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Abstract

This paper is concerned with the estimation and construction of confidence intervals for
Impulse Response Weights (IRW s) from strongly persistent time series. A non parametric,
time domain estimator based on an autoregressive (AR) approximation is shown to have
good theoretical and small sample properties for the estimation of IRWs. An alternative
procedure of using a semi-parametric Local Whittle (LW ) estimator of the long memory
parameter and then obtaining estimates of the short run parameters and IRW s is also
considered. The second part of the paper investigates the most appropriate methods for
estimating the variability and the construction of confidence intervals for the estimated
IRWs. Particular attention is given to a generic semi-parametric sieve bootstrap based
on an autoregressive approximation of the unknown data generating mechanism. The
validity of bootstrap inference on the IRW s, based on the autoregressive approximation,
is proven under mild assumptions. The findings in this paper indicate that a good strategy
for analyzing IRWs is to estimate by semi-parametric AR approximations, and to use
the sieve bootstrap for estimating confidence intervals. Simulation evidence indicates this
approach appears to be a very good strategy for processes with either short or long memory.
An empirical example concerning the persistence of real exchange rate series is included.

Key Words: Persistence, Impulse Responses, Autoregressive Approximation, Confi-
dence Intervals.
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1 Introduction

This paper is concerned with issues relating to the estimation and construction of confidence

intervals for Impulse Response Weights (IRW s) from strongly persistent time series. This is

an important class of time series processes which includes those with relatively slowly decaying

∗Helpful comments have been received from Tim Bollerslev, Luidas Giraitis, Hira Koul, Peter Phillips, Peter
Schmidt and Andrew Tremayne. Any remaining errors are our own.
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hyperbolic autocorrelations; see Granger and Joyeux (1980), Granger (1980) and Hosking (1981).

These models have proved very relevant for representing the behavior of many economic and

financial time series.

The paper first considers estimation of the IRWs and focuses on a non parametric time

domain estimator based on an autoregressive (AR) approximation. This estimator is shown to

have good theoretical and small sample properties. This study also considers the use of the

Local Whittle (LW ) estimator of the long memory parameter and analyzes the effects of using

the LW semi parametric estimator (SPE) of the long memory parameter to obtain estimates

of short run parameters and IRW s.

The second part of the paper investigates the most appropriate methods for estimating

the variability and the construction of confidence intervals for the estimated IRWs. There

has in general been a long standing concern in the literature over this issue. For example,

Sims (1986) has considered this problem for weakly dependent processes, such as stationary

Vector Autoregressions (V AR); while Wright (2000) has considered IRWs from near unit root

processes. A major finding of existing work is that confidence intervals based on asymptotic

approximations can provide a poor guide to the true finite sample confidence intervals, and one

alternative which is pursued in this paper is to use bootstrapping methods.

We extend the previous literature on IRW confidence intervals to the empirically important

and relevant class of strongly dependent processes. We consider a generic semi-parametric sieve

bootstrap based on an autoregressive approximation of the unknown data generating mechanism.

Under mild assumptions we show the validity of bootstrap inference on IRW s based on the AR

approximation. Our results indicate that the sieve bootstrap has a number of benefits. Hence,

the findings in this paper indicate that a good strategy for analyzing IRWs is to estimate them

by semi-parametric AR approximations, and to use the sieve bootstrap for estimating confidence

intervals. Furthermore this approach appears to be a very good strategy for processes with either

short or long memory.

The emphasis in this paper is on providing a thorough analysis of IRW analysis in univariate

time series with strong persistence. We also give empirical examples of the univariate approaches

with an investigation of the persistence of real exchange rate series for a number of countries.

The rest of this paper is structured as follows; section 2 outlines the assumptions and basic

set up of the models and presents the estimation methods and some basic results. Then, sec-

tion 3 describes the bootstrap procedures and their theoretical properties; while sections 4 and

5 describe the various Monte Carlo results. Section 6 presents the empirical results. There is

also a conclusions section 7, followed by a set of appendices.
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2 The Theoretical Foundations

2.1 Model and Assumptions

This paper considers univariate stochastic processes of the form

yt =
∞∑
j=0

ψjεt−j, t = 1, ..., T (1)

where εt is an unobserved error term with finite variance σ2, and ψj is a sequence of constants.

It is assumed throughout the paper, that
∑∞

j=0 ψ
2
j <∞, so that yt is a second order stationary

process whose spectral density is given by fy(ω) = σ2

2π
ψ(eiω)ψ(e−iω), where ψ(z) =

∑∞
j=0 ψjz

j.

The following preliminary assumptions are made concerning the error term and the Wold de-

composition coefficients or IRW s, given by ψj:

Assumption 1 is in two parts: (i) εt is an ergodic martingale difference sequence, so that

E(εt|εt−1, εt−2, ...) = 0, E(ε2t |εt−1, εt−2, ...) = σ2 and E(ε3t |εt−1, εt−2, ...) = µ3 where µ3 is a finite

constant; and also (ii) E(ε4t ) <∞.

Assumption 2 ψ(z) = ψ̃(z)/(1 − z)d, where ψ̃(z) =
∑∞

j=0 ψ̃jz
j,
∑∞

j=0 |ψ̃j| < ∞ and d < 0.5.

Also ψ(z)−1 =
∑∞

j=0 κjzj exists.

Hence the class of above processes is very wide and includes all linear processes considered

in the existing literature, and encompasses long memory processes including the leading case

of ARFIMA(p, d, q), where ψ̃(z) = φ(z)−1ϕ1(z) and φ(z) =
∑p

j=0 φjz
j and ϕ(z) =

∑q
j=0 ϕjz

j

and d is the long memory parameter. For the purposes of analyzing both parametric and

semi parametric bootstrapped inference on IRWs, it is necessary to introduce a parametric

representation associated with the above setup, that is more general and encompasses ARFIMA

processes. The ψj are then allowed to be functions of a finite s dimensional parameter vector,

θ, which is defined in a compact subset of Rs, denoted by Θ, and has a nonempty interior.

These functions are denoted by ψj,θ and the notation ψj,θ specifically indicates that subsequent

analysis is parametric. The notation ψj is used for both the general discussion and also for the

semi-parametric setting. The following identifiability assumption is required for the parametric

setting.

Assumption 3 (i) If ψj = ψj,θ then there exists a unique value of θ, denoted θ0 such that

yt =
∑∞

j=0 ψj,θ0εt−j. Furthermore, ψθ0(z) 6= ψθ(z) for any z and for any θ different to θ0, where

ψθ(z) =
∑∞

j=0 ψj,θz
j. (ii) ψ̃j,θ are twice continuously differentiable, with respect to θ, where

ψθ(z) = ψ̃θ(z)/(1− z)d
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2.2 Parametric Estimation of Impulse Response Weights

The purpose of our analysis is to estimate ψj for j = 1, ..., h, for some finite horizon h, and to

conduct inference on the estimated ψj, with particular attention to the issue of construction of

confidence intervals for the estimated IRWs. A standard method is to derive the asymptotic

approximation of the distribution of the estimators of ψj. The most commonly used approach

is to use the parametric estimator given by ψj,θ̂, where θ̂W is the MLE of θ. This paper

focuses on the Quasi Maximum Likelihood Estimator, (QMLE), which has been previously

analyzed in a very general context by Hosoya (1997), and who has elegantly characterized their

properties in the frequency domain. In particular, θ̂W is defined by ST (θ̂W ) = 0 where ST (θ̂W ) =

(ST1(θ̂W ), ..., STs(θ̂
W ))′, STj(θ) = Hj(θ) +

∫ π
−π tr (hj(ω, θ)I (ω, θ)) dω, Hj(θ) =

∂(
∫ π
−π log det fy(ω,θ))

∂θj
,

hj(θ) =
∂f−1
y (ω)

∂θj
, j = 1, ..., s, I (ω, θ) is the periodogram for y1, ..., yT and fy(ω, θ) is the spectral

density, which given the parametric setting, is a function of θ as well as ω. As shown by Robinson

(2006), the QMLE is also asymptotically equivalent to an estimator obtained by minimizing

the conditional sum of squares,

θ̂ = argmaxθ∈Θ

T∑
t−1

ε2t (θ), εt(θ) =
t−1∑
j=0

κj,θyt−j.. (2)

However, strictly speaking these estimators have been shown to be equivalent under slightly

more restrictive assumptions than those made in Hosoya (1997). For the sake of precision it

is desirable to obtain separate results for both estimators. These results relate to the asymp-

totic distributions of ψj,θ̂ and ψj,θ̂W and are given in Theorems 1 and 2 of Appendix A. These

results provide an operational way, sometimes referred to as the ”delta method” for construct-

ing asymptotically valid standard errors for ψj,θ̂ and ψj,θ̂W . However, it is well known that

especially in small samples, this method can deliver poor quality approximations for estimated

IRWs;for example see Kilian (1998a). This is essentially the motivation for the extensive use

of the bootstrap for IRW s from such processes and hence is a main focus of this paper.

2.3 Semi Parametric Estimation of Impulse Response Weights

An alternative to the above parametric analysis for estimating and conducting inference on IRW s

is to use semi-parametric methods. We consider two alternative approaches in this section.

2.3.1 Inversion of Autoregressive Approximations for Estimation of Impulse Re-
sponse Weights

This paper suggests an entirely different approach which has a clear semi parametric interpre-

tation. The approach is based on implicitly ignoring the presence of strong dependency in the

series and to simply estimate a high order AR(pT ) model. To make more concrete, it should

be noted that the ARFIMA(p, d, q) model can be represented by the infinite autoregressive
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expansion of the form

yt =
∞∑
j=1

κjyt−j + vt (3)

A possible method is to directly estimate by OLS the truncated autoregressive, AR(pT ), expan-

sion

yt =

pT∑
j=1

κ
(pT )
j yt−j + v

(pT )
t (4)

where the order pT , is obtained by some information criterion. This approach has been theo-

retically analyzed by Poskitt (2007). The least squares estimates of κ
(pT )
j obtained by fitting an

AR(pT ) model to the data, are denoted by by κ̂
(pT )
j . Theorem 5 of Poskitt (2007) states that∑pT

j=1

∣∣∣κ̂(pT )
j − κ(pT )

j

∣∣∣2 = op(1) for all pT such that pT → ∞ and pT = o(Tα) for all α > 0. For

example, an acceptable sequence for pT is (lnT )α for some α > 1. Further, by the extension of

Baxter’s inequality proven in Theorem 4.1 of Inoue and Kasahara (2006) it follows that

pT∑
j=1

∣∣∣κ(pT )
j − κj

∣∣∣ = o(1), (5)

as long as pT →∞. Then, overall,

pT∑
j=1

∣∣∣κ̂(pT )
j − κj

∣∣∣2 = op(1) (6)

which implies that the IRWs can be consistently estimated by fitting an approximating AR

model to the time series realization. In particular, the IRWs are given by ψ̂(z) =
∑∞

j=1 ψ̂jz
j =

κ̂−1(z), where κ̂(z) = κ̂(pT )(z) =
∑pT

j=1 κ̂
(pT )
j zj. For subsequent analysis it is convenient to also

define ψ(pT )(z) =
(
κ

(pT )
j (z)

)−1

. A critical issue is the choice of pT , and it has been shown by

Poskitt (2007), via his Theorem 9, that selecting pT by information criteria such as the AIC or

BIC is asymptotically efficient in the sense of Shibata (1980). In the Monte Carlo study in this

paper the value of pT is fixed at (lnT )2, which is a valid approximation for finite order ARFIMA

processes and even for infinite AR representations. In terms of inference for the IRWs,a data

dependent method for selecting pT is also considered in the Monte Carlo study. Consequently,

the AR approximation has an interpretation of being a semi-parametric model.

Another important point is concerned with the Theorem 10 of Poskitt (2007), which shows

that the asymptotic distribution of κ̂
(pT )
j is nonstandard and non Gaussian, which is clearly quite

different to the theory relating to weakly dependent processes as described by Lewis and Reinsel

(1985). Hence inference based on estimated IRW s obtained from the AR approximations will be

problematic. Again, this is another strong motivation to base inference in this semi- parametric
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setting on the bootstrap. This is the approach adopted later in this paper. Finally, we note that

the use of the bootstrap will not only provide valid inference but can be used to correct the bias

in the estimates of the IRW s that we observe in finite samples in our Monte Carlo study. This

bias correction will be discussed in Section 5.

2.3.2 Semi Parametric Local Whittle Estimation of Impulse Response Weights

An alternative, intuitively interesting approach which does not seem to have been previously

implemented in the literature, is to estimate the long memory parameter from the data using a

semi parametric estimator, such as the local Whittle (LW ) estimator and to then fit a parametric

model to a fractionally filtered, or fractionally differenced series. This approach is referred to as

the LW two step estimator (LWTSE) of the IRW s. The LW estimator of d, is denoted by d̂LW

and is obtained by minimizing the objective function ln
[

1
m

∑m
j=1 ω

2d
j I(ωj)

]
− 2d

m

∑m
j=1 ln(ωj), with

respect to d, where I(ωj) is the periodogram given by I(ωj) = 1
2πT

∣∣∣∑T
j=1 yte

iωjt
∣∣∣2, and m is the

bandwidth. For the LW estimator of d, it is known that, for linear processes, m1/2
(
d̂LW − d0

)
→

N{0, 1/4} where d0 denotes the true value of d. It is important to note that m ≤ T 4/5, and

m is generally chosen in the range of T 1/2 ≤ m ≤ T 4/5. In the usual case of ignorance of the

short run dynamics, the bandwidth is generally selected in an ad hoc way and a popular choice

is m = T 0.5. For a discussion of this issue, see also Henry (2001).

A further method proposed by Andrews and Sun (2004) is the Local Polynomial Whittle, or

LPW method which approximates the logarithm of the spectral density of the short memory

component by a polynomial. This leads to an estimator of d which has a reduced asymptotic

bias, but higher variance. All the simulations involving d̂LPW , in this paper, use the first order

approximation as in Nielsen and Frederiksen (2004).

In terms of the estimation of IRW s, if the parameter d is known, then the observed yt

series can be fractionally filtered to obtain ut = yt −
∑t−p

l=1 πl(d)yt−l where (1 − L)dyt = yt −∑∞
l=1 πl(d)yt−l, and πl(d) are the coefficients of the infinite AR representation of yt in terms of

ut, so that πl(d) = Γ(l−d)Γ(−d)−1Γ(l+1). In practice, d is unknown and can be replaced by the

LW estimate, d̂LW . Then, the feasible fractionally filtered series based on observable quantities

is ût = yt−
∑t−p

l=1 π̂l(d̂LW )yt−l, where π̂l(d̂LW ) = Γ(l− d̂LW )Γ(−d̂LW )−1Γ(l+1). For concreteness,

this paper focuses on the estimation of the widely used univariate ARFIMA(p, d, q) process.

Extensions to models with more complicated short run dynamics are quite manageable. The

complete parameter vector is denoted by θ= (d,β)′, where the (p + q) ARMA parameters are

in the vector β = (φ1, ..φp, ϑ1, ..., ϑq)
′. The true parameter values are denoted as β0(d0), and

the LW two step estimator (LWTSE ) of β, based on the feasible fractionally filtered series

are β̂LWTSE(d̂LW ). Then the ARMA(p, q) parameters of the original ARFIMA(p, d, q) process

are estimated by minimizing the conditional sum of squares, CSS, conditional on d̂LW . The

following result provides consistency and a rate of convergence for the two step estimator of the

ARFIMA(p, d, q) model.
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Theorem 1 Let yt be given by an ARFIMA(p, d, q) process, where φ(L) and θ(L) are AR

and MA polynomials in the lag operator of orders p and q respectively, with all their roots

lying outside the unit circle. Let the disturbance εt be i.i.d.(0, σ2), with E(ε4t ) < ∞. Then,

β̂LWTSE(d̂LW )− β0(d0) = Op(m
−1/2).

The above theorem is proven in Appendix C; and it appears that the only previous work

investigating the issue of using a semi parametric estimator of d in a two stage analysis is by

Wright (1995). Once the parameters of the ARFIMA model have been obtained, it is then

straightforward to estimate the IRW s. While the LWTSE approach is semi parametric in the

sense that d is estimated semi parametrically, the second step is fully parametric and there does

not seem to be any previous literature on how this parametric assumption can be relaxed.

3 Bootstrap Inference

The motivation for using the bootstrap seems very compelling given existing evidence on the poor

quality of asymptotic approximations for constructing confidence intervals for IRWs in small

samples for weakly dependent processes; see for example Kilian (1998a) and Kilian (1998b).

Furthermore, it is clear that unlike semi-parametric autoregressive approximations for weakly

dependent processes, such approximations for long memory and the alternative IRWs estimator

based on LWTSE are not easily amenable to asymptotic inference, since the relevant distribu-

tions are either non Gaussian or unknown. Hence the bootstrap appears to be an attractive

alternative approach .

There has been a rapidly increasing literature on the application of the bootstrap to long

memory processes; for example, see Poskitt (2008). Andrews and Lieberman (2006) provide

results both on the validity of the bootstrap and its ability to provide higher order corrections

compared to asymptotic approximations. However, this work assumes Gaussianity and Andrews

and Lieberman (2006) conjecture that higher order corrections will not be valid for such pro-

cesses. The results in this paper prove the validity of the parametric bootstrap for non Gaussian

processes for both the parametric estimators introduced in the previous section. This material

uses the foundations provided by Hosoya (1997), who has established the validity of MLE for

non Gaussian long memory processes. The main contribution of this section of our paper is to

provide justification for a semi parametric bootstrap, which can be used for inference on esti-

mated IRW s in either the context of a parametric, or a semi parametric model. The work of

Poskitt (2007) is important for these derivations.

It is now convenient to consider the parametric bootstrap for the model given by (1) where

ψj = ψj,θ. From assumption 2, it is known that yt has an infinite AR approximation, which is

given by yt =
∑∞

j=1 κj,θyt−j + εt. After estimating θ using one of the methods discussed in the

previous section, the residuals can be obtained as ε̂t = yt −
∑t−1

j=1 κj,θ̂yt−j. For the parametric

bootstrap, these residuals are then re-centered and re-sampled with replacement, to obtain a

vector of bootstrap error terms denoted by (ε∗1, ..., ε
∗
T )′. These bootstrap errors can then be
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used together with the estimated AR coefficients to give the bootstrap sample (y∗1, ..., y
∗
T )′. It

is important to note that initial conditions are required, and that these are usually set to the

estimated unconditional mean of the data. The bootstrap sample can then be used to estimate

either by MLE or by the minimization of the conditional sum of squares; and hence obtain

bootstrapped estimates θ̂W∗ and θ̂∗ respectively. These estimates can then be used to obtain the

corresponding bootstrapped estimates of the IRWs, denoted by ψ∗
j,θ̂W

and ψ∗
j,θ̂

. This procedure

is replicated B times to generate estimates of the IRWs and their empirical distribution as

B → ∞, which can be used for inference on the estimated IRWs. On denoting Py as the

probability law of a random vector y and m(y1, y2) as the Mallows metric between Py1 and

Py2 , it is then possible to derive the following theorems concerning the validity of this form of

parametric bootstrap for both MLE and the minimization of CSS.

Theorem 2 Let Assumptions 1-3 and 4-6, of Appendix B, hold. Then, for all j = 1, ..., h

m
(√

T
(
ψj,θ̂W − ψj,θ0

)
,
√
T
(
ψj,θ̂W∗ − ψj,θ̂W

))
= op(1) (7)

Theorem 3 Under assumptions 1(i) and 2-3; and further assuming that (i) εt is an i.i.d. se-

quence, (ii)
∑∞

j=1 supθ |ψ̃j,θ| <∞, (iii) ψ̃j,θ are twice continuously differentiable, with respect to

θ, and (iv) Ω, defined in (14) of Appendix A, is nonsingular. Then, for all j = 1, ..., h

m
(√

T
(
ψj,θ̂ − ψj,θ0

)
,
√
T
(
ψj,θ̂∗ − ψj,θ̂

))
= op(1) (8)

Both Theorems are proven in Appendix D. It is now appropriate to discuss a semi parametric

sieve type bootstrap, which can be implemented using the following strategy:

1. Estimate an AR(pT ) model on yt and obtain the estimated coefficients, κ̂
(pT )
j , j = 1, ..., pT

and the residuals, ε̂t = yt −
∑min(pT ,t−1)

j=1 κ̂j,θ̂yt−j .

2. Invert κ̂(pT )(z) =
∑pT

j=1 κ̂
(pT )
j zj to obtain estimates of the IRW s given by ψ̂

(pT )
j , j = 1, ..., h.

3. Re-center (ε̂1, ..., ε̂T )′

4. Re-sample with replacement from this vector, to obtain the bootstrap sample of error

terms given by (ε∗1, ..., ε
∗
T )′.

5. Use the above quantities together with κ̂
(pT )
j , j = 1, ..., pT , to generate the bootstrap sample

(y∗1, ..., y
∗
T )′.

6. Estimate an AR(pT ) to (y∗1, ..., y
∗
T )′ to obtain the bootstrap estimated autoregressive coef-

ficients given κ̂
∗,(pT )
j , j = 1, ..., pT ;

7. Invert κ̂∗,(pT )(z) =
∑pT

j=1 κ̂
∗,(pT )
j zj to obtain bootstrap estimates of the impulse responses

given by ψ̂
∗,(pT )
j , j = 1, ..., h.
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8. Repeat the above algorithm B times and then use the resulting estimates of the IRW s to

construct an empirical distribution of the IRW s.

The following theorem justifies the above bootstrap approach, and is proven in Appendix E.

Theorem 4 Let Assumptions 1-2 hold. Let pT = o ((lnT )a) for some a > 0. Then, for all

j = 1, ..., h,

m
(
rT

(
ψ̂

(pT )
j − ψ(pT )

j

)
, rT

(
ψ̂
∗,(pT )
j − ψ̂(pT )

j

))
= op(1) (9)

where rT = p
−3/2
T

(
T

ln(T )

)1/2−d
.

This theorem does not follow directly from the work of Poskitt (2008), since the statistic

being bootstrapped is a function of a statistic that grows with the sample size, rather than

being fixed. It is worth briefly commenting on this bootstrap. It can be classified as an ‘other

percentile’ bootstrap in the taxonomy of Hall (1992). Further, the statistics on which it is based

do not have the desirable pivotalness property that can also lead to higher order asymptotic

refinements. However, in this respect we note the important contribution of Kilian (1999) who

notes that studentising IRW s, to induce asymptotic pivotalness, can be counterproductive,

and lead to worse finite sample performances. An extension of this bootstrap approach that

compensates for the small sample bias involved in the autoregressive estimation in Step 1 of

the above algorithm, along the lines of Kilian (1998a), can be straightforwardly envisaged. We

consider this extension in our Monte Carlo study.

An alternative sieve bootstrap is obtained by generating the data as above, but with the

parameter vector θ, being bootstrapped and used to generate the IRWs. The validity of this

bootstrap follows immediately from Theorem 2 and the discussion of Assumption 4 of Poskitt

(2008). This argument also clearly applies to the IRW s obtained via LWTSE. The only

difference here is that d is estimated semi parametrically rather than parametrically within

an ARFIMA model. A final point worth mentioning here is that this method need not be

restricted to univariate models. In many applied situations, it is often desirable to consider

vector processes. Appendix F extends the above estimation and inferential methodology to

IRWs from V AR(pT ) models. These results show that there is no difficulty in extending the

methodology to the vector case.

4 Monte Carlo Analysis of Estimated IRWs

This section reports the results of the previously described Monte Carlo study of the estimation of

the IRW s. Given the ARFIMA(p, d, q) process in equation (3) the implied IRWs, denoted by

ψk for k = 1, , 2, .... are generated from ψ(L) = ϑ(L)(1−L)−dφ(L)−1, where ψ(L) =
∑∞

k=1 ψkL
k.
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The estimated IRWs are obtained by replacing the true theoretical parameters with their corre-

sponding estimates. For large lag k, these Wold decomposition coefficients decay at the approx-

imate rate of ψk ∼ c1k
d−1. However, the presence of a relatively persistent AR(1) component

process can considerably alter the appearance of the IRWs for short to moderate impulse re-

sponse horizons.

Figures 1 through 2 report some of the results for different IRWs for horizons k = 1, 2, ....40

for ARFIMA(1, d, 0) models; and for designs of d = 0.4, 0.8 and φ = 0.95.1 Although the pre-

vious theoretical analysis has focused on stationary processes, a considerable amount of applied

econometric work has found estimates of d in the range of 0.5 < d < 1, which implies a non

stationary process, but with finite cumulative IRW s. Hence, it seems very important to extend

the Monte Carlo analysis to consider some mildly non stationary long memory processes.

The IRWs are all estimated from the three different methods of (i) AR approximations, (ii)

MLE and (iii) LWTSE. The LWTSE method is based on using the LPW , rather than LW ,

for the initial estimation of d in the stationary cases. The estimated IRWs from using the LW

and LPW methods are constructed using a bandwidth of m = T 0.5 .2 For a model with d = 0.4

and quite persistent short memory, Figure 1 indicates that IRWs estimated from the LWTSE

approach perform poorly in comparison with corresponding estimates from MLE. The IRWs

estimated from MLE with d in the stationary region dominate alternative methods; however

MLE estimated IRWs are poor for d = 0.8 when there is persistent autocorrelation of φ = 0.95.

In this case the AR(pT ) approximation performs surprisingly well and is the preferred method.

For the large sample size of T = 1, 000 and for designs of (d = 0.6, φ = 0.5) and (d = 0.8,

φ = 0.5),which are not reported to save space, the MLE performs extremely well, with the high

order AR approximation generally being slightly superior to the LWTSE. For the design of

(d = 0.8, φ = 0.95) in figure 2, the high order AR approximation performs outstandingly well,

with the MLE a poor third compared with the LWTSE. Hence, there seems some evidence that

MLE works well for non stationary long memory processes provided that there is only moderate

degree of persistence in the short run dynamics. However, when a non stationary long memory

process has a very persistent short run component, the high order AR approximation method

is extraordinarily accurate compared with MLE and the LWTSE. The excellent performance

of the high order AR(pT ) method strongly suggests that it should be the main analytic tool

if an investigator is principally interested in assessing the impact of shocks or innovations on

a series. This recommendation is also reinforced by the fact that in practice an investigator

will be unaware of whether the data generating process is I(0), or stationary long memory, or

non-stationary long memory. Also, the results suggest that the application of the LW should

probably be reserved for only obtaining an estimate of the long memory parameter. Hence the

1Results were also obtained for the cases of d = 0.2 and d = 0.6. They are qualitatively very similar to the
results presented and are omitted for reasons of conserving space. They are available from the authors on request.

2Results for the cases of φ = 0.5 and φ = 0.8 are omitted for reasons of conserving space, and are available
from the authors on request. Similarly results based on optimal bandwidth given knowledge of the true data
generating process are also omitted since they are broadly similar to reported results in this paper.
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Figure 1: Impulse Responses: d=0.4, ar=0.95

Key: Solid Line (—–) represents the true IRW; Long Dashed Line (– – –) represents the Two-Step LW; Dotted

Line (. . .) represents the AR Approximation; Short Dashed Line (- - -) represents the MLE; Dense Dotted

Line (...) represents the Two-Step LPW.

estimates of IRWs based on LWTSE are omitted for space constraints and are not considered

for the Monte Carlo study of confidence interval estimators reported in the next section.

5 Monte Carlo Analysis for Confidence Intervals for Es-

timated IRWs

This section investigates the small sample properties of some of the methods analyzed in the

previous sections for constructing confidence intervals for IRWs. The focus is on data generating

process which have simple parametric models and it is assumed that the parametric methods

for constructing the confidence intervals use the correct specification of the process. This is of

course, disadvantageous to the semi-parametric method used to construct confidence intervals.

However, our results reported below, still give quite clear indications as to the superiority of the

various methods. It was decided to focus on various ARFIMA(1, d, 0) models as the benchmark.

Previous work by Baillie and Kapetanios (2007), Baillie and Kapetanios (2008) and Nielsen

and Frederiksen (2004) has suggested that the most important reason for problematic inference

in small samples for a variety of long memory models, hinges on the presence of persistent

short memory components. This is intuitively very reasonable since such persistent stationary

11



Figure 2: Impulse Responses: d=0.8, ar=0.95

Key: Solid Line (—–) represents the true IRW; Long Dashed Line (– – –) represents the Two-Step LW; Dotted

Line (. . .) represents the AR Approximation; Short Dashed Line (- - -) represents the MLE.

components can be mistaken for long memory. Hence this study considers a parsimonious short

memory AR(1) structure, which gives an overall ARFIMA(1, d, 0) model.

For the Monte Carlo experiment, realizations of ARFIMA(1, d, 0) processes were generated

for three different sample sizes of T = 200, T = 400 and T = 1, 000; and for three simulation

designs of the AR coefficient, φ, and long memory parameter, d. The designs were (φ, d) =

(0.50, 0.2), (0.95, 0.2), (0.95, 0.4); with εt ∼ NID(0, 1). This is our baseline Monte Carlo setup.

However, in practice an investigator would have no knowledge as to whether or not a series

has long memory. Hence this study considers the performance of the various approaches in the

presence of stationary, but very persistent processes, where the data generating process is AR(1)

with coefficients of φ = 0.9, 0.95, 0.98, 0.99. The following four different approaches were used

to construct confidence intervals (CI) for the estimated IRW s:

• Approach 1: CI obtained by using the asymptotic normal approximation to the finite sam-

ple distribution of the IRW s assuming the correct parametric ARFIMA(1, d, 0) model.

This method is theoretically justified by standard theoretical results on the consistency

and asymptotic normality of the parameter estimates of the ARFIMA(1, d, 0) model. 4.

• Approach 2: CI obtained from bootstrap IRW obtained by fitting AR(pT ) models to

samples generated by the sieve bootstrap where pT = (lnT )2. This method is theoretically

12



justified in Theorem 4.

• Approach 3: CI obtained from bootstrap IRW obtained by fitting AR(pT ) models to

samples generated by the sieve bootstrap where pT = (lnT )2. The AR parameters are bias

corrected using the method that is presented and theoretically justified in Kilian (1998a).

The algorithm used for the bias correction is given in Section B of Kilian (1998a). 4.

• Approach 4: CI obtained from bootstrap IRW obtained by fitting AR(pT ) models to

samples generated by the sieve bootstrap where pT is obtained by using the Akaike Infor-

mation Criterion (AIC). The AR parameters are bias corrected using the method that is

presented and theoretically justified in Kilian (1998a). The algorithm used for the bias

correction is given in Section B of Kilian (1998a).

It is clear that many alternative methods could be used and we spend some time discussing

some preliminary results that motivate the selection of methods whose performance is presented

in detail. Approach 1 is a useful benchmark and its computational tractability suggests that it

should be considered whenever a parametric assumption is waranteed. However, it is clear that

one should avoid making parametric assumptions on the form of the short component of the

series, if possible. We have considered the question of misspecification by generating data from

an ARFIMA(1, d, 1) and fitting an ARFIMA(1, d, 0) model. We find that the coverage rates

of the asymptotic approximation are very far away from their nominal level as expected. This is

simply a confirmation that parametric assumptions can be extremely problematic. Nevertheless,

it is useful to compare our semiparametric methods to a parametric benchmark to gauge the

efficiency loss of the semiparametric approach when the model is correct. Moving on to potential

bootstrap schemes that have been discussed in Section 3 we note the following. We can consider

two bootstrap variants that have a parametric component. The first is fully parametric both

generating the data from an ARFIMA model and estimating such a model on both original

and bootstrap data. This suffers from two problems. The first is the obvious one relating to

the parametric assumption that is discussed above. The second relates to the interesting fact,

that was observed in preliminary Monte Carlo work, that parametric estimation of ARFIMA

models produces parameter estimates which when used to generate bootstrap samples result

in coverage rates that again considerably deviate from their nominal level. So this parametric

scheme is both conditional on using the correct model and even then does not seem to work

well. The second bootstrap which is partly parametric is the same as the above parametric

bootstrap but uses a sieve to generate the bootstrap samples. We find this has much better

coverage rates that are usually very close to their nominal values when the model is correct.

But, under misspecification, the coverage rates again deviate considerably from their nominal

level. For this reason, and because of the fact that its hybrid parametric/semiparametric nature

is not that intuitive, we do not consider it in further detail.3 As a result we focus on two

3It is worth discussing briefly a related question concerning these parametric bootstraps. This question relates
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semiparametric bootstrap schemes: Approach 2 simply uses a sieve to generate the data and

then fits autoregressive models with a lag order that increases as a deterministic function of

sample size. This seems to work very well but it is clear a persistent short memory component

results in performance deterioration as one would expect. Therefore, it is productive to consider

schemes that alleviate this effect. The one proposed by Kilian (1998a) is the most popular of such

schemes. We consider it and find that it performs extremely well. There are other corrections

that could be considered. Of those two stand out. The first is the method of Wright (2000)

which assumes a near unit root process. Initial experimentation suggests that while it works

reasonably well it is considerably inferior to the Kilian (1998a) correction. This and the fact that

its near unit root motivation bears little relation to the current long memory framework leads us

to disregard this method. Finally, the approach of Sims and Zha (1999) is another approach that

is worth considering in this respect. However, that alternative has a clear Bayesian motivation

and the paper that proposed it does not clarify a number of important aspects needed for its

automatic application. As a result we view it as less attractive operationally, compared to the

work of Kilian (1998a). Finally, we consider Approach 4 as a way to investigate how a data

dependent lag selection approach for the best performing method compares to the deterministic

lag selection rule we use as a baseline case.

Figure 3 reports the coverage rates for the above methods using 2,000 replications with

599 bootstrap replications being used for each Monte Carlo replication and a nominal level of

90%. This set of results covers the case when the data generating process has long memory.

The benchmark Approach 1 is found to generally perform quite well. This is reasonable since

it is the case when the correct specification of the model is known and used. Hence this is

a benchmark for the other approaches. In general, Approach 2 works very well but has a

deteriorating performance when persistence rises either by increasing d or φ. Moving on to the

bias corrected Approach 3 we see that it works extremely well for all sample sizes and all levels

of persistence. It outperforms both Approaches 1 and 2. In the case of Approach 1, this is

extremely interesting as Approach 3 is semiparametric yet performs better than the parametric

method even though the correct model is assumed to be used. Allowing for a data dependent lag

selection method, as Approach 4 does, results in performance deterioration It is clear that the

Akaike information criterion chooses too few lags in smaller samples. As a result we recommend

the use of the deterministic lag section rule. Figure 4 reports the average width of the confidence

intervals for the above Monte Carlo experiment. It is clear that the conclusions from this figure

correspond closely with those reached by analysing the results in Figure 3.

For the AR experiments, for which results are presented in Figure 5, the approaches work

better in general. As expected Approach 3 works extremely well here too for all samples and

all levels of persistence. This is not surprising given this approach was designed for such data

to whether studentising IRW s produces better performing parametric bootstrap schemes or not. As we noted
earlier, Kilian (1999) clearly illustrates that studentising is counterproductive for some short memory processes
and our preliminary Monte Carlo study confirms that this is also the case for the long memory processes we
consider.
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generating processes.

Overall, Approach 3 seems to be a robust and very useful method for constructing CI for

IRW . It seems that, for relatively large sample sizes, lag selection is not that helpful and the use

of a large lag order provides robustness to model misspecification without large costs in terms

of performance due to over parametrisation.

Finally, we note that a very valuable byproduct of the above analysis, related to the bias

correction of Kilian (1998a) is that in addition to improved confidence bands we have a bootstrap-

based bias estimate for the autoregressive coefficients of the autoregressive approximation that

is used in Section 2.3.1 to estimate IRW s. So we can actually get an improved point estimate

of these IRW s. In a final short Monte Carlo study we evaluate this IRW estimation approach

and replicate Figure 1 where we now compare the AR approximation with and without bias

correction. We see that the bias corrected approach performs much better. As a result we have

a unified robust and very effective estimation and inference approach for IRW s for long memory

processes.

6 Empirical Application

The previous findings in this paper have indicated that a good strategy for analyzing IRWs

is to estimate them by semi-parametric AR approximations, and to use the sieve bootstrap for

estimating confidence intervals. Furthermore this approach appears to be a very good strategy

for processes with either persistence or short memory. This section provides an illustration of this

approach to the analysis of two reasonably large macroeconomic quarterly data sets comprising

real exchange rates.

The real exchange rate (RER) data is from 10 countries: UK, Switzerland, South Africa,

Norway, New Zealand, Mexico, South Korea, Japan, Canada and Australia. Note that Euro

zone countries are excluded from the RER data due to the introduction of the Euro in January

1998, and the possibility of structural breaks occurring around January 1998. The data span the

period of 1957Q1 through 2009Q1; and all the data are obtained from the IMF (International

Financial Statistics (IFS)). The bilateral real exchange rate q is constructed as the i-th currency

at time t as qi,t = si,t + pj,t − pi,t, where si,t is the corresponding nominal exchange rate (i-th

currency units per one unit of the j-th currency), pj,t the price level (CPI) in the j-th country,

and pi,t the price level of the i-th country. That is, a rise in qi,t implies a real appreciation of the

j-th country’s currency against the i-th country’s currency.

The IRW analysis was conducted by implementing our Approach 3. Hence an AR approx-

imation with a lag order of (lnT )2 was used to estimate the IRW s and then a sieve bootstrap

was used to correct the bias of the estimated IRW and construct 90% confidence intervals. The

half lives were measured for each of the impulse responses. For the purposes of this paper, the

half life is defined as h = i, for which ψi = ψ0/2 where linear interpolation is used to define ψi

for non-integer i. Note that the usual closed form solution for h, given by h = ln(1/2)
ln(ρ̂)

, where ρ
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Table 1: Half-Life Estimates, 5% quantiles and 95% quantiles for CPI inflation and Real Ex-
change Rates

Real Exchange Rates
Country Half Life 5% quantile 95% quantile

UK 13.464 6.533 17.506
Switzerland 26.309 10.787 111.644
South Africa 20.129 8.643 71.743

Norway 25.262 11.139 85.452
New Zealand 12.379 7.854 15.517

Mexico 9.771 7.134 26.716
South Korea 84.417 9.520 120.512

Japan 17.767 11.087 120.480
Canada 24.315 12.917 59.949

Australia 16.540 9.114 26.137

denotes the AR coefficient of an AR(1) model, is only valid for AR(1) models. There is no closed

form solution for general AR(p) models. All the empirical work uses 599 bootstrap replications.

Plots of the IRW s for the real exchange rate series are presented in Figure 7. It should be

noted that the corresponding IRW s are relatively smooth and suggest that the real exchange

rate series are very persistent processes. In some cases, e.g. New Zealand and UK, there is a

smooth oscillatory pattern reminiscent of AR(2) structures with complex roots. The increased

persistence is reflected in the half life measures which range from 9.7 for Mexico to 84 for South

Korea. We note the problem of non-monotonicity of some of the IRW s associated with the UK

and New Zealand, where initial IRW s fall below 0.5 but are above 0.5 at longer horizons.

One interesting issue related to this oscillatory behaviour concerns the previous definition

of half life, which is not fully robust. In particular, when the IRW s oscillate, rather than

monotonically decline, it is possible that the IRW will fall below half their original value, only

to rise again before falling back. This oscillation may in fact be repeated and in this case the

definition breaks down. One definition that has been used is to define the half life as either

the smallest i for which ψi = 1/2ψ0; see for example Rossi (2005), or alternatively the largest

such i; see for example Ng (2003). This study follows Rossi (2005) and uses the smallest i.

Examination of the IRW s in Figure 5 suggests that in a number of cases, including the US,

Switzerland and Spain, the oscillatory nature of the IRW implies that the reported half life may

be misleading. It is sufficient for the purposes of this illustrative empirical work to note that the

standard measure of half life may misrepresent the persistence of CPI inflation.

Another interesting feature of the analysis is that the IRW exceed unity at horizons of about

2 to 10 quarters for a majority of countries, which indicates quite extreme persistence. Overall,

it seems that the new methodology proposed in this paper provide a reliable and robust method

for carrying out IRW analysis. The empirical findings confirm that real exchange rates are very

persistent.
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7 Conclusions

This paper has considered the estimation and construction of confidence intervals for Impulse

Response Weights (IRW s) from strongly persistent time series, which include fractionally inte-

grated processes with slowly decaying hyperbolic autocorrelations. One of the main contributions

of the paper in terms of estimation of the IRWs is to consider a non parametric time domain

estimator based on an autoregressive (AR) approximation. This estimator is shown to have

surprisingly good theoretical and small sample properties. The paper has also examined the

application of a procedure where the Local Whittle (LW ) estimator is initially used to estimate

the long memory parameter and to then subsequently estimate the short memory parameters

and hence to estimate the IRWs. In general, Monte Carlo results indicate that this method

does not work as well as the AR approximation for the estimation of the IRWs, especially when

the AR approximation uses a bias correction.

The second part of the paper investigates the most appropriate methods for estimating the

variability and the construction of confidence intervals for the estimated IRWs. As previously

discussed there has been a long standing concern in the literature over this issue. As with weakly

dependent processes confidence intervals based on the ”delta method”, and asymptotic approx-

imations can prove very unreliable. This paper has considered a generic semi-parametric sieve

bootstrap based on an autoregressive approximation of the unknown data generating mecha-

nism. Under mild assumptions, we show the validity of IRW inference analysis based on the

AR approximation and the validity of bootstrap inference on the resulting IRW s.

The results in the paper indicate that the sieve bootstrap has a number of advantages and that

a good strategy for analyzing IRWs is to estimate them by semi-parametric AR approximations,

and to use the sieve bootstrap for estimating confidence intervals. Furthermore this approach

appears to be a very good strategy for processes with either short or long memory. The objective

in this paper has been to provide a detailed analysis of the IRW analysis in univariate time series

with strong persistence. The application to real exchange rate series indicates that the prescribed

methodology is reasonably easy to implement in practice and gives intuitively reasonable results.

The extension of the methodology to the multivariate case with the use of high order V AR

approximations is possible. However, while such an extension is straightforward in principle,

many practical issues, beyond the scope of the present paper, would need to be adequately

addressed in future research.
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Appendices

Appendix A

In this Appendix we present the distributional results referred to in Section 2.2. Assumptions

4-6 are presented in Appendix B.

Theorem 5 Under the assumptions 1-3 and 4-6, and for all j = 1, ..., h, where h is the maxi-

mum lag of the IRW weights being considered,

√
T
(
ψj,θ̂W − ψj,θ0

)
p→ N(0, D′jW

−1UW−1Dj) (10)

where Dj =
∂ψj,θ
∂θ

∣∣∣
θ=θ0

, the (i, j)-th elements of W and U are defined in (12) and (13) of Appendix

A, and θ0 denotes the true value of θ.

Theorem 6 Under the assumptions 1(ii) and 2, 3, and further assuming that εt is an i.i.d.

sequence, that
∑∞

j=1 supθ |ψ̃j,θ| <∞ and that Ω, defined in (14) of Appendix A, is nonsingular,

then for all j = 1, ..., h

√
T
(
ψj,θ̂ − ψj,θ0

)
p→ N(0, D′jΩ

−1Dj) (11)

where Dj is defined in Theorem 5.

Under the assumptions of the Theorems, the results for Theorems 5 and 6 follow immediately

from Theorem 2.2 of Hosoya (1997) and Theorem 2 of Robinson (2006), respectively, and the

application of the delta method.

Appendix B

This Appendix sets out a set of technical regularity conditions that are required for the validity

of the results of Hosoya (1997) and Theorem 5. It is necessary to define the following terms; in

particular Qε(ω1, ω2, ω3) denotes the fourth order spectral density of εt, and is

Qε(ω1, ω2, ω3) =
1

8π3

∞∑
t1=−∞

∞∑
t2=−∞

∞∑
t3=−∞

exp (−i (ω1t1 + ω2t2 + ω3t3)) Q̃ε(t1, t2, t3)
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where Q̃ε(t1, t2, t3) is the joint fourth-order cumulant of εt, εt+t1 , εt+t2 and εt+t3 . Let

Rj(θ) = Hj(θ) +

∫ π

−π
hj(ω, θ)fy(ω, θ)dω,

Let W and U be matrices whose ij−th element is given by

Wij =
∂Ri(θ)

∂θj
, i, j = 1, ..., s, (12)

and

Uij = 4π

∫ π

−π
hi(ω, θ)hj(ω, θ)f

2
y (ω, θ)dω+ (13)

2π

∫ π

−π

∫ π

−π
hi(ω1, θ)hj(ω2, θ)ψθ(e

iω1)ψθ(e
−iω1)ψθ(e

iω2)ψθ(e
−iω2)dω1dω2

respectively. Finally, let

Ω =
1

2π

∫ π

−π
$(ω)$(ω)′dω (14)

where

$(ω) =

[
log
∣∣1− eiω∣∣2 − 2

∂

∂ω
log
∣∣ψθ0(eiω)

∣∣] .
The relevant technical regularity conditions are:

Assumption 4 Qε(ω1, ω2, ω3) is γ-Lipschitz, uniformly in ω1, ω2 and ω3, i.e.

|Qε(ω1 + ε1, ω2 + ε2, ω3 + ε3)−Qε(ω1, ω2, ω3)| <
{

max
i
|εi|
}γ

.

Assumption 5 (i) fy(ω) is bounded away from zero (ii)
∫ π
−π ψ(eiω)2udω <∞, for some u such

that 1 < u ≤ 2. (iii) There exists c > 1/2, such that

sup
|λ|<ε

(∫ π

−π

∣∣f−1
y (ω) (fy(ω)− fy(ω − λ))

∣∣u dω)1/u

= O(εc)

for some u such that 1 < u ≤ 2. (iv) For any ε > 0 and θ, there exists a > 0, and functions

h̃j(ω) and h̄j(ω), such that, if |θ1 − θ| < a, h̃j(ω) ≤ hj(ω, θ1) ≤ h̄j(ω) and(∫ π

−π

∣∣∣fy(ω)
(
h̄j(ω)− h̃j(ω)

)∣∣∣v dω)1/v

< ε,

for v = (u− 1)/u and 1 < u ≤ 2.

Assumption 6 Given ε > 0, there exists integer m(ε), a partition U (1)(r), ..., U (m(ε))(r) of the

ball in Θ with centre θ0 and radius r and square integrable functions h̃ij(ω) and h̄ij(ω) such that

for all sufficiently small r and for all j, h̃lj(ω) ≤ hj(ω, θ) ≤ h̄lj(ω) if θ ∈ U (l)(r). Also,(∫ π

−π

∣∣ψθ(eiω)ψθ(e
−iω)

(
h̄lj(ω)− hj(ω, θ0)

)∣∣v dω)1/v

≤ εr

21



and (∫ π

−π

∣∣∣ψθ(eiω)ψθ(e
−iω)

(
h̃lj(ω)− hj(ω, θ0)

)∣∣∣v dω)1/v

≤ εr,

for all l, where v = (u− 1)/u and 1 < u ≤ 2. Further, Condition B of Hosoya (1997), holds for

the pairs
{
h̃lj, ψ

}
,
{
h̄lj, ψ

}
and {hj(., θ0), ψ}, for all l, j.

There are several connections between these technical regularity conditions, the assumptions

made in the body of the text and the assumptions needed for Theorem 2.2 of Hosoya (1997).

Assumption 3(ii) and 5(i) is sufficient for differentiability of the spectral density function, its

logarithm, its inverse and Assumptions C(iv) and D(ii) of Hosoya (1997), as required for Theorem

2.2 of Hosoya (1997). The identifiability conditions of Assumption 3(i) imply Assumptions

C(iii) and D(iv) of Hosoya (1997). Assumption 4, the ergodicity and martingale difference

assumption of Assumption 1 imply Assumption A of Hosoya (1997). Finally, Assumption 6

implies Assumption D (iii) and the second part of Assumption D(iv) of Hosoya (1997), needed

for the bracketing function approach taken in that paper.

Appendix C

This Appendix provides the proof of Theorem 1.

Since all the roots of the polynomials in the lag operator φ(L) and θ(L) lie outside the unit

circle, it follows that
∑∞

k=0 π
2
k <∞ and hence that

t−1∑
k=1

πkyt−k = Op(1).

The Local Whittle estimator d̂LW will generate the fractionally filtered series

ût = (1− L)d̂LW yt = yt −
t−p∑
l=1

π̂l(d̂LW )yt−l,

where

π̂l(d̂LW ) = Γ(l − d̂LW )Γ(−d̂LW )−1Γ(l + 1).

Since ût = (1− L)d̂LW yt, then

(ût − ut) =
∞∑
j=1

πj(d̂LW − d0)ut−j.

Since

(d̂LW − d0) = Op(m
−1/2)
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and ut = (1− L)dyt, then following the same approach as Wright (1995),

T−1

∞∑
j=1

(ût − ut)2 = T−1

T∑
t=1

(
t−1∑
j=1

πj(d̂LW − d0)ut−j

)2

.

Then, using the mean value theorem we have that πj(d) = dX1
j + d2X2

j , where X1
j denotes the

first derivative and X2
j the second derivative of πj(.). Then,

t−1∑
k=1

πkut−k = d
t−1∑
k=1

X1
j ut−j + d2

t−1∑
k=1

X2
j ut−j,

and following the same arguments as in Wright (1995),

(d̂LW − d0)
t−1∑
k=1

X1
j ut−j = Op(m

−1/2),

and

T−1(d̂LW − d0)
t−1∑
k=1

X2
j ut−j = Op(m

−1/2),

and hence

T−1

T−k∑
t=1

ûtût+k = T−1

T−k∑
t=1

utut+k +Op(m
−1/2) (15)

This suffices to prove the result for an ARFIMA(p, d, 0) model. For the general case of an

ARFIMA(p, d, q) model we have that for the second step ARMA estimation, the conditional

MLE needs to be numerically maximized. Let us denote the likelihood function by L(β; d). The

form of the likelihood may be found in, e.g., (5.6.3) of Hamilton (1994) and is given by

L(β(d)) = −T
2

log(2π)− T

2
log
(
σ2
)
−

T∑
t=1

ε2t (β(d))

σ2

where

εt (β(d)) = ut −
p∑
j=1

φjut−j −
q∑
j=1

ϑjεt−j (β(d))

It is clear that the likelihood function is differentiable. It is further clear that, once initial

conditions for εq (β(d)) , ..., ε1 (β(d)) are set, L(β(d)) is a function of autocovariances of ut. Then,

as long as (15) holds we have that

L
(
β̂LWTSE(d̂LW )

)
− L (β0(d0)) = Op(m

−1/2).

But, by an application of the mean value theorem we have that

L
(
β̂(d̂LW )

)
= L (β0(d0)) +

∂L

∂β

∣∣∣∣
β=β̄

(
β̂(d̂LW )− β0(d0)

)
.

Hence, the result of the Theorem holds for ARFIMA(p, d, q) models completing the proof.
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Appendix D

We wish to prove that the parametric bootstrap for the parameter estimates, of parametric long

memory models is valid. We will focus on the proof of Theorem 2, i.e. for the conditional sum

of squares (CSS) estimator of θ. The proof of Theorem 1 is very similar and is not reported.

We do not assume Gaussianity of the data unlike most of the literature including Andrews

and Lieberman (2006). Let ∼d denote asymptotic equivalence in weak law possibly in different

probability spaces. Formally, we wish to show that

√
T (θ̂∗ − θ̂) ∼d

√
T (θ̂ − θ0).

The assumed model is of the form

yt =
∞∑
i=0

ψi,θ0εt−i

which by Assumption 2 is invertible, so that

yt =
∞∑
i=1

κi,θ0yt−i + εt

Without loss of generality, we set

κi,θ0 = κ̃i,θ0i
−d(θ0)−1

such that supi κ̃i,θ0 < ∞ and 0 < d(θ0) < 1/2. This implies that, for some ψ̃i,θ0 , such that

supi ψ̃i,θ0 <∞,

ψi,θ0 = ψ̃i,θ0i
d(θ0)−1

The parametric bootstrap we investigate is based on constructing bootstrap samples by either

ŷ∗t =
∞∑
i=0

ψi,θ̂(θ̂)ε̂
∗
t−i

or

ŷ∗t =
t−1∑
i=1

κi,θ̂yt−i + ε̂∗t

where ε̂∗t is an i.i.d. re-sample with replacement of ε̂t, where ε̂t is the residual resulting from the

estimation giving θ̂. The CSS estimator of θ is given by

θ̂ = arg min
θ∈Θ

sT (θ)

where

sT (θ) =
T∑
t=1

εt(θ)
2
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and

εt(θ) = yt −
t−1∑
i=1

κi,θyt−i

Theorem 2 of Robinson (2006) shows that
√
T (θ̂−θ0) has a normal probability law. We introduce

the following notation:

y∗t =
t−1∑
i=0

ψi,θ0ε
∗
t−i

where ε∗t is an i.i.d. resample with replacement of εt. Define

θ̂∗ = arg min
θ∈Θ

ŝ∗T (θ), ŝ∗T (θ) =
T∑
t=1

ε̂∗t (θ)
2, ε̂∗t (θ) = ŷ∗t −

t−1∑
i=1

κi,θŷ
∗
t−i

and

θ∗ = arg min
θ∈Θ

s∗T (θ), s∗T (θ) =
T∑
t=1

ε∗t (θ)
2, ε∗t (θ) = y∗t −

t−1∑
i=1

κi,θy
∗
t−i

Let ε = (ε1, ..., εT )′, ε∗ = (ε∗1, ..., ε
∗
T ), ε̂∗ = (ε̂∗1, ..., ε̂

∗
T ), y = (y1, ..., yT )′, y∗ = (y∗1, ..., y

∗
T ) and

ŷ∗ = (ŷ∗1, ..., ŷ
∗
T ). Recall that Py denotes the probability law of a random vector x and d(Py1 , Py2)

the Mallows metric between Py1 and Py2 . Finally, define a continuous function Ψ(ε; θ) to describe

the mapping from ε to y. Then, we have

m(ε, ε∗)→ 0

But the fact that (3.7)-(3.9) of Robinson (2006) are op(T
−1/2), is sufficient for,

m(ε̂, ε̂∗)→ 0 (16)

Then, by Lemma 8.5 of Bickel and Freeman (1981), using Ψ as a relevant function, it follows

from (16) that

m(y, ŷ)→ 0

Then, it immediately follows that

√
T (θ̂∗ − θ̂) ∼d

√
T (θ̂ − θ0).

and so
√
T (θ̂∗ − θ̂) has an asymptotic Normal distribution. The result follows immediately by

noting that the IRW s are, by assumption, a continuous function of the model parameters.
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Appendix E

This Appendix proves that the sieve bootstrap is valid for impulse response analysis based on

the estimation of an AR(pT ) model. We use the results of Poskitt (2007) and Poskitt (2008). Let

κ̂(pT ) denote the pT×1 vector of parameter estimates of the coefficients of an AR(pT ) model fitted

to the original sample. Let κ̂∗,(pT ) denote the same estimates obtained from a bootstrap sample

constructed using the sieve bootstrap. Let X
(pT )
t = (xt−1,..., xt−pT )′, X(pT ) = (X

(pT )
pT+1, ..., X

(pT )
T )′,

x = (xpT+1, ..., xT )′. Starred variables represent bootstrap versions of non-starred variables.

Then,

κ̂(pT ) =
(
X(pT )′X(pT )

)−1
X(pT )′x

and

κ̂∗,(pT ) =
(
X∗,(pT )′X∗,(pT )

)−1
X∗,(pT )′x∗

Let {A}ij denote the i, j-th element of a matrix A. We first need to determine the rate at which

κ̂
(pT )
j converges to κ(pT ) and ψ̂

(pT )
j converges to ψ

(pT )
j . By Theorem 5 of Poskitt (2007), we have

that

∥∥κ̂(pT ) − κ(pT )
∥∥ = Op

(
pT

(
ln(T )

T

)1/2−d
)

Further,

ψ̂
(pT )
j − ψ(pT )

j = Op

(∥∥κ(pT )
∥∥2 ∥∥κ̂(pT ) − κ(pT )

∥∥) = Op

(
p

3/2
T

(
ln(T )

T

)1/2−d
)

= Op (rT )

Define qT =
(

T
ln(T )

)1/2−d
. The Theorem is proven if we show that

m
(
qT
(
λ′
(
κ̂(pT ) − κ(pT )

))
, qT

(
λ′
(
κ̂∗,(pT ) − κ̂(pT )

)))
→ 0

whereλ is some, finite dimensional, selector vector and m(y1, y2) is the Mallows metric between

the probability measures, Py1 and Py2 , of two random vectors y1 and y2. We have that

m
(
qT
(
λ′
(
κ̂(pT ) − κ(pT )

))
, qT

(
λ′
(
κ̂∗,(pT ) − κ̂(pT )

)))2 ≤ E
[
E∗
(∥∥qT (κ̂∗,(pT ) − κ̂(pT )

)∥∥2
)]
≤

E

[
E∗
(∥∥∥(X∗,(pT )′X∗,(pT )

)−1 −
(
XpT ′X(pT )

)−1
∥∥∥2
)]

E
[
E∗
(∥∥qT (X∗,(pT )′v∗,(pT ) −X(pT )′v(pT )

)∥∥2
)]

Examining each of the two terms above we have

E

[
E∗
(∥∥∥(X∗,(pT )′X∗,(pT )

)−1 −
(
X(pT )′X(pT )

)−1
∥∥∥2
)]
≤

p4
TE
[
E∗
(∥∥X∗,(pT )′X∗,(pT ) −X(pT )′X(pT )

∥∥2
)]
≤
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p6
T sup

1≤i,j≤pT
E

[
E∗
(∥∥∥{X∗,(pT )′X∗,(pT )

}
ij
−
{
X(pT )′X(pT )

}
ij

∥∥∥2
)]

But

sup
1≤i,j≤pT

E

[
E∗
(∥∥∥{X∗,(pT )′X∗,(pT )

}
ij
−
{
X(pT )′X(pT )

}
ij

∥∥∥2
)]
≤

p2
TE
[
E∗
(∥∥{X∗,(pT )′X∗,(pT )

}
11
−
{
X(pT )′X(pT )

}
11

∥∥2
)]

Further,

E
[
E∗
(∥∥X∗,(pT )′v∗,(pT ) −X(pT )′v(pT )

∥∥2
)]
≤ pT sup

1≤i≤pT
E
[
E∗
(∥∥{X∗,(pT )′v∗,(pT )

}
i
−
{
X(pT )′v(pT )

}
i

∥∥2
)]
≤

p2
TE
[
E∗
(∥∥{X∗,(pT )′v∗,(pT )

}
1
−
{
X(pT )′v(pT )

}
1

∥∥2
)]

But by the proof of Theorem 4.1 of Poskitt (2008) we have that

E
[
E∗
(∥∥{X∗,(pT )′X∗,(pT )

}
11
−
{
X(pT )′X(pT )

}
11

∥∥2
)]

= O

(
p

5/2
T

(
log T

T

)1−2d
)

and

E
[
E∗
(∥∥{X∗,(pT )′v∗,(pT )

}
1
−
{
X(pT )′v(pT )

}
1

∥∥2
)]

= O

(
p

5/2
T

(
log T

T

)1−2d
)

Hence,

m
(
qT
(
λ′
(
κ̂(pT ) − κ(pT )

))
, qT

(
λ′
(
κ̂∗,(pT ) − κ̂(pT )

)))
= O

(
p

21/2
T

(
log T

T

)1−2d
)

But since pT = O (log T a), it follows that

m
(
qT
(
λ′
(
κ̂(pT ) − κ(pT )

))
, qT

(
λ′
(
κ̂∗,(pT ) − κ̂(pT )

)))
= O

(
log T

T 1−2d

21a
2

+1−2d
)

= o(1)

proving that qT
(
λ′
(
κ̂∗,(pT ) − κ̂(pT )

))
has the same probability law as qT

(
λ′
(
κ̂(pT ) − κ(pT )

))
and,

therefore, rT

(
ψ̂
∗,(pT )
j − ψ̂(pT )

j

)
has the same probability law as rT

(
ψ̂

(pT )
j − ψ(pT )

j

)
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Figure 3: Monte Carlo Results: Coverage Rates under Long Memory. Key: Solid Line (—–)
represents Approach 1; Long Dashed Line (– – –) represents Approach 2; Dotted Line (. .
.) represents Approach 3; Short Dashed Line (- - -) represents Approach 4. Horizontal line
Represents 90% nominal level.
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Figure 4: Monte Carlo Results: Interval Width under Long Memory. Key: Solid Line (—–)
represents Approach 1; Long Dashed Line (– – –) represents Approach 2; Dotted Line (. . .)
represents Approach 3; Short Dashed Line (- - -) represents Approach 4.
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Figure 5: Monte Carlo Results: Coverage Rates under Short Memory. Key: Solid Line (—–)
represents Approach 1; Long Dashed Line (– – –) represents Approach 2; Dotted Line (. .
.) represents Approach 3; Short Dashed Line (- - -) represents Approach 4. Horizontal line
Represents 90% nominal level.
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Figure 6: Bias correction for the AR approach (d=0.4, ar=0.95)

Key: Solid Line (—–) represents the true IRW; Long Dashed Line (– – –) represents the AR Approximation;

Dotted Line (. . .) represents the bias corrected AR Approximation.
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Figure 7: Empirical Results: Impulse Responses for Real Exchange Rates
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