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Abstract

This paper presents a nonparametric model of interdependent preferences, where an individual’s con-
sumption may act as an externality on the preferences of other consumers. We assume that individual price
consumption data is observed for all consumers. It is known that the general consumption model with
externalities imposes few restrictions on the observed data, where the consistency requirement is Nash ra-
tionalizability. We motivate potential games as an important sub class of games where the family of concave
potential games is refutable and imposes stronger restrictions on observed data. We use this framework to
extend the analysis of Brown and Matzkin [D. Brown, R. Matzkin, Testable restrictions on the equilibrium
manifold, Econometrica 64 (1996) 1249–1262] on refutable pure exchange economies to pure exchange
economies with externalities. Finally, we discuss an application of this model to inter-household consump-
tion data.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

In general, economic theory assumes individual demand is the result of consumers maximiz-
ing independent utility functions subject to budget constraints. Some economists however, have
questioned this assumption of convenience. As early as 1899, Veblen observed that social status
was an important consideration for the nouveau riche of 19th century capitalist societies and used
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Consumption.
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the term ‘conspicuous consumption’ to describe the practice of lavish spending to display wealth.
Duesenberry in his classic work [17] concerning the consumption function problem, attempted
to explain the statistical discrepancy between Kuznets’ data on aggregate savings and income
in the period 1869–1929, and budget study data for 1935–1936 and 1941–1942, by challenging
the conventional assumption of independent preferences. Work on interdependent preferences
can also be found in Hopkins and Kornienko [21], Pollak [26], Postlewaite [27], Schall [30] and
Sobel [32].

The empirical research on interdependent preferences assume parametric specifications. Our
analysis is nonparametric and extends Afriat’s seminal nonparametric analysis of independent
preferences [1] to interdependent preferences. Afriat provides nonparametric necessary and suf-
ficient conditions for a finite set of observations on prices and individual demands to be consistent
with independent utility maximization. The consistency requirement for interdependent prefer-
ences is pure-strategy Nash equilibrium. It has been shown that a general model of consumption
with interdependent preferences imposes very weak restrictions on observed data (see Deb [15]
and Carvajal [10]).

Bracha [4] introduced potential games as a model for interdependent preferences in the con-
text of individual decision making under uncertainty and risk. We show that the class of utility
functions which generate concave potentials impose refutable restrictions on observed data while
still encompassing a large set of preferences. That is, we present necessary and sufficient condi-
tions for constructing a concave potential function which Nash rationalizes the data.

Our model of interdependent preferences can be extended to study aggregate data. Carvajal
[10] examines interdependent preferences using aggregate data, fixing a single good as the exter-
nality good. His results are largely negative (i.e., his model imposes no restrictions on aggregate
data), although he does obtain positive results under the relatively strong assumption of weak
separability in the externality good. By contrast, the concave potential model presented in this
paper allows all goods to act as externalities. In spite of this general framework, we find that the
concave potential model imposes nontrivial refutable restrictions on aggregate data. We show
that this is a strengthening of the results of Brown and Matzkin [7] on refutable pure exchange
economies to pure exchange economies with interdependent preferences.

The model of this paper can be used to study household consumption data. There has been
a substantial amount of research on household consumption. The introduction of the collective
household model of Chiappori [12,13] was the first notable divergence from the unitary approach,
which modeled the household as a single unit, where members of the household were assumed to
have common goals. This divergence was necessary as there was mounting empirical evidence
that the unitary model was rejected on household data (see for example, Blundell, Pashardes
and Weber [2], Browning and Meghir [9]). The collective model allows the members of the
household to have different preferences and allows a household member’s private unobserved
consumption to act as an externality on another household member. In contrast, our framework
assumes household member’s have common goals (as in the unitary model) but allows a house-
hold’s consumption to act as an externality on another household. An example of this, is the well
known phenomenon of “keeping up with the Joneses.” We discuss the application of our model
to household data in Section 4.

We would like to mention a few other related works. Snyder [31] shows that the hypothesis
of Pareto efficiency in the provision of public goods is falsifiable when finite data is available
on market prices, production levels and individual incomes. Cherchye et al. [11] analyze a non-
parametric version of the collective household model mentioned above when household level
consumption is observed. Chiappori and Ekeland [14] show that the general version of the col-
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lective model is not identified, that is, individual preferences and the decision process cannot be
uniquely inferred from household consumption data. In other words, they show that a continuum
of different structural settings can generate identical observable household behavior.

The paper is organized as follows. In Section 2, we describe a general model of consumption
with interdependent preferences. In Section 3, we describe the general class of potential games
and in Section 3.1, we characterize observed data for consistency with concave potential games,
as well as provide an example of aggregate data which refutes the model. Section 3.2 discusses
the role played by concavity in the model. In Section 4, we discuss the application of this model
to household consumption data and provide some concluding remarks.

2. The model

The economy consists of N individuals and L goods. Person i’s consumption bundle is de-
noted by xi ∈ R

L+. Person i has a utility function ui : RNL+ → R. Person i’s utility level is
ui(x1, . . . , xi, . . . , xN) (henceforth represented as ui(xi, x−i )) which depends not only on her
consumption xi but also on the consumption of the other individuals x−i in the economy. Ini-
tially, we merely assume that ui(xi, x−i ) is strictly monotonic in individual consumption xi and
make no assumptions about the nature of the externalities x−i . Prices are denoted by p. When
we consider aggregate data we will denote person i’s income by I i and aggregate consumption
by w.

We first consider the case where we observe market prices and individual level consump-
tion data. The data consists of repeated observations of prices and consumption bundles in the
economy. Hence, the observed data is of the form D = {(pt , x

1
t , . . . , xi

t , . . . , x
N
t )}Tt=1, where the

subscripts denote the time period of the observation. We pose the following question—when is
the observed data consistent with utility maximization, where utility functions are interdepen-
dent? The relevant notion of individual optimization is Nash equilibrium. We say this data is
Nash Rationalizable or simply rationalizable, if there exist utility functions ui such that for all i

and t , we have

xi
t = argmax

ptx�pt x
i
t

ui
(
x, x−i

t

)
.

That is, each player chooses a consumption bundle in her budget set which is a best response to
every other player’s actions in each observation. For player i, it can be thought that for the subset
of the data where every other players’ actions stay the same, there are no externalities. Hence,
it follows from Afriat’s theorem that player i’s actions must satisfy GARP (Generalized Axiom
of Revealed Preference, see Varian [36]) on this subset of data. This is an intuitive necessary
condition for rationalization. When no assumptions are made about the nature of the externalities,
Deb [15] characterizes the general model by showing that this condition is also sufficient. He
shows that while the general model is refutable, it imposes very weak restrictions on the observed
data. Moreover, these restrictions disappear when aggregate data is observed. Carvajal [10] finds
the same result for an economy where only one good acts as an externality.

3. Potential games and consumption

Potential games were introduced in Monderer and Shapley [24]. A classical example of a
potential game is a Cournot oligopoly game. Monderer and Shapley [24] show that every con-
gestion game (Rosenthal [29]) is a potential game. Other studies which use potential games are
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Mäler et al. [23] in their study of the economics of shallow lakes, Konishi et al. [22] study a
poll tax scheme for the provision for a public good, Garcia and Arbeláez [18] evaluate impacts
of mergers in Colombian wholesale market for electricity. Bracha and Brown [5] propose a be-
havioral theory of choice, where the individual is a composite agent consisting of a rational and
emotional process which is represented as a potential game.

Let Γ (u1, . . . , uN) be an arbitrary game of N players where player i has strategy set Y i ⊆ R
ni

(ni being a positive integer). Player i’s payoff function is ui : Y → R where Y = Y 1 × · · ·× YN .
A function P : Y → R is an ordinal potential if for every i ∈ N and for every y−i ∈ Y−i

ui
(
x, y−i

) − ui
(
z, y−i

)
> 0 iff P

(
x, y−i

) − P
(
z, y−i

)
> 0 for all x, z ∈ Y i.

An exact potential or simply a potential is a function P : Y → R such that for every i ∈ N and
for every y−i ∈ Y−i

ui
(
x, y−i

) − ui
(
z, y−i

) = P
(
x, y−i

) − P
(
z, y−i

)
for all x, z ∈ Y i.

Γ is called an ordinal potential game if it admits an ordinal potential and a potential game if
it admits an exact potential. For differentiable utility functions Deb [15] provides the following
characterization.

Theorem 3.1. (See Deb [15].) Given a game Γ . Assume the utility of each player is defined on
an open convex set1 Z such that Y1 × · · · × YN ⊆ Z, or in other words ui :Z → R. Moreover
assume the utility functions are twice continuously differentiable on Z. Then Γ is a potential
game if and only if

∂2ui

∂yi
mi

∂y
j
mj

= ∂2uj

∂y
j
mj

∂yi
mi

for all points in Z as well as for every i, j ∈ N

and for all 1 � mi � ni, 1 � mj � nj .

The above result shows that the restriction to utility functions which generate a potential
is simply a restriction on the mixed partial derivatives, much like concavity is a restriction on
the Hessian. This class of games is large and it allows goods to be either positive or negative
externalities, and this could differ across players. In the setting of consumption, the potential
function must be strictly monotone in all arguments. This reflects the fact that each player’s
utility function is strictly monotone in individual consumption.

An example to motivate potential games as a model of consumption with externalities is the
following. Assume that the Smith’s and the Jones’ utility functions are composed of two separate
additive components—utility from consumption and utility from ‘status.’ Then a potential game
implies that the Smiths and the Joneses care equally about status (that is, they have the same status
term), however they may get different utilities from consumption. For example, although both the
Smiths and the Joneses want to have a better car than their neighbor’s, the Smiths settle for the
minivan as they get more utility from going out to expensive dinners, even though they both have
the same status terms in their utility functions. This can be modeled by making the consumption
term of the Smiths, large with respect to the status term in their utility function. Moreover, by
making the consumption term of the Smiths arbitrarily large, we can approximately model the
case where the Joneses try to compete with the Smiths but not vice versa. Thus, although potential

1 In most games, strategy sets are usually closed and convex, but it is straightforward to smoothly extend the utility
function to an open convex set containing the strategy set.
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games do restrict the possible set of preferences, they impose a reasonable restriction which still
encompasses a large set of interdependent preferences.

Deb [15] shows that for two data points, potential games have the same explanatory power as
the general model. This implies that the class of potential games also imposes the same weak re-
strictions on observed data as the general model. While this supports the intuition that preferences
which generate potentials are fairly general, further restrictions are needed on the consumers’
preferences in order to get a model which imposes nontrivial restrictions on observed data.

3.1. Concave potential games

Concavity is a desirable property of potential functions as it is for utility functions. In a smooth
potential game with a concave potential function, a strategy profile is a pure-strategy Nash equi-
librium, if and only if, it is a potential maximizer. In addition, if the potential function is strictly
concave then there is a unique equilibrium. Neyman [25] shows that smooth strictly concave
potential games have a unique Nash equilibrium and a unique correlated equilibrium. Since our
characterization of concave potential games is constructive, this uniqueness allows us to predict
future consumer behavior, by utilizing the tools developed in Bracha and Brown [5], who use the
potential function to predict affective demand in insurance markets.

We now restrict our attention to utility functions which generate a potential which is concave
in all arguments (we discuss the role played by concavity in more detail in Section 3.2). This
additional restriction makes concave potential games refutable as can be seen by the following
characterization of concave potential games.

Theorem 3.2. For an observed data set D = {(pt , x
1
t , . . . , xi

t , . . . , x
N
t )}Tt=1 the following are

equivalent:

(1) The data set is Nash rationalized by utility functions which admit a strictly monotonic, con-
cave, ordinal potential function.

(2) The following system of inequalities

Vt ′ � Vt +
N∑

i=1

λi
tpt

(
xi
t ′ − xi

t

)

have positive solutions for potential values V and strictly positive solutions for marginal
utilities λ for all i, t, t ′.

(3) The data set is Nash rationalized by utility functions which admit a continuous, strictly mono-
tonic, concave potential function.

Proof. (1) ⇒ (2) Since the potential function V is concave, it is continuous and subdifferen-
tiable and hence a Nash equilibrium must satisfy

∂V (xi
t , x

−i
t )

∂xi
� λi

tpt for all i and t

where λi are the strictly positive Lagrangian multipliers. Also since V is concave we must have
t
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V
(
x1
t ′ , . . . , x

N
t ′

)
� V

(
x1
t , . . . , xN

t

) +
N∑

i=1

∂V (x1
t , . . . , xN

t )

∂xi

(
xi
t ′ − xi

t

)

⇒ V
(
x1
t ′ , . . . , x

N
t ′

)
� V

(
x1
t , . . . , xN

t

) +
N∑

i=1

λi
tpt

(
xi
t ′ − xi

t

)
.

Setting Vt = V (x1
t , . . . , xN

t ) for all t , we have the required solutions for the inequalities.
(2) ⇒ (3) For arbitrary consumption bundles x1, . . . , xN we define the potential as follows

V
(
x1, . . . , xN

) = min
1�t�T

[
Vt +

N∑
i=1

λi
tpt

(
xi − xi

t

)]
.

Using an identical argument to Theorem 2.1 we can show V (x1
t , . . . , xN

t ) = Vt for 1 � t � T .
Finally, for arbitrary person i, if ptx

i � ptx
i
t then

V
(
xi, x−i

t

)
� Vt + λi

tpt

(
xi − xi

t

) +
∑
j �=i

λi
tpt

(
x

j
t − x

j
t

)

= Vt + λi
tpt

(
xi − xi

t

)
� Vt .

Hence, each person is best responding. Since the minimum of concave functions is concave, V is
a concave function. Clearly it is also continuous and strictly monotone. Setting everyone’s utility
function equal to the potential function we have (3).

(3) ⇒ (1) This is obvious and it completes the proof. �
We can also consider the implications of this model on aggregate data in an exchange econ-

omy, where consumers have interdependent preferences. The relevant notion of equilibrium is
Nash–Walras equilibrium (see Ghosal and Polemarchakis [19]). Since our aim is to rationalize
the data, we can follow Brown and Matzkin [7] and ignore the fact that we are no longer sim-
ply dealing with a consumption game but instead are in the setting of an abstract economy (see
chapter 19 of Border [3]). This is clearly illustrated by the following.

An observed aggregate data set D = {(pt , {I i
t }Ni=1,wt )}Tt=1 is consistent with Nash–Walras

equilibrium, if we can find feasible consumptions xi
t for each individual i at each observation t ,

such that ptx
i
t � I i

t and
∑N

i=1 xi
t = wt , and each consumption bundle xi

t is a best response to
x−i
t for all t, i. Since rationalization merely involves finding feasible consumption bundles such

that pt is an equilibrium price vector, we can avoid the complications of redefining our setting as
an abstract economy.

The analogue of Theorem 3.2 for aggregate consumption data can be written as follows and
the proof is omitted as it is a straightforward extension of Theorem 3.2.

Theorem 3.3. For an observed data set D = {(pt , {I i
t }Ni=1,wt )}Tt=1 the following are equivalent:

(1) There exist utility functions which admit a strictly monotonic, concave ordinal potential func-
tion such that at each observation t , pt is a Nash–Walras equilibrium price vector for the
exchange economy.
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(2) The following system of inequalities

Vt ′ � Vt +
N∑

i=1

λi
tpt

(
xi
t ′ − xi

t

)
,

ptx
i
t = I i

t ,

N∑
i=1

xi
t = wt

have positive solutions for potential values V , feasible consumptions x and strictly positive
solutions for marginal utilities λ for all i, t, t ′.

(3) There exist utility functions which admit a continuous, strictly monotonic, concave potential
function such that at each observation t , pt is a Nash–Walras equilibrium price vector for
the exchange economy.

We will concentrate on the implications of the latter result. Any refutable restrictions on ag-
gregate data will carry over to individual data. To show that the model of consumption using
concave potential games is refutable, we need to show that the multivariate polynomial inequal-
ities of Theorem 3.3 are refutable. To show that the system of inequalities is consistent we must
construct an example of data which satisfies them (Example 3.1). To show that the inequalities
are not always satisfied, it suffices to construct an example of data which violates the inequalities
of Theorem 3.3 (Example 3.2). Hence it follows from the Tarski–Seidenberg theorem (Tarski
[33]) that the system of inequalities are refutable as the inequalities are solvable for some but not
all consumption data sets (see Brown and Kubler [6] for discussion).

The inequalities of Theorem 3.3 are simply the sum of the equilibrium inequalities of The-
orem 2 in Brown and Matzkin [7]. This means that any aggregate data set that satisfies their
inequalities will also satisfy ours. Hence, their model, which is the standard exchange economy
model with independent preferences, is a special case of our concave potential model. A more
intuitive explanation is the following.

Brown and Matzkin find necessary and sufficient conditions for the existence of independent
utility functions and feasible consumption bundles, so that the observed aggregate data corre-
sponds to an equilibrium of the exchange economy. These conditions are also necessary and
sufficient for there to exist concave independent utility functions and feasible consumption bun-
dles, so that the observed aggregate data corresponds to an equilibrium of the exchange economy.
Concave independent utility functions constitute a concave potential game where the potential
function is simply the sum of the utility functions. Hence, the exchange economy with indepen-
dent preferences is a special case of a concave potential game. We now construct an example of
aggregate data which satisfies the inequalities of Theorem 3.3 but does not satisfy the equilib-
rium inequalities of Brown and Matzkin. Hence, Theorem 3.3 strengthens their testable results
to interdependent preferences.

Example 3.1. Consider the following aggregate consumption data

p1 = (1,2), I 1
1 = 14, I 2

1 = 1, w1 = (3,6),

p2 = (2,1), I 1
2 = 14, I 2

2 = 1, w2 = (6,3).

For player 1, every feasible consumption bundle in observation 1 is affordable under observa-
tion 2 and vice versa. However the same is not true for player 2. In particular the bundle (1,0) is
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Fig. 1.

affordable for player 2 under period 1 prices and income but not under those of period 2. Thus
although these observations would not satisfy the inequalities of Brown and Matzkin [7], we
can find feasible consumptions x, potential levels V and Lagrangian multipliers λ such that they
satisfy the inequalities of Theorem 3.3. In particular consider the following values

x1
1 = (2,6), x2

1 = (1,0), λ1
1 = 1/4, λ2

1 = 1, V1 = 2,

x1
2 = (6,2), x2

2 = (0,1), λ1
2 = 1/4, λ2

2 = 3, V2 = 1.

It is surprising to find that a general equilibrium model, where we allow interdependent pref-
erences, has refutable restrictions on aggregate data. But this is in fact the case for the concave
potential model as is shown by the following example.

Example 3.2. Consider the following aggregate consumption data:

p1 = (1,2), I 1
1 = 7, I 2

1 = 7, w1 = (2,6),

p2 = (2,1), I 1
2 = 7, I 2

2 = 7, w2 = (6,2).

The observed aggregate consumption only allows feasible individual consumptions that lie in the
Edgeworth boxes shown in Figs. 1 and 2. Fig. 1 is similar to Fig. 1 in Brown and Matzkin [7] and
it shows that for player 1, every feasible consumption bundle in observation 1 is affordable under
observation 2 income and prices and vice versa. The feasible bundles for player 1 are shown by
the dark shaded line in each box. Fig. 2 provides an equivalent analysis for player 2. This is the
key difference between this example and that of Brown and Matzkin. The situation described by
Fig. 1 was sufficient to violate their equilibrium inequalities. We now show that these data points
cannot satisfy the inequalities of Theorem 3.3.
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Fig. 2.

Let us individually consider the two inequalities which need to be satisfied:

V1 � V2 + λ1
2p2

(
x1

1 − x1
2

) + λ2
2p2

(
x2

1 − x2
2

)
, (1)

V2 � V1 + λ1
1p1

(
x1

2 − x1
1

) + λ2
1p1

(
x2

2 − x2
1

)
. (2)

For any feasible consumption bundles for player 1, we know from Fig. 1 that p2(x
1
1 − x1

2) < 0
and p1(x

1
2 − x1

1) < 0. Similarly from Fig. 2 we know that the same holds for player 2, that is,
p2(x

2
1 − x2

2) < 0 and p1(x
2
2 − x2

1) < 0. Hence, inequality (1) will imply V2 > V1 as the λ’s must
be strictly positive. Similarly, (2) will imply V1 > V2 which is the contradiction we seek.

3.2. The role of concavity

The key insight in Afriat [1] is that at the observed data points, the utility levels and the
gradients need to be related in a specific way (via the Afriat inequalities) in order for the
data to be rationalizable. Many of the results in the revealed preference literature follow from
this observation. In a model with externalities, consumer i best responding implies only that
∂ui (xi ,x−i )

∂xi = λip but places no restriction on ∂ui

∂xj for j �= i. As a result, we are free to choose ∂ui

∂xj

when rationalizing the data and this is the reason that the general model imposes extremely
weak restrictions on observed data. The main insight of this paper is using potential games
to solve this problem. Restricting attention to potential games allows us to aggregate pref-
erences of different individuals into a single potential function (equivalently, we can replace
each person’s utility function ui by V ). Since each person is best responding this implies that
∂V (xi ,x−i )

∂xi = λip for all i. Moreover, restricting attention to concave potential games implies

that for any two observations (pt , x
1
t , . . . , xN

t ) and (pt ′ , x1
t ′, . . . , x

N
t ′ ), it must be the case that

V (x1
t ′ , . . . , x

N
t ′ ) � V (x1

t , . . . , xN
t )+ ∑N

i=1
∂V (x1

t ,...,xN
t )

∂xi (xi
t ′ − xi

t ). Thus, analogous to Afriat’s the-

orem, potential levels V (x1′ , . . . , xN′ ) and V (x1, . . . , xN) cannot be chosen arbitrarily and must

t t t t
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be related through the above inequality. This results in the refutability of the concave potential
model.

When we do not impose concavity, the above inequality need not hold. In fact, the only re-
striction on the potential function is the strict monotonicity of V in the natural partial order on
R

NL+ (a consequence of strict monotonicity in individual consumption). In the classical model
without externalities, if a bundle xt is revealed preferred to another bundle xt ′ , then Ut � Ut ′ .
This is what ties the revealed preference axiom GARP to the Afriat inequalities and can be used
to show the equivalence between rationalization by a utility function and rationalization by a
concave utility function. However, in our model, the externalities can be both positive or nega-
tive and hence there is no natural revealed preference relation on the bundles of goods. Thus, it
is not possible to use a modification of the standard argument to show the equivalence between
rationalization by a potential and rationalization by a concave potential. In fact, in our setting,
this equivalence does not hold and hence concavity is an important property for refutability of
the model.

To make this intuition a little more concrete, we present an informal argument which shows
that data which violates the inequalities of Theorem 3.2 can still be rationalized by a potential
function. Consider an economy with 2 individuals where our data set consists of 2 data points
or D = {(pt , x

1
t , x2

t ), (pt ′ , x1
t ′ , x

2
t ′)}. We restrict our attention to the case where ptx

1
t > ptx

1
t ′ ,

pt ′x1
t ′ > pt ′x1

t and ptx
2
t > ptx

2
t ′ , pt ′x2

t ′ > pt ′x2
t . This was true of the data in Example 3.2 and

using an identical argument, it is easy to show that this data cannot be rationalized by a concave
potential. We now outline a construction2 which can be used to find a potential function which
rationalizes this data.

We define C = (x1
t ,◦) ∪ (x1

t ′ ,◦) ∪ (◦, x2
t ) ∪ (◦, x2

t ′) where(◦, x2
s

) = {(
y, x2

s

)
: y ∈ R

L+
} ⊂ R

2L+ , where s ∈ {t, t ′},(
x1
s ,◦) = {(

x1
s , y

)
: y ∈ R

L+
} ⊂ R

2L+ , where s ∈ {t, t ′}.
Since neither (x1

t , x2
t ) � (x1

t ′ , x
2
t ′) nor (x1

t , x2
t ) � (x1

t ′ , x
2
t ′) in the natural partial order on R

2L+ , we
are free to choose either V (x1

t , x2
t ) � V (x1

t ′ , x
2
t ′) or V (x1

t , x2
t ) � V (x1

t ′ , x
2
t ′) which is critical for

the following construction.
Consider the set (x1

t ,◦). It is possible to construct a function V 1
t : (x1

t ,◦) → R such that
at prices pt , player 2 is maximizing V 1

t by choosing x2
t . In other words, V 1

t is player 2’s utility
function when player 1 chooses x1

t and is consistent with the choice of x2
t at pt . Similarly, we can

construct functions V 1
t ′ ,V

2
t , V 2

t ′ for the sets (x1
t ′ ,◦), (◦, x2

t ), (◦, x2
t ′) respectively. Moreover, it is

possible to construct these functions in such a way so that they agree at the observed consumption
bundles or V 1

t (x1
t , x2

t ) = V 2
t (x1

t , x2
t ), V 1

t (x1
t , x2

t ′) = V 2
t ′ (x

1
t , x2

t ′), V 1
t ′ (x

1
t ′ , x

2
t ) = V 2

t (x1
t ′ , x

2
t ) and

V 1
t ′ (x

1
t ′ , x

2
t ′) = V 2

t ′ (x
1
t ′ , x

2
t ′). Equivalently, it is possible to define a potential function V : C → R

on the subset C of R
2L+ , such that

xi
s = argmax

psx�psxi
s

V
(
x, x−i

s

)
for each i ∈ {1,2} and each s ∈ {t, t ′}. Then using the extension theorem of Herden [20], this
function can be lifted to the entire space R

2L+ preserving the only required property of V —
strict monotonicity in the natural partial order on R

2L+ . Hence, it is possible to rationalize data

2 The complete construction can be found in the appendix of Deb [15].
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which violates the inequalities of Theorem 3.2 using a potential function. Thus, concavity plays
a crucial role in the refutability of the model.

As mentioned earlier, strict concavity in potential games yields unique equilibria which allows
us to use our model to predict consumer behavior. That said, it is important to discuss what the
assumption of concavity on the potential function implies for the underlying preferences. Utility
functions which generate a concave potential need not be concave themselves. Ui [35] shows
that requiring the potential to be concave imposes an additional constraint on the gradients of
the underlying utility functions. He shows that a smooth potential game has a concave potential,
if and only if, the payoff gradient of the game is monotone.3 Formally, the payoff gradient is
monotone if

N∑
i=1

(
∂ui(xi

t , x
−i
t )

∂xi
− ∂ui(xi

t ′ , x
−i
t ′ )

∂xi

)
.
(
xi
t − xi

t ′
)
� 0 for all xt , xt ′ ∈ R

NL+ .

This condition requires player i’s utility function ui to be concave in individual consumption xi ,
however, ui can be either concave or convex in the externality x−i (see Deb [15] for an example
of when ui is convex in the externality). While the above condition is clearly not innocuous,
it is possible to construct a wide variety of different preferences which satisfy it and as a re-
sult the concave potential model is a substantial generalization of the classical model without
externalities.

4. Potential games and the household

A natural application of concave potential games is to analyze household consumption data.
By assuming members of the household have common goals, the preferences of the household
can be modeled by a single utility function and we can use Theorem 3.2 on household consump-
tion data. In practice, it is easier to get consumption data at the level of the household, than it is to
get consumption data for individuals within the household. Unobserved private consumption of
household members is the reason that makes nonparametric tests of the collective model difficult
to implement.

Browning and Chiappori [8] provide a rigorous theoretical framework for testing consistency
of data with the collective model. They assume members of the household may have different,
possibly divergent preferences, where each a household member’s private consumption might act
as an externality for another household member. The only assumption is that regardless of how
decisions are made, the outcome must be efficient. Thus, if the household consists of a husband
and a wife whose utilities are given by uh and uw , efficiency implies that the household’s utility is
given by uh +λuw , where λ is a measure of the “distribution of power.” The model’s explanatory
power lies in the fact that although the utility functions stay the same, λ can be different across
different observations. Lastly, they assume individual consumption is not observed. They provide
a parametric characterization of this model.

The assumption of changing “distributions of power” across observations seems somewhat ad
hoc. Also, empirical studies such as Udry [34] show that even the assumption of efficiency is not
as innocuous as it may seem. Finally, nonparametric tests of this model (Cherchye et al. [11])

3 This condition is similar to the well known diagonal strict concavity condition defined in Rosen [28] which is widely
utilized in the game theory literature.
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are only testable for a special case of the collective model, moreover, Deb [16] shows them to be
computationally inefficient even for this special case.

By contrast, the nonparametric test for the concave potential model is easily and efficiently im-
plemented, since, if we observe household consumption, then the inequalities (of Theorem 3.2)
are linear in the unknowns. Moreover, the assumption that households violate the unitary model
because their preferences are influenced by the consumption of others is intuitive and the sim-
plicity of the nonparametric test makes testing such a model an interesting empirical exercise.
The intrahousehold collective model derives its explanatory power by allowing private consump-
tions of household members which in practice are unobserved. In contrast, our inter-household
model utilizes the observed consumptions of the other households in the economy in order to
rationalize the consumption of a particular household. Lastly, our approach is also constructive.
We construct a concave potential function which Nash rationalizes the data, and this allows us to
use the tools in Bracha and Brown [5] to predict future household behavior.
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