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ABSTRACT: A researcher observes a finite sequence of choices made by multiple agents in

a binary-state environment. Agents maximize expected utilities that depend on their cho-

sen alternative and the unknown underlying state. Agents learn about the time-varying

state from the same information and their actions change because of the evolving common

belief. The researcher does not observe agents’ preferences, the prior, the common infor-

mation and the stochastic process for the state. We characterize the set of choices that are

rationalized by this model and generalize the information environment to allow for private

information. We discuss the implications of our results for uncovering discrimination and

committee decision making.

1. INTRODUCTION

Different individuals frequently make decisions based on the same information. For instance,

in court cases, judges are presented with the same evidence and arguments prior to reaching their

decisions. Employers and graduate schools peruse the same curricula vitae and reference letters

prior to inviting applicants for interviews. As yet another instance, deliberative committees such

as monetary policy committees gather the opinions and views of all members prior to making

decisions. Naturally, even though individuals have the same information, they may still make

distinct decisions because their preferences differ. But different preferences alone may not be

able to rationalize all patterns of choices. What are the rationalizable patterns of choices? Can

individual choices reveal changing preferences? If so, can this information be used, for instance,

to test for discrimination?
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To address these questions as well as others, we consider a simple binary-state environment in

which multiple agents make choices repeatedly. A researcher observes the choices over time, but

knows neither the preferences of the agents nor their information. The researcher assumes that the

agents agree about the evolution of the state and learn about the state from common signals. We

fully characterize the testable implications of this model; that is, we derive necessary and sufficient

conditions for choice data to be rationalizable.

We begin with a baseline model in which there are two alternatives and all agents get a higher

utility from choosing the alternative that matches the state. The characterization (Theorem 1) of

this model is easy to state: choice data can be rationalized if, and only if, there are no two periods

and two agents who pick different and opposite alternatives in each period. This shows that the

model can be refuted with just two periods of choice data despite the researcher not observing

the state or its evolution, the preferences, the prior belief and the common signals that agents use

to learn. Moreover, the proof of this result demonstrates that we can extract preference rankings

across agents. As we discuss later, this information can be useful for applications.

We then generalize the baseline model along several dimensions. We first demonstrate how

to accommodate general preferences: agents may get a higher utility by choosing the alternative

that mismatches the state (Corollary 1). Then, we allow for multiple actions (Theorem 2). Finally,

we relax the assumption of common signals and instead assume that agents’ information, while

different, is related. Specifically agents observe private signals that differ in their informativeness

but favor the same state. In other words, agents agree in each period whether the information is

‘good’ or ‘bad’ news but disagree about how conclusive the new evidence is. We characterize the

testable implications of this general model when the state is time-invariant (Theorem 3) and show

that all choice data can be rationalized if the state is time varying (Theorem 4).

An advantage of the simple reduced form nature of our model is that it can capture several

seemingly disparate applications. We discuss these in detail in Section 5 but we end the introduc-

tion by providing an example of how our framework can be applied to test for discrimination.

Consider two employers who receive sequential job applications in the same order from the same

six prospective employees. Applications m1, m2 and m3, are from male applicants, while appli-

cations f1, f2 and f3 are from female applicants. Employers evaluate applications (the common

information) to determine the productivity of each applicant which could either be low or high

(the unknown state) and only want to interview high-productivity applicants. The researcher ob-

serves which applicants an employer invites for interviews. Table 1 summarizes the researcher’s

choice data.
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TABLE 1. Employer’s decisions: yes = “invite for an interview.”

m1 m2 m3 f1 f2 f3
Employer 1 yes yes no no no yes
Employer 2 yes no no no yes yes

Note that the data described above takes the exact form necessary (sequential decision making

and common information) to test our model. Data of this form can be easily generated be sending

fictitious curricula vitae to job postings; since Bertrand and Mullainathan (2004), such “correspon-

dence studies” are a common method to test for discrimination in economics. We emphasize that

our framework is flexible enough to capture either the case where employers view each applica-

tion to be unrelated to other applications (so the underlying state is independently drawn each

time) or where there is learning (correlation of the states). While the former is often assumed in

empirical analyses, there are several reasons why an employer might learn from the curricula vi-

tae of previous applicants.1 For instance, if m1 and m2 are successful mid-career applicants who

graduated from a certain program, the employer might update that m3, who is an early career

applicant from the same program , will be more likely to be successful. Alternatively, if f1 and f2

are accomplished candidates of a minority group, an employer might update their beliefs about

the quality of minority candidates in general which will effect how they evaluate applicant f3.

Indeed, the whole notion of statistical discrimination is based on learning and belief formation.

While both employers only want to interview high-productivity applicants, they may differ in

their disutility of type I and type II errors (because the job details may not be exactly identical). We

now explain how to use our characterization to test for taste-based discrimination. The key obser-

vation is that we can not only test whether the entire sample is rationalizable, but also whether the

two sub-samples of male and female applicants are. It is immediate to check that the entire dataset

is not rationalizable as there are two different candidates, m2 and f2, with opposite and distinct

interview decisions by both employers. Thus, we reject the hypothesis that interview decisions

are made based on common beliefs and employer-specific preferences that are identical over male

and female candidates.

Yet, each sub-sample is rationalizable. Thus, we cannot reject the hypothesis that the employ-

ers have common beliefs but different preferences over male and female candidates. In fact, we

can even make further inferences about the preferences of the employers. Note that whenever

Employer 2 invites a male applicant, so does Employer 1. Since with a binary state, an employer

1If we assume that the employers view the applications as (statistically) independent, then we do not need to assume
that the employers process the applications in the same order, since they have the same relevant information when
evaluating applications.
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invites an applicant only when the common belief is above a threshold, we can infer that Employer

2’s threshold for male applicants is strictly above that of Employer 1. (The threshold is the belief

at which an employer is indifferent between the two possible choices.) The opposite is true on the

sub-sample of female applicants.

A simple application of our tests thus provides suggestive evidence of taste-based discrimina-

tion. In Section 5.1, we also discuss how our results can be used to uncover suggestive evidence of

statistical discrimination. The fact that these manifest differently is a strength of our framework.

Indeed, as Bertrand and Duflo (2017) observe in their recent survey of field experiments on dis-

crimination, the vast majority of the literature only aims to uncover evidence of discrimination

but not the source.

Finally, note that there is nothing special about the context of this example; we could replace

employers by judges, job applicants by defendants, gender by race and the interview invitations

by judicial decisions.

Related Literature

This paper is related to the recent decision theory literature that aims to characterize different

models of learning and costly information acquisition. A few recent examples are Caplin and Dean

(2015), Caplin and Martin (2015), Lu (2016) and Frick et al. (2019). Perhaps the main difference of

our work with this literature is the data on which our respective analyses are conducted. Decision

theory papers typically assume that the analyst can observe agents’ choices in every possible choice

scenario. In the case of random choice induced by learning/information acquisition, this amounts

to assuming that the analyst can observe the choice probabilities of the various alternatives in all

choice problems. Needless to say, this is a demanding data requirement.

By contrast, we only assume that finitely many realized choices are observed from a single choice

problem and that the environment under which these choices are made is changing. While the

data requirement for our analysis is modest relative to the above literature, the tradeoff is that it

is not possible to identify the information (and identification is often an important goal in a de-

cision theoretic analysis). Our results are driven by the assumption that we observe the choices

of multiple individuals whose beliefs are systematically related. In practice, versions of this as-

sumption are routinely made implicitly or explicitly.2 Choice probabilities (as opposed to realized

choices) are not observed and must be estimated. It is quite unusual to be able to estimate choice

2Outside of decision theory, this assumption is frequently made in the finance and information design literatures in
which information often takes the form of public signals.
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probabilities from a single individual as this would require many observations (for any mean-

ingful precision) from the identical choice problem (the same set of alternatives in an identical

information environment). So instead, choice probabilities can be obtained by averaging across

the choices of different (typically observationally equivalent) individuals in the data. This implic-

itly assumes that (conditioning on covariates) these scenarios are treated as identical or, in other

words, that different agents have the same preferences and information (but may get different

signal realizations).

The most closely related papers are Shmaya and Yariv (2016) and de Oliveira and Lamba (2019)

which also study the testable implications of learning on observed choices. Shmaya and Yariv

(2016) study a single agent decision problem in which an agent observes signals and has to report

which state she believes to be the most likely. They show that, absent additional structure on

information, all choices can be explained by Bayesian updating. de Oliveira and Lamba (2019)

consider a related environment but they allow for completely general dynamic preferences that

need not be time separable. They assume that the researcher knows the utility function of the

agent but does not observe how the agent learns about the underlying state. They show that

not all choices are possible and derive a dominance condition that characterizes rationalizability.

Makris and Renou (2021) generalize the concept of Bayes correlated equilibrium to multi-stage

games. As an application of their results, they reformulate the problem of de Oliveira and Lamba

(2019) as characterizing the Bayes’ correlated equilibria of a dynamic decision problem, and derive

a novel characterization.

The main difference between these papers and ours is that we do not assume that the researcher

knows the agents’ preferences (although we do assume preferences are known to be time sepa-

rable). This is an important generalization because preferences are unobserved in all field data.

Instead, our main assumption that generates testable predictions is the fact that different agents’

information is related. We view this modeling assumption to be one of the main conceptual nov-

elties of our framework.

2. THE BASELINE MODEL

This section presents and discusses the baseline model, which we analyze first. Section 4 gen-

eralizes it in several directions.

A set I := {1, . . . , I} of I agents makes choices over a set T = {1, . . . , T} of T periods. In each

period t, agent i chooses an action xi,t from the binary set X = {x, y}. A researcher observes choice
5
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data X := (xi,t)(i,t)∈I×T that contains the choices of all agents over all time periods. This is all the

researcher observes. We explain later how to deal with richer choice data, where the researcher

observes additional characteristics of the choice problems.

We now define the model the researcher postulates to rationalize the choice data X . There is an

unknown, possibly time-varying, underlying state of the world ωt ∈ {ωx, ωy} at each period t. We

deliberately index the state by the alternative to indicate that action x (resp., y) is the best in state

ωx (resp., ωy). The researcher thus assumes that agent i’s utility function ui satisfies ui(x, ωx) ≥
ui(y, ωx) and ui(y, ωy) ≥ ui(x, ωy), with at least one strict inequality. For any utility function ui,

we denote

ui :=
ui(y, ωy)− ui(x, ωy)

ui(x, ωx)− ui(y, ωx) + ui(y, ωy)− ui(x, ωy)
.

the threshold (belief) at which the agent is indifferent between choosing x and y.

We now turn to the beliefs and the information. The researcher assumes that the agents share a

common prior p0 and agree on the evolution of the state. The transition probability from state ωt−1

to ωt is γt(ωt |ωt−1). We say the state is time-invariant if γt(ωx |ωx) = γt(ωy |ωy) = 1 for all

t ∈ T ; otherwise, we say the state is time-varying.

Prior to choosing an action (but after the state has evolved), the agents observe a common signal

st, a realization of the statistical experiment πt : {ωx, ωy} → ∆(St), with St a finite set of signals.3

Finally, the researcher assumes that the agents are expected utility maximizers and update their

beliefs by Bayes’ rule. We use pt to denote the belief that the state is ωx at period t (the probability

of ωy is the complementary probability). The common belief at period t is thus:

pt =
[pt−1γt(ωx|ωx) + (1− pt−1)γt(ωx|ωy)]πt(st|ωx)

∑ω∈{ωx ,ωy} [pt−1γt(ω|ωx) + (1− pt−1)γt(ω|ωy)]πt(st|ω)
. (1)

Hence, agent i chooses x at period t if and only if pt ≥ ui.

For ease of reference, the timing is summarized below

· · ·
Agents update
beliefs to pt−1,
choose actions
(ai,t−1)i∈I

The state
evolves

according to γt

Agents observe
signal st

Agents update
beliefs to pt,
choose actions

(ai,t)i∈I

· · ·

The aim of this paper is characterize choice data that can be rationalized by this model. In

words, we are interested in when a researcher who only observes choice data X can find some

3Note that this signal is completely general so it can contain the realized payoffs of the agents. In other words, the
model permits learning from realized payoffs in addition to other sources of information.
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parameters for the model such that, given those parameters, the agents would choose precisely

the observed data. Formally, this is defined as follows.

DEFINITION 1. The choice data X is rationalizable if, for all i ∈ I and t ∈ T , there exist utility

functions ui, transition probabilities γt, prior p0, beliefs pt, sets of signals St, experiments πt : {ωx, ωy} →
∆(St) and realized signals st ∈ St such that

i. Actions maximize utility: pt > ui if xi,t = x (resp., pt < ui if xi,t = y),

ii. Bayesian Updating: pt is derived from pt−1 by Bayes’ rule.

In what follows, we will sometimes explicitly add a qualifier to signify when the state is time

invariant.

Before we proceed to discussing the various assumptions of the model, it is worth making a

few comments about our definition of rationalizability. First, observe that this criterion requires

choices to be strictly optimal (captured by the strict inequality in point i). This assumption is

made to rule out indifference that would make the analysis trivial. If the strict inequality in point i

were to be replaced by a weak inequality, then any choice data could be rationalized by a constant

belief and common utilities pt = u1 = · · · = uI for all t ∈ T . Second, implicit in point ii is

the assumption that the realized signals st lie in the support of the experiment so that Bayes’ rule

can be used. In subsequent sections, we will discuss how non-Bayesian belief updating can be

accommodated.

2.1. Discussion of the model

The payoffs in the baseline model capture situations where decision-makers are uncertain about

which course of action is best and differ in their disutility for type I and II errors. Such preferences

are common in economics and political science. Indeed, the model as a whole is fairly canonical

in the literature on committee voting. Here, the state captures the correct decision (for instance,

maintain the status quo or introduce a reform, convict or acquit a defendant in a court) and the

actions are the votes. The repeated choices could either reflect votes on the same issue (deciding

whether or not to implement a project that was postponed in a previous vote) or different obser-

vationally identical scenarios (such as judges deciding distinct cases with the same basic facts).

We now discuss our modeling choices, starting with the assumption of common information.

COMMON SIGNALS: As we discussed in the introduction, there are several multiple-agent decision

problems where it is natural to assume that agents learn via common signals. In other contexts

such as committee voting, the literature considers both models like ours with common information
7
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and settings where agents receive private signals prior to making choices. Common information

is frequently assumed (such as in Li, 2001; Alonso and Câmara, 2016) when the aim is to analyze

the effect of information on committee outcomes. Surveys that describe the foundational work in

this strand of the literature are Gerling et al. (2005) and Li and Suen (2009). Note that, even if the

agents receive private signals, they often have the opportunity to communicate them to others or,

in other words, to deliberate prior to making choices.

Moreover, there is a simple theoretical reason to focus attention on common signals. Without

additional constraints, all choice data are rationalizable if the model were to allow for private

signals (even with a common utility function). In a nutshell, private signals make it possible

to decouple the choice problems agent-by-agent. Without additional constraints, we can then

generate arbitrary sequences of individual beliefs and, thus, rationalize all choice data. We refer to

Section 4.3 for a model with non-trivial testable implications, where agents receive private signals.

REALIZATIONS VERSUS CHOICE PROBABILITIES: As we stressed in the introduction, a strength of

our framework is that choice data consists of actual choices as opposed to choice probabilities.

This implies that the data requirements to test our model are relatively modest. In particular, this

means that we neither need to observe the agents choosing repeatedly in the identical information

environment nor do we need to aggregate data across different agents.

The strengths and weaknesses of our framework can be clearly articulated by contrasting with

a related decision theory paper. Lu (2016) considers an agent who chooses an alternative after

receiving some private information (unobserved by the analyst) and provides a theory in which

the information can be fully identified from the random choice rule. For identification, he requires

the analyst to observe the choice probabilities from every menu of possible acts (mappings from

states to lotteries over prizes). By contrast, we only require the analyst to observe the realized

choices from a single menu of two acts; alternative x (and similarly y) can be viewed as an act

that generates payoff u(x, ω) in each state ω. Of course, the downside of an analysis on such

parsimonious data is that, unlike Lu (2016), we cannot identify the information.

SEPARATE DECISION PROBLEMS VS. EQUILIBRIUM: We presented our choice data as arising from

the separate decisions of I agents. This is the appropriate interpretation for several of the examples

from the introduction including that of the two employers. In the context of committee decision

making, this corresponds to sincere voting where members vote for their preferred option (and

ignore strategic considerations). However, in the case of two alternatives and public information

(as in our baseline model), sincere voting is also an equilibrium of the one-shot voting game where

alternative x is chosen only when more than a given exogenous threshold of voters choose x.
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In the repeated interaction that is implicit in our choice data, sincere voting will also be an

equilibrium of the repeated game since it is a stage game equilibrium (although, of course, there

may be multiple equilibria). That said, our model also captures certain, more complex dynamic

decision making as a special case. We discuss this next.

DYNAMIC OPTIMIZATION: The agents we defined above myopically maximized their per period

utility. This assumption is commonly made in the revealed preference literature that builds on

Afriat (1967) where the aim is to derive the testable implications of various models of consumption

on price quantity data (see Chambers and Echenique, 2016 for a description of the literature). In

our setting, behaving myopically is also dynamically optimal if the agents’ actions do not affect

the evolution of the state and the information they receive. This is true for certain applications

like judicial decision making (which we discuss in more detail in Section 5.2) where the decision

to convict or acquit does not shed any additional light on the guilt of defendant.

Importantly, certain classes of dynamic models in which actions affect the arrival of information

also lead to behavior that is observationally indistinguishable. Loosely speaking, the solution to a

Bellman equation can result in cutoff behavior in which agent i’s action choice depends on whether

the public belief lies above or below a cutoff ui. In other words, even though agents are actually

dynamically optimizing, their behavior is covered by our rationalization criterion (Definition 1).

Recent examples of such dynamic political economy models that fit our framework are Gul and

Pesendorfer (2012) and Chan et al. (2018).

RICHER CHOICE DATA: The baseline model assumes that the researcher only observes the agent’s

choices. We can also consider richer choice data X = (xi,t, θt)(i,t)∈I×T , where the researcher also

observes a vector θt ∈ Θt of characteristics about the choice problem at period t. For instance, in

our introductory example, θt is the gender of the t-th application. The information agents have is

therefore (st, θt), with θt also observed by the analyst. Our definition of rationalization generalizes

to experiments πt : {ωx, ωy} → ∆(St ×Θt) and transitions γt : {ωx, ωy} ×Θt−1 → ∆({ωx, ωy}),
without affecting our main results. Indeed, if the richer choice data X = (xi,t, θt)(i,t)∈I×T is ratio-

nalizable, the simpler choice data (xi,t)(i,t)∈I×T is rationalizable with π̂t(st|ωt) := πt(st, θt|ωt)/πt(θt|ωt)

and γ̂t(ωt|ωt−1) := γt(ωt|ωt−1, θt−1). Conversely, if the simpler choice data (xi,t)(i,t)∈I×T is ratio-

nalizable, then any richer choice data is rationalizable: we can simply assume that the agents view

the observable characteristics as irrelevant (independent). In Section 5.1, we demonstrate how

richer choice data can be used to detect evidence of discrimination.

To summarize, we view our model to be a simple reduced form representation of dynamic

behavior that is flexible enough to encompass several distinct dynamic settings as special cases.
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3. THE TESTABLE IMPLICATIONS OF THE BASELINE MODEL

We first present a simple example, which shows that not all choice data are rationalized.

EXAMPLE 1. Consider the choice data X of two individuals i, j and two time periods t1, t2 represented in

the following table:

i j

t1 x y

t2 y x

In the table, choices in the rows correspond to a given time period and those in the the columns correspond

to the agents.

We argue that this choice data cannot be rationalized. So suppose, for the purpose of contradiction, that

it can. This implies that we can find utilities and beliefs that satisfy

pt1 > ui > pt2 ,

pt1 < uj < pt2 ,

which is clearly a contradiction. In words, agent i’s actions imply that the belief must be strictly lower in

observation t2 compared to t1 whereas agent j’s actions imply the exact opposite.

It is worth discussing a few features of the simple argument we employed in the above example.

Note that it did not even mention the state transition probabilities. Moreover, this argument did

not require the agents to be Bayesian. As long as they share a common belief, they could be

learning in any way and the data in Example 1 would still not be rationalizable. Finally, the time

periods t1 and t2 need not be consecutive or ordered chronologically.

The following definition gives a name to the pattern of choices in Example 1.

DEFINITION 2. Choice data X has a cycle if there are distinct time periods (t1, t2) ∈ T × T and agents

(i, j) ∈ I × I such that xi,t1 = xj,t2 = x and xi,t2 = xj,t1 = y.

Example 1 shows that a necessary condition for rationalization is the absence of cycles. The fol-

lowing result shows that this condition is also sufficient. In other words, the choice data described

in Example 1 is the only pattern of choices that cannot be rationalized.

THEOREM 1. Choice data X is rationalizable if, and only if, it has no cycles.

We present a simple proof of Theorem 1 as it will be useful for the discussion that follows.
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PROOF. (⇒). Already shown.

(⇐). We define the following binary relation < on the set of agents I . For any (i, j) ∈ I × I ,

j < i if, for all t ∈ T , we have ([xj,t = x] =⇒ [xi,t = x]).

In words, j < i if whenever agent j chooses x, so does agent i.

We argue that, since X has no cycles, < is complete. By contradiction, assume that there exists

a pair (i, j) such that j 6< i and i 6< j. Since j 6< i, there exists t ∈ T such that xj,t = x and xi,t = y.

Since i 6< j, there exists t′ ∈ T such that xi,t′ = x and xj,t′ = y. We thus have a cycle, the required

contradiction.

We now argue that < is transitive. This is because for any (i, j, k) ∈ I , if ([xj,t = x] =⇒ [xi,t =

x]) for all t ∈ T (and so j < i) and ([xk,t = x] =⇒ [xj,t = x]) for all t ∈ T (and so k < j), then we

must have ([xk,t = x] =⇒ [xi,t = x]) for all t ∈ T (and so k < i).

Since < is complete and transitive, we can find numbers ui ∈ (0, 1) for all i ∈ I (by invoking a

textbook utility representation theorem for finite alternatives) such that

uj ≥ ui if and only if j < i.

We now argue that if xi,t = x and xj,t = y, then uj > ui. By contradiction, if ui ≥ uj, then i < j

and, therefore, xi,t = x implies that xj,t = x, a contradiction. It follows that

min
{

uj | xj,t = y} > max{ui | xi,t = x
}

for all t ∈ T .

Finally, let p0 = 1
2 and, for each t ∈ T , choose any pt ∈ (0, 1) such that

min
{

ui | xi,t = y} > pt > max{uj | xj,t = x
}

.

By construction, the data is rationalized with these beliefs and thresholds.

We can easily construct utility functions with the required thresholds, for instance, by setting

ui(x, ωx) = ui(y, ωy) = 1, ui(x, ωy) = 1/2 and ui(y, ωx) = (3ui − 1)/2ui.

It remains to construct the transitions probabilities, signals and experiments that generate the

given beliefs. So first, we pick transition probabilities γt(ωx|ωx) = γt(ωy|ωy) = 1 for all t ∈ T
that correspond to the state being time invariant. Then, for all t, pick an experiment with binary
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signals St = {s, s′} and choose any πt(s|ωx) ∈ (0, 1) and πt(s|ωy) ∈ (0, 1) such that

πt(s|ωx)

πt(s|ωy)
=

pt

1− pt

1− pt−1

pt−1

and assign πt(s′|ωx) = 1− πt(s|ωx) and πt(s′|ωy) = 1− πt(s|ωy).

It is routine to verify that pt is obtained from pt−1 by Bayesian updating when signal s is real-

ized. This completes the proof. �

We end this section by discussing some implications of Theorem 1. First, note that the proof

shows that, for rationalizable choice data, the actions reveal information about the preference cut-

offs via the relation<. Thus, we can determine when an agent i has a higher preference cutoff than

j (if i < j and j 6< i). This preference information is potentially useful; for instance in Section 5.1,

we argue that it can be used to uncover evidence of discrimination.

Second, the proof also provides an immediate characterization for the case where the preference

cutoffs ui are known to the researcher, but the signals and the statistical experiments are not. As

we mentioned in the introduction, this is the environment considered by Shmaya and Yariv (2016)

and de Oliveira and Lamba (2019). Simply, a necessary and sufficiently condition for choice data

X to be rationalizable with known preference cutoffs (ui)i∈I is that, for all i, j such that ui ≥ uj,

we have ([xi,t = x] =⇒ [xj,t = x]) for all t. Thus, with known preferences, it is possible to refute

the model with choice data consisting of a single period.

Finally, observe that the proof shows that every rationalizable data set is also rationalizable

with a time-invariant state. In other words, while the model is refutable, we cannot distinguish

between environments where the state is time varying or invariant.4 Similarly, the proof shows

that any beliefs that rationalize the choice data can be obtained by Bayesian updating. Therefore,

Bayesian updating itself is not testable. So, as long as agents have common beliefs, they could be

using any method to form their beliefs.5 All we need is for the agents to revise their beliefs as they

receive informative signals.

While these observations follow almost immediately from our definition of rationalizability, we

nonetheless view them to be important conceptual insights of our framework. They demonstrate

the limits of the behavioral analysis of learning that can be conducted from finite choice data which

4In fact, if a data set is rationalizable, it is also rationalizable with a time-independent process and uninformative
signals. To see this, simply observe that if we let γt(ω

x|ωx) = γt(ω
x|ωy) = pt for all t and assume all St to be

singletons, the posterior at period t is indeed pt.
5So, it is also possible that these changing beliefs are generated by state transitions alone and that there is no learning
whatsoever.
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is, more often than not, the available field data. In this sense, these insights are akin to Afriat’s

theorem (Afriat, 1967) that shows any price quantity data that is consistent with utility maximiza-

tion with a locally nonsatiated utility function is also consistent with utility maximization with a

concave utility (so the convexity of preferences is not testable).

4. GENERALIZING THE BASELINE MODEL

This section generalizes the baseline model along several different directions and derives the

analogue of Theorem 1 for each of these generalizations. Each subsection generalizes the baseline

model along one particular dimension, but it will be clear that we can also simultaneously allow

for all, or a subset of, these distinct generalizations.

4.1. General preferences

When we defined rationalization in Section 2, we assumed that utilities were such that agents

prefer to match their action to the underlying state. Needless to say, this assumption might not

always be appropriate. Note that allowing for arbitrary utilities does not change the cutoff struc-

ture of optimal behavior: an agent chooses x if his belief is above or below a cutoff. Hence, with

general preferences, we can define rationalization as follows.

DEFINITION 3. The choice data X is rationalizable with general preferences if, for all i ∈ I and

t ∈ T , there exist utility functions ui, constants ηi ∈ {−1, 1}, transition probabilities γt, prior belief p0,

beliefs pt, sets of signals St, experiments πt : {ωx, ωy} → ∆(St) and realized signals st ∈ St such that

i. Actions maximize utility: ηi pt > ui when xi,t = x (resp., ηi pt < ui when xi,t = y).

ii. Bayesian Updating: pt is derived from pt−1 by Bayes’ rule.

The difference is captured in point i. The optimal behavior of an expected utility maximizer

with general preferences is characterized by two numbers ui and ηi; the former determines the

cutoff belief and the latter whether agents prefer to match or mismatch the state.

The characterization of choice data that is rationalizable with general preferences follows im-

mediately from Theorem 1. To formally state the result, we need one additional piece of notation.

Let κi : {x, y} → {x, y} be a permutation (bijection) on the actions of agent i, and κ = (κi)i∈I be

a profile of permutations, which we refer to simply as a permutation. For any permutation κ, let

X κ := (xκ
i,t)(i,t)∈I×T be the permuted choice data obtained from X by permuting the choices; that is,

xκ
i,t = κi(xi,t) for all (i, t).

COROLLARY 1. Choice data X is rationalizable with general preferences if, and only if, we can find a

permutation κ such that the permuted choice data X κ has no cycles.
13
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This result is very intuitive. If the data is rationalizable with general preferences, it must mean

that we can switch the choices of every agent for whom ηi = −1 and the permuted choice data

must be rationalizable in the sense of Theorem 1. The next example generalizes Example 1 to show

that not every choice data set is rationalizable with general preferences.

EXAMPLE 2. Consider the choice data X of two individuals i, j and four time periods represented in the

following table:

i j

t1 x y

t2 y x

t3 x x

t4 y y

Observe that the choices in the shaded cells are identical to those of Example 1 and constitute a cycle.

Corollary 1 states that the data cannot be rationalized with general preferences when there is a cycle for

every permutation of the choice data. Clearly, the cycle in periods t1 and t2 can be removed by permuting

the choices of either agent. However, this would then introduce a cycle into periods t3 and t4. Below,

we display the choice data from the three possible profiles (κi, κj) of permutations other than the identity

permutation (which does not change the choice data): from left to right, the permutations are on the choices

of agent i only, agent j only and both. Shaded cells highlight the cycles and this demonstrates that the choice

data in this example is not rationalizable with general preferences.

i j

t1 y y

t2 x x

t3 y x

t4 x y

i j

t1 x x

t2 y y

t3 x y

t4 y x

i j

t1 y x

t2 x y

t2 y y

t2 x x

4.2. More than two alternatives

There are many situations where there may be more than two alternatives despite the state

being binary. For instance, a member of a committee may choose to abstain as opposed to voting

for/against a proposal.

We begin by discussing the case where the alternatives are ordered. So suppose there are N

alternatives {y1, . . . , yN} and each agent i picks xi,t ∈ {y1, . . . , yN} in period t. Every agent i’s
14
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preferences are captured by cutoffs 0 =: ui,1 < · · · < ui,N+1 := 1 and the agent chooses action

xi,t = yn whenever ui,n < pt < ui,n+1.

Because agents are expected utility maximizers, for any utility function ui, their optimal choices

will always take the above cutoff form for some ordering of the alternatives. Therefore, we are

implicitly making two assumptions above. The first is that all agents order alternatives in the

same way (although their belief cutoffs might differ). The second is that alternative y1 is picked at

the lowest beliefs and vice versa for yN . As with Theorem 1, these assumptions can be dispensed

with and we describe how to do so immediately after the statement of Theorem 2 below.

Rationalization with multiple alternatives is analogously defined to Definition 1.

DEFINITION 4. The choice data X is rationalizable with multiple alternatives if, for all i ∈ I and

t ∈ T , there exist utility functions ui, transition probabilities γt, prior belief p0, beliefs pt, sets of signals

St, experiments πt : {ωx, ωy} → ∆(St) and realized signals st ∈ St such that

i. Actions maximize utility: ui,n < pt < ui,n+1, when xi,t = yn,

ii. Bayesian Updating: pt is derived from pt−1 by Bayes’ rule.

Similarly, we can define what it means to have a cycle when there are multiple alternatives. We

use the same terminology as this is the obvious generalization of Definition 2.

DEFINITION 5. Choice data X with multiple alternatives has a cycle if there are distinct time periods

(t1, t2) ∈ T × T and agents (i, j) ∈ I × I such that xi,t1 = yni,t1
, xj,t1 = ynj,t1

and xi,t2 = yni,t2
,

xj,t2 = ynj,t2
where ni,t1 > ni,t2 and nj,t1 < nj,t2 .

Note that the above definition implicitly leverages the order of alternatives that we fixed when we

defined preferences.

The absence of cycles is a necessary condition for rationalization even with multiple alterna-

tives. To see this, observe that when agent i switches from action yni,t1
to yni,t2

where ni,t1 > ni,t2 ,

this implies that we must have pt1 > ui,ni,t1
> pt2 . However, the choices of agent j imply exactly the

opposite inequality for the beliefs pt1 < uj,nj,t2
< pt2 , which generates the required contradiction.

Indeed, like Theorem 1, this condition is also sufficient.

THEOREM 2. Choice data X is rationalizable with multiple alternatives if, and only if, it has no cycles.

The proof of Theorem 2 can be found in Appendix A.
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We can relax the particular ordering of the actions that we chose. As we discussed above, any

utility function ui implies cutoff behavior for some order of actions and so, as in Corollary 1, we

can define agent specific permutations κi : {y1, . . . , yn} → {y1, . . . , yn} and consider the permuted

choice data X κ. Then, the choice data is rationalizable with multiple alternatives and general

preferences if, and only if, we can find a permutation κ such that the permuted choice data X κ has

no cycles.

4.3. Relaxing common beliefs

Perhaps the strongest assumption in the baseline model is that agents have common beliefs.

This section relaxes this assumption. As we mentioned earlier, every choice data set is rationaliz-

able if we allow for arbitrary private signals and, thus, for arbitrary private beliefs. There needs to

be some relation between the information of the agents in order for the model to have non-trivial

testable implications.

The restriction we impose is that agents receive “co-monotone” private signals. Informally, an

experiment is co-monotone if the joint distribution of the signals is such that agents agree on the

state that their individual signal is more likely to arise from, but disagree on the strength of the

signal. As as example, this assumption captures a deliberative committee where agents all agree

that the information is good news for one of the two states, but disagree in terms of how good the

news actually is.

Formally, the experiment πt : {ωx, ωy} → ∆(×i∈ISi,t) is co-monotone if for all profiles of signals

(s1,t, . . . , sI,t) in the support of πt,

[πi,t(si,t|ωx)− πi,t(si,t|ωy)][πj,t(sj,t|ωx)− πj,t(sj,t|ωy)] ≥ 0

for all (i, j), where πi,t(·|ω) is the marginal of πt(·|ω) over Si,t.6 Experiments are strictly co-

monotone if the above inequalities are all strict.

Before defining the rationalization criterion, we present the main implication of assuming co-

monotone experiments. To do so, we need some additional notation. We let pi,t be agent i’s belief

about the event [ωt = ωx] at period t after having received the private signal si,t. Similarly, we let

qi,t+1 := pi,tγt+1(ω
x|ωx) + (1− pi,t)γt+1(ω

x|ωy)

be agent i’s belief about the event [ωt+1 = ωx] at period t + 1 prior to receiving the private sig-

nal si,t+1. An immediate implication of assuming co-monotone experiments is that, for any two

6The support of the kernel πt is the union of the supports of each probability πt(·|ω).
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Bayesian agents i and j,

[pi,t > qi,t =⇒ pj,t ≥ qj,t] and [pi,t < qi,t =⇒ pj,t ≤ qj,t]. (2)

In words, the private beliefs are co-monotone. Conversely, for all posteriors pi,t and pj,t that satisfy

(2), we can find a co-monotone experiment and signals (si,t, sj,t), which generate these posteriors.

(See the proof of Theorem 3 for details.)

We now define the rationalization criterion. Throughout, we write St for the set of signals

×i∈ISi,t.

DEFINITION 6. The choice data X is rationalizable with (strictly) co-monotone experiments if there

exist utility functions ui, transition probabilities γt, prior p0, beliefs pi,t, sets of signals Si,t, (strictly) co-

monotone experiments πt : {ωx, ωy} → ∆(St) and realized signals st ∈ St such that

i. Actions maximize utility: pi,t > ui if xi,t = x (resp., pi,t < ui if xi,t = y).

ii. Bayesian Updating: pi,t is derived from pi,t−1 by Bayes’ rule conditioning on si,t.

We stress that all the information an agent receives is encoded in the private signal. Since private

signals are not correlated with past decisions, states and signals, this implies that agents neither

observe the past decisions of others nor their private signals. This assumption is appropriate in

some applications, less so in others. We can allow for general experiments, which condition on the

current state and past signals, actions, and states. As long as we restrict attention to co-monotone

experiments, the same testable implications would obtain.

We first argue that the model has testable implications when the state is time-invariant. To do

so, we revisit Example 1 making one minor alteration.

EXAMPLE 3. Consider the choice data X of two individuals i and j and two consecutive time periods t and

t + 1 represented in the following table:

i j

t x y

t + 1 y x

Recall that Example 1 had exactly this pattern of choices, but with arbitrary time periods.

We argue that this choice data cannot be rationalized with co-monotone experiments and a time-invariant

state. Suppose to the contrary that we could. This implies that we can find thresholds and beliefs for agent i

that satisfy

pi,t > ui > pi,t+1.
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Since agent i’s belief decreases, it must be the case that the information she receives satisfies πi,t+1(si,t+1|ωx) <

πi,t+1(si,t+1|ωy). Since experiments are co-monotone, agent j’s information must satisfy πj,t+1(sj,t+1|ωx) ≤
πj,t+1(sj,t+1|ωy) for all signals sj,t that agent j can receive with positive probability. This implies that agent

j’s belief cannot increase and so we cannot have

pj,t < uj < pj,t+1,

the required contradiction.

The following definition provides a name to such consecutive time period cycles.

DEFINITION 7. Choice data X has a consecutive cycle if there are agents (i, j) ∈ I ×I and a time period

t ∈ T such that xi,t = x, xj,t = y and xi,t+1 = y, xj,t+1 = x.

Example 3 shows that a necessary condition for rationalization is the absence of consecutive

cycles in the choice data. The next result shows that this condition is also sufficient. The theorem

actually shows a stronger result. First, any data that is rationalizable with co-monotone exper-

iments is also rationalizable with strictly co-monotone experiments. Second, if the choice data

is rationalizable, then it is rationalizable with an arbitrary profile of utility functions. Put differ-

ently, this implies that, if we relax the assumption of common information, then choices no longer

provide any ranking of the agents’ cutoff beliefs.

THEOREM 3. Fix any arbitrary profile of utility functions (ui)i∈I . Given the profile (ui)i∈I , choice data

X is rationalizable with (strictly) co-monotone experiments and a time-invariant state if, and only if, it has

no consecutive cycles.

PROOF. Since we have already argued the necessity, we only need to argue the sufficiency. Fix

any arbitrary profile of utility functions (ui)i∈I . The proof is by induction on T.

If T = 1, there are no consecutive cycles. We therefore need to argue that we can rationalize all

choice data. Given the thresholds (ui)i∈I , choose p0 and pi,1 as follows. For all i such that xi,1 = x,

choose pi,1 > ui. Similarly, for all i such that xi,t = y, choose ui > pi,1. Choose p0 < mini∈I pi,1.

For all i, choose strictly positive numbers (πx
i,1, π

y
i,1) such that ∑i πx

i,1 < 1, ∑i π
y
i,1 < 1, and

πx
i,1

π
y
i,1

=
pi,1

1− pi,1

1− p0

p0
> 1.

Such numbers exist. Moreover, since πx
i,1/π

y
i,1 > 1 for all i, we have that

[πx
i,1 − π

y
i,1][π

x
j,1 − π

y
j,1] > 0,
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for all (i, j). From Lemma 1 in Appendix B, there exist a strictly co-monotone experiment and

a profile of signals (si,1, . . . , sI,1) such that (πx
i,1, π

y
i,1) = (πi,1(si,1|ωx), πi,1(si,1|ωy)). Hence, upon

receiving the signal si,1, agent i’s belief is pi,1.

As the induction hypothesis, suppose we can rationalize any T period choice data that has no

consecutive cycles. For the induction step, we will argue that we can also do this for any T + 1

period choice data that has no consecutive cycles.

So consider choice data X := (xi,t)(i,t)∈I×T with no consecutive cycles and |T | = T + 1. By the

induction hypothesis, we can rationalize the first T observations (xi,t)(i,t)∈I×{1,...,T}. Let the period

T beliefs be pi,T.

If the choices of all agents are the same in periods T and T + 1, that is, xi,T = xi,T+1 for all i ∈ I ,

then the choice data is rationalized by all agents receiving uninformative signals.

It remains to consider the case where at least one agent changes their choice. So, assume that

there is an agent ĩ who switches from xĩ,T = x to xĩ,T+1 = y. (The case where an agent ĩ switches

from xĩ,T = y to xĩ,T+1 = x is treated analogously and, therefore, omitted.) Since there are no

consecutive cycles, there is no agent j switching from xj,T = y to xj,T+1 = x. So for all i ∈ I ,

choose any pi,T+1 that satisfy

pi,T > pi,T+1 > ui if xi,T = xi,T+1 = x,

ui > pi,T > pi,T+1 if xi,T = xi,T+1 = y,

pi,T > ui > pi,T+1 if xi,T = x, xi,T+1 = y.

Such period-(T + 1) beliefs can always be chosen because, by the induction hypothesis the period-

T beliefs satisfy pi,T > ui when xi,T = x (respectively, pi,T < ui when xi,T = y).

Observe that the constructed period T + 1 beliefs are strictly lower than the period T beliefs

and hence, we can construct co-monotone experiments that generate these beliefs. For all i, choose

strictly positive numbers (πx
i,T+1, π

y
i,T+1) such that ∑i πx

i,T+1 < 1, ∑i π
y
i,T+1 < 1, and

πx
i,T+1

π
y
i,T+1

=
pi,T+1

1− pi,T+1

1− pi,T

pi,T
< 1.

To complete the proof, we invoke Lemma 1 in Appendix B. �

Unlike Theorem 1, Theorem 3 requires the state to be time-invariant. Why should the state

evolution matter in this case? In the case of common beliefs, by definition, beliefs must move in the

same direction for all agents across observations. This is also true for co-monotone experiments as
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long as the state is time-invariant. When the state is time-varying however, this need not be true.

To see this, suppose that the evolution of the state causes the belief qi,T+1 to be lower than pi,T

for all agents. Now, consider a co-monotone experiment where the belief of each agent increases,

that is, pi,T+1 > qi,T+1 for all i. The different strengths of the signals may, however, cause the

belief pi,T+1 of some agents to increase above their belief pi,T, while for others it remains below.

Theorem 4 states that this is in fact enough to rationalize all choice data.

THEOREM 4. Every choice data X is rationalizable with strictly co-monotone experiments (and a time-

varying state).

PROOF. The proof is by induction on T. Throughout, we fix arbitrary thresholds (ui)i∈I . If T = 1,

all choice data are clearly rationalizable (as shown in the proof of Theorem 3).

As the induction hypothesis, suppose that we can rationalize all choice data with T periods and,

for the induction step, consider any choice data (xi,t)(i,t)∈I×T with |T | = T + 1 periods. Since the

choice data (xi,t)(i,t)∈I×{1,...,T} is rationalizable, there are period-T beliefs pi,T such that pi,T > ui

when xi,T = x, and pi,T < ui when xi,T = y.

Choose any 0 < q̃ < mini∈I ui and consider the following state transitions

γT+1(ω
x|ωx) = 1− γT+1(ω

y|ωx) = γT+1(ω
x|ωy) = 1− γT+1(ω

y|ωy) = q̃.

By construction of the transition probabilities, qi,T+1 = q̃ for all i, regardless of the beliefs pi,T. The

evolution of the state at period T + 1 is independent of its realization period T.

For all i ∈ I , choose any pi,T+1 > q̃ that satisfies

pi,T+1 > ui if xi,T+1 = x,

pi,T+1 < ui if xi,T+1 = y.

These numbers exist because q̃ < mini∈I ui.

Finally, as in the proof of Theorem 3, we can construct a strictly co-monotone experiment πT+1 :

{ωx, ωy} → ∆(×iSi,t), which generates these beliefs. This completes the proof. �

The observant reader may have wondered why we assume that agents have the same prior

belief and agree about state transitions. It should be clear from the proof of Theorem 3 that nothing

changes if we allow the prior belief to vary by agent (since the induction step does not involve the

prior belief). Theorem 4 shows that, if we allow for time varying states, anything goes. Thus,
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any further relaxation that allows for heterogeneous prior beliefs or private state transitions (even

those that are systematically related) would also result in there being no testable implications.

Finally, we can generalize Theorem 3 to accommodate multiple alternatives and general pref-

erences in exactly the same way we did for the baseline model. With multiple alternatives, a con-

secutive cycle would then just be a cycle in terms of Definition 5 over consecutive time periods.

General preferences would once again be the equivalent of permuting the choice data. Obviously

Theorem 4 also generalizes and all choice data is rationalizable with strictly co-monotone experi-

ments, a time-varying state and, either or both of, multiple alternatives and general preferences.

We conclude this section with two final remarks. First, an alternative to assuming that agents

receive private signals is to assume that all agents observe the same signal, but have different (co-

monotone) beliefs about its likelihood. That is, agents observe the signal st at period t, but disagree

about the likelihood of st. Agent i believes that the likelihood is πi,t(st|ω) when the state is ω. In

turn, this translates into agent i having the belief pi,t. Differences in beliefs are thus coming from

differences in personal views about the data generating process. This alternative interpretation

does not alter our results.

Second, we assume that the agents are Bayesian. Again, this is not needed. All we need is that

the agents revise their beliefs in a way that satisfies (2). There are several models in the behavioral

economics literature that have this feature. We now describe a couple of them.

To start with, consider the following updating behavior first motivated by Grether (1980). Pos-

teriors are derived by the formula

pi,t =
qi,t (πi,t(si,t|ωx))βi,t

qi,t (πi,t(si,t|ωx))βi,t + (1− qi,t) (πi,t(si,t|ωy))βi,t

where βi,t ≥ 0. Here, the interpretation is that agents distort (that is, either over or under react

to) the signal via their individual, time specific parameter βi,t. Observe that when βi,t = 1, this

corresponds to standard Bayesian updating but the flexibility accommodates two common biases

in belief updating: “under-inference” when βi,t < 1 and “over-inference” when βi,t > 1.

Observe that pi,t > qi,t implies that πi,t(si,t|ωx) > πi,t(si,t|ωy) (resp., pi,t < qi,t implies that

πi,t(si,t|ωx) < πi,t(si,t|ωy)). Therefore, if agent j follows the same updating rule (but with pa-

rameter β j,t), his belief pj,t moves co-monotonically with agent i’s belief if the experiment is co-

monotone. Our characterization thus continues to hold. The significant theoretical and experi-

mental literature that builds on this framework is described in several surveys; two recent exam-

ples are Benjamin (2019) and Gabaix (2019).
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Another framework is that of “coarse” updating. Here, in every period t, each agent i has belief

cutoffs 0 =: β0
i,t < β1

i,t < · · · < β
Ni,t
i,t < β

Ni,t+1
i,t := 1 and Ni,t ordered beliefs 0 ≤ q̂1

i,t < · · · <
q̂Ni,t

i,t ≤ 1. Roughly speaking, belief updating works as follows. The updated belief is pi,t = q̂ni
i,t if

the belief obtained by Bayesian updating (given by the right side of equation 1) lies between the

cutoffs βni−1
i,t and βni

i,t. In words, agents update coarsely by assigning intervals of beliefs obtained

by Bayesian updating to single beliefs. There are several models that have this feature. Two recent

examples are Wilson (2014) and Jakobsen (2021); the latter paper contains a detailed description

of the literature. Note that a co-monotone experiment combined with such updating generates

posteriors that are ordered in the sense of (2) and so this behavior will also be captured under

Definition 6. Additionally, observe that we can allow all agents to use different updating rules

with distinct behavioral biases as long as their beliefs satisfy the property (2).

5. APPLICATIONS

5.1. Testing for discrimination

Disentangling channels of discrimination is known to be empirically difficult: in addition to the

discussion in the aforementioned Bertrand and Duflo (2017), this is also highlighted in the survey

of Guryan and Charles (2013). Our results can provide distinct suggestive evidence for different

types of discrimination. To see this, consider richer choice data (xi,t, θt)(i,t)∈I×T , where xi,t is agent

i’s decision to either approve or reject application t, and θt is a vector of observable characteristics

(which are observable to both the agents and the analyst). As an example, job seekers routinely

apply to several jobs and only receive interview for a subset of them. Here, the dataset consists of

the interview decisions along with some observable characteristics of the applicants; for example,

sex, age, or ethnicity. Other examples include applications for degree programs, mortgages, and

credit cards.

As should be clear from the previous sections, only a specific type of data set is appropriate to

test our model on. Specifically, we not only require all the agents to learn from common infor-

mation, we also require the common signals to arrive in the same order.7 It is easy to construct

examples (where the state is correlated across time) where cycles may arise because agent i sees

the common signal st1 , chooses x, then sees st2 and chooses y, while agent j receives these signals

and makes choices in the opposite order. In field data, a common set of applications that arrive at

the same time (such as those for graduate school) may be viewed and decided upon in different

7For the special case where the state is drawn independently in each period, the order does not matter. It is worth
mentioning that this assumption is commonly made in empirical work on discrimination. See, e.g., Kline and Walters
(2021) and references therein.
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orders by the prospective employers and these orders are typically unobserved by the researcher.

Therefore, appropriately collected experimental data is perhaps more apt to test our model. Cor-

respondence studies can easily be designed in which fictitious applications are sent to employers

sequentially such that each fresh round of applications is only sent after decisions on the previous

round are made.8

Now, for simplicity, suppose that the choice data (xi,t, θt)(i,t)∈I×T is such that each θt corre-

sponds to a single characteristic which can only take one of two values θ and θ′ that, for example,

correspond to being white and black or male and female. Let θ be the characteristic corresponding

to the “favored” group. It is worth reiterating that, uncovering evidence of discrimination with

our model does not require the particulars of the applications in different periods to be the same

or even comparable.

There are two main theories of discrimination: statistical and taste-based. We consider the

former first. Consider the sub-sample where we condition on [θt = θ], that is, we restrict attention

to the observations having the favored characteristic. Assume that it can be rationalized. This

means that we cannot reject the hypothesis that the agents share the same belief in this sub-sample.

Now, consider the sub-sample where we condition on [θt = θ′]. Suppose, we cannot rationalize

this sub-sample. Then, this implies that, in contrast to the favored group, there are at least two

agents (i, j) who have different beliefs in the sub-sample of the “disadvantaged” group. This is

suggestive evidence of statistical discrimination.

The evidence is, however, not fully conclusive. The two agents (i, j) may have different beliefs

because they have different priors or because they interpret the common signal differently. We

cannot reject that hypothesis with our simplest test. However, we can if we assume that the agents

receive private but co-monotone signals (but this additionally requires us to assume the state is

time-invariant and to therefore design the experiment appropriately). Two additional remarks

are worth making. First, we cannot definitively state whether it is agent i, agent j or both, who

are discriminating. We can only conclude that at least one is discriminating. Second, even if the

complete sample (xi,t)(i,t)∈I×T is rationalizable, we cannot reject the null hypothesis of statistical

discrimination. This is because it is possible that agents have common beliefs because they are all

statistically discriminating against the disadvantaged group.

8In a correspondence study, the researcher also knows the details of each application. However, the researcher does not
know how employers interpret applications or, in other words, how a given application maps onto a signal. This can,
of course, be formally modeled but we abstract away from these details in the discussion that follows.
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We now consider the case of taste-based discrimination. Once again, consider the two sub-

samples, where we condition on [θt = θ] and [θt = θ′]. If the two sub-samples are rationalizable,

we can infer the ordering over thresholds in the two sub-samples and compare them. If the two

orderings differ, there exists (at least) a pair of agents (i, j) such that uθ
i ≥ uθ

j and uθ′
j > uθ′

i . This

implies that if we assume that the two agents have common beliefs in each sub-sample—an as-

sumption we cannot reject since the two sub-samples are rationalizable—then agent j more often

approves applications with characteristic θ than agent i, while the converse is true when the char-

acteristic is θ′. In other words, this is evidence of taste-based discrimination. Finally, note that, if

the two orderings coincide, we cannot reject the null hypothesis of no taste-based discrimination

because this discrimination, while present, may not be reflected in the choice data.

5.2. Committees

While there is a large theoretical literature on committee voting, there is substantially less struc-

tural empirical work. Iaryczower and Shum (2012) estimate a model of committee voting by using

the judicial decisions in the US Supreme Court. Here, both states (whether the meaning of the law

favors the plaintiff or defendant) and alternatives (the ruling) are binary. Hansen and McMahon

(2016) study individual voting behavior in Bank of England’s Monetary Policy Committee. They

model the decision making environment using a binary state (more/less inflationary state), bi-

nary alternative (vote for either high or low interest rates) and assume that the state is drawn

independently from an identical distribution in each period.

Our model is quite similar to these papers albeit with two key distinctions. They allow for

private information but do not allow for learning (Hansen and McMahon, 2016 instead focus on

the role of signaling) and they effectively assume that (conditioning on observable covariates) each

decision problem that a committee faces is ex ante identical (prior to the observation of signals).

Moreover, the aim in these papers is to estimate the underlying model parameters and for this

they require additional functional form assumptions. By contrast, although our model allows us

to determine some ordinal information (such as the ranking of voters’ cutoffs), we cannot estimate

any underlying parameters because they are not identified.9

One feature that is common to all these papers is that they assume committee members have the

same prior beliefs in each decision problem before receiving their private signals. In other words,

the heterogeneity across agents is in terms of their preferences or “ideology” instead of their prior

9In this sense, our paper is closer to Iaryczower et al. (2018) who develop a model of communication within the commit-
tee and estimate the effects of deliberation on the decisions of US appellate courts. Their model has multiple equilibria
and is partially identified.
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beliefs or “bias.”10 A natural question is whether these two different sources of (single parameter)

heterogeneity lead to distinct testable implications? This would be informative because we might

think the sources of bias and ideology differ and so different interventions might be required

should we aim to correct them.

Theorem 3 showed that, if we allow for co-monotone signals, then there is no additional gener-

ality in assuming different preferences for each agent. So instead, suppose we assume that agents

have the same preferences, information in each period arrives via common signals (as in Defi-

nition 1) but agents have different prior beliefs. This effectively amounts to assuming that the

committee is deliberative but that members differ in terms of bias as opposed to ideology. We can

show that heterogeneity in prior beliefs or preferences have the same testable implications when

the state is time-invariant but the former has strictly weaker (but nontrivial) restrictions when the

state is time varying.11 In other words, differences between these sources of heterogeneity are

testable.

5.3. Counterfactual analysis

A natural question is whether we can use the observed choice data X to make counterfactual

predictions about actions in a hypothetical period T + 1. To fix ideas, consider the baseline model.

Theorem 1 implies that we can rule out the subset of period T + 1 actions that would generate

a cycle. However, a consequence is that we can never rule out the outcome where all agents

pick the same alternative, that is, xi,T+1 = xj,T+1 for all (i, j). In the context of committee voting,

this implies that a unanimous vote for either alternative is always possible in the counterfactual

scenario.

That said, our model allows for considerably sharper conditional predictions. To be more precise,

if we knew the alternative that one agent plans to choose in period T+ 1, this can impose a lot more

structure on the actions of the other agents. For instance, if a member i of a committee announces

that she plans to vote x in period T + 1, we might be able to rule out the event where the alternative

y gets a majority of votes and therefore is enacted. We end the paper by demonstrating how these

observations can be employed in a simple example.

EXAMPLE 4. Consider the choice data X of three agents i, j, k and two time periods represented in the

following table:

10Iaryczower and Shum (2012) discuss in footnotes 11 and 18 why allowing for heterogeneity in the prior beliefs lead
to poorly behaved estimates.
11Formal statements and proofs available upon request.
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i j k

t1 x y y

t2 x x y

Since there are no cycles, this data is rationalizable in the sense of Definition 1. Now suppose we want to

predict the possible action profiles in a third period t3. The following table describe all possible counterfac-

tual action profiles (that do not generate cycles):

i j k

t1 x y y

t2 x x y

t3 x x x

i j k

t1 x y y

t2 x x y

t3 x x y

i j k

t1 x y y

t2 x x y

t3 x y y

i j k

t1 x y y

t2 x x y

t3 y y y

There are eight possible action profiles that are possible in period t3 and the observed choice data eliminates

half of those. Note that the example is such that the choices in the first two time periods completely order

the cutoffs of all three agents (ui < uj < uk). Therefore, observing the choices from any additional time

periods would not change the counterfactual predictions and we would still only be able to eliminate half the

possible action profiles.

Now suppose that we knew that either agent i or j will choose y in period t3. We can immediately

conclude that only the right two action profiles are possible and so x cannot be chosen by a majority. In other

words, knowing the choices of a single agent in a counterfactual time period can allow us to considerably

sharpen our predictions. Finally, the insights from this example can easily be generalized to demonstrate

how counterfactual analysis can be conducted when there are general preferences and/or multiple actions

and/or co-monotone experiments.

6. CONCLUDING REMARKS

We develop a simple yet rich framework via which we can test different assumptions on pref-

erences and the underlying learning environment with very parsimonious data. The theoretical

results can be used to uncover evidence for different types of discrimination and to detect differ-

ences in bias versus ideology in committee decision making. The model allows for counterfactual

analysis that can be considerably sharpened if the actions of a subset of agents is known. Finally,

we can test the assumption of common beliefs against other models of private learning (because
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they have distinct testable implications). This shows that it is possible to distinguish between dif-

ferent learning behaviors. This is a potentially useful result for the large behavioral economics

literature that studies non-Bayesian learning.

One assumption of the baseline model that we maintained throughout was that the underlying

state is binary. We end the paper with a short discussion on generalizing beyond binary states. As

we have argued, testable restrictions in our model arise from the fact that we can map the choices

of the agents to the underlying information: recall that in the baseline model, if agent i switches

from x to y over two periods this implies that the (common) belief must have gone down. With

more than two states, the set of preferences ui(ωt, xi,t) expands greatly and so the relation between

choices and beliefs can be considerably more complex.

That said, the analysis can be extended provided some structure is imposed on the set of pos-

sible preferences. As an example, suppose the unknown underlying state ω can now take (a con-

tinuum of possible) values in the set [0, 1]. Agents’ preferences are as follows. Each agent i has a

threshold ui and chooses x whenever E[ωt] > ui (and chooses y whenever E[ωt] < ui). As before,

the state can be stochastic and learning occurs via signals realized from a statistical experiment.

Note that in this simple setting, if an agent i chooses x in period t1 and y in period t2, it must

imply that E[ωt1 ] > ui > E[ωt2 ]. Therefore, once again rationalizable choice data X cannot

have a cycle. It is simple to show that the absence of cycles is also a sufficient condition for

rationalizability; loosely speaking, the expected value of the state E[ωt] plays the identical role

as the belief pt in the baseline model.12

Of course, the above is one particular formulation of a multiple-state extension of our model;

in future work, we hope to further develop these results. Learning occurs in almost all dynamic

choice environments and there is considerable scope to study what can be revealed about prefer-

ences and information from observed choices.

12The sufficiency can be argued by restricting the distribution of the state ωt to be supported on only two points {0, 1}.
Note that this implies E[ωt] = pt where pt is the belief that the agents assign to the state being ωt = 1. The argument
then follows identically to the proof of Theorem 1.
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APPENDIX A. PROOF OF THEOREM 2

PROOF. (⇒ .) In the text.

(⇐ .) We first define an incomplete binary relation � on pairs (i, n) of agents i ∈ I and indices

of actions n ∈ {1, . . . , N} as follows. For all i ∈ I , for all n ∈ {2, . . . , N},

(i, n) � (i, n− 1).

For all i 6= j, for all n ∈ {2, . . . , N},
(i, n) � (j, n′),

if there exists t ∈ T such that xi,t = yn−1 and xj,t = yn′ . All other pairs are not comparable.

This relation reflects the order of the preference cutoffs. The first line captures the order ui,n >

ui,n−1 of actions. As for the second line, observe that, when xi,t = yn−1, xj,t = yn′ , if the data is

rationalizable, then ui,n > pt > ui,n−1 and uj,n′+1 > pt > uj,n′ which imply ui,n > uj,n′ .

We now argue that the relation � does not have a cycle of any length, that is, there do not exist

sequences ((i1, n1), . . . , (ik, nk)) for some k ≥ 2 such that

(i1, n1) � (i2, n2) � · · · � (ik, nk) � (i1, n1).

By contradiction, suppose that such a sequence exists. By definition of �, (i1, n1) � (i2, n2)

implies that there is a time period t2 at which xi1,t2 = ym2 where m2 ≤ n1 − 1 and xi2,t2 = yn2 (if

i2 = i1 then xi1,t2 = xi2,t2 = ym2 = yn2 with m2 = n2 = n1 − 1).

Similarly, (i2, n2) � (i3, n3) implies that there is a time period t3 at which xi2,t3 = y` where

` ≤ n2 − 1 and xi3,t3 = yn3 . Now let us compare periods t2 and t3. Observe that agent i2 chooses a

strictly lower action in t3 (y` as opposed to yn2) and therefore the no cycles condition implies that

agent i must also choose a weakly lower action xi1,t3 = ym3 where m3 ≤ m2 < n1.

Iterating the argument, there exists a period tk where agent ik chooses xik ,tk = ynk and agent i

chooses action xi1,tk = ymk where mk < n1.

Now observe that if ik = i1, then xik ,tk = ynk = xi1,tk = ymk which is a contradiction because

(ik, nk) � (i1, n1) means that nk = mk = n1 + 1.

Therefore, it must be the case that ik 6= i1. Consequently, there exists period t1 in which xik ,t1 =

ynk−1 and xi1,t1 = yn1 . Compare periods tk and t1. Agent ik chooses a strictly lower action (ynk−1

versus ynk ) in t1 whereas agent i1 chooses a strictly higher action (yn1 versus ymk ). These choices

constitute a cycle, a contradiction.
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In addition, we define the symmetric part ∼ as (i, n) ∼ (i, n) for all (i, n). Thus, the relation

� ∪ ∼ is reflexive and consistent. By Theorem 3 (that generalizes Szpilrajn’s Theorem) in Suzu-

mura (1976), there exists a complete and transitive binary relation <∗ on the set of pairs (i, n)

that extends � ∪ ∼. In turn, this implies that we can find numbers ui,n for all (i, n) that satisfy

ui,n > uj,n′ when (i, n) <∗ (j, n′). In particular, note that

i. ui,n > ui,n′ for n > n′ and

ii. ui,n > uj,n′ if there is a time period t ∈ T such that xi,t = yn−1 and xj,t = yn′ .

Item i gives us the correctly ordered cutoffs for each agent, so these cutoffs generate valid pref-

erences. Item ii implies that, for every t ∈ T , we can find a pt such that ui,n+1 > pt > ui,n where

xi,t = yn for all i ∈ I . To see this, note that, by point ii above, xi,t = yn and xj,t = yn′ implies

ui,n+1 > uj,n′ . Therefore,

min
i,n
{ui,n+1 |xi,t = yn} > max

j,n′
{uj,n′ |xj,t = yn′},

and any pt between the left and right sides will suffice.

To complete the proof, we can construct the signals and experiments by following the same

steps as in the proof of Theorem 1 from the main text. �

APPENDIX B. FROM MARGINALS TO JOINT DISTRIBUTIONS

LEMMA 1. Suppose that there exist strictly positive numbers (πx
i , π

y
i )i∈I such that ∑i πx

i < 1, ∑i π
y
i < 1,

and

[πx
i − π

y
i ][π

x
j − π

y
j ] > 0,

for all (i, j). Then, there exists a strictly co-monotone experiment π : {ωx, ωy} → ∆(×i∈ISi) and a profile

of signals s = (s1, . . . , sI) such that

(πi(si|ωx), πi(si|ωy)) = (πx
i , π

y
i ),

for all i. Moreover, the profile of signal s is in the support of the experiment.

PROOF. We construct π(·|ωx). For all ε ≥ 0, let πx
i (ε) be a solution to

(1− ε)πx
i (ε) + ε

1
I
= πx

i .

Choose ε small enough such that πx
i (ε) ∈ (0, 1) and ∑i πx

i (ε) < 1. Since πx
i (0) = πx

i , this is

possible by continuity.
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Let Si = {s0, s1, . . . , sI} for all i ∈ I and S∗ = ×i∈I (Si \ {s0}). We define π(·|ωx) as follows:

π(s1, . . . , sn|ωx) =



(1− ε)πx
i (ε) + ε 1

I I if s1 = · · · = sn = si, i ∈ I

ε 1
I I if s ∈ S∗ \⋃i∈I{(si, . . . , si)}

(1− ε)(1−∑i∈I πx
i (ε)) if s1 = · · · = sn = s0

0 otherwise.

It is routine to check that π(·|ωx) is indeed a probability over ×i∈ISi. (Note that the cardinality of

S∗ \⋃i∈I{(si, . . . , si)} is I I − I.) The support of π(·|ωx) is S∗ ∪ {(s0, . . . , s0)}.

For all s ∈ S∗, agent i’s marginal πi(si|ωx) is

(1− ε)πx
` (ε) + ε

1
I
= πx

`

whenever si = s`, ` ∈ {1, . . . , I}.

The probability π(·|ωy) is constructed analogously. Note that the epsilons we use to construct

π(·|ωx) and π(·|ωy) may differ. However, for any epsilon smaller than the minimum of the two

of them, we continue to have two well-defined probabilities with the same epsilon. Thus, we can

choose the same epsilon for both constructions.

It remains to check that the experiment is co-monotone. Consider any profile of signals s ∈ S∗.

We have that

[πi(si|ωx)− πi(si|ωy)][πj(sj|ωx)− πj(sj|ωy)] = [πx
` − π

y
` ][[π

x
`′ − π

y
`′ ] > 0,

with (si, sj) = (s`, s`
′
), (`, `′) ∈ I × I .

Finally, if the signal profile is (s0, . . . , s0), we have that

[πi(s0|ωx)− πi(s0|ωy)][πj(s0|ωx)− πj(s0|ωy)] = [πi(s0|ωx)− πi(s0|ωy)]2 > 0,

for all pairs (i, j). This follows immediately from the fact that all agents have the same marginal

over s0, regardless of the state.

The experiment is therefore co-monotone. This completes the proof. �

We can illustrate the construction when there are two agents. When the state is ωx, the joint

distribution over signals is given by
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s1 s2 s0

s1 (1− ε)πx
1(ε) + ε 1

4 ε 1
4 0

s2 ε 1
4 (1− ε)πx

2(ε) + ε 1
4 0

s0 0 0 (1− ε)(1− πx
1(ε)− πx

2(ε))

Thus, conditional on any signal, the two agents have the same marginals. Moreover, we con-

struct the numbers ε, πx
1(ε) and πx

2(ε) such that

(1− ε)πx
i (ε) + ε

1
4
= πx

i

for all i, and the probability is well-defined.

We do a similar construction when the state is ωy. It is then immediate to verify that the exper-

iment is co-monotone. Finally, if agent i receives the signal si, the ratio of marginals is

πx
i

π
y
i

,

as required in the main text.
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