only a single “noise” outcome can 
result in the suboptimality of prediction mechanisms, as the following example 
demonstrates. 

Example: Consider the basic binary state and signal structure from Section I, but 
with a public outcome  r ∈ {h, m, l}  whose distribution is given by

 Pr(r | ω) =   
⎧
 

⎪

 ⎨ 
⎪
 

⎩
 
ε
  

if r = m
   γ(1 − ε)  if r = ω   

(1 − γ)(1 − ε)
  

otherwise
   .

In words,  m  is a noise outcome that occurs with probability  ε > 0  , regardless of the 
underlying state; conditional on not observing outcome  m  , the outcome distribution 
is as in our baseline model, and the outcome matches the true state with probability  
γ ∈   [1/2 , 1]  . Although the agent’s signals provide no information about it, this 
additional outcome can be used to offer dynamic options to the agent that improve 
upon a simple prediction mechanism. For instance, consider the mechanism that 
offers the agent the option of making a prediction in period 2 or postponing until 
period 3: the agent is hired (with certainty) if the prediction is made in period 2 and 
is not contradicted by the eventual outcome (i.e., if the outcome matches the predic-
tion or if the noise outcome  m  is realized), or if the prediction is made in period 3 
and exactly matches the eventual outcome. Thus, an early prediction is rewarded by 
“lenience” in the set of acceptable outcomes after which the agent is hired, whereas 
a delayed prediction leaves the agent less leeway. Even for arbitrarily small  ε > 0  , 
such an option mechanism can strictly improve on a “pure” prediction mechanism 
in precisely the same manner that randomization raises the principal’s payoff in 
Theorem 5.

The discussion above focuses on environments where the noise in the final out-
come  r  is rich enough, relative to the underlying state space, to play an additional 
role as an explicit randomization device. Even when this is not the case and the out-
come perfectly reveals the state, however, screening with simple prediction mecha-
nisms may fail to be optimal if the outcome is not binary. 

Example: Consider an environment with three possible states  ω ∈ {h, m, l}  , each 
with equal probability, and a final outcome  r ∈ {h, m, l}  that perfectly reveals the 
state, so  Pr (r = ω) = 1 . The agent is one of two types  θ ∈ {g, b}  , and preferences 
are as in the basic model from Section I. In each period  t  , a conditionally indepen-
dent signal   s t   ∈ {h, m, l}  is drawn from the distribution

 Pr(  s t    | ω, θ)   =     
{

 
 α θ  

  
if  s t   = ω

   
  
1 −  α θ   _____ 2  

  
if  s t   ≠ ω

     ,

where   α g   = 0  and   α b   = 1/2 . Thus, type  g  observes “negative” signals that never 
correspond to the underlying state, so the agent knows with certainty that the 
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 outcome cannot be any signal he observes. In particular, after observing two dis-
tinct signals, the type- g  agent can predict the outcome correctly with probability 1. 
Meanwhile, the type- b  agent observes informative “positive” signals that are likely 
to match the true state. 

It is straightforward to compute that, when  T = 3  , the optimal prediction mecha-
nism in this setting asks the agent to make a prediction in the final period. However, 
the principal can improve on such a mechanism by using a two-stage mechanism: 
in period 1, the agent must rule out an outcome; in period 3, the agent then chooses 
one of the two remaining outcomes as his final prediction; and, finally, the agent is 
hired (deterministically) if this final prediction is correct. 

Observe that the type- g  agent is indifferent between this two-stage mechanism 
and the period-3 prediction mechanism, as his period-3 prediction is the same in 
both mechanisms (he never predicts   s 1    , which he rules out in the two-stage mecha-
nism). The type- b  agent, on the other hand, strictly prefers the period-3 prediction 
mechanism. After observing   s 1    , the type- b  agent eliminates an outcome  r′ ≠  s 1   ; 
however, there is a strictly positive probability that   s 2   =  s 3   = r′  and the outcome 
that is ex post most likely is no longer a permissible prediction in period 3. Thus, 
type  b ’s (constrained) prediction in the two-stage mechanism is more likely to be 
incorrect than his (unconstrained) prediction in the period-3 prediction mechanism. 
Therefore, this two-stage mechanism yields greater separation than the period-3 
prediction mechanism; in fact, it is possible to show that it is the optimal determin-
istic mechanism in this environment.

The two-stage mechanism in this example leverages an important aspect of 
nonbinary dynamic learning environments: when there are many states and many 
outcomes, the agent’s beliefs follow a multidimensional stochastic process, and so 
different types’ posteriors can take very different paths while converging toward 
correct beliefs. In the example above, although both types eventually learn the 
underlying state, the type- g  agent can quickly learn enough to eliminate an indi-
vidual outcome while the type- b  agent cannot. The optimal mechanism thus takes 
advantage of that early separation in the two type’s posteriors by accounting for the 
“direction” of learning.

With a binary outcome, on the other hand, beliefs are single-dimensional, and so 
learning cannot generate the same diversity of possible belief process paths. (There 
is no difference between “positive” and “negative” signals in a binary environment, 
for instance.) This permits the general optimality result in Theorem 7 for binary-out-
come environments.

VIII. Concluding Remarks

In this paper, we introduce the problem of evaluating a strategic forecaster based 
on the dynamics of the reports he makes about an upcoming event. In doing so, we 
bring two novel aspects to the study of evaluating forecasters that differ from the 
existing literature in economics and psychology: prediction dynamics and mecha-
nism design by the evaluator. In a very general setting, we derive the optimal deter-
ministic dynamic mechanism for the principal and show that it takes a very simple 
and easy-to-implement form. The simplicity of the optimal mechanism, combined 
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with the fact that commitment is not necessary to implement it, implies that it can 
serve as a simple guideline for hiring forecasters.

More generally, our main economic insight is that optimal screening relies on a 
combination of accuracy and the speed of learning. Unlike in the first-best bench-
mark (where the agent’s signals are publicly observed), strategic reporting by the 
agent prevents the principal from screening more finely by conditioning her decision 
on other features of the agent’s information (such as the consistency of signals in the 
simplified model we analyze). This intuition can be captured with a simple analo-
gy.19 Suppose a teacher is trying to determine the ability (high or low) of a student 
by using a test consisting of a single difficult true-false question, and is free to deter-
mine the duration of the exam. If the teacher allows insufficient time, the student 
will essentially be forced to guess randomly, while if she allows too much time, both 
types will be able to answer correctly. Hence, to maximally distinguish between 
the two types, the optimal duration must be an intermediate time. In principle, the 
teacher might have solicited the student’s level of confidence in his answer for her 
evaluation; indeed, this would be first-best. But this is not incentive compatible, as 
a strategic student would always report the level of confidence that maximizes his 
chances of passing.

We conclude by noting two natural avenues of inquiry that merit further inves-
tigation. As we discussed in Section VIIC, the first is to examine different envi-
ronments with richer (nonbinary) outcome spaces. A second natural generalization 
considers optimal contest design for multiple forecasters. We hope to investigate 
these questions in future research.

Appendix

PROOF OF THEOREM 1:
In the first-best, the principal observes the agent’s signals   s   T   , but not the agent’s 

type. Therefore, the first-best optimal mechanism must solve

    max  
 x h  ( · ),  x l  ( · )

   
{

  ∑ 
r∈{h, l}

      ∑ 
 s   T ∈ {h, l}   T 

    [  
1 _ 
2
   Pr(r,  s   T  | θ = g)  −   1 _ 

2
   Pr(r,  s   T  | θ = b)]   x r  ( s   

T  )
}

 . 

Note, however, that  Pr (r,  s   T  | θ)  is constant across all   s   T   with the same number of 
matching signals   s t   = r  , regardless of the order of those signals. Therefore, with 
slight abuse of notation, we can write any solution   x r   ( s   T  )  to the principal’s problem 
as  x(n)  , where  n =  ∑ t        1 r   (  s t   ) .

Therefore, with slight abuse of the notation from the main text, we write

  β n, θ, γ   ≔ γ  α  θ  n   (1 −  α θ  )   T−n  + (1 − γ)  α  θ  T−n   (1 −  α θ  )   n   and  Δ n, γ   ≔  β n, g, γ   −  β n, b, γ   

19 We are grateful to a referee for suggesting this metaphor. 
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for all  n ∈ [0, T ] . (Recall that   ( T  n  )   β n, θ, γ    is the probability that exactly  n  of the agent’s  
T  signals with precision   α θ    match the precision- γ  realized outcome.) We can then 
write the principal’s observable-signal problem as

   max  
x( · )

    {  1 _ 
2
     ∑ 
n=0

  
T

    ( T  n  )   Δ n, γ   x(n)} . 

It is trivial to see that the solution of this linear program depends entirely on the 
signs of the   Δ n, γ    coefficients: we have   x   FB  (n) = 1  if   Δ n, γ   > 0  , and   x   FB  (n) = 0  if   
Δ n, γ   < 0 .

CLAIM:  Suppose   Δ n, γ   ≥ 0 . Then     ∂   2  ___ 
∂  n   2 

    Δ n, γ   > 0 . 

PROOF OF CLAIM:
Note first that

     ∂ _____ ∂ n    Δ n, γ   =   [ln (  α ______ 
1 − α  )  (γ  α   n (1 − α )   T−n  − (1 − γ) α   T−n (1 − α )   n ) ]   

 α b  
  

 α g  

  ,

implying that

     ∂   2  ___ 
∂  n   2 

    Δ n, γ   =   [ ln   2  (  α ______ 
1 − α  )  (γ  α   n (1 − α )   T−n  + (1 − γ) α   T−n (1 − α )   n ) ]   

 α b  
  

 α g  

  

  =   [ ln   2  (  α ______ 
1 − α  ) ]   

 α b  
  

 α g  

   (γ  α  g  
n (1 −  α g   )   T−n  + (1 − γ) α  g  T−n (1 −  α g   )   n )  

  +  ln   2  (  
 α b   ______ 

1 −  α b  
  )   [γ  α   n (1 − α )   T−n  + (1 − γ) α   T−n (1 − α )   n ]    α b    

 α g  
  

  =   [ ln   2  (  α ______ 
1 − α  ) ]   

 α b  
  

 α g  

   β n,g,γ   +  ln   2    (  
 α b   ______ 

1 −  α b  
  )     Δ n, γ    .

Since  ln (  α ____ 1 − α  )   is strictly positive and increasing on   ( 1/2 , 1)   and   β n, g, γ   > 0  , the 
assumption that   Δ n, γ   ≥ 0  implies that the expression above is strictly positive. ∎

Thus,   Δ n, γ    is strictly convex on a neighborhood of any  m ∈ [0, T ]  at which   
Δ m, γ   ≥ 0 . Therefore, if there exists some   n _  ∈ [0, T ]  with   Δ  n _ , γ   = 0  and 
   ∂ __ ∂ n    Δ  n _ , γ   ≤ 0  , then    ∂ __ ∂ n    Δ m, γ   < 0  for all  m <  n _  . This implies that   Δ m, γ   > 0  for 
all  m ∈ [0,  n _ ) . Similarly, if there exists some    _ n   ∈ [0, T ]  such that   Δ   _ n  , γ   = 0  and 
   ∂ __ ∂ n    Δ   _ n  , γ   ≥ 0  , then    ∂ __ ∂ n    Δ m, γ   > 0  for all  m >   _ n   . This implies that   Δ m, γ   > 0  for 
all  m ∈ (  _ n  , T ] .

Hence, we may conclude that the function   Δ n, γ    has at most two zeros in  [0, T   ] .

CLAIM : There exists a unique    _ n   ∈   (  T _ 2  , T)   such that   Δ   _ n  , γ   = 0 . 
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PROOF OF CLAIM:
Note first that   Δ T, 1   =  α  g  T  −  α  b  T  > 0  since   α g   >  α b   . In addition, note that   

Δ T,   1 _ 2     =   1 _ 2     [ α   T  +  (1 − α)   T ]    α b    
 α g  

  . However, 

    ∂ ___ ∂α     [ α   T  + (1 − α )   T ]     =   T  [ α   T−1  − (1 − α )   T−1 ]   > 0 for all α >    1 __ 
2
   .

Therefore,   Δ T,   1 _ 2     > 0 . But since   Δ T, γ    is linear in  γ  , this implies that   Δ T, γ   > 0  
for all  γ ∈   [1/2 , 1]  . 

Next, consider

   Δ   T __ 2  , γ      =      [γ  α     
T __ 2   (1 − α )   T−  T __ 2    + (1 − γ) α   T−  T __ 2   (1 − α )     

T __ 2   ]    α b    
 α g  

     =      [(α(1 − α) )     
T __ 2   ]    α b    

 α g  

  .

Since  α(1 − α)  is strictly decreasing on    (1/2 , 1)   , we have   Δ   T _ 2  , γ   < 0  for all 
 γ ∈  [ 1/2, 1]  . 

Finally, because   Δ n, γ    is continuous in  n  , there must exist some    _ n   ∈   (T/2 , T)   
such that   Δ   _ n  , γ   = 0 . Moreover, the convexity argument above implies that this    _ n    is 
the unique zero in   ( T/2 , T)  . ∎

The existence of a second zero is not guaranteed; in particular, there exists some  
n ∈  [0, T/2)   with   Δ   n _  , γ   = 0  if and only if   Δ 0, γ   ≥ 0 . (Note that   n _  = 0  in the 
boundary case where   Δ 0, γ   = 0 .) Again, the convexity argument above implies that 
this is the unique zero below  T/2 .

CLAIM:  Suppose there exists some   n _  <   T _ 2    with   Δ  n _ , γ   = 0 . Then   n _  < T −   _ n   . 

PROOF OF CLAIM:
We can write

   Δ  n _ ,γ      =   γ  Δ  n _ ,1    + (1 − γ)  Δ T− n _ ,1   , where   Δ  n _ ,1    =    [( α    n _  (1 − α) )   T− n _  ]    α b    
 α g  

  .

Note, however, that

     ∂ ___ ∂α     [ α    n _   (1 − α)   T− n _  ]   =      n _ α    n _ −1    (1 − α)   T− n _    − (T −   n _  )  α    n _     (1 − α)   T− n _ −1   

 =   (  n _   − αT )  α    n _ −1    (1 − α)   T−  n _  −1  .

Since   n _  < T/2  , this expression is strictly negative whenever  α ∈   (1/2 , 1)  ; since 
 1 >  α g   >  α b   > 1/2  , this implies that   Δ   n _  , 1   < 0 .

Thus,   Δ T− n _ , 1   > 0  since   Δ  n _ , γ   = γ  Δ  n _ , 1   + (1 − γ)  Δ T− n _ , 1   = 0 . But since 
 γ ∈  [1/2 , 1]   , this implies that   Δ T− n _ , γ   = γ  Δ T− n _ , 1   + (1 − γ)  Δ  n _ , 1   > 0  , which is 
only possible if  T −  n _  >   _ n   . ∎
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Thus, there exist    _ n   ∈  (T/2 , T)   and   n _  < T −   _ n    (where   n _  < 0  if   Δ 0, γ   < 0 ) 
such that, for all  n ∈ [0, T]  ,

   Δ n, γ    
{

 
> 0 if n >   _ n   or n <  n _ 

    = 0 if n =   _ n   or n =  n _     
< 0 if   _ n   > n >  n _ 

     .

The first-best policy   x   FB   described in the theorem follows immediately. ∎

PROOF OF THEOREM 2:
When the principal uses a period- t  prediction mechanism, her payoff is simply 

the difference in prediction-matching probabilities between the type- g  and type- b  
agents. To that end, recall the following notation:

  β m, n, θ   ≔ γ  α  θ  m   (1 −  α θ   )   n−m  + (1 − γ)  α  θ  n−m   (1 −  α θ   )   m   and  Δ m, n   ≔  β m, n, g   −  β m, n, b   . 

Note that   (  n  m )   β m, n, θ    is the probability that exactly  m  out of  n  signals with precision   
α θ    match the public precision- γ  outcome. Thus, for any  k ≥ 0  , we can write the 
principal’s payoff from using a period- 2k  or - (2k + 1)  prediction mechanism as

 Π(2k) ≔   1 _ 
2
   ( 2k  

k
  )   Δ k, 2k   +   ∑ 

j=k+1
  

2k

    ( 2k  j  )   Δ j, 2k   and Π(2k + 1) ≔   ∑ 
j=k+1

  
2k+1

    ( 2k + 1  
j
  )   Δ j, 2k+1   , 

respectively. Finally, define  δ(n) ≔ Π(n) − Π(n − 1) . Note that since  Π(0) = 0  
and  Π(1) > 0  , we know that  δ(1) > 0 .

CLAIM:  For any  k ≥ 1  , both the principal and agent (of either type) are indifferent 
between the  (2k − 1) -period and  2k -period prediction mechanisms. 

PROOF OF CLAIM: 
In the  (2k − 1) -period prediction mechanism, a type- θ  agent is hired if  k  or more 

signals match the outcome. Partitioning that event into the case where exactly  k  
signals match and the case where at least  k + 1  signals match, we can write the 
probability of hiring a type- θ  agent in the  (2k − 1) -period prediction mechanism as

   (  
2k − 1

              
k
  )    β k,2k−1,θ    +    ∑ 

j=k+1
  

2k−1

      (  
2k − 1

              
j
  )    β j,2k−1,θ  . 

In the  2k -period prediction mechanism, on the other hand, a type- θ  agent is hired 
with probability  1/2  if exactly  k  signals match the principal’s, and with certainty if  
k + 1  or more signals match. Focusing on the first  2k − 1  periods, this implies that 
three events may lead to the agent being hired: 

•  at least  k + 1  of the first  2k − 1  signals match the public outcome, in which 
case the agent is hired regardless of the realization of the  2k  th signal; 
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•  exactly  k  of the first  2k − 1  signals match, in which case the agent is hired with 
probability  1  if the  2k th signal matches, and with probability  1/2  if it does not; 
and 

•  exactly  k − 1  of the first  2k − 1  signals match, in which case the agent is hired 
with probability  1/2  if the  2k th signal matches, and is not hired otherwise.

Therefore, the probability of hiring a type- θ  agent in the  2k -period prediction 
 mechanism is

     ∑ 
j=k+1

  
2k−1

      (  
2k − 1

              
j
  )    β j,2k−1,θ    +   (  

2k − 1
              

k
  )    (  1 __ 

2
   β k,2k,θ   +  β k+1,2k,θ  )  +  (  

2k − 1
              

k − 1
  )   (  1 __ 

2
   β k,2k,θ  )  

   =     ∑ 
j=k+1

  
2k−1

      (  
2k − 1

              
j
  )    β j,2k−1,θ    +   (  

2k − 1
              

k
  )    ( β k,2k,θ   +  β k+1,2k,θ  )  

   =     ∑ 
j=k+1

  
2k−1

      (  
2k − 1

              
j
  )    β j,2k−1,θ    +   (  

2k − 1
              

k
  )    β k,2k−1,θ    ,

where the first equality follows from the fact that   ( 2k − 1  
k
  )  =  ( 2k − 1  

k − 1  )   , and the sec-

ond from the observation that   β k, 2k, θ   +  β k+1, 2k, θ   =  β k, 2k−1, θ   . 

Thus, a type- θ  agent is hired with exactly the same probability in the  2k - and  
(2k − 1) -period prediction mechanisms, and so is indifferent between the two; this 
also implies that  δ(2k) = 0 . ∎

CLAIM:  For any  k > 0  ,  δ(2k + 1) =  ( 2k  
k
  )   [ α   k   (1 − α)   k  (γα + (1 − γ)(1 − α) −   1 _ 2  ) ]    α b  

  
 α g  

  . 

PROOF OF CLAIM:
In the  (2k + 1) -period prediction mechanism, a type- θ  agent is hired if  k + 1  or 

more signals match the public outcome. Focusing on the first  2k  periods, this implies 
that two events may lead to the agent being hired: 

•  at least  k + 1  of the first  2k  signals match the outcome, in which case the agent 
is hired regardless of the realization of the  (2k + 1) th signal; or 

•  exactly  k  of the first  2k  signals match, in which case the agent is hired with 
probability  1  if the  (2k + 1) th signal matches, and is not hired otherwise.

Therefore, the probability of hiring a type- θ  agent in the  (2k + 1) -period prediction 
mechanism is

     ∑ 
j=k+1

  
2k

      (  
2k

              
j
  )    β j,2k,θ    +   (  

2k
              

k
  )   β k+1,2k+1,θ  .
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In the  2k -period prediction mechanism, an agent is hired with probability  1/2  if 
exactly  k  signals match the outcome, and with certainty if at least  k + 1  match, so 
the  probability of hiring type  θ  is

    1 __ 
2
     (  

2k
              

k
  )    β k,2k,θ    +    ∑ 

j=k+1
  

2k

       (  
2k

              
j
  )    β j,2k,θ  .

 Thus, the difference between these two probabilities is

  (  
2k

       
k
  )    β k+1,2k+1,θ    −     1 __ 

2
     (  

2k
       

k
  )    β k,2k,θ    =   (  2k

       
k
  )    α  θ  

k
   (  1 −  α θ  )   k    (γ α θ    + (1 − γ)(1 −  α θ  ) −   1 __ 

2
  )  .

Since the principal’s payoff is the difference between the type- g  and type- b  agents’ 
payoffs, this yields the desired result. ∎

The result above therefore implies that  δ(2k + 1)  is proportional to

   z(k) ≔   [ α   k   (1 − α)   k   (γα + (1 − γ ) (1 − α )  −   1 _ 
2
  )  ]    α b  

  
 α g  

  

 =   [  
1 _ 
2
    α   k   (1 − α)   k  (2γ − 1) (2α − 1) ]    α b  

  
 α g  

  . 

There is a unique   k   ∗   such that  z( k   ∗ ) = 0 ; expanding the expression above and 
 taking logs yields

   k   ∗  = ln (  2 α b   − 1
 _ 

2 α g   − 1  ) /ln (  
 α g   (1 −  α g   )

 _   α b   (1 −  α b   )
  ) . 

Furthermore, note that

   z ′  (k )  =   [  
1 _ 
2
    α   k   (1 − α)   k  ln (α(1 − α))(2γ − 1) (2α − 1) ]    α b  

  
 α g  

  . 

Since   α g   >  α b   > 1/2  , we must have   α g   (1 −  α g   ) <  α b   (1 −  α b   )  , implying that 
  z ′  (k) < 0 . By continuity and the fact that  z( ⋅ )  has a unique root, we must have  
z(k) > 0  for all  k <  k   ∗   and  z(k) < 0  for all  k >  k   ∗  . Of course, this implies that  
δ(2k + 1) > 0  for all  k <  k   ∗   and  δ(2k + 1) < 0  for all  k >  k   ∗  . ∎

PROOF OF LEMMA 1:
Fix any incentive-compatible direct mechanism  {  χ h   (θ,  s   T  ),  χ l   (θ,  s   T  ) }  with pay-

off  Π  , and define the alternative mechanism  {  x h   ( s   T  ),  x l   ( s   T  ) }  by

   x r   ( s   T  ) ≔  χ r   (g,  s   T  ) for all r ∈ {h, l} and all  s   T  ∈  {h, l }   T . 

Denote by  μ(  s ̃     T  |  s   T , σ)  the probability that an agent who observes signals   s   T   and 
follows strategy  σ ∈ Σ  reports the sequence    s ̃     T   , where  Σ  is the set of all dynamic 
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reporting strategies adapted to the signal process (as defined in Section IB). The 
principal’s payoff from  {  x h   ( ⋅ ),  x l   ( ⋅ ) }  is then

   Π ′   =   1 _ 
2
     sup  
 σ   g ∈Σ

   
{

  ∑ 
(r,  s   T )

    Pr(r,  s   T  | g)  ∑ 
  s ̃     T 
     μ(   s ̃     T  |  s   T  ,  σ   g  )  χ r   (g,   s ̃     T  )

}
 

    −    1 _ 
2
     sup  
 σ   b ∈Σ

   
{

  ∑ 
(r,  s   T )

    Pr(r,  s   T  | b)  ∑ 
  s ̃     T 
     μ(  s ̃     T  |  s   T ,  σ   b  )  χ r   (g,   s ̃     T  )

}
 . 

Note, however, that incentive compatibility of the original mechanism implies that 
the type- g  agent finds truthful reporting of signals to be optimal, implying that

  Π ′   =   1 _ 
2
     ∑ 
(r,  s   T )

    Pr(r,  s   T  | g)  χ r   (g,  s   T  ) −   1 _ 
2
     sup  
 σ   b ∈Σ

   
{

  ∑ 
(r,  s   T )

    Pr(r,  s   T  | b)  ∑ 
  s ̃     T 
     μ(  s ̃     T  |  s   T  ,  σ   b  )  χ r   (g,   s ̃     T  )

}
 . 

In addition, incentive compatibility of the original mechanism implies that forc-
ing the type- b  agent to misreport his initial type and then reoptimize reduces his 
expected utility; this implies that

  Π ′   ≥   1 _ 
2
     ∑ 
(r,  s   T )

    Pr(r,  s   T  | g)  χ r   (g,  s   T  ) −   1 _ 
2
     ∑ 
(r,  s   T )

    Pr(r,  s   T  | b)  χ r   (b,  s   T  )  ≕  Π. 

Thus, since the principal’s objective is decreasing in the utility of the type- b  
agent, the new mechanism  {  x h   ( · ),  x l   ( · ) }  improves the principal’s payoff. As 
 {  χ h   (θ,  · ),  χ l   (θ,  · ) }  was an arbitrary incentive-compatible mechanism, it is without 
loss to restrict attention to mechanisms that solicit only the agent’s signals and in 
which the type- g  agent is incentivized to report truthfully. ∎

PROOF OF LEMMA 2:
Trivial contracts are trivially incentive compatible: if the hiring decision does not 

depend on the agent’s reports, then there is no incentive for the agent (of either type) 
to misreport any of his signals.

So fix any nontrivial deterministic and incentive-compatible contract 
  x h   ,   x l    :   {h, l }   T   → {0, 1}. Incentive compatibility and nontriviality of this con-
tract imply that there is no sequence of signals   s   T  ∈  {h, l }   T   such that   x h   ( s   T  )  
=  x l   (  s   T  ) = 1 ; if there were such a sequence, then the agent would always have 
an incentive to report it and guarantee his hiring (unless the contract were an 
“always hire” trivial contract). Similarly, there is no sequence   s   T  ∈  {h, l}   T   such that 
  x h   ( s   T  ) =  x l   ( s   T  ) = 0 ; if there were such a sequence, then agent would never be will-
ing to report it truthfully (unless the contract were a “never hire” trivial contract).

Note that, by backward induction, there must be some latest period   T    ′   ≤ T  and 
history of reports    s ˆ      T   ′  −1  ∈  {h, l}    T    ′  −1   such that the agent’s period-  T    ′    report is pivotal; 
that is,

  ( x h   (  s ˆ      T   ′  −1 , h,  · ),  x l   (  s ˆ      T    ′  −1  , h, · )) ≠ ( x h   (  s ˆ      T    ′  −1 , l,  · ),  x l   (  s ˆ      T    ′  −1 , l,  · )). 
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To see this, start in the period  T . If there is no such    s ˆ     T−1   , then the final-period report 
never affects the principal’s hiring decision, which must then depend only on the 
reports from the first  T − 1  periods. Proceeding in this manner yields   T   ′    and an    s ˆ      T   ′  −1  . 
(Note that   T   ′   ≥ 1  since otherwise the contract does not depend on the agent’s report, 
contradicting the assumption that it is nontrivial.) Since periods   T   ′   + 1  through  T  do 
not affect the hiring decision, we can without loss overload notation and describe the 
contract as two functions   x h   ,   x l    :   {h, l }   T  ′   → {0, 1}.

As argued above, nontriviality and incentive compatibility imply that

  ( x h   (  s ˆ      T    ′  −1 , h),  x l   (  s ˆ      T    ′  −1 , h)), ( x h   (  s ˆ      T   ′  −1 , l ),  x l   (  s ˆ      T   ′  −1 , l )) ∈ {(1, 0), (0, 1)}. 

Since, by construction, we know that  ( x h   (   s ˆ      T    ′  −1 , h),  x l   (  s ˆ      T    ′  −1 , h)) ≠ ( x h   (  s ˆ      T    ′  −1 , l ),  
x l   (  s ˆ      T    ′  −1 , l ))  , it must then be the case that

 ( x h   (  s ˆ      T    ′  −1 , h),  x l   (  s ˆ      T    ′  −1 , h)) = (1, 0) and ( x h   (  s ˆ      T    ′  −1 , l ),  x l   (  s ˆ      T    ′  −1 , l )) = (0, 1). 

This follows from incentive compatibility, and the fact that the agent’s posterior 
beliefs are such that  Pr (r = h |   s ˆ      T    ′  −1 , h) > Pr (r = h |   s ˆ      T    ′  −1 , l) . Further, these beliefs 
must be such that

  Pr(r = h |   s ˆ      T    ′  −1 , h) ≥   1 _ 
2
   and Pr(r = h |   s ˆ      T    ′  −1 , l ) ≤   1 _ 

2
   , 

as otherwise the pivotality of the period-  T    ′    report following history    s ˆ      T    ′  −1   would lead 
to a violation of incentive compatibility.

Now consider any other history    s ̃      T   ′    ∈  {h, l}    T   ′    . Nontriviality and incentive com-
patibility again imply that  ( x h   (  s ̃      T   ′    ),  x l   (  s ̃      T    ′    )) ∈ {(1, 0), (0, 1)} . We claim that we 
must have  ( x h   (  s ̃      T    ′    ),  x l   (  s ̃      T    ′    )) = (1, 0)  whenever  Pr (r = h |   s ̃      T    ′    ) > 1/2  and  ( x h   (  s ̃      T    ′    ),  
x l   (  s ̃      T    ′    )) = (0, 1)  whenever  Pr (r = h |   s ̃      T    ′    ) < 1/2 . To see why this must be true, sup-
pose the contrary and note that this must yield a violation of incentive compatibility. 
In particular, consider the alternative agent strategy of always reporting    s ˆ      T    ′  −1   in the 
first   T    ′   − 1  periods regardless of his true signals, and then choosing a period-  T    ′    
report that matches his posterior belief; that is, he reports  h  if  Pr (r = h |   s ̃      T    ′    ) > 1/2  ,  
l  if  Pr (r = h |   s ̃      T    ′    ) < 1/2  , and chooses arbitrarily if  Pr (r = h |   s ̃      T   ′    ) = 1/2 . Such a 
strategy increases the agent’s payoff over truthful reporting as it guarantees that 
the agent is hired precisely at the outcome he thinks more likely (whereas truthful 
reporting may lead to being hired only in the less likely outcome).

Finally, note that  Pr (r = h |   s ̃      T    ′    ) > 1/2  if and only if   ∑ τ≤ T    ′          1 h   ( s τ  ) >  T    ′  /2 . Thus, 
the (arbitrarily-chosen) nontrivial deterministic and incentive-compatible contract 
  x h  ,  x l    is equivalent to a period-  T    ′    prediction mechanism. Therefore, any determinis-
tic nontrivial and incentive-compatible contract is a period- t  prediction mechanism 
for some  1 ≤ t ≤ T . ∎

PROOF OF THEOREM 3:
Recall that Lemma 1 establishes that it is without loss to consider only mech-

anisms that induce the type- g  agent to report her signals truthfully (and allowing 
the type- b  agent to optimally misreport). Therefore, greatly simplifies the class of 
mechanisms over which the principal must optimize. In particular, the principal must 
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either abandon screening entirely (that is, employ a trivial mechanism, which yields 
a payoff of zero) or employ a period- t  prediction mechanism for some  1 ≤ t ≤ T .

Of course, Theorem 2 showed that the principal’s payoff, within this class of 
mechanisms, is increasing in  t  until reaching a maximum at some   T ˆ   . Therefore, 
the optimal deterministic mechanism is a period-  T    ∗   prediction mechanism, where   
T    ∗  ≔ min  { T,  T ˆ   } . ∎

PROOF OF THEOREM 4:
The result follows immediately from the argument in the main text. ∎

PROOF OF LEMMA 3:
Recall from the proof of Theorem 1 that we can write the principal’s problem 

when the agent’s signals are observable as

   max  
x( ⋅ )

    {  1 _ 
2
     ∑ 
k=0

  
T

    ( T  
k
  )   Δ k, T   x(k)} , 

where  x(k)  denote the principal’s hiring decision when she observes  k  signals that 
match the public outcome, and where

   Δ k, T    ≔   [γ  α   k   (1 − α)   T−k  + (1 − γ)  α   T−k   (1 − α)   k ]    α b    
 α g  

  . 

The solution to this linear program depends entirely on the signs of   Δ k, T   . We now 
focus on signing these terms when  T = 3 :

•    Δ 0, 3    | γ=1   =   [ (1 − α)   3 ]    α b    
 α g  

  < 0  and   Δ 0, 3    | γ=  1 _ 2     =   [  
1 _ 2   ( α   3  +  (1 − α)   3  )]    α b  

  
 α g  

  > 0 ;

•    Δ 1, 3    | γ=1   =   [α  (1 − α)   2 ]    α b    
 α g  

  < 0  and   Δ 1, 3    | γ=  1 _ 2     =   [  
1 _ 2   α(1 − α)]    α b  

  
 α g  

  < 0 ;

•    Δ 2, 3    | γ=1   =   [ α   2  (1 − α)]    α b    
 α g  

   is ambiguously signed (it may be positive or nega-

tive), while   Δ 2, 3    | γ=  1 _ 2     =   [  
1 _ 2   α(1 − α)]    α b  

  
 α g  

  < 0 ; and

•    Δ 3, 3    | γ=1   =   [ α   3 ]    α b    
 α g  

  > 0  and   Δ 3, 3    | γ=  1 _ 2     =   [  
1 _ 2   ( α   3  +  (1 − α)   3  )]    α b  

  
 α g  

  > 0 .

Since   Δ k, T    is linear in  γ  , we can unambiguously sign   Δ 1, 3   < 0  and   Δ 3, 3   > 0 ; 
 therefore, we must have   x   FB  (3) = 1  and   x   FB  (1) = 0 ; the principal always hires the 
agent when all three of his signals match the realized outcome, and never hires the 
agent when only one of his signals matches the realized outcome.

By the same logic, it is not possible to unambiguously sign   Δ 0, 3    and   Δ 2, 3   ; how-
ever, we can characterize the solution   x   FB   for the various feasible sign combinations:

•  If   Δ 0, 3   < 0  and   Δ 2, 3   < 0  , then the solution must be such that   x   FB  (0) 
=  x   FB  (1) =  x   FB  (2) = 0  and   x   FB  (3) = 1 ; that is, the principal hires the agent 
if and only if all three of her signals are accurate (so    _ n   = 3  and   n _  = − 1 ).
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•  If   Δ 0, 3   ≥ 0  and   Δ 2, 3   < 0  , then the solution must be such that   x   FB  (0) 
=  x   FB  (3) = 1  and   x   FB  (1) =  x   FB  (2) = 0 ; that is, the principal hires the agent 
if and only if all three of her signals are consistent (so    _ n   = 3  and   n _  = 0 ).

•  If   Δ 0, 3   < 0  and   Δ 2, 3   ≥ 0  , then the solution must be such that   x   FB  (0) 
=  x   FB  (1) = 0  and   x   FB  (2) =  x   FB  (3) = 1 ; that is, the principal hires the agent 
if and only if a majority (at least two out of three) of her signals are accurate 
(so    _ n   = 2  and   n _  = − 1 ).

Note that the fourth possible sign combination (both   Δ 0, 3   ≥ 0  and   Δ 2, 3   ≥ 0 ) is 
not feasible. To see why, suppose that   α g    and   α b    are such that   Δ 2, 3    | γ=1   ≥ 0  (oth-
erwise,   Δ 2, 3   < 0  for all  γ  and we are done). Thus, as  γ  goes from  1/2  to  1  ,   Δ 0, 3    
crosses from positive to negative while   Δ 2, 3    goes from negative to positive. Let   γ   ∗   
be such that   Δ 0, 3    | γ= γ   ∗    = 0 ; that is,

   γ   ∗  =   
  [ α   3 ]    α b    

 α g  
 
  _______________  

  [( α   3  −  (1 − α)   3  )]    α b    
 α g  

 
   . 

Then

  Δ 2, 3    | γ= γ   ∗     =  γ   ∗    [ α   2  (1 − α)]    α b    
 α g  

  + (1 −  γ   ∗  )  [α  (1 − α)   2 ]    α b    
 α g  

 

 = −   
( α g   −  α b  )( α g   +  α b   − 1)[ (2 α g   − 1)   2  +  (2 α b   − 1)   2  + (2 α g   − 1)(2 α b   − 1)]

      ___________________________________________     
 ( α g   +  α b   − 1)   2  +  (1 −  α g   )   2  +  (1 −  α b   )   2  +  α g   +  α b  

   < 0, 

where the inequality follows from the fact that  1 >  α g   >  α b   > 1/2 . Therefore, 
whenever   Δ 0, 3   ≥ 0  (that is, whenever  γ ≤  γ   ∗  ), we must have   Δ 2, 3   < 0 .

Thus, the first-best mechanism when  T = 3  takes on one of the three desired 
forms. ∎

PROOF OF THEOREM 5:
We begin by recalling that Lemma 1 shows that it is without loss of generality for 

the principal to offer a contract of the form   x r    :   {h, l }   T   → [0, 1], r ∈ {h, l }, such that 
the type- g  agent is incentivized to report her signals truthfully while the type- b  agent 
is free to misreport optimally. Therefore, letting  Σ  denote the set of all dynamic 
reporting strategies that are adapted to the signal process and  μ(  s ̃     T  |  s   T , σ)  the prob-
ability that an agent who observes signals   s   T   and follows strategy  σ ∈ Σ  reports the 
sequence    s ̃     T   , we can write the principal’s problem as

()   max   x h  ,  x l  
     
{

  1 _ 
2
     ∑ 
(r,  s   T )

    Pr(r,  s   T  | θ = g)  x r  ( s   T  ) −   1 _ 
2
     sup  
 σ   b ∈Σ

   
{

  ∑ 
(r,  s   T )

    Pr(r,  s   T  |  θ = b)  ∑ 
  s ̃     T 
     μ(  s ̃     T  |  s   T ,  σ   b  )  x r   (   s ̃     T  )

}
 
}

 

subject to   ∑ 
(r,  s   T )

    Pr(r,  s   T  | θ = g)  x r  ( s   T  ) ≥   ∑ 
(r,  s   T )

    Pr(r,  s   T  | θ = g)  ∑ 
  s ̃     T 
     μ(  s ̃     T  |  s   T ,  σ ′  )  x r  (  s ̃     T  ) for all  σ ′   ∈ Σ. 

Note that the constraint is simply the type- g  agent’s incentive-compatibility condi-
tion, whereas the type- b  agent’s optimal reporting strategy has been incorporated 
into the objective function.
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We will proceed to the solution of problem () as follows:

•  We define a relaxed problem with a restricted set of strategies available to the 
type- b  agent.

•  We will then argue that the solution to this relaxed problem features truthful 
reporting at certain histories by the type- b  agent.

•  We then incorporate the corresponding incentive-compatibility constraints into 
a further relaxation of the problem, which we then solve.

•  Finally, we demonstrate that our proposed solution is indeed feasible in the 
original problem, in the sense that the strategy we impose on the type- b  agent’s 
behavior in the relaxed problem is optimal given the identified solution.

We begin by restricting the set of possible misreports of the type- b  agent. Denote 
by   Σ ˆ   ⊂ Σ  the set of strategies where, for all   s   3  ∈  {h, l}   3   and any   s  2  ′   ,  s  3  ′   ∈ {h, l}  ,

   μ(  s ̃     3  |  s   3 , σ) > 0 if and only if  

⎧
 

⎪
 ⎨ 

⎪
 

⎩
 

  s ̃     T  = ( s 1  ,  s 2  ,  s 3  ) and  s 1   =  s 2   =  s 3  ,  
       s ̃     T  = ( s 1  ,  s 2  ,  s  3  ′  ) and  s 1   =  s 2   ≠  s 3  ,  or      

  s ̃     T  = ( s 1  ,  s  2  ′  ,  s 3  ) and  s 1   ≠  s 2  . 
    

Thus, any strategy  σ ∈  Σ ˆ    reports truthfully at all histories except possibly those 
where the agent first observes a contradictory signal. With this in hand, define the 
relaxed problem

()   max   x h  ,  x l  
     
{

  1 _ 2     ∑ 
(r,  s   T )

    Pr(r,  s   T  | θ = g)  x r   ( s   T  )  −   1 _ 2     sup  
 σ   b ∈ Σ ˆ  

   
{

  ∑ 
(r,  s   T )

    Pr(r,  s   T  | θ = b)  ∑ 
  s ̃     T 
     μ(  s ̃     T  |  s   T ,  σ   b  )  x r   (  s ̃     T  )

}
 
}

 

subject to   ∑ 
(r,  s   T )

    Pr(r,  s   T  | θ = g)  x r  ( s   T  ) ≥   ∑ 
(r,  s   T )

    Pr(r,  s   T  | θ = g)  ∑ 
  s ̃     T 
     μ(  s ̃     T  |  s   T ,  σ ′  )  x r  (  s ̃     T  ) for all  σ ′   ∈ Σ. 

CLAIM:  The solution to the relaxed problem () yields the principal a higher pay-
off than the original problem (). 

PROOF OF CLAIM:
Consider any solution   x  r  ∗   to problem (). Since   Σ ˆ   ⊂ Σ  , we must have

     sup  
 σ   b ∈ Σ ˆ  

   
{

  ∑ 
(r,  s   T )

    Pr(r,  s   T  | θ = b)  ∑ 
  s ̃     T 
     μ(  s ̃     T  |  s   T ,  σ   b  )  x  r  ⁎  (  s ̃     T  )

}
  

    ≤    sup  
 σ   b ∈Σ

   
{

  ∑ 
(r,  s   T )

    Pr(r,  s   T  | θ = b)  ∑ 
  s ̃     T 
     μ(  s ̃     T  |  s   T ,  σ   b  )  x  r  ⁎  (  s ̃     T  )

}
  ,

which implies that the maximal payoff from () is achievable in (). ∎

Now further relax the problem by dropping the incentive-compatibility con-
straints for the type- g  agent; that is, consider the problem

 (′  )  max   x h  ,  x l  
    
{

  1 _ 2     ∑ 
(r,  s   T )

    Pr(r,  s   T  |θ = g)  x r  ( s   T  ) −   1 _ 2     sup  
 σ   b ∈ Σ ˆ  

   
{

  ∑ 
(r,  s   T )

    Pr(r,  s   T  | θ = b)  ∑ 
  s ̃     T 
     μ(  s ̃     T  |  s   T ,  σ   b  )  x r   (   s ̃     T  )

}
 
}
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and note that (since it is less constrained) the solution to (′ ) yields the principal a 
higher payoff than that of ().

CLAIM:  There is a solution to (′ ) such that the type- b  agent reports his signals 
truthfully at all histories. 

PROOF OF CLAIM:
Suppose, by way of contradiction, that there is a solution   x  r  ∗   to (′ ) in which the 

type- b  agent who has observed   s   2  = (i, j)  strictly prefers to misreport   s 2   = j  
as    s ̃   2   = i  for some  i, j ∈ {h, l}  with  i ≠ j . 

Since the preference is strict, it must be the case that the expected probability of 
being hired after reporting one of the sequences  (i, j, i)  or  (i, j, j)  is strictly less than 
1 (otherwise, the agent would optimally report the second signal  j  truthfully). This 
implies, however, that only the type- g  agent (who always reports truthfully in (′ )) 
ever reports sequences  (i, j, i)  and  (i, j, j) . Therefore, the alternative hiring rule   x  r  ∗∗   
defined by

   x  r  
⁎⁎  (   s ˆ     T   ) ≔ min  { x  r  

⁎ (  s ˆ     T ) + ε 1 {(i,  j,i),(i, j,  j)}   (  s ˆ     T ), 1}  

for sufficiently small  ε > 0  strictly increases the probability that the principal hires 
the type- g  agent without influencing the strategy of the type- b  agent. This, of course, 
increases the principal’s payoff, contradicting the assumption that   x  r  ∗   solves (′ ).

An identical argument applies when   s   3  = (i, i, j) . (Note that this argument can be 
applied separately across these two types of sequences since compound misreports 
are ruled out in   Σ ˆ   .) ∎

This argument implies that, instead of incorporating the type- b  agent’s prob-
lem into the objective function as in (′ ), we can instead incorporate the solution 
(truthful reporting) to that problem while also imposing the requisite incentive- 
compatibility constraints. Thus, (′ ) is equivalent to

(′′ )   max   x h  ,  x l  
     
{

  1 _ 2     ∑ 
(r,  s   T )

    Pr(r,  s   T  | θ = g)  x r   ( s   T  )  −   1 _ 2     ∑ 
(r,  s   T )

    Pr(r,  s   T  | θ = b)  x r   ( s   T  )}
 

subject to   ∑ 
(r,  s   T )

    Pr(r,  s   T  | θ = b)  x r   ( s   T  ) ≥   ∑ 
(r,  s   T )

    Pr(r,  s   T  | θ = b)  ∑ 
  s ̃     T 
     μ(  s ̃     T  |  s   T ,  σ ′  )  x r   (  s ̃     T  ) for all  σ ′   ∈  Σ ˆ  . 

Since this relaxed problem is separable in histories conditioned on the agent’s first 
signal (as we have assumed truthful reporting of the first signal), we can solve the 
problem separately for each of the two cases   s 1   ∈ {h, l} . Formally, when the first 
signal is   s 1   = h  , we can write (′′ ) as

(    h  ′′   )   max   x r  
     { Δ 3, 3    x h   (h, h, h)  +  Δ 2, 3   [ x h   (h, h, l ) +  x h   (h, l, h)  +  x l   (h, l, l ) ]

 +  Δ 1, 3   [  x h   (h, l, l )  +  x l   (h, h, l )  +  x l   (h, l, h )  ]  +  Δ 0, 3    x l   (h, h, h)} 
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subject to

  β 2, 3, b    x h   (h, l, h) +  β 1, 3, b    x l   (h, l, h)  +  β 1, 3, b    x h   (h, l, l )  +  β 2, 3, b    x l   (h, l, l)

 ≥  β 2, 3, b    x h   (h, h, h) +  β 1, 3, b    x l   (h, h, h)  +  β 1, 3, b    x h   (h, h, l )  +  β 2, 3, b    x l   (h, h, l ),

  β 2, 3, b    x h   (h, h, l ) +  β 1, 3, b    x l   (h, h, l ) ≥  β 2, 3, b    x h   (h, h, h)  +  β 1, 3, b    x l   (h, h, h). 

CLAIM:  Suppose   Δ 2, 3   ≥ 0 . Then the solution to (    h  ′′   ) is given by

(A4)   x h   (h, h, h) =   x h   (h, h, l) = 1,   x l   (h, h, h) =   x l   (h, h, l) = 0,

   x h   (h, l, h) =   x l   (h, l, l) = 1,   x l   (h, l, h) =   x h   (h, l, l) = 0. 

PROOF OF CLAIM:
We will proceed by showing that there exist multipliers  λ  and  μ  corresponding to 

the two incentive-compatibility constraints in (    h  ′′   ) such that the conjectured solu-
tion (A4) satisfies the Karush-Kuhn-Tucker conditions. These conditions may be 
written as

(A5)   x h   (h, h, h):   Δ 3,3    −   λβ 2,3,b    −   μβ 2,3,b    ≥ 0,

(A6)   x h   (h, h, l):   Δ 2,3    −   λβ 1,3,b    +   μβ 2,3,b    ≥ 0,

(A7)   x l   (h, h, h):   Δ 0,3    −   λβ 1,3,b    −   μβ 1,3,b    ≤ 0,

(A8)   x l   (h, h, l):   Δ 1,3    −   λβ 2,3,b    +   μβ 1,3,b    ≤ 0,

(A9)   x h   (h, l, h),   x l   (h, l, l):   Δ 2,3    +   λβ 2,3,b    ≥ 0,

(A10)   x l   (h, l, h),   x h   (h, l, l):   Δ 1,3    +   λβ 2,1,b    ≤ 0.

The directions of the inequalities above are determined by the feasibility constraint 
that each variable   x r   ( ⋅ )  lies between 0 and 1. 

Note that, at the conjectured solution, the first constraint (corresponding to 
 period-2 incentive compatibility) reduces to

   β 2,3,b    ≥   β 1,3,b     .

Of course, this inequality holds strictly, and so the constraint is slack. Therefore, we 
must have

 λ = 0. 



3096 THE AMERICAN ECONOMIC REVIEW OCTOBER 2018

In addition, recall (from the proof of Lemma 3), that   Δ 3, 3   > 0 >  Δ 1, 3    and that   
Δ 0, 3   < 0  whenever   Δ 2, 3   ≥ 0  (as was assumed). Therefore, it is easy to see that 
choosing

 μ = 0

leads to the satisfaction of all the KKT conditions above: which are, of course, both 
necessary and sufficient for the linear program (    h  ′′   ). ∎

CLAIM:  Suppose   Δ 2, 3   < 0 . Then the solution to (    h  ′′   ) is given by

(A11)   x h   (h, h, h) =   x h   (h, h, l) = 1,   x l   (h, h, h) =   x l   (h, h, l) = 0,

   x h   (h, l, h) =   x l   (h, l, l) =    
 β 1,3,b   +  β 2,3,b    ___________ 

2 β 2,3,b  
   ,   x l   (h, l, h) =   x h   (h, l, l) = 0.

PROOF OF CLAIM:
We will proceed by showing that there exist multipliers  λ  and  μ  corresponding to 

the two incentive-compatibility constraints in (    h  ′′   ) such that the conjectured solu-
tion (A11) satisfies the Karush-Kuhn-Tucker conditions. These conditions may be 
written as

(A12)   x h   (h, h, h):   Δ 3,3    −   λβ 2,3,b    −   μβ 2,3,b    ≥ 0,

(A13)   x h   (h, h, l):   Δ 2,3    −   λβ 1,3,b    +   μβ 2,3,b    ≥ 0,

(A14)   x l   (h, h, h):   Δ 0,3    −   λβ 1,3,b    −   μβ 1,3,b    ≤ 0,

(A15)   x l   (h, h, l):   Δ 1,3    −   λβ 2,3,b    +   μβ 1,3,b    ≤ 0,

(A16)   x h   (h, l, h),   x l   (h, l, l):   Δ 2,3    +   λβ 2,3,b    = 0,

(A17)   x l   (h, l, h),   x h   (h, l, l):   Δ 1,3    +   λβ 1,3,b    ≤ 0.

The directions of the inequalities above are determined by the feasibility constraint 
that each variable   x r   ( ⋅ )  lies between 0 and 1. 

Note first that (A16) implies that (since   Δ 2, 3   < 0  ) we must have

 λ = −   
 Δ 2,3   _____ 
 β 2,3,b  

    > 0.

Substituting this value into (A17) yields  

   β 2,3,b     Δ 1,3    ≤   β 1,3,b     Δ 2,3   ,
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which is easily verified to hold. In addition, we can rewrite (A12) and (A15) as 

 μ ≤    
 Δ 3,3   +  Δ 2,3   __________ 

 β 2,3,b  
    and μ ≤ −   

 Δ 2,3   +  Δ 1,3   __________ 
 β 1,3,b  

   ,

respectively. Clearly, choosing

 μ = min   {  
 Δ 3,3   +  Δ 2,3   __________ 

 β 2,3,b  
  , −  

 Δ 2,3   +  Δ 1,3   __________ 
 β 1,3,b  

  }  

satisfies both of these conditions. It remains to be shown that this choice of  μ  satis-
fies (A13) and (A14). 

So suppose first that  μ =    Δ 3, 3   +  Δ 2, 3   _______  β 2, 3, b  
   ≤ −    Δ 2, 3   +  Δ 1, 3   _______  β 1, 3, b  

   . Then we can rewrite (A13) 
as

0 ≤   Δ 2,3    +    
 Δ 2,3   _____ 
 β 2,3,b  

      β 1,3,b    +     Δ 3,3   +  Δ 2,3   _________ 
 β 2,3,b  

     β 2,3,b    =    
( α g   −  α b  )(2γ − 1)(1 − γ + (2γ − 1) α b   +  α g  (1 −  α g  ))    _______________________________   

1 − γ + (2γ − 1) α b  
   ,

and likewise rewrite (A14) as

0 ≥   Δ 0,3    +    
 Δ 2,3  

 _____ 
 β 2,3,b  

      β 1,3,b    +    
 Δ 3,3   +  Δ 2,3  

 _________ 
 β 2,3,b  

      β 1,3,b    = −   
( α g   −  α b  )(2γ − 1)(( α g   +   α b  )   2  + 3 α b  (1 −  α b  ))    __________________________   

1 − γ + (2γ − 1) α b  
   .

It is straightforward to see that both of these inequalities hold as  1 ≥  α g   >  α b   ≥ 1/2  
and  1 > γ > 1/2 . 

On the other hand, suppose that  μ = −    Δ 2, 3   +  Δ 1, 3   _______  β 1, 3, b  
   ≤    Δ 3, 3   +  Δ 2, 3   _______  β 2, 3, b  

   . Then we can 
rewrite (A13) as

 −   
 Δ 2,3   +    β 1,3,b  

 ____ 
 β 2,3,b  

    Δ 2,3  
  ______________ 

 β 2,3,b  
    ≤ −   

 Δ 2,3   +  Δ 1,3   __________ 
 β 1,3,b  

   .

Note, however, that (A17) implies that  −    β 1, 3, b   ____  β 2, 3, b  
    Δ 2, 3   ≤ −  Δ 1, 3   . Therefore, since (as 

is simple to verify)   β 1, 3, b   <  β 2, 3, b    , this inequality is satisfied. Finally, we can write 
(A14) as

0 ≥   Δ 0,3    +    
 Δ 2,3   _____ 
 β 2,3,b  

     β 1,3,b    +     Δ 2,3   +  Δ 1,3   _________ 
 β 1,3,b  

     β 1,3,b    =    
( α b   −  α g  )(2γ − 1)((1 −  α g   )   2  + ( α g   +  α b  ) + γ(2 α b   − 1))

    _________________________________   
1 − γ + (2γ − 1) α b  

   .

Again, the inequality is satisfied since  1 >  α g   >  α b   > 1/2  and  1 > γ > 1/2 . 
Thus, the conjectured solution, along with  λ  and  μ  as defined above, satisfy the 

KKT conditions. Of course, these conditions are both necessary and sufficient for 
the linear program (    h  ′′   ). ∎

Finally, it remains to be shown that the conjectured solutions to (    h  ′′   ) above 
solve the unrelaxed problem (). Note that the original problem () imposes 
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incentive-compatibility constraints on the type- g  agent while the relaxed problem 
assumed truthful reporting; likewise, the original problem allowed the type- b  agent 
to optimally misreport while the relaxed problem imposed incentive-compatibility 
constraints on two histories and assumed truthful reporting at the others. Therefore, 
it suffices to show that the conjectured behavior in the relaxed problem is indeed 
optimal in the unrelaxed one.

CLAIM:  Suppose the principal chooses either of the mechanisms described in 
(A4) or (A11). Then it is optimal for the agent to always report her private signals 
truthfully.

PROOF OF CLAIM:
We begin by noting that the solution in (A4) corresponds to a period-3 predic-

tion mechanism, as it deterministically hires the agent if a majority of his reported 
signals match the eventual outcome. Lemma 2 then immediately implies that this 
mechanism induces truthful reporting for both the type- g  and type- b  agents. 

We now turn to the solution in (A11) , which can be implemented by offering the 
agent the option in period 2 to either make a prediction immediately (and be hired, 
if correct, with probability  1 ) or to make a prediction in period 3 (and be hired, if 

correct, with probability  ρ ≔    β 1, 3, b   +  β 2, 3, b   ________ 
2  β 2, 3, b  

   < 1 ). Note that there is an onto mapping 

from the set of signal-reporting strategies to the set of prediction strategies in this 
option implementation. In particular, truthful reporting of signals in (A11) corre-
sponds to making a sincere prediction in period 2 if both signals match, and other-
wise making a sincere prediction in period 3. Hence, showing that this conjectured 
behavior is optimal for the agent is sufficient for showing the optimality of truthful 
signal reporting in (A11). 

To see why this behavior is optimal for the agent, note first that observing two 
matching signals in periods 1 and 2 yields the agent enough information to make 
a prediction in period 3: regardless of whether the third signal matches or not, he 
will make the same prediction. Since  ρ < 1  , a period-2 prediction yields the agent 
a strictly higher payoff than postponing. On the other hand, suppose that the agent 
has observed a pair of mismatched signals in the first two periods, leaving him with 
a uniform posterior over states. This implies that an early prediction (of either  h  or  
l)  yields the type- θ  agent an expected payoff of

    1 _ 
2
    γ +    1 _ 

2
   (1 − γ) =    1 _ 

2
   .

Postponing the prediction to period 3 (and then making a sincere prediction that 
follows the third private signal) yields the type- θ  agent an expected payoff of

 (γ  α θ    + (1 − γ)(1 −   α θ   ))ρ =    1 __ 
2
     (  γ α θ   + (1 − γ)(1 −  α θ  )   _________________   γ α b   + (1 − γ)(1 −  α b  )

  )  .

Clearly, a type- b  agent with mixed signals in period 2 is indifferent about delay, 
whereas a type- g  agent with mixed signals in period 2 strictly prefers to delay his 
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prediction since   α g   >  α b   . This implies that the mechanism in (A11) is incentive 
compatible for both types of the agent.20 ∎

Thus, the assumed behavior for the agent in the relaxed problem (′′ ) is in fact a 
best response to the principal’s proposed mechanism. This implies that the conjec-
tured solution indeed solves the original problem (). ∎

PROOF OF THEOREM 6:
Recall from the proof of Theorem 2 that both the principal and agent (of either 

type) are indifferent between the  (2k − 1) -period and  2k -period prediction mecha-
nisms; therefore, assume without loss that   T ˆ    is odd, and let    k ̅    be such that   T ˆ   = 2  k ̅   + 1  
(and therefore, since  T >  T ˆ   + 1  , we have  T ≥ 2  k ̅   + 3 ).21

CLAIM:    Δ   k ̅  +2, 2  k ̅  +3   < 0 . 

PROOF OF CLAIM:
Recall from the proof of Theorem 2 that we defined  δ(n)  to be the difference 

between the principal’s expected payoff from an  n -period and an  (n − 1) -period 
prediction mechanism. Since   T ˆ    is the optimal length for a prediction mechanism, 
Theorem 2 implies that  0 > δ( T ˆ   + 2) = δ(2  k ̅   + 3) = δ(2(  k ̅   + 1)  + 1) . 

However, the second claim in that proof showed that

δ(2(   k ̅    + 1) + 1) =   (  
2(  k ̅   + 1)
              

  k ̅   + 1
  )     [ α     k ̅  +1 ( 1 − α)     k ̅  +1  (γα + (1 − γ)(1 − α) −   1 __ 

2
  ) ]   

 α b  
  

 α g  

   

 =   (  
2(  k ̅   + 1)
              

  k ̅   + 1
  )     [γ α     k ̅  +2 ( 1 − α)     k ̅  +1  + (1 − γ) α     k ̅  +1 (1 − α )     k ̅  +2 ]    α b    

 α g  

  

 −   (  
2(  k ̅   + 1)
              

  k ̅   + 1
  )     1 __ 

2
      [γ α     k ̅  +1 ( 1 − α)     k ̅  +1  + (1 − γ) α     k ̅  +1 (1 − α )     k ̅  +1 ]    α b    

 α g  

  

 =   (  
2(  k ̅   + 1)
              

  k ̅   + 1
  )    ( Δ   k ̅  +2,2  k ̅  +3   −   1 __ 

2
   Δ   k ̅  +1,2  k ̅  +2  )  .

But   Δ   k ̅  +1, 2  k ̅  +2   =  ( α g   (1 −  α g  ))     k ̅  +1  −  ( α b   (1 −  α b   ))     k ̅  +1  < 0  since   α g   >  α b   > 1/2 .  
Therefore, to avoid contradicting the fact that  δ( T ˆ   + 2 )  < 0  , we must have   
Δ   k ̅  +2, 2  k ̅  +3   < 0 . ∎

20 Since the private signals and the public outcome are (positively) correlated with the underlying state,  insincere 
predictions (that is, those that contradict the agent’s private signals) are clearly dominated. 

21 Note that the argument that follows applies immediately to   T ˆ    even, so the proposed bound  T >  T ˆ   + 1  
 continues to be sufficient for the optimality of randomization in that case. 
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Now consider the alternative mechanism defined by

        x ˆ   r   ( s   T  )  ≔  
⎧
 

⎪
 ⎨ 

⎪
 

⎩
 
1
  

if   ∑ τ=1  2  k ̅  +2     1 r   ( s τ  ) ≥   k ̅   + 2
    ρ  if   ∑ τ=1  2  k ̅  +2     1 r   ( s τ  ) =   k ̅   + 1 and   s 2  k ̅  +3   = r,     

0

  

otherwise

    

where

  ρ  ≔   
 β 1, 3, b   +  β 2, 3, b    _ 

2  β 2, 3, b  
   =   1  ___________________   

2(γ  α b   + (1 − γ ) (1 −  α b   ))
   

is the same probability as in the three-period optimal stochastic mechanism 
described in Theorem 5. Essentially,    x ˆ   r   ( · )  does not solicit any information from 
the agent until period  2  k ̅   + 2 . At that point, it offers the agent the option of either 
making an immediate prediction in period  2  k ̅   + 2  or waiting one period until  2  k ̅   + 3  
to make a prediction. The agent is hired with probability  1  if his early prediction is 
correct, with probability  ρ  if the late prediction is correct, and with probability  0  if 
his prediction is incorrect.

Clearly, if the agent has at least    k ̅   + 2  identical signals in the first  2  k ̅   + 2  periods, 
he will continue to have a strict majority of that signal in period  2  k ̅   + 3 ; therefore, 
his recommendation will be the same in both periods, but delaying lowers the prob-
ability of being hired if the recommendation is correct. Therefore, such an agent will 
choose to make an immediate prediction in period  2  k ̅   + 2 .

On the other hand, an agent with exactly    k ̅   + 1  of each signal in period  2  k ̅   + 2  
would prefer to wait until the next period before making a prediction. Notice that  ρ  
is chosen to leave the type- b  agent indifferent between guessing immediately and 
waiting for one additional signal, while (since   α g   >  α b   ) the type- g  agent’s more 
informative signal gives him a strict incentive to delay.

Thus, it remains to be shown that the stochastic mechanism    x ˆ   r   ( · )  defined above 
yields the principal a higher payoff than the period-  T ˆ    prediction mechanism.

As shown in the  proof of Theorem 2, the principal’s payoff of the period-  T ˆ    pre-
diction mechanism (for   T ˆ   = 2  k ̅   + 1 ) equals that of the period- (2  k ̅   + 2)  prediction 
mechanism. In that latter mechanism, the agent is hired with probability  1  when he 
observes at least    k ̅   + 2  signals that match the outcome, with probability  1/2  when 
he observes exactly    k ̅   + 1  signals that match the outcome, and with probability  0  
otherwise.

Therefore, the difference in the principal’s payoff between    x ˆ   r    and the period-  
T ˆ    prediction mechanism arises precisely from the situation where the agent has 
observed exactly    k ̅   + 1  of each signal by period  2  k ̅   + 2  , and therefore chooses to 
postpone predicting under    x ˆ   r   . This leads to a payoff differential of

   ( 2  k ̅   + 2  
  k ̅   + 1

  )   (ρ  Δ   k ̅  +2, 2  k ̅  +3   −   1 _ 
2
    Δ   k ̅  +1, 2  k ̅  +2  ) , 

since there are exactly   ( 2  k ̅   + 2  
  k ̅   + 1

  )   signal sequences that lead the agent to be exactly 

tied in  2  k ̅   + 2  periods. The deterministic prediction mechanism will hire the agent 
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with probability  1/2  if he is exactly tied (due to the agent mixing when indifferent), 
whereas    x ˆ   r    hires the agent with probability  ρ  if the final signal matches (yielding a 
net payoff of  ρ  Δ   k ̅  +2, 2  k ̅  +3    ).

Note, however, that

 ρ  Δ   k ̅  +2, 2  k ̅  +3   −   1 _ 
2
    Δ   k ̅  +1, 2  k ̅  +2    =   

 Δ   k ̅  +2, 2  k ̅  +3    ___________________   
2(γ  α b   + (1 − γ ) (1 −  α b   ))

   −   1 _ 
2
    Δ   k ̅  +1, 2  k ̅  +2  

 =   
[γ  α     k ̅  +2   (1 − α)     k ̅  +1  + (1 − γ)  α     k ̅  +1   (1 − α  )     k ̅  +2  ]   α b    

 α g  
 
     _________________________________    

2(γ  α b   + (1 − γ ) (1 −  α b   ))
   −   1 _ 

2
    Δ   k ̅  +1, 2  k ̅  +2  

 =   
  [ (α(1 − α ))     k ̅  +1  (γα + (1 − γ ) (1 − α ))]    α b    

 α g  
 
    _____________________________   

2(γ  α b   + (1 − γ ) (1 −  α b   ))
   −   1 _ 

2
     [ (α(1 − α ))     k ̅  +1 ]    α b    

 α g  
 

 =   1 _ 
2
    (  α g   (1 −  α g   ))     k ̅  +1  (  

γ  α g   + (1 − γ ) (1 −  α g   )
  _________________   γ  α b   + (1 − γ ) (1 −  α b   )
   − 1)  > 0. 

Therefore, the mechanism    x ˆ   r    defined above, which nontrivially randomizes in  
2  k ̅   + 3  periods, achieves a strictly higher revenue than the optimal deterministic 
mechanism, a period- (2  k ̅   + 1)  recommendation mechanism. ∎

PROOF OF THEOREM 7:
Note first that the revelation principle (see the online Appendix) implies that, 

when the principal has commitment power, it is without loss of generality to restrict 
attention to incentive-compatible direct mechanisms χ : Λ ×   S   T   → {0, 1  }   2   , where 
we write  χ( ⋅ )  = (  χ h   ( ⋅ ) ,  χ l   ( ⋅ )) ∈  {0, 1}   2   for the principal’s hiring decision 
given outcomes  h  and  l  , respectively.

So fix any nontrivial and incentive-compatible direct mechanism  χ  , and note that 
we must have  χ(λ,  s   T  )  ∈ {(1, 0 ) , (0, 1 ) }  for all  (λ,  s   T  )  ∈ Λ ×  S   T  . Note that if  
 χ( λ ˆ  ,   s ˆ     T  ) = (1, 1)  for some reports   λ ˆ  ,   s ˆ     T   , then incentive compatibility requires that 
the agent is always hired, regardless reports (otherwise he would deviate by always 
reporting   λ ˆ  ,   s ˆ     T   ). Similarly, if  χ( λ ˆ  ,   s ˆ     T  ) = (0, 0)  for some  ( λ ˆ  ,   s ˆ     T  )  , then incentive 
compatibility requires that the agent is never hired, regardless of his reports (other-
wise he would deviate by never reporting   λ ˆ  ,   s ˆ     T   ).

Now fix any  λ ∈ Λ  , and let   t λ    be the largest period such that  χ(λ,  ⋅ )  is mea-
surable with respect to the first   t λ    reports; that is,  χ(λ,  s   T  ) = χ(λ,   s ˆ     T  )  for all 
  s   T  = (  s    t λ    ,  s  t λ  +1   ,  … ,  s T   )  and    s ˆ     T  = (  s    t λ    ,   s ˆ    t λ  +1   ,  … ,   s ˆ   T   )  that coincide in their first   t λ    
periods. Since periods   t λ   + 1  through  T  do not affect the hiring decision given an 
initial period report of  λ  , we abuse notation somewhat and write  χ(λ,  s    t λ    )  to denote 
the principal’s hiring rule.

The definition of   t λ    as the final period in which the agent’s reported signal poten-
tially changes the hiring decision as a function of the ultimate outcomes implies the 
existence of   s ˆ  ,  s ˆ  ′ ∈  S  t λ      and    s ˆ      t λ  −1  ∈  ∏ τ=1   t λ       S τ    such that

  χ(λ,   s ˆ      t λ  −1 ,  s ˆ  ) = (1, 0) ≠ (0, 1) = χ(λ,   s ˆ      t λ  −1 ,  s ˆ  ′ ) . 
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Moreover, we must have

  Pr(r = h | λ,   s ˆ      t λ  −1 ,  s ˆ  ) ≥   1 _ 
2
   ≥ Pr(r = h | λ,   s ˆ      t λ  −1 ,  s ˆ  ′ ); 

if this did not hold, the pivotality of the period-  t λ    report following history  (λ,   s ˆ      t λ  −1  )  
would lead to a violation of incentive compatibility.

This implies that the agent who initially observes signal  λ ∈ Λ  has a strategy 
which guarantees that he is always hired at the outcome he thinks more likely in 
period   t λ   : simply report    s ˆ      t λ  −1   regardless of signals seen in the first   t λ   − 1  periods, 
and then report either   s ˆ    or   s ˆ  ′  in period   t λ    based on his true signals and his posterior 
expectation of the most likely outcome. Therefore, incentive compatibility implies 
that the continuation mechanism  χ(λ,  ⋅ )  must be payoff equivalent (for an agent 
who initially observes signal  λ ∈ Λ ) to making a prediction at period   t λ   .

Finally, note that the signal structure is such that the agent, regardless of his initial 
private signal, weakly prefers to make a prediction as late as possible. Therefore, 
by incentive compatibility of the initial signal report, it must be the case that the 
agent observing  λ ∈ Λ  is always ex ante indifferent between being asked to make 
a prediction in   t λ    or in   t   ∗  ≔  max  λ ′  ∈Λ   {  t  λ ′     } . As a result, the principal is indifferent 
between offering the direct mechanism  χ  or a period-  t   ∗   prediction mechanism.

To see that this outcome (and hence payoffs) remains implementable in the game 
without commitment, note that if the principal ignores all reports of the agent except 
that in period   t   ∗   (hiring if and only if the period-  t   ∗   prediction matches the ultimate 
outcome), it is a best response by the agent to babble in all periods except   t   ∗  . Of 
course, this babbling justifies the principal ignoring the reports in those periods. 
Meanwhile, hiring the agent after a correct period-  t   ∗   prediction is also sequentially 
rational for the principal; if it were not, then the mechanism’s payoff in the full com-
mitment model would be negative, contradicting its optimality. Thus, as in Theorem 
4 for the baseline model, the lack of commitment does not change the outcomes or 
payoffs. ∎
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