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1. INTRODUCTION

Consider the following problem. The bundles of goods purchased by a household over time

and the associated prices {(pi, xi)}N
i=1 are observed. However, the household member that made

the purchasing decision at a particular time period is not observed. Moreover, it is not known

how many decision makers are in household. We would like to infer from the data the number

of decision makers and recover their preferences in a way that is consistent with the data. This

problem was studied by Cherchye et al. (2007) who provide a simple necessary and sufficient

condition for testing the data. This condition involves splitting the data into disjoint subsets,

each of which satisfy the Generalized Axiom of Revealed Preference (henceforth GARP) when the

entire data set may not. In this paper, we show that this test is a computationally hard problem

and provide an efficient approximation algorithm for implementing the test.

There are many data sets now available which are good instances of the above problem. House-

hold supermarket data is a nice example of a case where the bundle of goods purchased depends

on the person within the household whose turn it is to do the chores. Household scanner panels

are compiled by providing households with scanners so that they can track their purchases over

a period of time (Nielsen Homescan and Information Resources Inc. Consumer Network are two

major providers of such data). These data sets are collected over many years in different countries

and include a variety of different products. They also have considerably more observations per

household than traditional nationwide consumer panels which make computational issues quite

relevant. Moreover, this data also has substantial relative price variation across time and hence

can be tested in a meaningful way. Big retail stores also maintain similar scanner data. They track

repeat purchases of a household by the use of loyalty cards. These panel data sets also contain

many more observations per household than traditional consumer panels. There is an extensive

and current marketing literature which utilizes such data sets (to cite a few significant papers, we

mention Ainslie and Rossi (1998), Bucklin and Gupta (1999) and Swait and Andrews (2003)).

The above problem is a special case of the more general collective household model originally

introduced by Chiappori (1988, 1992). This model was the first notable divergence from the uni-

tary approach, which assumes that each household has a single utility function, that is, it acts as a

single decision maker. The collective household model differs from the unitary model in the fact

that it allows for (possibly diverging) individual preferences amongst different members of the
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household. It merely assumes that the household behaves Pareto optimally, with the weight of

each member’s utility function providing a measure of the distribution of power. This model has

proved to be a critical tool for studying household consumption and has been widely utilized and

tested in the empirical literature. 1

1.1. Discussion of Results and Related Literature

As mentioned above, we show that splitting a data set into subsets that satisfy GARP is a NP-

Complete problem. This means that there is no known polynomial (in the number of data points)

time algorithm which can solve the problem unless P=NP. NP-Completeness is perhaps the most

widely accepted notion of complexity. That said, it should be noted at the outset that it is a worst

case criterion. It is conceivable that problems which are hard with respect to this measure have

good expected complexity, that is, are computationally efficient on average. The relevance of

the result in this paper is affirmed by recent empirical work in this area which suggests that the

simplest partitioning approach would perhaps not scale well to larger data sets (Cherchye et al.

2008, 2009).

Dobell (1965) and Varian (1982) have pointed out that the revealed preference relation generates

a directed graph with each observed price and consumption bundle as a vertex. There is a directed

edge between two vertices if a bundle is revealed preferred to another. The acyclic partitioning

problem for undirected graphs is a known NP-Complete problem. Unsurprisingly, the equivalent

problem for directed graphs can also be shown to be NP-Complete (see Deb (2010) for the harder

case of partitioning into two acyclic partitions). In light of this, the complexity result in this paper

might seem trivial. A particular instance of partitioning consumption data into subsets that sat-

isfy GARP is equivalent to the acyclic partitioning of the directed graph generated by using the

revealed preference relation which is a NP-Complete problem.

However, showing the computational inefficiency of the nonparametric test requires us to go the

other way. We show that given an arbitrary directed graph, it is always possible to construct a data

set which generates the given graph through the revealed preference relation. In our opinion, this

is a surprising result as one expects the revealed preference relation to impose some restriction

on the set of underlying graphs. A worst case instance of the acyclic partitioning problem on

1A few influential papers that test the household model are Udry (1996), Dercon, S. and Krishnan, P. (2000) and Duflo
and Udry (2004).
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directed graphs need not arise from observed consumption data. The revealed preference relation

is generated a consumer’s choice from various budget sets. It is not obvious that bundles of goods

and budget sets can be constructed which intersect and overlap in appropriate ways to generate

any arbitrary directed graph. Moreover, an important consideration is that this construction must

be done in polynomial time. We feel that this construction is one of the main insights of this paper.

In light of the complexity result, we provide an approximation algorithm to answer the follow-

ing question: What is the minimum number of decision makers that could have generated the

observed data? This involves finding the smallest number of disjoint subsets that the data set can

be split into so that each subset satisfies GARP. The complexity result implies that this problem

is NP-Hard and hence we design an efficient algorithm which can give us an approximate solu-

tion. We present such an algorithm which approximately solves the minimum acyclic partitioning

problem on directed graphs (or equivalently the nonparametric test). This algorithm adapts the

algorithm of Chen (2000) which solves the same problem for undirected graphs. Chen’s result

exploits a well known upper bound for the minimum number of acyclic partitions in undirected

graphs. To the best of our knowledge such a bound does not exist for directed graphs. We theo-

retically establish such a bound and this allows us to adapt Chen’s algorithm.

Since this paper, there have been other interesting efforts to provide computationally efficient

solutions of related problems. In an insightful contribution, Cherchye et al. (2010b) provide a non-

parametric characterization of the general collective model which they call the Collective Axiom of

Revealed Preference (CARP). Talla Nobibon et al. (2010) adapt methods in this paper to show that

testing CARP is NP-Complete. Cherhcye et al (2010a) have also developed Integer Programming

techniques which address computational issues in testing General Equilibrium models.

This paper is organized as follows. Section 2 describes the model and sets up the problem.

Section 3 presents the complexity result and its proof. Section 4 describes an efficient algorithm

which computes an approximate solution to the problem and the algorithm is implemented on

simulated data. Section 5 concludes.

2. THE MODEL

We consider a K person household. There are L goods. An observed data set is a finite set of

price, household consumption vectors D = {(pi, xi)}N
i=1, where (pi, xi) ∈ RL

++ × (RL
+\{0}) and
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1 ≤ N < ∞. It is assumed that at each observation, one of the K members of the household chooses

the bundle of goods in accordance with their preferences. Each household member k ∈ {1, . . . , K}

has a utility function given by

Uk : RL
+\{0} → RL

+.

We define the Generalized Axiom of Revealed Preference (GARP) as in Varian (1982).

Definition 2.1 (GARP). Given arbitrary data set D = {(pi, xi)}N
i=1. For any two consumption

bundles x1 and x2 we say x1 �R0 x2 if p′1x1 ≥ p′1x2. We say x1 �P x2 if p′1x1 > p′1x2. Finally we

say x1 �R x2 if for some sequence of observations (xi, xj, . . . , xm) we have x1 �R0 xi, xi �R0 xj,

. . . , xm �R0 x2. In other words relation �R is the transitive closure of �R0 . The data D satisfies

GARP if

xi �R xj =⇒ xj �P xi ∀xi, xj

Varian (1982) showed that a data set is consistent with utility maximization if and only if it

satisfies GARP. His theorem is presented below.

Theorem 1 (Varian). Let D = {(pi, xi)}N
i=1 be an individual’s price consumption data set. The following

are equivalent

(1) Data set D is consistent with utility maximization. In other words, there exists a nonsatiated utility

function U such that for each observation i

U(x′) ≤ U(xi),

for all x′ satisfying pix′ ≤ pixi.

(2) Data set D satisfies GARP.

We now define the notion of consistency with K dictators which is the focus of this paper.

Definition 2.2 (Consistency with K Dictators). Let D = {(pi, xi)}N
i=1 be an observed household

consumption data set. We say the data D is consistent with K dictators if there exist nonsatiated

utility functions U1, U2, . . . , UK such that for each observation i there is an individual 1 ≤ k ≤ K

for whom

Uk(x′) ≤ Uk(xi),
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for all x′ satisfying pix′ ≤ pixi.

Cherchye et al. (2007) observe that a data set is consistent with K dictators if and only if the data

set D can be split into K disjoint sets {D1, . . . , DK} such that each subset satisfies GARP. Then the

consumption bundles in Dk can be thought of as the choices made by household member k which

must be consistent with utility maximization and hence must satisfy GARP.

3. THE COMPLEXITY RESULT

We now present and prove our main result which shows that partitioning a data set into disjoint

subsets that satisfy GARP is an NP-Complete problem. As we mentioned above, we feel that

the main insight of this section is not the complexity result itself but the proof which shows that

the revealed preference relation imposes no restriction on the underlying graph it generates. In

addition, we show that it is possible to construct the data set corresponding to an arbitrary directed

graph in polynomial time which is critical.

Theorem 2. Given a fixed integer 1 < K ≤ N. Testing the consistency of the data with K decision makers

is NP Complete in the number of data points N.

Proof. As mentioned previously, we will use the acyclic partitioning problem on directed graphs

to show this result. The equivalent problem on undirected graphs is the partition into forests

problem which is a known NP-Complete problem. Garey and Johnson (1979, pg 193) show that

for K ≥ 3 the problem of splitting an undirected graph into K trees is NP-Complete. They use

the graph 3 coloring problem to show this result. The acyclic partitioning problem for directed

graphs can be shown to be NP-Complete for K ≥ 3 also using a reduction from graph 3 coloring.

For K = 2, Wu et al. (1996) show that the problem of partitioning an undirected graph into K = 2

trees is NP Complete. They use the one-in-three 3Sat problem (pg 259 in Garey and Johnson 1979)

for the reduction. Partitioning a directed graph into K = 2 acyclic components has been shown by

Deb (2010) to be NP-Complete by using a reduction from the not-all-equal 3Sat problem (pg 259

in Garey and Johnson 1979).

We will now proceed by mapping every instance of the acyclic partitioning problem on directed

graphs to a particular instance of the data consistency problem. Consider a directed graph G(V, E)

and a given fixed positive integer 1 < K ≤ |V|, where V is the set of vertices and E is the set of
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edges. We say there is a directed edge from vertex i to j if (i, j) ∈ E. Finally we define the out

degree of a vertex i as the number of outward edges from the vertex i. The acyclic K partitioning

problem is then defined as follows.

Given an arbitrary integer K > 1, can the nodes of the graph be partitioned into s ≤ K disjoint

sets V1, V2, . . . , Vs in such a way that for each Vj (1 ≤ j ≤ s) the subgraph Gj(Vj, Ej) induced by Vj

contains no cycles? Such a partition is called an acyclic K partition.

We start with an arbitrary directed graph G(V, E) where |V| = N. We now construct an appro-

priate data set {(pi, xi)}N
i=1 (in polynomial time) such that the graph induced by the relation �P

on the data is the same as G. We proceed as follows.

Let us assume that the number of goods in each bundle is N2. Each good is labeled by two

numbers mn where 1 ≤ m, n ≤ N. In a slight abuse of notation, we represent the mnth good in

the ith observation by xmn
i , and the price of the mnth good in the ith observation by pmn

i , where

1 ≤ i, m, n ≤ N.

We now construct the data set D = {(pi, xi)}N
i=1, where price consumption bundle i corresponds

to vertex i ∈ V, as follows

(1)

pii
i = 1 xii

i = 1

pij
i = 1 xij

i = 1 if j 6= i and (i, j) ∈ E

pji
i = 0 xji

i = 0 if j 6= i and (j, i) ∈ E

pij
i = 1 xij

i = 0 if j 6= i and (i, j) /∈ E

pji
i = 0 xji

i = out degree of (j) + 2 if j 6= i and (j, i) /∈ E

pkl
i = 0 xkl

i = 0 if k, l 6= i

Clearly this data set can be constructed in polynomial time. The intuition behind the construc-

tion is as follows. Each observation i corresponds to a vertex. Each good corresponds to an edge

of the graph, except goods of the form ii which ensure each observation reflects positive wealth.

For any two observations i and j we select appropriate prices and consumption bundles for the

goods ij and ji (the remaining goods not coming into play) so that the relation�P reflects whether

there is an edge (i, j) or (j, i) in the graph G.
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We now check to see if the graph induced by the relation �P on the above data set is the same

as G. For an arbitrary i 6= j and i, j ∈ V, if we have (i, j) ∈ E then

p′ixi = out degree of (i) + 1 [which is at least 1]

p′ixj = 0

=⇒ p′ixi > p′ixj

=⇒ xi �P xj

Similarly if we have (i, j) /∈ E then

p′ixi = out degree of (i) + 1

p′ixj = out degree of (i) + 2

=⇒ p′ixi < p′ixj

=⇒ xi �P xj

In the data set defined above, we have xi �P xj (equivalently xi �R0 xj) if, and only if there is an

edge from vertex i to vertex j in G (or (i, j) ∈ E). Hence the graph induced by the relation �P on

the above data set is the same as G. Moreover, any subset D′ ⊆ D of the data set satisfies GARP if,

and only if, the subgraph induced by the vertices corresponding to the data points in D′ is acyclic.

Hence, we can solve the acyclic K partitioning problem for arbitrary graph G and fixed integer K,

if, and only if, we can check the consistency of the data set D with K decision makers.

The proof is not complete because our model does not allow data with zero prices or bundles

where nothing is consumed. To solve this problem we can replace every instance of 0 by a very

small ε < 1 in equation (1). We can once again verify the inequalities for each i. If i 6= j, i, j ∈ V

and (i, j) ∈ E

p′ixi > out degree of(i) + 1

p′ixj < N2(N + 2)ε [Because each vertex can have out degree at most N]
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If (i, j) /∈ E

p′ixi < out degree of(i) + 1 + N2(N + 2)ε

p′ixj > out degree of(i) + 2

For small enough ε < 1
N2(N+2) we will have p′ixi > p′ixj when (i, j) ∈ E and p′ixi < p′ixj when

(i, j) /∈ E.

Hence, we can map (in polynomial time) any arbitrary graph G to a particular data set D such

that for a fixed integer K we can solve the acyclic K partitioning problem for G if, and only if, the

data set D is consistent with K decision makers. Thus testing an arbitrary data set for consistency

with K decision makers is NP Complete. �

We would like to point out that the equivalence in the above proof can be established by as-

suming fewer than N2 goods. However this results in considerable complication without further

insight.

4. AN EFFICIENT ALGORITHM FOR ACYCLIC PARTITIONING OF DIRECTED GRAPHS

4.1. The Algorithm

In this section, we address the following question: What is the minimum K such that the ob-

served data is consistent with K dictators? For simplicity, we make the following assumption. We

assume that the observed data set D = {(pi, xi)}N
i=1 contains no two observations j 6= k such that

p′jxj = p′jxk. This basically implies that there can be no two observations j, k such that at prices pj,

the bundles xj and xk cost the same.2 In our opinion, this assumption is innocuous because it is ex-

tremely unlikely to encounter a violation of this assumption in consumption data which normally

documents expenditures in dollars and cents. This assumption allows us to ignore indifferences

or in other words we only need to consider the strict preference relation �P. Hence, equivalently

the problem we need to solve is the following. Given a directed graph, what is the minimum K so that

the vertices of the graph can be partitioned into K acyclic components? This minimum K is referred to

2Equivalently it possible to redefine the setting in terms of the Strong Axiom of Revealed Preference (see Varian (1982)).
But this will involve further notation which in our opinion is merely distracting.
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as the arboricity of a graph. This is a NP-Hard problem and hence we now design an algorithm

which approximately solves it.

The corresponding problem for undirected graphs has been studied in the theoretical computer

science literature. That problem is also NP-Hard. There is a good upper bound for the arboricity of

undirected graphs which is well known and Chen (2000) provides an efficient algorithm to solve

the partitioning problem on undirected graphs with respect to this upper bound. To the best of

our knowledge, the corresponding problem has not been solved for directed graph. We establish

a similar upper bound for directed graphs and adapt the algorithm of Chen (2000) to solve the

problem.

Recall, G = (V, E) is a directed graph where V is the set of vertices and E is the set of edges. For

any vertex v ∈ V, G− v refers to the graph induced by the vertices V\{v}. An acyclic K partition

of G is a partition Vi, 1 ≤ i ≤ K of vertices V such that the subgraphs Gi(Vi, Ei) induced by

vertices Vi are acyclic. The arboricity a(G) is the minimum number K for which G has an acyclic K

partition. Arboricity is a measure of the denseness of a graph. As mentioned earlier, the problem

of computing a(G) for a graph is NP Hard. We first define a good upper bound for a(G). A similar

bound for undirected graphs can be found in Chartrand and Kronk (1969). We adapt their proofs

to establish our bound.

For any vertex v ∈ V we define δ(v) = min{out degree of (v), in degree of (v)}. We define

∆(G) = minv∈V δ(v). A graph G is called a critical graph if a(G − v) < a(G) for all v ∈ G and a

critical graph G with a(G) = K is called a K critical graph. A K critical graph necessarily has K ≥ 2,

moreover, every graph G with a(G) = K ≥ 2 has a subgraph G′ which is K critical (consider the

subgraph G′ with the fewest vertices such that a(G′) = K). We are now in a position to derive the

bound for a(G).

Lemma 1. A K critical graph G must have ∆(G) ≥ K− 1.

Proof. Suppose G contains a vertex v such that δ(v) ≤ K − 2. Since G is K critical it must be the

case that a(G− v) = K− 1. Hence the vertices V− v can be partitioned into V1, . . . , VK−1 such that

the graph induced by each Vi, 1 ≤ i ≤ K− 1 is acyclic.
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Because δ(v) ≤ K− 2, there must exist some Vi such that v either has only outward edges to or

has only inwards edges from the vertices in Vi. Then Vi ∪ v must be acyclic and this contradicts

the fact that a(G) = K as we have found an acyclic K− 1 partition of G. �

We now derive the desired upper bound.

Lemma 2. For arbitrary graph G it must be the case that a(G) ≤ ρ(G) where ρ(G) = 1 + max ∆(G′),

where the maximum is taken over all subgraphs G′ of G.

Proof. The result is obvious if G is acyclic. Hence, let G be a graph with a(g) = K ≥ 2. Let H be a

subgraph of G such that H is K critical. We know that ∆(H) ≤ ρ(G)− 1.

By lemma 5.1 we know

∆(H) ≥ K− 1

=⇒ ρ(G)− 1 ≥ K− 1 = a(G)− 1

=⇒ a(G) ≤ ρ(G)

�

This bound is “tight” for planar, outerplanar3 and complete graphs. We show this by using

similar known results on undirected graphs. For a vertex v ∈ V in an undirected graph, we abuse

notation and define δ(v) = degree of (v). The definition of ∆(G) remains unchanged but is now

a minimum over the redefined δ. Chartrand and Kronk (1969) show that an upper bound for

the arboricity of an undirected graph is then a(G) ≤ 1 + bmax ∆(G′)/2c where the maximum

is taken over all subgraphs G′ of G. There is an intuitive similarity between this bound and the

one established in lemma 5.2. Chartrand and Kronk (1969) show that this bound is tight, that is,

ρ(G) ≤ 3 for undirected planar graphs. This result stems from the observation that every planar

graph contains a vertex of degree 5 or less and that every subgraph of a planar graph is planar.

Using a similar argument, they also show that ρ(G) ≤ 2 for undirected outerplanar graphs. It

is straightforward to see that these results carry over verbatim to the case of directed planar (i.e.

ρ(G) ≤ 3) and outerplanar graphs (i.e. ρ(G) ≤ 2). Moreover, the bound is trivially tight for

3In these graphs there is at most one directed edge between a pair of vertices.
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complete directed graphs. Hence, ρ(G) is a good upper bound for sparse graphs and graphs with

high edge density.

While we present no theoretical results for the tightness of this bound on arbitrary graphs, it

should be noted that the revealed preference relation induces sparse graphs for most household

consumption data. In other words, while household data does violate GARP the number of such

violations are not large (see for example Famulari 1995) and hence the induced graphs will have

low arboricity. Moreover, household consumption data is most commonly tested for consistency

with 2 decision makers. If the true underlying model consists of 2 decisions makers then the

arboricity of the graph induced by the data will be 2 and hence the graph will be sparse. ρ(G)

should then be a good approximation of the arboricity and this is confirmed by the simulations in

the next subsection. Finally, simulations also suggest that in general for arbitrary graphs, ρ(G) is

a good approximation of the arboricity.

We now define a simple and efficient algorithm to compute an acyclic ρ(G) partition of an ar-

bitrary directed graph G. This algorithm is an adaptation of the algorithm in Chen (2000) for

undirected graphs.

Algorithm

Input: A directed graph G = (V, E).

Output: An acyclic ρ(G) partition of G.

(1) If |V| = 1, then output the unique vertex in G as the partition and halt.

(2) Find a vertex v such that δ(v) = ∆(G).

(3) Recursively, call the algorithm on the graph G− v. Let V1, . . . , Vk be the returned partition.

(4) Let k′ = 1+∆(G) = 1+ δ(v). Find the first set Vi among V1, . . . , Vk such that graph induced

by Vi ∪ {v} is acyclic. If such a set exists we assign v to set Vi. If not (then it must be the

case that k < k′), add another set {v} to the partition.

The above algorithm can be shown to be correct by induction on the number of vertices of G.

When G has only one vertex the algorithm vacuously gives the correct output. Let G be a graph

with n ≥ 2 vertices. As our induction hypothesis, let us assume that the algorithm works for

all graphs with n − 1 vertices. Let v be the vertex selected in step 2 of the algorithm. Then by

the inductive hypothesis, the algorithm outputs V1, . . . , Vk, an acyclic k partition of G − v, where
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k ≤ ρ(G− v) ≤ ρ(G). Let k′ = 1 + ∆(G) = 1 + δ(v). Let Vi in V1, . . . , Vk be such, that v either has

no outwards edge to the vertices in Vi, or has no inwards edge from the vertices in Vi. Then, the

graph induced by Vi ∪ {v} is acyclic and we can assign v to Vi to get the valid acyclic partition. If

k ≥ k′ (and hence δ(v) < k), there must exist one such Vi. If there exists no such Vi then it must be

the case that k < k′ and hence k < ρ(G). We can then create a new set in the partition consisting

of the single vertex v. This will be a valid acyclic ρ(G) partition of G.

Finally, it possible to implement the above algorithm in O(|V|+ |E|) time, that is, the algorithm

can be implemented in linear time. The implementation in Chen (2000) works for the above algo-

rithm mutatis mutandis and hence we will not explicitly discuss the linear implementation in this

paper. It should be noted however that polynomial time implementations of the above algorithm

are fairly straightforward even to the reader not familiar with the advanced data structures used

in Chen (2000).

It is worth mentioning that the algorithm outputs the actual partition of vertices not merely the

number of elements in the partition. This allows the construction of candidate utility functions

for each household member which rationalize the data using the standard techniques in Varian

(1982). It is in this way that the algorithm can also be construed to be constructive.

4.2. Simulations

We implement the algorithm in MATLAB on a randomly generated data set. We consider a

simple situation dependent dictatorship model consisting of a household with 2 decision makers

labeled h, w. There are 2 goods priced p1, p2 and the quantities of the goods consumed are given

by x1, x2. Each household member k ∈ {h, w} has the following Cobb Douglas utility function

Uk(x1, x2) = xαk

1 x1−αk

2

We randomly select αh, αw independently from the uniform U[0, 1] distribution. Then we ran-

domly generate a panel data set consisting of a 100 observations. This is done in the following

way. We pick a household member in each observation as the dictator (decision maker) randomly

with a probability of 1/2. We generate prices p1, p2 and income I randomly and independently

from the uniform U[0, 1] distribution. Then the consumption bundle x is simply given by x1 = αk I
p1
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and x2 = (1−αk)I
p2

where k ∈ {h, w} is the household member chosen as the dictator for this obser-

vation. Notice, this bundle is simply the utility maximizing bundle for household member k. We

repeat this process 100 times to generate the data set.

Simulations allow us to test the computational efficiency of the algorithm as well as the tight-

ness of the bound. By randomly generating data, we can construct extremely long panels with

substantial variations in prices and incomes which allows us to test the robustness of the algo-

rithm. Simulations suggest that the algorithm is a better approximation on randomly generated

data sets with fewer observations per household and on data sets with moderate price variation.

Since in practice, it is unlikely to encounter a data set with more than 100 observations per house-

hold, the results reported in this section can be viewed as a “lower bound” on the accuracy of the

algorithm as it will perform better on data sets with fewer observations. Moreover, real data sets

do not contain such large variations in prices and incomes (i.e., have fewer budget set intersec-

tions) and hence, potentially have fewer violations of GARP. Also, we allow household members

to have vastly divergent preferences. This means that more often than not, the graphs induced

by real data will have lower arboricity than our simulated data sets and our algorithm will prob-

ably perform even better on them. Lastly, because we construct the data using 2 decision makers

we know ex ante that the data set can be partitioned into 2 acyclic components. This provides a

benchmark for us to test the performance of the algorithm.

We generated 1000 panel data sets consisting of a 100 observations each. We chose different

αh, αw for each panel. It took a standard 1.8 GHz Core 2 Duo desktop computer less than three

minutes to partition all 1000 data sets. Of the 1000 panels, 175 were partitioned into 1 acyclic

component, 662 were partitioned into 2 acyclic components, 159 were partitioned into 3 acyclic

components and the remaining 4 were partitioned into 4 acyclic components. Hence, the approxi-

mation algorithm gave the correct result 83.7% of the time. Moreover, barring 4 data sets (where it

partitioned the graph into 4 components), whenever the algorithm did not give the correct result

it gave the next best solution of 3.

5. CONCLUSION

This paper showed that any arbitrary directed graph can be generated by the revealed prefer-

ence relation on a data set with the same number of observations as the vertices of the graph in
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polynomial time. This implies that the revealed preference relation imposes no restriction on the

underlying directed graph it generates. This in turn makes the test of the situation dependent

dictatorship model NP-Complete. In order to address this issue, we devise a computationally

efficent algorithm for computing approximate solutions to the acyclic partitioning problem on

directed graphs.
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