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our proposed tests, and compare them to other existing procedures. Finally, we apply 
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1 Introduction

There is a long tradition of factor or multi-index models in finance, where they were originally

introduced to simplify the computation of the covariance matrix of returns in a mean-variance

portfolio allocation framework (see Connor, Goldberg and Korajczyk (2009) for a recent survey).

In this context, the common factors usually correspond to unobserved fundamental influences

on returns, while the idiosyncratic factors reflect asset specific risks. In addition, the concept

of factors plays a crucial role in two major asset pricing theories: the mutual fund separation

theory (see e.g. Ross, 1978), of which the standard CAPM is a special case, and the Arbitrage

Pricing Theory (see Ross (1976), and Connor (1984) for a unifying approach).

Factor models for low frequency financial returns are routinely estimated by Gaussian max-

imum likelihood under the assumption that the observations are serially independent using

statistical factor analysis routines (see Lawley and Maxwell (1971)). In this context, the EM

algorithm of Dempster, Laird and Rubin (1977) and Rubin and Thayer (1982) provides a cheap

and reliable procedure for obtaining initial values as close to the optimum as desired, as illus-

trated by Lehmann and Modest (1988), who successfully employed this algorithm to handle a

very large cross-sectional dataset of monthly returns on individual US stocks.

However, there are three empirical characteristics of assets returns which question the ade-

quacy of this estimation procedure. First, there is some evidence of return predictability, which

although far from controversial, casts a doubt on the assumption of lack of serial correlation of

common and idiosyncratic factors. Second, there is much stronger evidence on time variation

in volatilities and correlations at high frequencies such as daily, which is difficult to square with

the fairly widespread belief that those effects are irrelevant at monthly and lower frequencies.

Finally, many empirical studies with financial time series data indicate that the distribution of

asset returns is rather leptokurtic, and possibly somewhat asymmetric. And although it is true

that the Gaussian pseudo-maximum likelihood (PML) estimators remain consistent in those

circumstances (see e.g. Bollerslev and Wooldridge (1992)), in principle one could obtain more

efficient estimators and test procedures by exploiting this third empirical regularity.

The objective of our paper is to provide joint diagnostic tests for serial dependence in the

levels and squares of the common and idiosyncratic factors that exploit the non-normality of

asset returns, which empirical researchers could easily apply to test the implicit lack of dynamics

in the factor analysis models that they estimate. For that reason, we will focus on Lagrange

Multiplier (or score) tests, which only require estimation of the static model. As is well known,

LM tests are asymptotically equivalent under the null and sequences of local alternatives to both

Likelihood ratio and Wald tests, and therefore share their optimality properties.
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For pedagogical reasons, though, we proceed in steps. We initially assume that the joint

distribution of returns conditional on their past is multivariate normal. Under this assumption,

we derive (i) tests against Ar/Ma-type serial correlation in the latent factors under the main-

tained assumption that they are conditionally homoskedastic; (ii) tests againstArch-type effects

in those latent variables under the maintained assumption that they are serially uncorrelated;

and (iii) joint tests of (i) and (ii) above. Then, we explain how to modify those tests so that

they reflect the more realistic assumption that the joint distribution of asset returns conditional

on their past is elliptically symmetric, which can be either parametrically or semipametrically

specified. Elliptical distributions are attractive in this context because they generalise the multi-

variate normal distribution, while retaining its analytical tractability irrespective of the number

of assets. In addition, we also explain how to robustify our Gaussian LM tests when the return

distribution is neither Gaussian nor elliptical. We complement our theoretical results with de-

tailed Monte Carlo exercises to study the finite sample reliability and power of our proposed

tests, and to compare them to other existing procedures. Finally, we also apply our methods to

monthly stock returns on US broad industry portfolios.

The rest of the paper is organised as follows. In section 2, we derive serial dependence tests

under normality, which we robustify in section 3, where we obtain more power versions under

ellipticity. A Monte Carlo evaluation of all the different tests can be found in section 4, followed

by the empirical application to US sectorial stock returns in section 5. Finally, our conclusions

can be found in section 6. Proofs and auxiliary results are gathered in appendices.

2 Serial dependence tests under normality

2.1 Static factor models

To keep the notation to a minimum, we initially consider a single factor version of a tra-

ditional (i.e. static, conditionally homoskedastic and exact) factor model, which suffices to

illustrate our main results. Extensions to multiple factors are considered in sections 2.2.6 and

2.3.7. Specifically:
yt = π + cft + vt,µ

ft
vt

¶
|It−1,θs ∼ N

∙µ
0
0

¶
,

µ
1 0
0 Γ

¶¸ ⎫⎬⎭ (1)

where yt is a N × 1 vector of observable variables with constant conditional mean π, ft is an

unobserved common factor, whose constant variance we have normalised to 1 to avoid the usual

scale indeterminacy, c is the N ×1 vector of factor loadings, vt is a N ×1 vector of idiosyncratic

noises, which are conditionally orthogonal to ft, Γ is a N × N diagonal positive semidefinite

(p.s.d.) matrix of constant idiosyncratic variances, It−1 is an information set that contains the
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values of yt and ft up to, and including time t− 1 and θs = (π0,c0,γ0)0, with γ = vecd(Γ). Our

assumptions trivially imply that

yt|It−1;θs ∼ N [π,Σ(θs)],

Σ(θs) = cc0 + Γ, (2)

In subsequent sections we shall derive dynamic diagnostic tests for such a static specification.

A non-trivial advantage of these models is that they automatically guarantee a p.s.d. co-

variance matrix for yt. But the most distinctive feature of factor models is that they provide

a parsimonious specification of the cross-sectional dependence in the observed variables, which

results in a significant reduction in the number of parameters, and allows the estimation of these

models with a large number of series (see e.g. Lehmann and Modest (1988)). For these reasons,

model (1) continues to be rather popular in empirical finance applications such as portfolio allo-

cation, asset pricing tests, hedging and portfolio performance evaluation (see Connor, Goldberg

and Korajczyk (2009) for details).

The parameters of interest are usually estimated jointly from the log-likelihood function of

the observed variables, which can be recursively computed by means of the Kalman filter.1 In

this framework, we prove in appendix B.1 that the Kalman filter updating equations yield:

E

µ
ft
vt

¯̄̄̄
Yt;θs

¶
=

∙
c0Σ−1(θs)(yt − π)
ΓΣ−1(θs)(yt − π)

¸
=

∙
fkt(θs)
vkt(θs)

¸
, (3)

and

V

µ
ft
vt

¯̄̄̄
Yt;θs

¶
=
∙
1-c0Σ−1(θs)c −c0Σ−1(θs)Γ
−ΓΣ−1(θs)c Γ-ΓΣ−1(θs)Γ

¸
=
∙

ωk(θs) −cωk(θs)
−cωk(θs) cc0ωk(θs)

¸
, (4)

a rank 1 matrix because we are trying to infer N + 1 latent variables from N observed ones.

The elements of fkt(θs) and vkt(θs) are known as the “regression scores” in the factor analysis

literature because the weights in (3) coincide with the coefficients in the theoretical regression of

each unobserved variable onto the observed series, while (4) coincides with the residual covariance

matrix from those regressions. As explained in Sentana (2004), the MSE criterion can be given

an intuitive justification in terms of a mean-variance investor, since it corresponds to the so-

called “tracking error” variability in the finance literature. In that sense, fkt(θs) are the excess

returns to the portfolio that best “tracks” ft, while vkt(θs) are the excess returns to the original

vector of asset returns after we have hedged them against the common source of risk. As we

shall see, fkt(θs), vkt(θs) and ωk(θs) constitute the basic ingredients of our tests.

1See Sentana (2000) for a random field interpretation of factor models, and their time-series and cross-sectional
state-space representations.
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In this context, we can use Theorem 12.1 in Anderson and Rubin (1956) and Theorem 2

in Kano (1983) to formally characterise the asymptotic distribution of the maximum likelihood

estimators of the static model parameters as follows:

Proposition 1 Let θ̄s denote the Gaussian maximum likelihood estimators of the parameters
that characterise model (1). If the matrix

[Γ− c(c0Γ−1c)−1c0]¯ [Γ− c(c0Γ−1c)−1c0]

has full rank, and we can uniquely decompose V (yt) into cc0 and Γ, then,
√
T (θ̄s − θs0)→ N [0, I−1θsθs(θs0)],

where

Iθsθs(θs)=

⎡⎣ Σ−1(θs) 0 0
0 c0Σ−1(θs)cΣ

−1(θs)+Σ−1(θs)cc0Σ−1(θs) [c0Σ−1(θs)⊗Σ−1(θs)]EN

0 E0N [Σ
−1(θs)c⊗Σ−1(θs)] 1

2Σ
−1(θs)¯Σ−1(θs)

⎤⎦ ,
En is the unique n2 × n “diagonalisation” matrix which transforms vec(A) into vecd(A) as
vecd(A) = E0nvec(A) and ¯ denotes the Hadamard product of two matrices of equal orders.

2.2 Tests for serial correlation in common and idiosyncratic factors

2.2.1 Baseline case

In this section we shall develop tests of first order serial correlation in the common and

idiosyncratic factors under the maintained assumption that their conditional variances are time-

invariant. Extensions to higher order serial correlation, multiple factors and conditionally het-

eroskedastic ones are developed in sections 2.2.5, 2.2.6 and 2.4, respectively. Specifically, the

alternative that we consider is the following conditionally homoskedastic dynamic factor model:

yt = π + cxt + ut
xt = ρxt−1 + ft

ut = diag(ρ∗)ut−1 + vtµ
ft
vt

¶
|It−1,θ ∼ N

∙µ
0
0

¶
,

µ
1 0
0 Γ

¶¸
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (5)

where the parameters of interest become θ = (θ0s,ρ
†0)0, with ρ† = (ρ,ρ∗0)0, which reduces to our

baseline specification (1) under H0 : ρ
† = 0. Models such as this have become increasingly pop-

ular in macroeconomic applications (see e.g. Bai and Ng (2008) and the references therein), but

they are not widely used for stock returns (see Dungey, Martin and Pagan (2000) or Jegadeesh

and Pennacchi (1996) for applications to bonds).

As is well known, the most precise way to characterise this model is in the frequency domain.

Assuming the stationarity conditions |ρ| < 1 and |ρ∗i | < 1 ∀i hold, the spectral density matrix

of (5) will be given by

gyy(λ) = cc
0gxx(λ) + guu(λ), (6)
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which shares the single factor structure of (2) at all frequencies λ. For our purposes, though, it

is more interesting to look at the autocovariance matrices of the observed series, which can be

trivially obtained from the inverse Fourier transform of the previous expression:

Gyy(j) = cc
0Gxx(j) +Guu(j). (7)

In particular, even though xt or ut are serially correlated, the unconditional covariance matrix

of yt, Σ say, can also be written as:

Σ(θ) = V (yt|θ) = cc0Gxx(0) +Guu(0)

(see Doz and Lenglart (1999)). Similarly, it is straightforward to obtain the autocorrelation

structure of any linear combination of yt, w0yt say, by exploiting the fact that its jth autoco-

variance will be given by w0Gyy(j)w (see also Lütkepohl (1993)). In fact, it is easy to see that

the autocovariance structure in (7) corresponds to a special case of a Varma(2,1) model since

[1− ρIN ][1− diag(ρ∗)L](yt − π) = [1− diag(ρ∗)L]cft + [1− ρIN ]vt,

whose right hand side has the autocovariance structure of a Vma(1).

As the next proposition shows, however, optimally testing the null of multivariate white

noise against such a complex Varma(2,1) specification is extremely easy:

Proposition 2 Let

Ḡfkfk(j) =
1

T

XT

t=1
fkt(θs)fkt−j(θs)

and
Ḡvkvk(j) =

1

T

XT

t=1
vkt(θs)v

0
kt−j(θs)

denote the jth sample autocovariances of the Kalman filter estimators of the common and specific
factors of model (1), whose expressions are given in (3).

1. Under the null hypothesis H0 : ρ
† = 0, the score test statistic LMAR(1) given by T times³

Ḡfkfk(1), vecd
0[Γ−1/2Ḡvkvk(1)Γ

−1/2]
´
I−1
ρ†ρ†

(θs0,0;0)
³
Ḡfkfk(1), vecd

0[Γ−1/2Ḡvkvk(1)Γ
−1/2]

´0
is distributed as a χ2 with N +1 degrees of freedom for N fixed as T goes to infinity, with

Iρ†ρ†(θs,0;0) = Vρ†ρ†(θs,0;0)¯ Vρ†ρ†(θs,0;0),

Vρ†ρ†(θs,0;0) = V

∙
fkt(θs)

Γ−1/2vkt(θs)

¸
=

∙
c0Σ−1(θs)c c0Σ−1(θs)Γ1/2

Γ1/2Σ−1(θs)c Γ1/2Σ−1(θs)Γ1/2

¸
.

2. This asymptotic null distribution is unaffected if we replace θs0 by its Gaussian maximum
likelihood estimator θ̄s in Proposition 1.
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Intuitively, we can interpret LMAR(1) as a test based on the N +1 orthogonality conditions:

E [fkt(θs)fkt−1(θs)|θs,0] = 0, (8)

E
£
γ−1i vkit(θs)vkit−1(θs)|θs,0

¤
= 0 (i = 1, . . . , N), (9)

which are the conditions that we would use to test for first order serial correlation if we treated

fkt(θs) or vkit(θs) are the series of interest (see e.g. Breusch and Pagan (1980) or Godfrey

(1988)). Given that we have fixed the variance of the innovations in the common factor to 1,

these moment conditions closely resemble

E(ftft−1|θs,0) = 0,

E(γ−1i vitvit−1|θs,0) = 0 (i = 1, . . . , N),

which are the orthogonality conditions that we would use to test for first order serial correlation

if we could observe all the latent variables.

The similarity between these two sets of moment conditions becomes even stronger if we

consider individual tests for serial correlation in each latent variable. Let us start with a test of

H0 : ρ = 0 under the maintained assumption that ρ∗ = 0. Proposition 2 implies that the asymp-

totic variance of Ḡfkfk(1) is simply [c
0Σ−1(θs)c]

2. But we can use (4) to interpret c0Σ−1(θs)c

as the R2 in the theoretical least squares projection of ft on a constant and yt. Therefore,

the higher the degree of observability of the common factor, the closer the asymptotic variance

of Ḡfkfk(1) will be to 1, which is the asymptotic variance of the first sample autocorrelation

of ft. Intuitively, this convergence result simply reflects the fact that the common factor be-

comes observable in the limit, which implies that our test of H0 : ρ = 0 will become arbitrarily

close to a first order serial correlation test for the common factor as the “signal to noise” ratio

c0Σ−1(θs)c approaches 1. Before the limit, though, our test takes into account the unobserv-

ability of ft. A particularly interesting situation arises if we consider models in which N is

large. Since c0Σ−1(θs)c = (c0Γ−1c)/[1 + (c0Γ−1c)] under the assumption that Γ has full rank,

the aforementioned R2 converges to 1 as N →∞ because (c0Γ−1c)→∞ in those circumstances

due to the pervasive nature of the common factor (see e.g. Sentana (2004)).

Proposition 2 also implies that the asymptotic variance of Ḡvkivki(1) is [γiσ
ii(θs)]

2, where

σii(θs) denotes the ith diagonal element of Σ−1(θs). But we can again use (4) to interpret

γiσ
ii(θs) as the R2 in the theoretical least squares projection of vit on a constant and yt.

Therefore, we can apply a similar line of reasoning to a test of H0 : ρ
∗
i = 0 under the maintained

assumption that both ρ and the remaining elements of ρ∗ are 0. In this respect, note that

σii(θs) = γ−1i − γ−2i c2i /[1 + (c
0Γ−1c)] when Γ has full rank, which means that γiσ

ii(θs) also

converges to 1 as N →∞ for fixed ci and γi.
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Nevertheless, it is important to emphasise that our joint tests also take into account the

covariance between the Kalman filter estimators of common and specific factors, even though

the latent variables themselves are uncorrelated. In fact, Vρ†ρ†(θ,0;0) has rank N instead of

N + 1 because of the negative relationship vkt(θ) = yt − π − cfkt(θ), which rules out the

application of the multivariate serial correlation test discussed in the next section.

Since the orthogonality conditions (8) and (9) remain valid when yt is serially uncorrelated

irrespective of V (yt) having an exact single factor structure, one could also use them to derive

a standard moment test (see e.g. Newey and McFadden (1994), Newey (1985) and Tauchen

(1985)), which will continue to have non-trivial power even though it will no longer be an LM

test (see Sentana and Shah (1994) for an interpretation of θs when Σ(θs) is misspecified).

2.2.2 Moving average processes

Specification (5) assumes that common and specific factors follow Ar(1) processes. How-

ever, recent macroeconomic applications of dynamic factor models have often considered moving

average processes instead, sometimes treating the lagged latent variables as additional factors

(see again Bai and Ng (2008)). Thus, we could alternatively assume that

xt = ft + ϕft−1,
ut = vt + diag(ϕ∗)vt−1.

(10)

Although the single factor structure of the spectral density matrix (6) remains valid, in this case

the autocorrelation structure of yt corresponds to a restricted Vma(1) process. Therefore, the

Kalman filter recursions for this dynamic model are different from the recursions in Appendix

B.2. Nevertheless, straightforward algebra shows that the scores corresponding to ϕ† = (ϕ,ϕ∗0)0

evaluated at ϕ† = 0 numerically coincide with the scores corresponding to ρ† in model (5)

evaluated at ρ† = 0. Hence, we can also interpret LMAR(1) in Proposition 2 as the LM test of

H0 : ϕ
† = 0. This result mimics the well known fact that Ma(1) and Ar(1) processes provide

locally equivalent alternatives in univariate tests for serial correlation (see e.g. Godfrey (1988)).

2.2.3 Alternative multivariate serial correlation tests

It is illustrative to compare our test of serial correlation in common and specific factors to

the multivariate generalisation of the Box and Pierce (1970) test proposed by Hosking (1981).

In the first order case, one can reinterpret his proposal as a test of the null hypothesis of lack

of serial correlation against an unrestricted Var(1) model, as in Hendry (1971), Gulkey (1974)

and Harvey (1982). More formally:

Proposition 3 Consider the following conditionally homoskedastic Var(1) model:

yt = (IN −P)π +Pyt−1 + εt
εt|It−1,θ0 ∼ N(0,Σ)

¾
, (11)
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where θ = (π0,p0,σ0), with p = vec(P) and σ = vech(Σ). Let

π̄ =
1

T

XT

t=1
yt

denote the sample mean of yt, and

Ḡyy(j) =
1

T

XT

t=1
(yt − π̄)(yt−j − π̄)0

its jth sample autocovariance matrix. Under the null hypothesis H0 : p = 0 the test statistic

LMH = Tvec0[Ḡyy(1)][Ḡ
−1
yy(0)⊗ Ḡ−1yy(0)]vec[Ḡyy(1)], (12)

will be distributed as a χ2 with N2 degrees of freedom for N fixed as T goes to infinity.

Apart from the fact that it does not exploit the strong cross-sectional dependence of returns,

which results in the number of degrees of freedom being an order of magnitude larger, with the

consequent reduction in power, the main problem with this test is that in practice it requires

T much larger than N2 for the asymptotic distribution in Proposition 3 to be reliable in finite

samples. In contrast, our joint test only requires that N/T → 0, while our test of H0 : ρ = 0

should remain valid as long as we can consistently estimate the static model parameters.

2.2.4 The relative power of AR tests in multivariate contexts

We compare the power of our proposed LM tests, Hosking’s test, a standard univariate

Ar(1) test applied to the Equally Weighted Portfolio (EWP), and a joint test of univariate

first-order autocorrelation in all N series (H0 : vecd[Gyy(1)] = 0), which takes into account

that the y0its are contemporaneously correlated even when they are serially uncorrelated.
2 Note

that our joint LM test can also be understood as test of univariate first-order autocorrelation in

[fkt(θs),v
0
kt(θs)]. We consider a non-exchangeable single factor model of the form:

yit = πi + cixt + uit (i = 1, . . . , 5)

xt = ρxt−1 +
p
1− ρ2ft

uit = ρ∗iuit−1 +
q
1− ρ∗2i vit

where π = (.5, .4, .5, .4, .5), c = (5, 4, 5, 4, 5), γ = (5, 9, 5, 9, 5) and ρ∗i = ρ∗ ∀i. Such a design

is motivated by the empirical application in section 5. We evaluate asymptotic power against

compatible sequences of local alternatives of the form ρ†0T = ρ̄†/
√
T (see appendix C for details).

In view of the discussion following Proposition 2, it is worth looking at the first two un-

conditional moments of yt. In this sense, note that by construction E(xt) = 0, V (xt) = 1,

E(uit) = 0, V (uit) = γi and cov(xt, uit) = 0 both under the null and the different alternatives,

which implies that E(yt) = π and V (yt) = cc0+Γ. Thus, the unconditional standard deviations

2Given the single factor structure of Σ, this test differs from Test 2 in Harvey (1982), which tests the null
hypothesis H0 : vecd(P) = 0 under the maintained assumption that Σ is diagonal.
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will be
√
30 for the first, third and fifth series, and 5 for the second and fourth ones, while the

unconditional correlations will be .8̊3 (odd with odd), .73 (odd with even) or .64 (even with

even). Finally, the “signal to noise” ratio c0Σ−1c, which coincides with the R2 in the theoretical

least squares projection of ft on a constant and yt, is .95.3 As for the means, note that we have

implicitly imposed that linear factor pricing holds because π = .1c. Although this restriction

is inconsequential for our econometric results, it implies an a priorily realistic unconditional

mean-variance frontier, with a maximum Sharpe ratio of .34 on an annual basis.4

Figure 1a shows that when ρ∗ = 1.5ρ our proposed test of H0 : ρ
† = 0 is the most powerful

at the usual 5% significance level, closely followed by the test of H0 : ρ
∗ = 0. Next, we find

the pormanteau test of H0 : p = 0, the univariate test applied to EWP and finally the test

of serial correlation in the common factor, with the “diagonal” serial correlation test of H0 :

vecd[Gyy(1)] = 0 somewhere in between. However, this ranking crucially depends on the “signal

to noise” ratio c0Σ−1c. Figure 1b shows the equivalent picture when we multiply all the elements

of γ by 10, so that the R2 in the regression of ft on yt reduces to .65. In this case, the power of

our test of serial correlation in ft decreases, while the power of the univariate test on EWP and

especially the diagonal test increases substantially. In contrast, Figure 1c illustrates the effects

of dividing the elements of γ by 5, so that the aforementioned R2 reaches .99. Not surprisingly,

the power of the two univariate tests almost coincides because EWP and fkt(θ0) become very

highly correlated, while the diagonal test is now the least powerful.

The other crucial determinant of the power of the different tests is the relative magnitudes

of ρ and ρ∗. Figure 2a shows the effect of setting ρ∗ = 0 for our baseline signal to noise ratio,

while Figure 2b illustrates the effects of ρ = 0. In the first case, the test of serial correlation in

the common factor becomes the most powerful, with the test of serial correlation in the specific

factors having power equal to size, while exactly the opposite happens in the second case.5

2.2.5 Higher order serial correlation

Consider the following alternative:

xt =
Ph

l=1 ρlxt−l + ft,

uit =
Ph∗i

l=1 ρ
∗
iluit−l + vit, (i = 1, . . . ,N),

3A more common measure of the importance of commonalities is the R2 in the theoretical regression of each
series on the common factor, which is .8̊3 for the odd numbered series and .64 for the even numbered ones.

4The ex-ante optimal mean-variance portfolio % weights are (25.7,11.4,25.7,11.4,.25.7).
5The case ρ = ρ∗ is rather unsual, in that the reduced form process for the observed series yt becomes a

Var(1) with a scalar companion matrix. As a result, any linear combination of yt will have the autocorrelation
structure of an Ar(1) process with autoregressive coefficient ρ = ρ∗.
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so that model (5) corresponds to h = h∗1 = . . . = h∗N = 1. In view of the discussion in section

2.2.1, it is perhaps not surprising that the score test of ρl = 0 will be based on the condition

E [fkt(θs)fkt−l(θs)|θs,0] = 0,

while the score test of ρ∗il = 0 will be based on

E
£
γ−1i vkit(θs)vkit−l(θs)|θs,0

¤
= 0.

Given that yt is i.i.d. under the null, it is not difficult to show that the joint test for higher

order dynamics will be given by T times the sum of terms of the form¡
Ḡfkfk(l) vecd0[Γ−1/2Ḡvkvk(l)Γ

−1/2 ¢ I−1
ρ†ρ†

(θs,0;0)
¡
Ḡfkfk(l) vecd0[Γ−1/2Ḡvkvk(l)Γ

−1/2 ¢0 .
As expected, these statistics are also LM tests against Ma(h) structures in the factors. And

if for some reason we wanted to test for different orders of serial correlation in different latent

variables, then we should eliminate the irrelevant autocovariances from the above expression.

Similarly, we could be interested either in models in which the autoregressive structure of

the latent variable follows some restricted distributed lag, or in panel data type structures in

which ρ∗il = ρ∗l ∀i, l to alleviate the incidental parameter problems for large N . In those cases,

we can use the usual chain rule to obtain the relevant moment conditions and their asymptotic

covariance matrix. For instance, imagine that we wanted to test the null against the following

novel Ar(h) specification for the common factor that we consider in our empirical application:

xt =
Xh

l=1
ρxt−l + ft.

Then, it is easy to prove that the relevant orthogonality condition will become

E

∙
fkt(θs)

Xh

l=1
fkt−l(θs)|θs,0

¸
= 0,

with h·[c0Σ−1(θs)c]2 being the corresponding asymptotic variance. Interestingly, this expression

is entirely analogous to the so-called Hodrick (1992) standard errors used in LM tests for long

run return predictability in univariate regressions with overlapping observations.

2.2.6 Multiple factor models

So far, we have worked with single factor models to convey the basic intuition while keeping

the algebra to a minimum. Nevertheless, it is straightforward to extend our results to models

with more than one common factor, which under the null become

yt = π +Cf t + vt,µ
ft
vt

¶
|It−1,θ ∼ N

∙µ
0
0

¶
,

µ
Ik 0
0 Γ

¶¸ ⎫⎬⎭ , (13)

10



where ft is a vector of k unobserved common factors, whose constant covariance matrix we have

normalised to the identity matrix, and C is the corresponding N × k matrix of factor loadings.

In this case, our assumptions trivially imply that

yt|It−1;θs ∼ N [π,Σ(θs)],

Σ(θs) = CC0 + Γ,

Apart frommessier algebraic expressions, the main complication arises from the non-identified

nature of the model under the null due to two different issues: (i) the potentially non-unique

decomposition of V (yt) into a diagonal matrix Γ and a reduced rank matrix CC0, which is

related to the so-called Ledermann bound, and (ii) the underidentifiability of C from CC0 (see

Anderson and Rubin (1956), Dunn (1973), Jennrich (1978), Bekker (1989) or Wegge (1996)). In

this sense, it is well known that we can obtain an observationally equivalent model by premulti-

plying the common factors by an orthogonal matrix of order k, Q say, and postmultiplying the

factor loading matrix by the transpose of this matrix since the unconditional covariance matrix,

Σ(θs) = C
∗C∗0 + Γ = CQ0QC0 + Γ

remains unchanged. For that reason, empirical researchers often impose a priori restrictions

on the matrix C so that it can be identified (up to permutations and sign changes) from the

unconditional covariance matrix of yt. Although those restrictions are often arbitrary, the factors

can be orthogonally rotated to simplify their interpretation once the model has been estimated.

In some other cases, identifiability can be achieved by imposing plausible a priori restrictions.

For example, if in a two factor model it is believed that the second factor only affects a subset

of the variables (say the first N1, with N1 < N , so that ci2 = 0 for i = N1 + 1, . . . , N), then

the non-zero elements of C will always be identifiable. In what follows, we assume that enough

restrictions have been imposed to render C identifiable from knowledge of the unconditional

covariance matrix of the observed variables.

Since our main concern in this section is the existence of multiple common factors, to keep

the algebra simple the alternative hypothesis that we will consider is as follows:

yt = π +Cxt + vt
xt = Rxt−1 + ftµ

ft
vt

¶
|It−1,θ ∼ N

∙µ
0
0

¶
,

µ
Ik 0
0 Γ

¶¸
⎫⎪⎪⎬⎪⎪⎭ (14)

which reduces to specification (13) under the null hypothesis thatH0 : ρ = 0, where ρ = vec(R).

Importantly, it is easy to show that without further restrictions this model will be identified if

only if C can be identified from the static model. We can then prove the following result:

11



Proposition 4 Let

Ḡfkfk(j) =
1

T

XT

t=1
fkt(θs)f

0
kt−j(θs)

denote the jth sample autocovariances of the Kalman filter estimators of the common factors of
model (13), which are given by

fkt(θs) = C
0Σ−1(θs)(yt − π).

1. Under the null hypothesis H0 : ρ = 0, the score test statistic

LMFV AR(1) = T · vec0[Ḡfkfk(1)]I−1ρρ (θs0,0;0)vec[Ḡfkfk(1)],

will be distributed as a χ2 with k2 degrees of freedom as T goes to infinity, where

Iρρ(θs,0;0) = Vρρ(θs,0;0)⊗ Vρρ(θs,0;0), (15)

Vρρ(θs,0;0) = V [fkt(θs)] = C
0Σ−1(θs)C.

2. This asymptotic null distribution is unaffected if we replace θs0 by its Gaussian maximum
likelihood estimator under the null.

It is easy to see that LMFV AR(1) is numerically invariant to orthogonal rotations of the

common factors, so the test result will not depend on the exact identification restriction imposed.

Not surprisingly, this test can be related to a Hosking test applied to the common factors ft

if they were observed. Unlike the test described in Proposition 3, though, the number of degrees

of freedom is k2 instead of N2, which still makes a noticeable difference since k is typically much

lower thanN in practice. Finally, we can easily derive tests for univariate serial correlation in any

particular common factor by focusing on the appropriate diagonal element of the autocovariance

matrix Ḡfkfk(j) and the corresponding element of (15).

2.3 Tests for ARCH effects in common and idiosyncratic factors

2.3.1 Baseline case

In this section we shall develop tests of first order Arch effects in the common and idiosyn-

cratic factors under the maintained assumption that their conditional means are 0. Extensions

to higher order effects, multiple factors and serially correlated ones are considered in sections

2.3.5, 2.3.7 and 2.4, respectively. Specifically, the alternative that we consider is the following

conditionally heteroskedastic factor model:

yt = π + cft + vt,µ
ft
vt

¶
|It−1;θ ∼ N

∙µ
0
0

¶
,

µ
λt(θ) 0
0 Γt(θ)

¶¸
,

V (ft|It−1;θ) = λt(θ) = 1 + α[E(f2t−1|Yt−1;θ)− 1],
V (vit|It−1;θ) = γit(θ) = γi + α∗i [E(v

2
it−1|Yt−1;θ)− γi], (i = 1, . . . , N)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ , (16)

where E(f2t−1|Yt−j ;θ) and E(v2it−j |Yt−1;θ) are the conditionally linear Kalman filter estimators

of the squares of the underlying common and idiosyncratic factors obtained from this model (see

12



appendix B.3). Although it is in principle important to distinguish between It−1 = {yt−1, ft−1,

yt−2, ft−2, . . .}, and the econometrician’s information set Yt−1 = {yt−1,yt−2, . . .}, which only

includes lagged values of yt, (see Harvey, Ruiz and Sentana (1992)), for ease of exposition we

postpone the discussion of those cases in which λt(θ) /∈ Yt−1 until section 2.3.2.

Given (16), the distribution of yt conditional on Yt−1 is N(0,Σt), where Σt = cc
0λt+Γt has

the usual exact factor structure. For this reason, we shall refer to the data generation process

specified by (16) as a multivariate conditionally heteroskedastic exact factor model, which re-

duces to our baseline specification (1) under the null hypothesis that H0 : α
† = 0, where

α† = (α,α∗) and α∗ = (α1, . . . , αN ). But even if even if ft or vt are conditionally heteroskedas-

tic, provided that they are covariance stationary, model (16) also implies an unconditional exact

factor structure for yt. That is, the unconditional covariance matrix, Σ, can be written as:

Σ = E(Σt|θ) = cc0 + Γ, (17)

because we have set the unconditional variance of the common factor to 1 to eliminate the usual

scale indeterminacy.6 In this case, the parameters of interest become θ = (θ0s,α
†0)0.

The above model has very interesting implications for correlations. A stylised fact that has

been noted before is that periods when markets are increasingly correlated are also times when

markets are volatile (see King, Sentana and Wadhwani (1994)). Since the empirical evidence

typically suggests that changes in the unobservable factor lead to individual stocks moving in

the same direction, model (16) implies that periods when the volatility of the unobservable

factor rises are also those when, ceteris paribus, individual stocks appear to exhibit greater

inter-correlation. Specifically, the conditional correlation coefficient between any two elements

of yt is given by

ρ12t =
c1c2λtp

c21λt + γ1t
p
c22λt + γ2t

.

Hence, ρ12t will be increasing in λt if c1c2 > 0 and decreasing in γ1t and γ2t.

A more precise way to characterise the serial dependence structure implied by model (16) is

to consider the autocovariance structure of

vec[(yt − π)(yt − π)0] = (c⊗ c)f2t + vec(vtv
0
t) + (IN2 +KNN )(c⊗ IN)vec(ftvt),

where Kmn is the commutation matrix of orders m and n (see Magnus and Neudecker (1988)).

Given that vec(ftvt) is a martingale difference sequence, yt follows a weak Arch model (see

Nijman and Sentana (1996)) which shares the factor structure in (7) not for the levels but for

the squares and cross-products of the observed variables yt (see appendix C for further details).

6See Fiorentini, Sentana and Shephard (2004) for symmetric scaling assumptions for integrated models.
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In this sense, another empirically appealing feature of (16) is that all linear combinations of yt

will follow weak Arch processes as long as α and α∗ are strictly positive.

Sentana and Fiorentini (2001) develop tests of the null hypothesis H0 : α = 0 under the

maintained hypothesis that α∗ = 0. The following proposition extends their results to joint

tests of Arch effects in common and specific factors:

Proposition 5 Let

S̄fkfk(j) =
1

T

XT

t=1
[f2kt(θs) + ωk(θs)− 1][f2kt−j(θs) + ωk(θs)− 1]

and

S̄vkvk(j) =
1

T

XT

t=1
vecd[vkt(θs)v

0
kt(θs)+cc

0ωk(θs)− Γ]

×vecd[vkt−j(θs)v0kt−j(θs)+cc0ωk(θs)− Γ]

denote the sample autocovariances of the squares of the Kalman filter estimators of the innova-
tions in the common and specific factors of model (1), whose expressions are given in (3).

1. Under the null hypothesis H0 : α
† = 0, the score test statistic LMARCH(1) given by

T
4

¡
S̄fkfk(1), vecd

0[Γ−1S̄vkvk(1)Γ
−1]
¢
J−1
α†α†

(θs,0;0)
¡
S̄fkfk(1), vecd

0[Γ−1S̄vkvk(1)Γ
−1]
¢0
,

is distributed as a χ2 with N +1 degrees of freedom for N fixed as T goes to infinity, with

Jα†α†(θs,0;0) = Vα†α†(θs,0;0)¯ Vα†α†(θs,0;0), (18)

Vα†α†(θs,0;0) = V

"
1√
2
[f2kt(θs) + ωk(θs)− 1]

1√
2
Γ−1vecd[vkt(θs)v0kt(θs)+cc

0ωk(θs)− Γ]

#

=

∙
[c0Σ−1(θs)c]

2 c0Σ−1(θs)Γ1/2 ¯ c0Σ−1(θs)Γ1/2
Γ1/2Σ−1(θs)c¯ Γ1/2Σ−1(θs)c Γ1/2Σ−1(θs)Γ1/2 ¯ Γ1/2Σ−1(θs)Γ1/2

¸
.

2. This asymptotic null distribution is unaffected if we replace θs0 by its Gaussian maximum
likelihood estimator θ̄s in Proposition 1.

Intuitively, we can interpret LMARCH(1) as a test based on theN+1 orthogonality conditions:

E
©
[f2kt(θs) + ωk(θs)− 1][f2kt−1(θs) + ωk(θs)− 1]|θs,0

ª
= 0, (19)

E
©
γ−2i [v

2
kit(θs) + c2iωk(θs)− γi][v

2
kit−1(θs) + c2iωk(θs)− γi]|θs,0

ª
= 0 (i = 1, . . . , N).(20)

which are the orthogonality conditions that we would use to test for first order Arch effects if

we treated fkt(θs) or vkit(θs) as the series of interest (see e.g. Engle (1982)). Once again, given

that we normalise V (ft) to 1, these moment conditions closely resemble

E[(f2t − 1)(f2t−1 − 1)|θs,0] = 0,

E[γ−2i (v
2
it − γi)(v

2
it−1 − γi)|θs,0] = 0 (i = 1, . . . , N),
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which are the orthogonality conditions that we would use to test for first order Arch effects if

we could observe the latent variables.

The similarity between these two sets of moment conditions becomes even stronger if we

consider individual tests for Arch in each latent variable. Let us start with a test of H0 : α = 0

under the maintained assumption that α∗ = 0. Proposition 5 implies that the asymptotic

variance of S̄fkfk(1) is simply 2[c
0Σ−1(θs)c]

4. But as we saw in section 2.2.1, we can inter-

pret c0Σ−1(θs)c as the R2 in the theoretical least squares projection of ft on a constant and yt.

Therefore, the higher the degree of observability of the common factor, the closer the asymptotic

variance of S̄fkfk(1) will be to 2, which is the asymptotic variance of the first sample autocovari-

ance of f2t . Intuitively, this convergence result simply reflects the fact that the common factor

becomes observable in the limit, which implies that our test of H0 : α = 0 will become arbitrarily

close to a first order Arch test for the common factor as the “signal to noise” ratio c0Σ−1(θs)c

approaches 1. Before the limit, though, our test takes into account the unobservability of ft.

Proposition 5 also implies that the asymptotic variance of S̄vkivki(1) is 2[γiσ
ii(θs)]

4, where

σii(θs) denotes the ith diagonal element of Σ−1(θs). But since we can again interpret γiσ
ii(θs)

as the R2 in the theoretical least squares projection of vit on a constant and yt, we can apply a

similar line of reasoning to a test of H0 : α
∗
i = 0 under the maintained assumption that ρ = 0

and the remaining elements of ρ∗ are 0. Once again, though, it is important to emphasise that

our joint tests take into account the covariance between the Kalman filter estimators of the

underlying factors, even though the latent variables themselves are uncorrelated.

Again, it would be straightforward to adapt Proposition 5 to handle large N panel data

restrictions such as α∗i = α∗ ∀i, as in Sentana, Calzolari and Fiorentini (2008). Given that the

orthogonality conditions (19) and (20) remain valid when yt is serially independent irrespective

of V (yt) having an exact single factor structure, one could also use them to derive a standard

moment test that will still have non-trivial power even though it will no longer be an LM test.

2.3.2 Unobservable conditional variances

Specification (16) assumes that the conditional variances of common and specific factors are

a function of lagged observable variables. But it may seem more natural to assume that those

variances are in fact functions of the lagged latent variables. Specifically, we could assume that

V (ft|It−1;θ0) = 1 + α(f2t−j − 1), (21)

V (vit|It−1;θ0,η0) = γi + α∗i (v
2
it−1 − γi), (i = 1, . . . ,N). (22)

The problem with this formulation is that the log-likelihood function can no longer be written

in closed form except under the null hypothesis α† = 0. For our purposes, though, the non-
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measurability of λt and Γt is inconsequential because Proposition 1 in Sentana, Calzolari and

Fiorentini (2008) shows that not only the log-likelihood function but also the score of this

modified model coincides the score of model (16) under the null of conditionally homoskedasticity.

Therefore, LMARCH(1) can be interpreted as LM tests of H0 : α
† = 0 in this context too.

2.3.3 Alternative multivariate ARCH tests

It is again illustrative to compare our tests of Arch effects in the latent factors to Hosking-

style general multivariate Arch test of the type discussed by Duchesne and Lalancette (2003):

Proposition 6 Consider the following vech specification of the multivariate Arch(1) model:

yt = π + εt
εt|It−1,θ0 ∼ N(0,Σt)

vech(Σt) = vech(Σ) +Avech(εt−1ε0t−1 −Σ).

⎫⎬⎭ (23)

where θ = (π0,σ0,a0), with σ = vech(Σ) and a = vec(A). Let

π̄ =
1

T

XT

t=1
yt

denote the sample mean of yt,

Σ̄ =
1

T

XT

t=1
(yt − π̄)(yt−j − π̄)0,

its sample covariance matrix, and

S̄yy(j) =
1

T

XT

t=1
vech[(yt − π̄)(yt − π̄)0 − Σ̄]vech0[(yt−j − π̄)(yt−j − π̄)0 − Σ̄]

the jth sample autocovariance matrix of vech[(yt − π̄)(yt − π̄)0]. Under the null hypothesis that
H0 : a = 0 the asymptotic distribution of the test statistic

LMV ECH(1) =
T

4
vec0[S̄yy(1)]{[D0

N (Σ̄
−1⊗ Σ̄−1)DN ]⊗ [D0

N(Σ̄
−1⊗ Σ̄−1)DN ]}vec[S̄yy(1)], (24)

will be a χ2 with N2(N + 1)2/4 degrees of freedom for N fixed as T goes to infinity, where DN

is the duplication matrix of order N .

Apart from the fact that it does not exploit the strong cross-sectional dependence of returns,

which results in the number of degrees of freedom being three orders of magnitude larger, with

the consequent reduction in power, the main problem with (24) is that in practice it requires

T much larger than N4 for the asymptotic distribution in Proposition 6 to be reliable in finite

samples. In contrast, our joint test only requires that N/T → 0, while our test of H0 : α = 0

should remain valid as long as we can consistently estimate the model parameters.7

7Another implication of the single factor structure of Σ is that LMV ECH(1) differs from the multivariate Arch
test considered by Dufour, Khalaf and Beaulieu (2008), who apply Hosking’s test to the vech of the outer product
of standardised values of yt obtained from a Cholesky decomposition of Σ̄.
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2.3.4 The relative power of ARCH tests in multivariate contexts

We compare the power of our LM tests, Hosking’s test applied to vech[(yt − π)(yt − π)0],

a standard univariate Arch(1) test applied to the EW portfolio, a joint test of univariate

first-order autocorrelation in all N(N + 1)/2 squares and cross-products of the (demeaned)

observed series, and an analogous test that only focuses on their squares. Note that our joint

LM test can also be understood as test of univariate first-order autocorrelation in the squares

of [fkt(θs),v0kt(θs)]. We consider another non-exchangeable single factor model of the form:

yit = πi + cift + vit (i = 1, . . . , 5)
λt = (1− α) + αf2t−1
γit = γi(1− α∗i ) + α∗i v

2
it−1

where π = (.5, .4, .5, .4, .5), c = (5, 4, 5, 4, 5), γ ∝ (5, 9, 5, 9, 5) and α∗i = α∗ ∀i, whose first two

unconditional moments are also empirically motivated, as they coincide with those of the model

considered in section 2.2.4. We evaluate power against compatible sequences of local alternatives

of the form α†0T = ᾱ†/
√
T (see appendix C for details).

For the baseline case in which γ = (5, 9, 5, 9, 5), and α∗ = α, Figure 3a shows that our

proposed test of H0 : α
† = 0 is the most powerful at the usual 5% significance level, followed by

our test of H0 : α
∗ = 0. Next we find our test of Arch effects in the common factor and the

univariate Arch test applied to EWP, the diagonal serial correlation tests of vecd[(yt−π)(yt−

π)0] and vech[(yt − π)(yt − π)0], and finally the pormanteau test of H0 : a = 0, which suffers

from having a large number of degrees of freedom. Once again, though, this ranking crucially

depends on the “signal to noise” ratio c0Σ−1c. Figure 3b shows the equivalent picture when we

multiply all the elements of γ by 10, so that the R2 in the regression of ft on yt reduces to .65.

In this case, the power of the two univariate tests decreases substantially, while the power of the

diagonal tests increases. In contrast, Figure 3c illustrates the effects of dividing the elements

of γ by 5, so that the aforementioned R2 reaches .99. Not surprisingly, the power of the two

univariate tests almost coincides because EWP and fkt(θ0) become very highly correlated.

The other crucial determinant of the power of the different tests is the relative magnitudes

of α and α∗. Figure 4a shows the effect of setting α∗ = 0 for our baseline signal to noise ratio,

while Figure 4b illustrates the effects of α = 0. In the first case, the test of serial correlation in

the common factor becomes the most powerful, with the test of serial correlation in the specific

factors having power equal to size, while exactly the opposite happens in the second case.
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2.3.5 Higher order ARCH effects

Consider the following alternative specification:

V (ft|It−1;θ0) = λt(θ) = 1 +
Xq

j=1
αj [E(f

2
t−j |Yt−j ;θ)− 1],

V (vit|It−1;θ0,η0) = γit(θ) = γi +
Xq∗i

j=1
α∗ij [E(v

2
it−j |Yt−j ;θ)− γi], (i = 1, . . . ,N),

so that model (16) corresponds to q = q∗1 = . . . = q∗N = 1. In view of the discussion in section

2.3.1, it is perhaps not surprising to find out that the score test of αj = 0 will be based on the

orthogonality condition

E
©
[f2kt(θs) + ωk(θs)− 1][f2kt−l(θs) + ωk(θs)− 1]|θs,0

ª
= 0,

while the score test of α∗ij = 0 will be based on

E
©
γ−2i [v

2
kit(θs) + c2iωk(θs)− γi][v

2
kit−j(θs) + c2iωk(θs)− γi]|θs,0

ª
= 0

Given that yt is i.i.d. under the null hypothesis, it is not difficult to show that the joint test

for higher order dynamics will be given by 1
4T times the sum of terms of the form

¡
S̄fkfk(j), vecd

0[Γ−1S̄vkvk(j)Γ
−1]
¢
J−1
α†α†

(θs,0;0)
¡
S̄fkfk(j), vecd

0[Γ−1S̄vkvk(j)Γ
−1]
¢0
.

Once again, we could eliminate the irrelevant autocovariances from the above expression to test

for different orders of serial correlation in the squares of different latent variables.

2.3.6 GARCH tests

The univariate empirical evidence suggests that Garch(1,1) specifications of the form

λt(θ) = 1− α− β + αE(f2t−j |Yt−1;θ) + βλt−1(θ)
= 1 + α

P∞
j=1 β

j−1[E(f2t−j |Yt−j ;θ)− 1],
γit(θ) = γi(1− α∗i − β∗i ) + α∗iE(v

2
it−j |Yt−1;θ) + β∗i γit−1(θ)

= γi + α∗i
P∞

j=1(β
∗
i )
j−1[E(v2it−j |Yt−j ;θ)− γi]

should be more realistic than unrestricted Arch(q) ones. As Bollerslev (1986) noted in a uni-

variate context, however, one cannot derive a score test for conditional homoskedasticity versus

these Garch(1,1) specifications in the usual way, because β and β∗i are only identified under

the alternative. A possible solution to testing situations such as this one involves computing

the test statistic for many values of β and β∗i in the range [0,1), which are then combined to

construct an overall statistic, as initially suggested by Davies (1977, 1987). Andrews (2001) dis-

cusses ways of obtaining critical values for such tests by regarding the different LM statistics as

continuous stochastic processes indexed with respect to the parameters β and β∗i (i = 1, . . . , N).
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Unfortunately, his procedure is difficult to apply in our context because dim(β†) = N + 1. An

alternative solution involves choosing arbitrary values of the underidentified parameters to carry

out a score test of α = 0 and α∗ = 0 based on the moment conditions

E
n
[f2kt(θs) + ωk(θs)− 1]

X∞

l=1
βl−1[f2kt−l(θs) + ωk(θs)− 1]|θs,0

o
= 0,

E
n
[v2kit(θs) + c2iωk(θs)− γi]

X∞

l=1
(β∗i )

l−1[v2kit−l(θs) + c2iωk(θs)− γi]|θs,0
o
= 0,

whose asymptotic covariance matrix would be

X∞

l=0
diagl[β,β∗0]Jα†α†(θs,0;0)diagl[β,β∗0],

which can be obtained in closed form. The values of β and β∗ influence the small sample power

of these tests, achieving maximum power when they coincide with their true values (see Demos

and Sentana (1998)), but the advantage is that the resulting tests have standard distributions

under H0. An attractive possibility is to set β and β∗ to the decay factor recommended by

RiskMetrics (1996) to obtain exponentially weighted volatility estimates for fkt and vikt.

2.3.7 Multiple factor models

As in section 2.2.6, we assume that enough restrictions have been imposed to render C

identifiable from knowledge of the unconditional covariance matrix of the observed variables.

Since our main concern in this section is the existence of multiple common factors, to keep the

algebra simple the alternative hypothesis that we will consider is as follows:

yt = π +Cf t + vt,µ
ft
vt

¶
|It−1;θ ∼ N

∙µ
0
0

¶
,

µ
Λt(θ) 0
0 Γ

¶¸
,

vech[V (ft|It−1;θ)] = vech[Λt(θ)] = Ik +Avech[E(ft−1f 0t−1|Yt−1;θ)− Ik],

⎫⎪⎪⎬⎪⎪⎭ , (25)

which reduces to our baseline specification (13) under the null hypothesis that H0 : α = 0,

where α = vec(A). Importantly, it is easy to show that without further restrictions on the

matrix A this model will be identified if and only if C can be identified from the static model

(cf. Sentana and Fiorentini (2001)). We can then prove the following result:

Proposition 7 Let

S̄fkfk(j) =
1

T

XT

t=1
vech[fkt(θs)f

0
kt(θs) +Ωk(θs)− Ik]

×vech0[fkt(θs)f 0kt(θs) +Ωk(θs)− Ik]

denote the sample autocovariances of the squares and cross-products of the Kalman filter esti-
mators of the innovations in the common factors of model (13), where

Ωk(θs) = Ik −C0Σ−1(θs)C.
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1. Under the null hypothesis H0 : α = 0, the score test statistic

LMFV ECH(1) =
T

4
· vec0[S̄fkfk(1)]{D0

k[(C
0Σ−1(θs)C)

−1 ⊗ (C0Σ−1(θs)C)−1]Dk]

⊗[D0
k[(C

0Σ−1(θs)C)
−1 ⊗ (C0Σ−1(θs)C)−1]Dk]}vec[S̄fkfk(1)],

will be distributed as a χ2 with k2(k + 1)2/4 degrees of freedom as T goes to infinity.

2. This asymptotic null distribution is unaffected if we replace θs0 by its Gaussian maximum
likelihood estimator under the null.

It is easy to see that LMFV ECH(1) is numerically invariant to orthogonal rotations of the

common factors, so the test result will not depend on the exact identification restriction imposed.

Not surprisingly, this test can be related to the test discussed in Proposition 6 applied to

vech(ftf
0
t) if the common factors were observed. Unlike the test described in that proposition,

though, the number of degrees of freedom is O(k4) instead of O(N4), which makes a tremendous

difference in practice since k is typically much smaller than N .

Finally, note that Proposition (7) also allows us to derive tests for univariate Arch effects in

any particular common factor by focusing on the corresponding autocovariance. In this sense,

our multiple factor test nests the tests proposed in Sentana and Fiorentini (2001), who assumed

that the common factors followed conditionally orthogonal univariate Arch processes instead.

2.4 Joint tests for serial dependence

In this section we shall consider joint tests of Ar(1)-Arch(1) effects in common and specific

factors. Therefore, our alternative will be a single factor version of a dynamic, conditionally

heteroskedastic exact factor model in which both common and idiosyncratic factors follow co-

variance stationary Ar(1)-Arch(1) type processes. Specifically,

yt = π + cxt + ut
xt = ρxt−l + ft

ut = diag(ρ∗)ut−1 + vtµ
ft
vt

¶
|It−1;θ ∼ N

∙µ
0
0

¶
,

µ
λt(θ) 0
0 Γt(θ)

¶¸
,

V (ft|It−1;θ0) = λt(θ) = 1 + α[E(f2t−1|Yt−1;θ)− 1],
V (vit|It−1;θ0) = γit(θ) = γi + α∗i [E(v

2
it−1|Yt−1;θ)− γi], (i = 1, . . . , N)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (26)

When the conditional variances of the common and idiosyncratic factors are constant (i.e.,

α = 0 and α∗ = 0), the above formulation reduces to (5). Similarly, when the levels of the latent

variables are unpredictable (i.e., ρ = 0 and ρ∗ = 0), the above model simplifies to (16). Finally,

under the null hypothesis of lack of predictability in mean (ρ† = 0) and variance (α† = 0), model

(26) reduces to the traditional (static) factor model (1), which is our baseline specification.

It turns out that the joint tests of Ar(1)-Arch(1) is simply the sum of the separate tests:
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Proposition 8 1. Under the joint null hypothesis H0 : ρ
† = 0,α† = 0 the score test statistic

LMAR(1)−ARCH(1) = LMAR(1) + LMARCH(1),

will be distributed as a χ2 with 2(N+1) degrees of freedom for N fixed as T goes to infinity.

2. This asymptotic null distribution is unaffected if we replace θs by its Gaussian maximum
likelihood estimator θ̄s in Proposition 1.

Intuitively, the reason is that the serial correlation orthogonality conditions (8)-(9) are as-

ymptotically orthogonal to the Arch orthogonality conditions (19)-(20) because all odd order

moments of the multivariate normal distribution are 0.

3 Non-normal distributions for returns

As mentioned in the introduction, many empirical studies with financial time series data

indicate that the distribution of asset returns is rather leptokurtic. For our purposes, it is

important to distinguish between the LM tests that we have obtained under the normality

assumption, which we may have to robustify, and the more powerful LM tests that could be

obtained by exploiting the non-normality of the conditional distribution.

3.1 Serial dependence tests that exploit ellipticity

We first extend our previous results to the case in which the conditional mean vector and

covariance matrix of yt is the same as in section 2 (see appendix B), but the conditional distri-

bution is elliptically symmetric. More formally, if we define the standardised innovations

ε∗t = Σ
−1/2
t (θ0)[yt − μt(θ0)] (27)

as a vector martingale difference sequence satisfying E(ε∗t |zt, It−1;θ0) = 0 and V (ε∗t |zt, It−1;θ0)

= IN , we shall assume that its conditional distribution is spherical, but not necessarily mul-

tivariate normal. If the corresponding density is well defined, then it will be characterised by

some additional r parameters η that determine the shape of the conditional density of ςt = ε∗0t ε
∗
t .

The most prominent elliptical example is, of course, the spherical normal distribution, which

we assume corresponds to η = 0. For illustrative purposes, though, we shall also look in some

detail at the special case in which ε∗t follows a standardised multivariate t with ν0 degrees of

freedom, or i.i.d. t(0, IN , ν0) for short. As is well known, the multivariate student t approaches

the multivariate normal as ν0 → ∞, but has generally fatter tails. For that reason, we shall

define η as 1/ν, which will always remain in the finite range 0 ≤ η0 < 1/2 under our assumptions.

In this case, the scores that we should use to test for serial dependence should correspond to

the correct elliptical log-likelihood function. The derivations in the proofs of Proposition 2 and
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5 imply that the optimal score tests will be based on the modified moment conditions

E [δt(θ,η)fkt(θs)fkt−1(θs)|θs,0] = 0,

E
£
γ−1i δt(θ,η)vkit(θs)vkit−1(θs)|θs,0

¤
= 0 (i = 1, . . . , N),

and

E

½
1
2 [δt(θ,η)f

2
kt(θs) + ωk(θs)− 1]

·[f2kt−1(θs) + ωk(θs)− 1]|θs,0

¾
= 0,

E

½
1
2γ
−2
i [δt(θ,η)v

2
kit(θs) + c2iωk(θs)− γi]

·[v2kit−1(θs) + c2iωk(θs)− γi]|θs,0

¾
= 0 (i = 1, . . . , N).

where

δt(θ,η) = −2∂g [ςt(θ),η] /∂ς,

and g [ςt(θ),η] is the kernel of the elliptical density (see appendix D for details). The factor

δt(θ,η) is equal to 1 under Gaussianity and to (Nη + 1)/[1− 2η + ηςt(θ)] for the Student t, so

it can be regarded as a damping factor for big observations because it is a decreasing function

of ςt(θ) for fixed η > 0, the more so the higher η is.

In this context, we show in the proof of Proposition 2 that the asymptotic covariance matrix

of the moment conditions corresponding to the serial correlation tests above is

Iρ†ρ†(θs,0;η) = Vρ†ρ†(θs,0;η)¯ Vρ†ρ†(θs,η;η),

where

Vρ†ρ†(θs,η;η) = V

∙
δt(θ,η)fkt(θs)

δt(θ,η)Γ
−1/2vkt(θs)

¸
= mll(η)Vρ†ρ†(θs,0;0),

mll(η) = E
©
δ2[ςt(θ0),η]ςt(θ0)/N

¯̄
η
ª
,

and Vρ†ρ†(θs,0;η) equals Vρ†ρ†(θs,0;0) in Proposition 2.

Similarly, the asymptotic covariance matrix of the orthogonality conditions of the Arch

tests above becomes

Iα†α†(θs,0;η) = Vα†α†(θs,0;η)¯ Vα†α†(θs,η;η),

where

Vα†α†(θs,η;η) = V

"
1√
2
{δ[ςt(θs),η]f2kt(θs) + ωk(θs)− 1}

1√
2
Γ−1vecd{δ[ςt(θs),η]vkt(θs)v0kt(θs) + cc0ωk(θs)− Γ}

#

is given in (A12) as a function of both θs and

mss(η) =
N

N + 2
{1 + V [δ[ςt(θ0),η]ςt(θ0)/N |η]} ,
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and Vα†α†(θs,0;η) mimics Vα†α†(θs,η;η) after replacing mss(η)− 1 by

κ =
E(ς2t )

N(N + 1)
− 1,

which is Mardia’s coefficient of multivariate excess kurtosis. In addition, the conditional mean

and conditional variance orthogonality conditions are asymptotically independent, which means

that the joint test is simply the sum of its two components.

Importantly, we show in the proofs of Propositions 2, 5 and 8 that all these tests remain valid

if we replace δ[ςt(θs),η] by either a feasible parametric estimator of θs and η obtained by fitting

a specific elliptical distribution to yt under the null, or an elliptically symmetric semiparametric

estimator of δ[ςt(θ),η] obtained from a nonparametric estimate of the density of ςt(θs).

3.2 Robustifying the score tests based on normality

Let us now study the effects of general forms of non-normality on the tests derived in section

2. To do so, let us partition the parameter vector θ as (θ1,θ2). It is well known that a robust

Gaussian pseudo score test of the null hypothesis H0 : θ1 = 0 can be computed as"√
T

T

TX
t=1

s0θ1t(0, θ̃2,0)

#
Aθ1θ1 (φ0) C−1θ1θ1 (φ0)A

θ1θ1 (φ0)

"√
T

T

TX
t=1

sθ1t(0, θ̃2,0)

#
,

where sθ1t(0, θ̃2,0) is the Gaussian score evaluated at the restricted PML estimator θ̃2, Aθ1θ1 (φ0)

is the relevant block of the inverse of the expected Hessian matrix A(φ) = −E [hθθt(θ,0)|φ] and

Cθ1θ1 (φ0) is the corresponding block of the usual sandwich expression C(φ)=A−1(φ)B(φ)A−1(φ),

with B(φ) = V [sθt(θ,0)|φ] (see e.g. Engle (1984)). But if A(φ) and B(φ) are block diagonal

between θ1 and θ2, then the matrix in the middle simplifies to B−1θ1θ1(φ).

Taking θ1 as ρ† = (ρ,ρ∗0)0, we show in the proof of Proposition 2 that both A(φ) and

B(φ) are block diagonal with respect to π, ρ† and (c,γ), with identical blocks for ρ†, when the

conditional distribution of ε∗t in (27) is i.i.d. D(0, IN ,%) regardless of its sphericity. Further,

Bρ†ρ†(φ) coincides with the expression for Iρ†ρ† (θs,0;0) in Proposition 2. Therefore, it is not

necessary to robustify the Gaussian tests for serial correlation that we derived in section 2.2.1.

Effectively, this result mimics the fact that under conditional homoskedasticity, standard

score tests for serial correlation in observed series are robust to non-normality in the conditional

distribution. In fact, we can strengthen this intuition as follows. Since V [fkt(θs)|θs,0,η] =

c0Σ−1(θs)c, we can obtain an asymptotically equivalent test of H0 : ρ = 0 by computing the F

test of the regression of fkt(θs) on a constant and fkt−1(θs), whose asymptotic null distribution

does not depend on Gaussianity. For analogous reasons, the multivariate serial correlation test

in (12) remains valid regardless of the true distribution of the data.

23



Similarly, if we take θ1 as α† = (α,α∗0)0, then we show in the proof of Proposition 5 that

A(φ) and B(φ) are also block diagonal with respect to π, (c,γ) and α† irrespective of the

distribution of ε∗t , but the blocks for α
† no longer coincide with Jα†α†(θs,0;0) because

Aα†α†(φ) = Vα†α†(θs,0;%)¯ Vα†α†(θs,0;0),

Bα†α†(φ) = Vα†α†(θs,0;%)¯ Vα†α†(θs,0;%). (28)

Consequently, it is necessary to modify the Arch tests derived in section 2.3.1 by using (28). As

we mentioned in the previous section, Vα†α†(θs,0;%) simplifies considerably when ε∗t is spherical,

which we can exploit to improve the finite sample reliability of the Gaussian tests.

Interestingly, such robust versions of the test for Arch effects in common and idiosyn-

cratic factors can be regarded as the factor analytic analogues to the suggestion that Koenker

(1981) made to robustify tests of conditional homoskedasticity based on Gaussian scores, such

as the original univariate Arch test in Engle (1982), whose information matrix version is only

valid under conditional normality. In fact, we can strengthen this intuition as follows. Since

V [fkt(θs)|θs,0,η] = c0Σ−1(θs)c, we can obtain an asymptotically equivalent test of H0 : α = 0

by computing the F test of the regression of f2kt(θs) on a constant and f2kt−1(θs), whose as-

ymptotic null distribution remains valid irrespective of the normality of fkt(θs) because it is

effectively using V [f2kt(θs)|θs,0,η] as the residual variance of the regression. But if we impose

that the residual variance is 2[c0Σ−1(θs)c]
2 instead, which is its value under normality, then our

F test will be incorrectly sized when the conditional distribution is not Gaussian.

It is also worth mentioning that we show in the proof of Proposition 8 that the Gaussian

orthogonality conditions corresponding to the conditional mean and conditional variance para-

meters continue to be asymptotically orthogonal under the sphericity assumption, so that the

joint tests can still be obtained as the sum of the two components. This additivity, though, no

longer holds for non-spherical distributions, in which case:∙Bρ†ρ†(φ) Bρ†α†(φ)
B0
ρ†α†(φ) Bα†α†(φ)

¸
=
∙Vρ†ρ†(θs,0;%) Vρ†α†(θs,0;%)
V 0
ρ†α†(θs,0;%) Vα†α†(θs,0;%)

¸
¯
∙Vρ†ρ†(θs,0;%) Vρ†α†(θs,0;%)
V 0
ρ†α†(θs,0;%) Vα†α†(θs,0;%)

¸
,

∙ Vρ†ρ†(θs,0;%) Vρ†α†(θs,0;%)
V 0
ρ†α†(θs,0;%) Vα†α†(θs,0;%)

¸
= V

⎡⎢⎢⎢⎣
fkt(θs)

Γ−1/2vkt(θs)
1√
2
[f2kt(θs) + ωk(θs)− 1]

1√
2
Γ−1vecd[vkt(θs)v0kt(θs)+cc

0ωk(θs)− Γ]

⎤⎥⎥⎥⎦ (29)

has to be computed taking into account the third and fourth multivariate moments of the

distribution of yt, except for Vρ†ρ†(θs,0;%), whose Gaussian expression remains valid.

Finally, the simplest way to make the test proposed in Proposition 6 robust to any departures

from normality is by applying expression ((12) in Proposition 3 to vech[(yt−1 − π)(yt−1 − π)]

(see the proof of Proposition 6 for a simplified expression in the elliptically symmetric case).
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3.3 The relative power of the normality tests

To keep the algebra simple, we shall initially compare the individual tests of H0 : ρ = 0 and

H0 : α = 0 under the maintained assumption that all the remaining dynamic parameters are

0. It is not difficult to show that the ratios of non-centrality parameters of the normality tests

and elliptical likelihood tests are m−1ll (η0) for the Ar(h) tests, and 4/{[3mss(η0)− 1](3κ0 + 2)}

for the individual Arch(q) tests. In the multivariate student t case with ν0 > 4, in particular,

these asymptotic efficiency ratios become

(ν0 − 2)(ν0 +N + 2)

ν0(ν0 +N)
(30)

(ν0 +N + 2) (ν0 − 4)
(ν0 − 1)(ν0 +N − 1) ,

respectively. For any given N , these ratios are monotonically increasing in ν0, and approach 1

from below as ν0 →∞, and 0 from above as ν0 → 2+ or ν0 → 4+. For instance, for N = 1 and

ν0 = 9, they take the value of .9̊3 and .8̊3, respectively, while for ν0 = 5, their values are only

.8 and .4. At the same time, these ratios are decreasing in N for a given ν0, which reflects the

fact that Fisher’s information is “increasing” in N . For ν0 = 9 and N = 3, for instance, they

take the value of .907 and .795, respectively, while for ν0 = 5, their values are only .75 and .357.

Exactly the same results apply to tests of H0 : ρ
∗
i = 0 and H0 : α

∗
i = 0.

More generally, we can use the asymptotic distribution of the different estimators of ρ† and

α† under the null derived in the proofs of Proposition 2 and 5 to obtain the non-centrality

parameters of joint tests of ρ∗ = 0, α∗ = 0, ρ† = 0 or α† = 0. In the case of the mean

parameters, the asymptotic efficiency ratio (30) applies to the joint tests too. In addition, the

non-centrality parameters of the Gaussian tests are invariant to the true conditional distribution

of the data. In the case of the variance parameters, though, the asymptotic relative efficiency of

the different tests depends on the values of the static factor analysis parameters θs. In any case, it

is straightforward to map those efficiency ratios into power gains by considering sequences of local

alternatives. For illustrative purposes, we look at the baseline designs in sections 2.2.4 and 2.3.4,

respectively, under the assumption that the true conditional distribution of ε∗t is a multivariate

t6. Figure 5a shows that the power gains that accrue to our proposed serial correlation tests by

exploiting the leptokurtosis of the t distribution are far from trivial. Furthermore, Figure 5b

shows that the power gains are even bigger for our proposed Arch tests, which is in line with

the asymptotic relative efficiency results derived above.
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4 Monte Carlo analysis

4.1 Design

We assess the finite sample performance of the different testing procedures discussed above

by means of an extensive Monte Carlo exercise, with an experimental design that nests those in

sections 2.2.4 and 2.3.4, and is thereby adapted to the empirical application in section 5. For

that reason, we only report the results for samples of 720 observations each (plus another 100 for

initialisation) in which the cross-sectional dimension is N = 5. This sample size corresponds to

60 years of monthly data, roughly the same as in our empirical analysis. In this sense, the main

reason for looking at a small cross-sectional dimension is to handicap our proposed tests relative

to the existing multivariate serial dependence tests, which in the case considered in Proposition

6 already involves 784 degrees of freedom for N = 7. We carry out 20,000 replications for the

purposes of estimating actual sizes and powers with high precision.8 All the examples of the

DGP in (26) considered can be written as nonexchangeable single factor models of the form:

yit = πi + cixt + uit (i = 1, . . . , 5)
xt = ρxt−1 + ft
uit = ρ∗iuit−1 + vit (i = 1, . . . , 5)
λt = (1− α− β)(1− ρ2) + αE(f2t−1|Yt−1) + βλt−1
γit = γi(1− α∗i − β∗i )(1− ρ∗i )

2 + α∗iE(v
2
it−1|Yt−1) + ρ∗i γit−1 (i = 1, . . . , 5)

with π = (.5, .4, .5, .4, .5), c = (5, 4, 5, 4, 5), γ = (5, 9, 5, 9, 5), ρ∗i = ρ∗, α∗i = α∗ and β∗i = β∗ ∀i.

Thus, the values of ρ, ρ∗, α, α∗, β, β∗ fully explain the differences between our designs.

We generate samples from a Gaussian distribution, a Student t with 6 degrees of freedom,

a discrete scale mixture of normals (DSMN) with the same kurtosis but finite higher order

moments, and an asymmetric Student t such that the marginal distribution of an equally-

weighted portfolio of yt has the maximum negative skewness compatible with the kurtosis of a

univariate t6 (see Mencia and Sentana (2009a,b) for details). These distributions allow us to

assess the reliability of the robust Gaussian tests, and to shed some light on the “efficiency-

consistency” trade-offs of those tests that exploit the leptokurtosis of financial returns.

We draw spherical Gaussian random vectors using the NAG library Fortran G05FDF routine

after initialisation by G05CBF. To sample standardised Student t vectors, we simply divide

those Gaussian random vectors by the square root of an independent univariate Gamma(3,2)

random variable, and scale the result by 2. Similarly, we generate a standardised version of a

two-component scale mixture of multivariate normals as

ε∗t =
st + (1− st)

√
κp

π + (1− π)κ
· ε◦t ,

8For instance, the 95% confidence interval for a nominal size of 5% would be (4.7%,5.3%).
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where ε◦t is a spherical multivariate normal, κ the variance ratio of the two components, and st

is an independent Bernoulli variate with P (st = 1) = π, which we draw by comparing π with a

uniform from G05CAC. Specifically, we choose π = .05 and κ = .1438. Finally, following Mencía

and Sentana (2009b), we generate a standardised asymmetric multivariate t by choosing

ε∗t = β
£
ξ−1t − c(β,η)

¤
+

s
ζt
ξt
Ξ1/2ε◦t , (31)

where ξt is Gamma random variable with parameters (2η)
−1 and δ2/2 with δ = (1−2η)η−1c(β,η),

β is a N × 1 parameter vector, and Ξ is the N ×N positive definite matrix

Ξ =
1

c(β,η)

∙
IN +

c(β,η)− 1
β0β

ββ0
¸
,

with

c(β,η) =
− (1− 4η) +

q
(1− 4η)2 + 8β0β (1− 4η) η
4β0βη

.

In this sense, note that limβ0β−→0 c(β,η) = 1, so that the above distribution collapses to the usual

multivariate symmetric t when β = 0. In the asymmetric t case, though, we use β = −106ιN .

Importantly, we use the same underlying pseudo-random numbers in all designs to minimise

experimental error. In particular, we make sure that the standard Gaussian random vectors are

the same for all four distributions. Given that the usual routines for simulating gamma random

variables involve some degree of rejection, which unfortunately can change for different values of

η, we use the slower but smooth inversion method based on the NAG G01FFF gamma quantile

function so that we can keep the underlying uniform variates fixed across simulations. Those

uniform random variables are also used to generate the DSMN random vectors.

Finally, we combine the underlying random numbers with the vector of conditional means

μt(θ0) and Cholesky decomposition of the covariance matrix Σt(θ0) provided by the relevant

Kalman filter recursions, which we describe in Appendix B.9 We start up the recursions by

exploiting covariance stationarity with x−100|−100 = ui,−100|−100 = 0, λ−100 = 1− ρ2, γi,−100 =

(1−ρ∗2i )γi, Ω11,−100|−100 = diag(1,γ0) andΩ12,−100|−100 = Ω22,−100|−100 = diag(1−ρ2, 1−ρ∗2ι5).

For each Monte Carlo sample thus generated, our ML estimation procedure employs the

following numerical strategy. First, we estimate the static mean and variance parameters θs

under normality with a scoring algorithm that combines the E04LBF routine with the analytical

expressions for the score in Appendix B.1 and the A(φ0) matrix in the proof of Proposition 1.

For this purpose, the EM algorithm of Rubin and Thayer (1982) provides very good initial values.

Then, we compute Mardia’s (1970) sample coefficient of multivariate kurtosis κ, on the basis

9The choice of a Cholesky factor is inconsequential for the all estimators of the static factor model parameters
that we consider, and for all simulated distributions except the asymmetric t.

27



of which we obtain the sequential Method of Moments estimator of η suggested by Fiorentini,

Sentana and Calzolari (2004), which exploits the theoretical relationship η = κ/(4κ+ 2). Next,

we could use this estimator as initial value for a univariate optimisation procedure that uses the

E04ABF routine to obtain a sequential ML estimator of η, keeping π, c and γ fixed at their

Gaussian PML estimators. The resulting estimates of η, together with the PMLE of θs, become

the initial values for the t-based ML estimators, which are obtained with the same scoring

algorithm as the Gaussian PML estimator, but this time using the analytical expressions for the

information matrix I(φ0) in Proposition 1. We rule out numerically problematic solutions by

imposing the inequality constraint 0 ≤ η ≤ .499.

Computational details for the elliptically symmetric semiparametric procedure can be found

in Appendix B of Fiorentini and Sentana (2007). Given that a proper cross-validation procedure

is extremely costly to implement in a Monte Carlo exercise, we have chosen the “optimal”

bandwidth in Silverman (1986).

4.2 Finite sample size

The size properties under the null of our proposed LM tests, Hosking’s test, the univariate

first-order serial correlation test of EWP, and the joint test of univariate first-order autocorrela-

tion in all N series introduced in section 2.2.4 are summarised in Figures 6a-6d using Davidson

and MacKinnon’s (1998) p-value discrepancy plots, which show the difference between actual

and nominal test sizes for every possible nominal size. When the distribution is Gaussian, all

tests are very accurate. The same conclusion is obtained when the distribution is a Student t,

although in this case the SSP tests show some very minor distortions. In contrast, when the true

distribution is a DSMN, the tests based on the Student t PMLE’s also show some size distortions,

but they are very small. Finally, all tests are remarkably reliable when the conditional distrib-

ution is an asymmetric Student t, which partly reflects the fact that the elliptically symmetric

estimators of the autocorrelation coefficients remain consistent in this case (see Proposition 17

in Fiorentini and Sentana (2007)).

In turn, Figures 7a-7d show the size of the two-sided versions of our Arch(1) LM tests,

Hosking’s test applied to vech[(yt − π)(yt − π)0], a univariate first-order Arch test applied

to EWP, the joint test of univariate first-order autocorrelation in all N(N + 1)/2 squares and

cross-products of the (demeaned) observed series introduced in section 2.3.4, and the analogous

test that only focuses on their squares. In the Gaussian case, all tests are fairly accurate, except

the SSP tests, which are rather conservative, and Hosking’s test, which is rather liberal. This

liberality is exacerbated when the true distribution is a Student t, and is shared to some extent

by the diagonal version that looks at all N(N +1)/2 squares and cross-products, which reflects
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the imprecision in unrestrictedly estimating higher order moments in this case. As expected,

the non-robust version of the normal test rejects far too often, while all the other tests follow a

similar pattern: they are liberal for low significance values, and conservative for large ones. Not

surprisingly, the sizes of the Student t tests also become highly distorted when the distribution

is a DSMN, but the two robust versions of the normal tests are also somewhat unreliable in that

context. Finally, those versions of the Gaussian tests that are only robust to kurtosis also suffer

substantial size distortions when the conditional distribution is an asymmetric Student t, but

the ones that are also robust to asymmetries are not very reliable either.

Figures 8a-8d show the size of all our two-sided LM tests for Garch(1,1) effects calculated

with the discount factors β̄ = β̄
∗
= .94 suggested in Riskmetrics (1996). The behaviour of these

tests is fairly similar to that of the Arch(1) tests, although in this case the asymptotically valid

tests show a stronger tendency to underreject in finite samples.

4.3 Finite sample power

In order to gauge the power of the serial correlation tests we look at a design in which ρ = .03

and ρ∗i = .045 but α = α∗ = β = β∗ = 0. The evidence at the 5% significance level is presented

in panels (a) and (b) of Table 1, which include raw rejection rates, as well as size adjusted

ones based on the empirical distribution obtained under the null, which in this case provides

the closest match because the Gaussian PML estimators of θs that ignore the dynamics in yt

remain consistent in the presence of serial correlation or conditional heteroskedasticity, as shown

by Doz and Lenglart (1999) and Sentana and Fiorentini (2001), respectively.

As expected from our theoretical analysis, the power of the normal tests does not depend

much on the actual distribution of the data, while the tests that exploit the leptokurtosis of yt

offer noticeable power gains in the case of the multivariate t, especially the parametric versions.

Another result that we saw in section 2.2.4 is that in this design the joint test of H0 : ρ
† = 0 is

only marginally more powerful than the joint test of H0 : ρ
∗ = 0, which in turn is substantially

more powerful than the individual test of H0 : ρ = 0. Standard serial correlation tests also

behave very much in line with the theoretical analysis in that section.

We also look at a design with ρ = ρ∗ = 0 but α = α∗ = .05 and β = β∗ = 0.75 to assess

the power of the Arch(1) and Garch(1,1) tests. A comparison of panels (c)-(e) and (d)-(f)

confirms thatGarch(1,1) tests are more powerful than theirArch(1) counterparts, even though

the Riskmetrics values for β̄ and β̄
∗are much higher than the true values of these parameters.

We also find that the power of the fully robust versions of the normal tests is slightly reduced

when the distribution of the simulated data is leptokurtic. In contrast, the tests that exploit the

leptokurtosis of yt clearly become more powerful. Another result that we saw in section 2.3.4
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is that in this design the joint tests of H0 : α
† = 0 are more powerful than the joint tests of

H0 : α
∗ = 0, which in turn are substantially more powerful than tests of H0 : α = 0. Finally,

standard first-order serial correlation tests applied to the squares and cross-products of yt do

not have much power once we take into account their substantial size distortions under the null,

except for the Arch test applied to the EWP, which is almost as powerful as the analogous test

for the common factor.

5 Empirical application

In this section we initially apply the procedures previously developed to the returns on five

portfolios of US stocks grouped by industry in excess of the one-month Treasury bill rate (from

Ibbotson Associates), which we have obtained from Ken French’s Data Library. Specifically, each

NYSE, AMEX, and NASDAQ stock is assigned to an industry portfolio at the end of June of year

t based on its four-digit SIC code at the time10 (see <http://mba.tuck.dartmouth.edu/pages/

faculty/ken.french/data_library.html> for further details). We use monthly data from 1952 to

2008, so that our sample starts soon after the March 1951 Treasury - Federal Reserve Accord

whereby the Fed stopped its wartime pegging of interest rates. Nevertheless, since we reserve

1952 to compute pre-sample values, we effectively work with 672 observations.

Table 2 contains the sample means, standard deviation and contemporaneous correlations

for the excess returns on those portfolios. For our purposes, the two most relevant empirical

characteristic are the strong degree of contemporaneous correlation between the series, and

their leptokurtosis. Regarding the first aspect, it is customary to look at the ratio of the largest

eigenvalue of the sample covariance matrix in order to its trace to judge the representativeness

of the first principal component of yt. However, this measure, which is .79 in our case, fails

to take into account the fact that unlike principal components, factor models fully explain the

variances of all the y0its thanks to the inclusion of idiosyncratic components. For that reason, we

prefer to look at the fraction of the (square) Frobenius norm of the sample covariance matrix

accounted for by a single factor model, which is 99.47%.11

As for the Gaussianity of the data, the Kuhn-Tucker test of normality against the alternative

of multivariate Student t proposed by Fiorentini, Sentana and Calzolari (2003), which test the

10 Industry definitions: Cnsmr: Consumer Durables, NonDurables, Wholesale, Retail, and Some Services (Laun-
dries, Repair Shops). Manuf: Manufacturing, Energy, and Utilities. HiTec: Business Equipment, Telephone and
Television Transmission. Hlth: Healthcare, Medical Equipment, and Drugs. Other: Other — Mines, Constr,
BldMt, Trans, Hotels, Bus Serv, Entertainment, Finance.
11The Frobenius norm of a general matrix A, ||A|| say, is the Euclidean norm of vec(A), which can be easily

computed as the square root of the sum of its square singular values since vec0(A)vec(A) = tr(A2). Given that
V (yt) is a real, square symmetric matrix with spectral decomposition U∆U0, with U orthonormal, it is easy to
see ||V (yt)||2 can be additively decomposed as the sum of the square eigenvalues of V (yt).
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restriction on the first two moments of ςt(θ0) implicit in the single condition

E

∙
N(N + 2)

4
− N + 2

2
ςt(θ0) +

1

4
ς2t (θ0)

¸
= E[mkt(θ0)] = 0,

yields a value of 1478.9 despite having one degree of freedom. In contrast, the test of multivariate

normal against asymmetric alternatives in Mencia and Sentana (2009b), which assesses whether

E {εt(θ0) [ςt(θ0)− (N + 2)]} = E[mst(θ0, 0)] = 0, (32)

yields 7.01, whose p-value is 22%. On this basis, we decided to estimate a multivariate t dis-

tribution. The ML estimator of the Student tail parameter η is .189, which corresponds to 5.3

degrees of freedom. This confirms our empirical motivation for developing testing procedures

that exploit such a prevalent feature of the data.

Nevertheless, both parametric and semiparametric elliptically-based procedures are sensi-

tive to the assumption of elliptical symmetry. For that reason, we follow Mencía and Sentana

(2009b), and test the null hypothesis of multivariate Student t innovations against the multivari-

ate asymmetric t distribution in (31). Their statistic checks the following moment conditions:

E

∙
Nη + 1

1− 2η + ηςt(θ)
εt(θ) [ςt(θ)− (N + 2)]

¸
= E[mst(θ0, η0)] = 0,

which reduce to (32) when η = 0. The asymptotic distribution that takes into account the fact

that θ and η have to be replaced by their t-based ML estimators θ̃T and η̃T is

√
T
T

XT

t=1
mst(θ̃T , η̃T )→ N [0, 2(N + 2)(Nη0 + 1)Σ0] .

The test statistic is 3.83 with a p-value of 57%, so we cannot reject the null hypothesis that the

distribution of yt is multivariate Student t at conventional levels.

Table 3 presents the three different estimates of the unconditional covariance parameters,

namely Gaussian PMLE, Student t ML, and SSP. As can be seen, the discrepancies are fairly

minor, especially in the case of estimators that exploit the leptokurtosis of the data. Conse-

quently, the time series evolution of the corresponding Kalman filter estimates of the common

factor are very highly correlated with each other (>.999), and also with the excess returns on

the Fama and French market portfolio ('.978), which corresponds to the value weighted return

on all NYSE, AMEX and NASDAQ stocks in CRSP.

Table 4a reports the results of the two multivariate serial correlation tests discussed in section

2.2.4. As can be seen, there is evidence of first order serial correlation in the industry return

series. Nevertheless, it is interesting to understand whether the dependence is due to the common

factor or the specific ones. In this sense, note that we have considered not only tests against

Ar(1) dynamics in common and specific factors, but also tests against restricted Ar(3) and

31



Ar(12) specifications in which the autoregressive coefficients are all assumed to be the same.

The motivation for such tests is twofold. First, there is a substantial body of empirical evidence

which suggests that expected returns are smooth processes, while observed returns have a small

first order autocorrelation. Second, a rather interesting example of persistent expected returns

is an Ar(h) model in which ρ = ρι, where ι is a vector of h 1’s. The results in section 2.2.5

imply that a test of ρ = 0 in this context essentially involves assessing the significance of the sum

of the first h autocorrelations of fkt. In this sense, our procedure is entirely analogous to the

one recommended by Jegadeesh (1989) to test for the long run predictability of individual asset

returns without introducing overlapping observations (see also Cochrane (1991) and Hodrick

(1992)). The intuition is that if returns contain a persistent but mean reverting predictable

component, a persistent right hand side variable may pick it up.

The results reported in Table 3a show clear evidence of first order serial correlation in both

common and specific factors. There is also some evidence that the idiosyncratic factors may have

persistent mean-reverting components. In contrast, there is no evidence that such a component

is present in the common factor. This interesting divergence could be due to the market being

more closely followed by investors than the hedged components of the industry portfolios.

Table 4b presents our tests for conditional heteroskedasticity. Given the strong evidence for

leptokurtosis, we only report the values of the fully robust versions of the different Gaussian tests.

Not surprisingly, the multivariate serial dependence tests reject conditional homoskedasticity.

We also find very strong evidence of Arch effects in the idiosyncratic factors. In contrast,

the Arch(1) tests do not provide such a clear evidence in the case of the common factor.

Nevertheless, the Garch(1,1) tests strongly reject the null of conditionally homoskedasticity.

Our conclusions do not seem to be very sensitive to the degree of aggregation of our data.

When we repeat exactly the same exercise with the excess returns of the ten portfolios of US

stocks grouped by industry in Ken French’s Data Library, we obtain rather similar results.

6 Conclusions

We derive computationally simple score tests of serial correlation in the levels and squares of

common and idiosyncratic factors in static factor models. The implicit orthogonality conditions

resemble the orthogonality conditions of models with observed factors but the weighting matrices

reflect their unobservability. We robustify our Gaussian tests against non-normality, and derive

more powerful versions when the conditional distribution is elliptically symmetric, which can be

either parametrically or semipametrically specified.

We conduct Monte Carlo exercises to study the finite sample reliability and power of our
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proposed tests, and to compare them to existing multivariate serial dependence tests. Our

simulation results suggest that the serial correlation tests have fairly accurate finite sample sizes,

while the tests for conditional homoskedasticity show some size distortions. Given that yt is

i.i.d. under the null, it would be useful to explore bootstrap procedures, which could also exploit

the fact that elliptical distributions are parametric in N − 1 dimensions, and non-parametric

in only one (see Dufour, Khalaf and Beaulieu (2008) for alternative finite-sample refinements

of existing multivariate serial dependence tests). We also confirm that there are clear power

gains from exploiting the cross-sectional dependence structure implicit in factor models, the

leptokurtosis of financial returns, as well as the persistent behaviour of conditional variances.

Finally, we apply our methods to monthly stock returns on US broad industry portfolios.

We find clear evidence in favour of first order serial correlation in common and specific factors,

weaker evidence for persistent components in the idiosyncratic terms, and no evidence that such

a component appears in the common factor. We also find strong evidence for persistent serial

correlation in the volatility of common and specific terms.

It should be possible to robustify the serial dependence tests which assume that the return

distribution is a Student t along the lines described by Amengual and Sentana (2010) for mean-

variance efficiency tests, and study their relative power in those circumstances. It should also

be feasible to develop semiparametric tests that do not impose the assumption of elliptical

symmetry. Another interesting extension would be to consider non-parametric alternatives such

as the ones studied by Hong and Shehadeh (1999) and Duchesne and Lalancette (2003) among

others, in which the lag length is implicitly determined by the choice of bandwidth parameter

in a kernel-based estimator of a spectral density matrix. In addition, we could test for the

effect of exogenous regressors in either the conditional mean vector or the conditional covariance

matrix of returns. Finally, we could use the test statistics that we have derived to obtain easy to

compute indirect estimators of the dynamic models that define our alternative hypothesis along

the lines suggested by Calzolari, Sentana and Fiorentini (2004). We are currently exploring

these interesting research avenues.
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Appendix

A Proofs

Proposition 1

The asymptotic normality of the Gaussian ML estimators follows directly from Theorem

12.1 in Anderson and Rubin (1956) and Theorem 2 in Kano (1983). So the only remaining task

is to find out the expression for the unconditional information matrix. Given the discussion in

appendix D, to find the score function and conditional information matrix all we need is the

matrix Zdt(θs), which in turn requires the Jacobian of the conditional mean and covariance

functions. In view of (B21) and (B22), it is clear that dμt(θ) = dπ and

dΣt(θs) = d(cc0 + Γ) = (dc)c0 + c(dc0) + dΓ

(see Magnus and Neudecker (1988)). Hence, the only three non-zero terms of the Jacobian will

be:
∂μt(θs)

∂π0
= IN ;

∂vec [Σt(θs)]

∂c0
= (IN2 +KNN)(c⊗ IN );

∂vec [Σt(θs)]

∂γ0
= EN .

As a result,

Zdt(θs) =

⎡⎣ Σ−1/20(θs) 0

0 [c0Σ−1/20(θs)⊗Σ−1/20(θs)]
0 1

2E
0
N [Σ

−1/20(θs)⊗Σ−1/20(θs)]

⎤⎦ = Zd(φ)
and

W0
dt(φ) =

£
0 c0Σ−1(θs)

1
2vecd

0[Σ−1(θs)]
¤
=W0

d(φ). (A1)

After some straightforward algebraic manipulations, we get that the elliptically symmetric

score is

sπt(θs,η) = δ[ςt(θs);η]Σ
−1(θs)(yt − π)

sct(θs,η) = δ[ςt(θs);η]Σ
−1(θs)(yt − π)(yt − π)0Σ−1(θs)c−Σ−1(θs)c

sγt(θs,η) =
1
2vecd{δ[ςt(θs);η]Σ−1(θs)(yt − π)(yt − π)0Σ−1(θs)−Σ−1(θs)}

(A2)

Assuming that Γ> 0 we can use the Woodbury formula to write

δ[ςt(θ);η]Σ
−1(θs)(yt − π)(yt − π)0Σ−1(θs)c−Σ−1(θs)c

= Γ−1{δ[ςt(θs);η]vkt(θs)fkt(θs)− cωk(θs)},

Σ−1(θs)(yt − π)(yt − π)0Σ−1(θs)−Σ−1(θs)

= Γ−1{δ[ςt(θs);η]vkt(θs)v0kt(θs) + cc0ωk(θs)− Γ}Γ−1,

and

ςt(θs) = (yt − π)0Σ−1(θs)(yt − π) = (yt − π)0Γ−1(yt − π)− f2kt(θs)/ωkt(θs),
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which greatly simplifies the computation of all the elements of sθt(θs,η), as well as sηt(yt|Yt−1;θ)

(see Sentana (2000)).

Then, we can use Proposition 1 in Fiorentini and Sentana (2007) to obtain the conditional

(and unconditional) information matrix, which in view of the expression for Zdt(θs) will be block

diagonal between the elements corresponding to π, and the elements corresponding to (c,γ,η),

with the first block being given by mll(η)Σ
−1(θs), and the second block by⎡⎣ mss(η){[c0Σ−1(θs)c]Σ−1(θs) +Σ−1(θs)cc0Σ−1(θs)}+ [mss(η)− 1]Σ−1(θs)cc0Σ−1(θs)

mss(η)E
0
N [Σ

−1(θs)c⊗Σ−1(θs)] + 1
2 [mss(η)− 1]Σ−1(θs)cvecd0[Σ−1(θs)]

m0sr(η)c
0Σ−1(θs)

mss(η)[c
0Σ−1(θs)⊗Σ−1(θs)]EN +

1
2 [mss(η)− 1]vecd[Σ−1(θs)]c0Σ−1(θs)

1
2mss(η)[Σ

−1(θs)¯Σ−1(θs)] + 1
4 [mss(η)− 1]vecd[Σ−1(θs)]vecd0[Σ−1(θs)]

1
2m

0
sr(η)vecd

0[Σ−1(θs)]

Σ−1(θs)cmsr(η)
1
2vecd[Σ

−1(θs)]msr(η)
mrr(η)

⎤⎦ .
If we then set mll(0) = 1, mss(0) = 1 and msr(0) = 0, then we finally obtain the expressions for

the information matrix under normality reported in the statement of Proposition 1. For other

elliptical distributions we can proceed analogously.

In order to obtain the elliptically symmetric semiparametric score we must use expression

(D37), which in view of (A1) leads to

s̊πt(θs,η) = sπt(θs,η),

s̊ct(θs,η) = sct(θs,η)−Σ−1(θs)c
h
{δ[ςt(θs),η]ςt(θs)/N − 1}− 2

(N+2)κ+2 (ςt(θs)/N − 1)
i
,

s̊γt(θs,η) = sγt(θs,η)− 1
2vecd[Σ

−1(θ)]
h
{δ[ςt(θ),η]ςt(θs)/N − 1}− 2

(N+2)κ+2 (ςt(θs)/N − 1)
i
.

(A1) also implies that the elliptically symmetric semiparametric efficiency bound will be block

diagonal between π and (c,γ), where the first block coincides with the first block of the in-

formation matrix, and the second one with the corresponding block of the information matrix

minus½∙
N+2
N

mss(η)-1
¸
-

4

N [(N+2)κ+2]

¾ ∙
Σ−1(θs)cc0Σ−1(θs)

1
2Σ

−1(θs)cvecd0[Σ−1(θs)]
1
2vecd[Σ

−1(θ)]c0Σ−1(θ) vecd[Σ−1(θs)]vecd0[Σ−1(θs)]

¸
.

It is also worth mentioning that if we reparametrised the covariance matrixΣ(θs) as ϑ2Σ◦(ϑ1),

where

ϑ2 = ln |Σ(θs)| = ln |Γ|+ ln(1 + c0Γ−1c) =
XN

i=1
ln γi + ln

µ
1 +

XN

i=1

c2i
γi

¶
,

then Proposition 12 in Fiorentini and Sentana (2007) would imply that the information matrix

would be block diagonal between ϑ1 and (ϑ2,η), with ϑ1 being as efficiently estimated as if we
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knew η, while we could only achieve the asymptotic efficiency of the Gaussian pseudo Maximum

likelihood estimator of ϑ2, which would be given by the expression:

ϑ2(ϑ1) =
1

N

1

T

TX
t=1the

ς◦t (ϑ1),

ς◦t (ϑ1) = (yt − π)0Σ◦−1(ϑ1)(yt − π).

evaluated the Gaussian PML estimator ϑ̄1.

These Gaussian PML estimators set to 0 the average value of sθst(θ,0), which is trivially

obtained from (A2) by noting that δ[ςt(θs);0] = 1. Similarly, we can easily see that Aθsθs(φ)

coincides with Iθsθs(θs,0) irrespective of the distribution of yt because the model is static and

Aθsθst(φ) = −E [hθsθst(θ,0)|It−1;φ] is equal to Iθsθst(θs,0) from Proposition 1 in Bollerslev

and Wooldridge (1992). However, in order to derive an expression for Bθsθs(φ) = V [sθst(θ,0)|φ]

we must take into account the true distribution of yt. When this distribution is elliptically

symmetric, Proposition 2 in Fiorentini and Sentana (2007) implies that Bθsθs(φ) also mimics

the expression for the information matrix if we replace mll(η) by 1 and mss(η) by (κ + 1). In

more general cases, Proposition 1 in Bollerslev and Wooldridge (1992) coupled with the static

nature of the model implies that:

Bθsθs(φ) = Zd(θs)K (%)Z0d(θs),

where K (%) is the matrix of unconditional third and fourth central moments of edt(θ,0) de-

fined in (D36). This means that the block diagonality between π and (c,γ) disappears if the

true distribution is asymmetric even though Bππ(φ) continues to equal Iππ(θs,0). In view of

sθt(θs,0), an alternative expression will be

Bθsθs(φ) = V

⎡⎣ Σ−1(θs)(yt − π)
Γ−1[vkt(θs)fkt(θs)− cωk(θs)]

1
2vecd{Γ−1[vkt(θs)v0kt(θs) + cc0ωk(θs)− Γ]Γ−1}

⎤⎦ ,
which is more amenable for empirical applications. ¤

Proposition 2

Once again, in order to obtain Zdt(θ) we need expressions for ∂μt(θ)/∂θ and ∂vec[Σt(θ)]/∂θ.

But given (B23) and (B25) we will have that

dμt(θ) = dπ + d( c IN )

µ
xt|t−1(θ)
ut|t−1(θ)

¶
+ ( c IN )d

µ
xt|t−1(θ)
ut|t−1(θ)

¶
and

dΣt(θ) = d( c IN )Ωt|t−1(θ)

µ
c0

IN

¶
+ ( c IN )dΩt|t−1(θ)

µ
c0

IN

¶
+( c IN )Ωt|t−1(θ)d

µ
c0

IN

¶
,
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whence
∂μt(θ)

∂θ0
=

∂π

∂θ0
+ [xt|t−1(θ)⊗ IN ]

∂c

∂θ0
+ c

∂xt|t−1(θ)

∂θ0
+

∂ut|t−1(θ)

∂θ0

and

∂vec[Σt(θ)]

∂θ0
= (IN2 +KNN )[( c IN )Ωt|t−1(θ)⊗ IN ]

µ
∂c/∂θ0

0

¶
+[( c IN )⊗ ( c IN )]

∂vec[Ωt|t−1(θ)]

∂θ0
.

Now, equation (B24) implies that

∂xt|t−1(θ)

∂θ0
= xt|t−1(θ)

∂ρ

∂θ0
+ ρ

∂xt−1|t−1(θ)

∂θ0
,

and
∂ut|t−1(θ)

∂θ0
= [u0t|t−1(θ)⊗ IN ]EN

∂ρ∗

∂θ0
+ diag(ρ∗)

∂ut−1|t−1(θ)

∂θ0
.

In fact, it is easy to see that this last expression reduces to

∂uit|t−1(θ)

∂θ0
= uit|t−1(θ)

∂ρ∗i
∂θ0

+ ρ∗i
∂uit−1|t−1(θ)

∂θ0
.

Similarly, equation (B26) implies that

∂vec[Ωt|t−1(θ)]

∂θ0
= (I(N+1)2 +KN+1,N+1)

½∙
ρ 0
0 diag(ρ∗)

¸
⊗ IN+1

¾
EN+1

µ
∂ρ/∂θ0

∂ρ∗/∂θ0

¶
+EN+1

µ
0

∂γ/∂θ0

¶
+

½∙
ρ 0
0 diag(ρ∗)

¸
⊗
∙
ρ 0
0 diag(ρ∗)

¸¾
∂vec[Ωt−1|t−1(θ)]

∂θ0
.

In principle, we would need to derive expressions for ∂xt−1|t−1(θ)/∂θ
0, ∂uit−1|t−1(θ)/∂θ

0 and

∂vec[Ωt−1|t−1(θ)]/∂θ
0. However, since we are only interested in evaluating the score at ρ = 0

and ρ∗ = 0, those expressions become unnecessary.

In addition, it is worth noting that under the null xt|t−1(θs,0) = 0, ut|t−1(θs,0) = 0,

Ωt|t−1(θs,0) = diag(1,γ), Σt(θs,0) = cc
0 + Γ = Σ(θs), xt|t(θs,0) = fkt(θs) and ut|t(θs,0) =

vkt(θs), so that
∂μt(θs,0)

∂θ0
=

∂π

∂θ0
+ cfkt(θs)

∂ρ

∂θ0
+ diag[vkt(θs)]

∂ρ∗

∂θ0

and
∂vec[Σt(θs,0)]

∂θ0
= (IN2 +KNN )(c⊗ IN )

∂c

∂θ0
+EN

∂γ

∂θ0
.

Hence

Zdt(θs,0) =

⎡⎢⎢⎢⎢⎣
Σ−1/20(θs) 0

0 1
2(c

0 ⊗ IN )(IN2 +KNN)[Σ
−1/20(θs)⊗Σ−1/20(θs)]

0 1
2E

0
N [Σ

−1/20(θs)⊗Σ−1/20(θs)]
fkt−1(θs)c0Σ−1/20(θs) 0

diag[vkt−1(θs)]Σ−1/20(θs) 0

⎤⎥⎥⎥⎥⎦ ,
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Zd(φ) =

⎡⎢⎢⎢⎢⎣
Σ−1/20(θs) 0

0 1
2(c

0 ⊗ IN )(IN2 +KNN )[Σ
−1/20(θs)⊗Σ−1/20(θs)]

0 1
2E

0
N [Σ

−1/20(θs)⊗Σ−1/20(θs)]
0 0
0 0

⎤⎥⎥⎥⎥⎦
and

Wd(φ) =
£
00 c0Σ−1(θs)

1
2vecd

0[Σ−1(θs)] 0 00
¤0
, (A3)

where we have used the fact that

E[fkt(θs)|θs,0] = E[c0Σ−1(θs)(yt − π)|θs,0] = 0
E[vkt−1(θs)|θs,0] = E[ΓΣ−1(θs)(yt − π)|θs,0] = 0

¾
(A4)

irrespective of the distribution of yt.

As a result, the elliptically symmetric score under the null will be⎡⎢⎢⎢⎢⎣
sπt(θs,0,η)
sct(θs,0,η)
sγt(θs,0,η)
sρt(θs,0,η)
sρ∗t(θs,0,η)

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

δ[ςt(θs);η]Σ
−1(θs)(yt − π)

δ[ςt(θs);η]Σ
−1(θs)(yt − π)(yt − π)0Σ−1(θs)c−Σ−1(θs)c

1
2vecd{δ[ςt(θs);η]Σ−1(θs)(yt − π)(yt − π)0Σ−1(θs)−Σ−1(θs)}

fkt−1(θs)δ[ςt(θs);η]c0Σ−1(θs)(yt − π)
diag[vkt−1(θs)]δ[ςt(θs);η]Σ−1(θs)(yt − π)

⎤⎥⎥⎥⎥⎦ .
Therefore, the only difference relative to the static factor model are the scores sρt(θs,0,η) and

sρ∗t(θs,0,η). In this sense, if we assume that Γ > 0, then we can use the Woodbury formula

once again to show that∙
sρt(θs,0,η)
sρ∗t(θs,0,η)

¸
=

∙
δ[ςt(θs);η]fkt−1(θs)fkt(θs)

δ[ςt(θs);η]diag[vkt−1(θs)]Γ−1vkt(θs)

¸
.

Using the expression for Zdt(θs,0), together with (A4), it is easy to show that the uncondi-

tional information matrix Iθθ(θs,0,η) will be block diagonal between π, (c,γ,η) and ρ†, with

the first two blocks as in the static case. Consequently, in computing our ML-based tests we

can safely ignore the sampling uncertainty in estimating θs and η. In addition, we can write

Iρ†ρ†t(θ,0,η) = diag

∙
fkt−1(θs)

Γ−1/2vkt−1(θs)

¸
Vρ†ρ†(θs,η;η)diag

∙
fkt−1(θs)

Γ−1/2vkt−1(θs)

¸
,

where

Vρ†ρ†(θs,η;η) = V

∙
δ[ςt(θs),η]fkt(θs)

Γ−1/2δ[ςt(θs),η]vkt(θs)

¸
= mll(η)

∙
c0Σ−1(θs)c c0Σ−1(θs)Γ1/2

Γ1/2Σ−1(θs)c Γ1/2Σ−1(θs)Γ1/2

¸
= mll(η)

∙
(c0Γ−1c)/(1 + c0Γ−1c) c0Γ−1/2/(1 + c0Γ−1c)
Γ−1/2c/(1 + c0Γ−1c) IN − Γ−1/2cc0Γ−1/2/(1 + c0Γ−1c)

¸
.

Thus, the only remaining item is the calculation of the second moments appearing in Vα†α†(θs,0;η).

But since

E[f2kt(θs)|θs,0,η] = E[c0Σ−1(θs)(yt − π)(yt − π)0Σ−1(θs)c|θs,0,η]

= c0Σ−1(θs)c = c
0Γ−1c/(1 + c0Γ−1c),

E{vkt(θs)fkt(θs)|θs,0,η} = E{[ΓΣ−1(θs)(yt − π)(yt − π)0Σ−1(θs)c|θs,0,η}

= ΓΣ−1(θs)c = c/(1 + c
0Γ−1c)

38



and

E{vkt(θs)vkt(θs)0]|θs,0,η] = E[ΓΣ−1(θs)(yt − π)(yt − π)0Σ−1(θs)Γ]|θs,0,η}

= ΓΣ−1(θs)Γ = Γ− cc0/(1 + c0Γ−1c),

we finally obtain that Vρ†ρ†(θs,0;η) mimics Vρ†ρ†(θs,η;η) if we replace mll(η) by 1, which

confirms the expressions for the information matrix under normality reported in the statement

of Proposition 2. For other elliptical distributions we can proceed analogously.

In addition, it follows from (A3) that the elliptically symmetric semiparametric scores for

ρ and ρ∗ coincide with the parametric ones, and that the elliptically symmetric semiparamet-

ric efficiency bound will be block diagonal between π, (ρ,ρ∗) and (c,γ), where the first two

blocks coincide with the first two blocks of the information matrix, and the third one with the

corresponding bound in the static factor model.

Finally, let us consider the tests based on the Gaussian PML scores sρt(θs,0,0) and sρ∗t(θs,0,0)

when yt|It−1;φ is i.i.d. D(π,Σ(θs);%) but not necessarily normal or elliptical. Once again, the

structure of Zdt(θ), together with (A4), implies that A(φ) will be block diagonal between (ρ,ρ∗)

and (π, c,γ) irrespective of the true distribution of yt. In addition, Aρ†ρ†(φ) will coincide with

Iρ†ρ†(θs,0,0). A closely related argument shows that B(φ) will also be block diagonal between

(ρ,ρ∗) and (π, c,γ), and that Bρ†ρ†(φ) = Aρ†ρ†(φ). As a result, the Gaussian-based LM test

for H0 : ρ
† = 0 remains valid irrespective of the true distribution of yt. ¤

Proposition 3

Given that in model (11)

μt(θ) = (I−P)π +Pyt−1 = π +P(yt−1 − π)

and Σt(θ) = Σ, we will have that

Zdt(θ) =

⎡⎣ (IN −P)Σ−1/20 0

[(yt−1 − π)⊗ IN ]Σ−1/20 0

0 1
2D

0
N(Σ

−1/20 ⊗Σ−1/20)

⎤⎦ .
Hence, the Gaussian score vector will be given by

⎡⎣ sπt(π,p,σ)spt(π,p,σ)
sσt(π,p,σ)

⎤⎦ =
⎡⎢⎢⎣

(IN −P)Σ−1(yt − π)
(IN ⊗Σ−1)vec[(yt − π)(yt−1 − π)0]

1
2D

0
N (Σ

−1 ⊗Σ−1)DNvech{[(yt − π)−P(yt−1 − π)]
×[(yt − π)−P(yt−1 − π)]0 −Σ}

⎤⎥⎥⎦

39



and the conditional information matrix by

It(θ) =

⎡⎣ (IN −P)Σ−1(IN −P)0 (IN −P)[(yt−1 − π)0 ⊗Σ−1]
[(yt−1 − π)⊗Σ−1](IN −P)0 [(yt−1 − π)(yt−1 − π)0 ⊗Σ−1]

0 0

0
0

1
2D

0
N (Σ

−1 ⊗Σ−1)DN

⎤⎦ .
If we define Υ = V (yt), which can be obtained from the relationship Υ = PΥP0 +Σ, we can

finally obtain the following expression for the unconditional information matrix:

I(θ) =

⎡⎣ (IN −P)Σ−1(IN −P)0 0 0
0 (Υ⊗Σ−1) 0
0 0 1

2D
0
N (Σ

−1 ⊗Σ−1)DN

⎤⎦ ,
where we have used the fact that

E(yt) = π. (A5)

From here, it is trivial to show that the score under the null will be⎡⎣ sπt(π,0,σ)spt(π,0,σ)
sσt(π,0,σ)

⎤⎦ =
⎡⎣ Σ−1(yt − π)

(IN ⊗Σ−1)vec[(yt − π)(yt−1 − π)0]
1
2D

0
N (Σ

−1 ⊗Σ−1)DNvech[(yt − π)(yt − π)0 −Σ]

⎤⎦ ,
and

I(π,0,σ) =

⎡⎣ Σ−1 0 0
0 (Σ⊗Σ−1) 0
0 0 1

2D
0
N (Σ

−1 ⊗Σ−1)DN

⎤⎦ .
Given that we are basing our test in the sample average of vec[(yt − π)(yt−1 − π)0], the above

expression confirms that the LM test forH0 : p = 0 will be given by (12). Finally, the asymptotic

distribution follows from standard arguments (see e.g. Newey and McFadden (1994)).

Finally, let us consider the test in Proposition 3, which is based on a full rank linear trans-

formation of the Gaussian scores spt(π,0,σ), when the conditional distribution of yt is not

multivariate normal. Once again, the structure of Zdt(θ), together with (A5) and the fact that

At(θ) and It(θ) coincide, implies that A(θ) will be block diagonal between π, p and σ irre-

spective of the true distribution of yt. In addition, App(θ) will coincide with Ipp(θ). A closely

related argument shows that B(φ) will also be block diagonal between p and (π,σ), and that

Bpp(θ) = App(θ). As a result, the Gaussian-based LM test for H0 : p = 0 remains valid

regardless of the true distribution of yt. ¤

Proposition 4

Once again, in order to obtain Zdt(θ) we need expressions for ∂μt(θ)/∂θ and ∂vec[Σt(θ)]/∂θ.

Since we are assuming that only the common factors can be serially correlated, we can write
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(14) in state space representation with ft as the only state variable. Then, a straightforward

application of the Kalman filter implies that

μt(θ) = π +Cxt|t−1(θ),

xt|t−1(θ) = Rxt−1|t−1(θ), (A6)

Σt(θ) = CΩt|t−1(θ)C
0 + Γ,

Ωt|t−1(θ) = RΩt−1|t−1(θ)R
0 + Ik, (A7)

whence

dμt(θ) = dπ + (dC)xt|t−1(θ) +Cdxt|t−1(θ)

and

dΣt(θ) = (dC)Ωt|t−1(θ)C
0 +CdΩt|t−1(θ)C

0 +CΩt|t−1(θ)(dC
0) + dΓ.

As a result,
∂μt(θ)

∂θ0
=

∂π

∂θ0
+ [x0t|t−1(θ)⊗ IN ]

∂vec(C)

∂θ0
+C

∂xt|t−1(θ)

∂θ0

and

∂vec[Σt(θ)]

∂θ0
= (IN2 +KNN )[CΩt|t−1(θ)⊗ IN ]

∂vec(C)

∂θ0

+(C⊗C)
∂vec[Ωt|t−1(θ)]

∂θ0
+EN

∂γ

∂θ0
.

Now, equation (A6) implies that

∂xt|t−1(θ)

∂θ0
= [x0t−1|t−1(θ)⊗ Ik]

∂ρ

∂θ0
+R

∂xt−1|t−1(θ)

∂θ0
,

while equation (A7) implies that

∂vec[Ωt|t−1(θ)]

∂θ0
= (Ik2 +Kkk)(RΩt−1|t−1(θ)⊗ Ik)

∂ρ

∂θ0
+ (R⊗R)

∂vec[Ωt−1|t−1(θ)]

∂θ0
.

Under the null xt|t−1(θs,0) = 0, Ωt|t−1(θs,0) = Ik, Σt(θs,0) = CC0 + Γ = Σ(θs) and

xt|t(θs,0) = fkt(θs), so that

∂μt(θs,0)

∂θ0
=

∂π

∂θ0
+C[f 0kt−1(θ)⊗ Ik]

∂ρ

∂θ0

and
∂vec[Σt(θs,0)]

∂θ0
= (IN2 +KNN )(C⊗ IN)

∂vec(C)

∂θ0
+EN

∂γ

∂θ0
.

Hence, if we define J as the matrix that implicitly imposes the identifiability conditions on C

through the relationship vec(C) = Jc, then we will have that

Zdt(θs,0) =

⎡⎢⎢⎣
Σ−1/20(θs) 0

0 1
2J
0(C0 ⊗ IN)(IN2 +KNN )[Σ

−1/20(θs)⊗Σ−1/20(θs)]
0 1

2E
0
N [Σ

−1/20(θs)⊗Σ−1/20(θs)]
[fkt−1(θ)⊗ Ik]C0Σ−1/20(θs) 0

⎤⎥⎥⎦ ,
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Zd(φ) =

⎡⎢⎢⎣
Σ−1/20(θs) 0

0 1
2J
0(C0 ⊗ IN)(IN2 +KNN)[Σ

−1/20(θs)⊗Σ−1/20(θs)]
0 1

2E
0
N [Σ

−1/20(θs)⊗Σ−1/20(θs)]
0 0

⎤⎥⎥⎦
and

Wd(φ) =
£
00 J0C0Σ−1(θs)

1
2vecd

0[Σ−1(θs)] 00
¤0
, (A8)

where we have used the fact that

E[fkt(θs)|θs,0,η] = E[C0Σ−1(θs)(yt − π)|θs,0] = 0 (A9)

irrespective of the true distribution of yt.

As a result, the score under the null will be⎡⎢⎢⎣
sπt(θs,0,η)
sct(θs,0,η)
sγt(θs,0,η)
sρt(θs,0,η)

⎤⎥⎥⎦ =
⎡⎢⎢⎣

δ[ςt(θs);η]Σ
−1(θs)(yt − π)

J0vec{δ[ςt(θs);η]C0Σ−1(θs)(yt − π)(yt − π)0Σ−1(θs)−C0Σ−1(θs)}
1
2vecd{δ[ςt(θs);η]Σ−1(θs)(yt − π)(yt − π)0Σ−1(θs)−Σ−1(θs)}

[fkt−1(θ)⊗ Ik]δ[ςt(θs);η]C0Σ−1(θs)(yt − π)

⎤⎥⎥⎦ .
Therefore, the only difference relative to the static factor model are the scores sρt(θs,0,η). In

this sense, if we assume that Γ > 0 we can use the Woodbury formula once again to show that

sρt(θs,0,η) = δ[ςt(θs);η]vec[fkt(θs)f
0
kt−1(θs)].

Using the expression for Zdt(θs,0), together with (A4), it is easy to show that the uncondi-

tional information matrix Iθθ(θs,0,η) will be block diagonal between π, (c,γ,η) and ρ, with

the first two blocks being exactly the same as in the static factor model after excluding the

restricted elements of C. Consequently, in computing our ML-based tests we can safely ignore

the sampling uncertainty in estimating θs and η. In addition, we can write

Iρρt(θs,0,η) = [fkt−1(θ)⊗ Ik]Vρρ(θs,η;η)[f 0kt−1(θ)⊗ Ik],

where

Vρρ(θs,η;η) = V {δ[ςt(θs),η]fkt(θs)} = mll(η)C
0Σ−1(θs)C.

But since

E[fkt(θs)f
0
kt(θs)|θs,0,η] = E[C0Σ−1(θs)(yt − π)(yt − π)0Σ−1(θs)C|θs,0] = C0Σ−1(θs)C,

we finally obtain that Vρρ(θs,0;η) mimics Vρ†ρ†(θs,η;η) if we replace mll(η) by 1, which

confirms the expressions for the information matrix under normality reported in the statement

of Proposition 4. For other elliptical distributions we can proceed analogously.

In addition, it follows from (A8) that the elliptically symmetric semiparametric scores for ρ

coincide with the parametric ones, and that the elliptically symmetric semiparametric efficiency
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bound will be block diagonal between π, ρ and (c,γ), where the first two blocks coincide with

the first two blocks of the information matrix, and the third one with the corresponding bound

in the static factor model.

Finally, let us consider the tests based on the Gaussian PML scores sρt(θs,0,0) when

yt|It−1;φ is i.i.d. D(π,Σ(θs);%) but not necessarily normal or elliptical. Once again, the

structure of Zdt(θ), together with (A9), implies that A(φ) will be block diagonal between ρ

and (π, c,γ) irrespective of the true distribution of yt. In addition, Aρρ(φ) will coincide with

Iρρ(θs,0,0). A closely related argument shows that B(φ) will also be block diagonal between

ρ and (π, c,γ), and that Bρρ(φ) = Aρρ(φ). As a result, the Gaussian-based LM test for

H0 : ρ = 0 remains valid irrespective of the true distribution of yt. ¤

Proposition 5

Given (B27) and (B28) it is clear that dμt(θ) = dπ and

dΣt(θ) = (dc)λt(θ)c+ c[dλt(θ)]c
0 + cλt(θ)dc

0 + dΓt(θ),

whence
∂μt(θ)

∂θ0
=

∂π

∂θ0

and

∂vec[Σt(θ)]

∂θ0
= (IN2 +KNN )[cλt|t−1(θ)⊗ IN ]

∂c

∂θ0
+ (c⊗ c)∂λt(θ)

∂θ0
+EN

∂γt(θ)

∂θ0
.

But since

λt(θ) = 1 + α[E(f2t−1|Yt−1;θ)− 1],

γit(θ) = γi + α∗i [E(v
2
it−1|Yt−1;θ)− γi],

we will have that:

∂λt(θ)

∂θ
= α

∂E(f2t−1|Yt−1;θ)
∂θ

+
∂α

∂θ
[E(f2t−1|Yt−1;θ)− 1],

∂γit(θ)

∂θ
=

∂γi
∂θ

+ α∗i
∂E(v2it−1|Yt−1;θ)

∂θ
+

∂α∗i
∂θ

[E(v2it−1|Yt−1;θ)− γi].

This implies that under the null hypothesis of α† = 0,

∂λt(θs,0)

∂θ
=

∂α

∂θ
[f2kt−1(θs) + ωk(θs)− 1],

∂γit(θs,0)

∂θ
=

∂γi
∂θ

+
∂α∗i
∂θ

[v2kit−1(θs) + c2iωk(θs)− γi],

where we have used the fact that Σt(θs,0) = cc
0 + Γ = Σ(θs) ∀t.
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As a result,

Zdt(θs,0) =

⎡⎢⎢⎢⎢⎣
Σ−1/20(θs) 0

0 1
2(c

0 ⊗ IN )(IN2 +KNN)[Σ
−1/20(θs)⊗Σ−1/2(θs)]

0 1
2E

0
N [Σ

−1/20(θs)⊗Σ−1/2(θs)]
0 1

2 [f
2
kt−1(θs) + ωk(θs)− 1][c0Σ−1/20(θs)⊗ c0Σ−1/2(θs)]

0 1
2dg[vkt−1(θs)v

0
kt−1(θs) + cc

0ωk(θs)− Γ]E0N [Σ−1/20(θs)⊗Σ−1/2(θs)]

⎤⎥⎥⎥⎥⎦ ,

whence it is easy to see that

Zd(φ) =

⎡⎢⎢⎢⎢⎣
Σ−1/20(θs) 0

0 1
2(c

0 ⊗ IN)(IN2 +KNN)[Σ
−1/20(θs)⊗Σ−1/2(θs)]

0 1
2E

0
N [Σ

−1/20(θs)⊗Σ−1/2(θs)]
0 0
0 0

⎤⎥⎥⎥⎥⎦
and

Wd(φ) =
£
0 c0Σ−1(θs)

1
2vecd

0[Σ−1(θs)] 0 0
¤0
, (A10)

where we have used the fact that

E[f2kt−1(θs) + ωk(θs)− 1|θs,0] = 0
E[v2kit−1(θs) + c2iωk(θs)− γi|θs,0] = 0

¾
(A11)

irrespective of the true distribution of yt.

In addition, it follows that the elliptical score under the null will be:

⎡⎢⎢⎢⎢⎢⎢⎣
sπt(θs,0,η)
sct(θs,0,η)
sγt(θs,0,η)
sαt(θs,0,η)

sα∗t(θs,0,η)

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ[ςt(θs),η]Σ
−1(θs)(yt − π)

δ[ςt(θs),η]Σ
−1(θs)(yt − π)(yt − π)0Σ−1(θs)c−Σ−1(θs)c

1
2vecd[δ[ςt(θs),η]Σ

−1(θs)(yt − π)(yt − π)0Σ−1(θs)−Σ−1(θs)]
1
2 [f

2
kt−1(θs) + ωk(θs)− 1]

{δ[ςt(θs),η]c0Σ−1(θ)(yt − π)(yt − π)0Σ−1(θs)c− c0Σ−1(θs)c}
1
2dg[vkt−1(θs)v

0
kt−1(θs) + cc

0ωk(θs)− Γ]
×vecd{δ[ςt(θs),η]Σ−1(θs)(yt − π)(yt − π)0Σ−1(θs)−Σ−1(θs)}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Therefore, the only difference relative to the static factor model are the scores sαt(θs,0,η) and

sα∗t(θs,0,η). In this sense, if we assume that Γ > 0 we can use the Woodbury formula to show

that

δ[ςt(θs);η]c
0Σ−1(θs)(yt − π)(yt − π)0Σ−1(θs)c− c0Σ−1(θs)c

= δ[ςt(θs);η]f
2
kt(θs) + ωkt(θs)− 1,

so that∙
sαt(θs,0,η)
sα∗t(θs,0,η)

¸
=

⎡⎣ 1
2 [f

2
kt−1(θs) + ωk(θs)− 1]{δ[ςt(θs),η]f2kt(θs) + ωk(θs)− 1}

1
2dg[vkt−1(θs)v

0
kt−1(θs) + cc

0ωk(θs)− Γ]
×vecd{Γ−1[δ[ςt(θs),η]vkt(θs)v0kt(θs) + cc0ωk(θs)− Γ]Γ−1}

⎤⎦ .
Using the expression for Zdt(θs,0), together with (A11), it is easy to show that the uncondi-

tional information matrix Iθθ(θ,0,η) will be block diagonal between π, (c,γ,η) and α†, with
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the first two blocks as in the static case. Consequently, in computing our ML-based tests we

can safely ignore the sampling uncertainty in estimating θs and η. In addition, we can write

Iα†α†t(θ,0,η) = diag

"
1√
2
[f2kt−1(θs) + ωk(θs)− 1]

1√
2
Γ−1vecd[vkt−1(θs)v0kt−1(θs) + cc

0ωk(θs)− Γ]

#

×Vα†α†(θs,η;η)× diag

"
1√
2
[f2kt−1(θs) + ωk(θs)− 1]

1√
2
Γ−1vecd[vkt−1(θs)v0kt−1(θs) + cc

0ωk(θs)− Γ]

#
,

where

Vα†α†(θs,η;η) = V

"
1√
2
{δ[ςt(θs),η]f2kt(θs) + ωk(θs)− 1}

1√
2
Γ−1vecd{δ[ςt(θs),η]vkt(θs)v0kt(θs) + cc0ωk(θs)− Γ}

#

= mss(η)

∙
[c0Σ−1(θs)c]

2 c0Σ−1(θs)Γ1/2 ¯ c0Σ−1(θs)Γ1/2
Γ1/2Σ−1(θs)c¯ Γ1/2Σ−1(θs)c Γ1/2Σ−1(θs)Γ1/2 ¯ Γ1/2Σ−1(θs)Γ1/2

¸
+
[mss(η)− 1]

2

∙
[c0Σ−1(θs)c]

2 [c0Σ−1(θs)c]vecd0[Γ1/2Σ−1(θs)Γ1/2]
[cΣ−1(θs)c]vecd[Γ1/2Σ−1(θs)Γ1/2] vecd[Γ1/2Σ−1(θs)Γ1/2]vecd0[Γ1/2Σ−1(θs)Γ1/2]

¸
.

(A12)

Thus, the only remaining item is the calculation of fourth order terms appearing in Vα†α†(θs,0;η).

But if we write

f2kt(θs) + ωk(θs)− 1 = c0Σ−1(θs)(yt − π)(yt − π)0Σ−1(θs)c− [1− ωk(θs)],

then it is easy to see that

E[f2kt(θs) + ωk(θs)− 1]2

= E{vec[c0Σ−1(θs)(yt − π)(yt − π)0Σ−1(θs)c]vec0[c0Σ−1(θs)(yt − π)(yt − π)0Σ−1(θs)c]}

−[1− ωk(θs)]
2

= [c0Σ−1/20(θs)⊗ c0Σ−1/20(θs)]E[vec(ε∗tε∗0t )vec0(ε∗tε∗0t )][Σ−1/2(θs)c⊗Σ−1/2(θs)c]

−[1− ωk(θs)]
2

= [c0Σ−1/20(θs)⊗ c0Σ−1/20(θs)](κ+ 1)[(IN2 +KNN) + vec (IN) vec
0 (IN)]

[Σ−1/2(θs)c⊗Σ−1/2(θs)c]− [1− ωk(θs)]
2

= (κ+ 1){2[c0Σ−1(θs)c]2 + [c0Σ−1(θs)c]2}− [c0Σ−1(θs)c]2 = (3κ+ 2)[c0Σ−1(θs)c]2.

Similarly, since

vecd[vkt(θs)v
0
kt(θs)+cc

0ωk(θs)− Γ]

= E0N{vec[ΓΣ−1(θs)(yt − π)(yt − π)0Σ−1(θs)Γ]− vec[Γ− cc0ωk(θs)]},

45



we will have that

E{vecd[vkt(θs)v0kt(θs)+cc0ωk(θs)− Γ]vecd0[vkt(θs)v0kt(θs)+cc0ωk(θs)− Γ]}

= E0NE{vec[ΓΣ−1(θs)(yt − π)(yt − π)0Σ
−1
(θs)Γ]vec

0[ΓΣ−1(θs)(yt − π)(yt − π)0Σ−1(θs)Γ]}EN

−vecd[Γ− cc0ωk(θs)]vecd0[Γ− cc0ωk(θs)]

= E0N [ΓΣ
−1/20(θs)⊗ ΓΣ−1/20(θs)]E[vec(ε∗tε∗0t )vec0(ε∗tε∗0t )][Σ−1/2(θs)Γ⊗Σ−1/2(θs)Γ]

−vecd[Γ− cc0ωk(θs)]vecd0[Γ− cc0ωk(θs)]

= E0N [ΓΣ
−1/20(θs)⊗ ΓΣ−1/20(θs)](κ+ 1)[(IN2 +KNN) + vec (IN) vec

0 (IN)]

×[Σ−1/2(θs)Γ⊗Σ−1/2(θs)Γ]− vecd[Γ− cc0ωk(θs)]vecd0[Γ− cc0ωk(θs)]

= (κ+ 1){2[ΓΣ−1(θs)Γ¯ ΓΣ−1(θ)Γ] + vecd[ΓΣ−1(θs)Γ]vecd
0[ΓΣ−1(θs)Γ]}

−vecd[Γ− cc0ωk(θs)]vecd[Γ− cc0ωk(θs)]EN

= 2(κ+ 1)[ΓΣ−1(θs)Γ¯ ΓΣ−1(θs)Γ] + κvecd[ΓΣ−1(θs)Γ]vecd
0[ΓΣ−1(θs)Γ]}.

Finally,

E{vecd[vkt(θs)v0kt(θs)+cc0ωk(θs)− Γ][f2kt(θs) + ωk(θs)− 1]}

= E0NE{vec[ΓΣ−1(θs)(yt − π)(yt − π)0Σ
−1
(θs)Γ]vec

0[c0Σ−1(θs)(yt − π)(yt − π)0Σ−1(θs)c]}

−vecd[Γ− cc0ωk(θs)][1− ωk(θs)]

= E0N [ΓΣ
−1/20(θs)⊗ ΓΣ−1/20(θs)]E[vec(ε∗tε∗0t )vec0(ε∗tε∗0t )][Σ−1/2(θs)c⊗Σ−1/2(θs)c]

−vecd[Γ− cc0ωk(θs)][1− ωk(θs)]

= E0N [ΓΣ
−1/20(θs)⊗ ΓΣ−1/20(θs)](κ+ 1)[(IN2 +KNN) + vec (IN) vec

0 (IN)]

×[Σ−1/2(θs)c⊗Σ−1/2(θs)c]− vecd[Γ− cc0ωk(θs)][1− ωk(θs)]

= 2(κ+ 1)[ΓΣ−1(θs)c¯ ΓΣ−1(θs)c] + κvecd[ΓΣ−1(θs)Γ][c
0Σ−1(θs)c].

Therefore, Vα†α†(θs,0;η)mimics Vα†α†(θs,η;η) if we replace mss(η) by κ+1. If we setmss(η) =

1 and κ = 0, then we obtain the expressions for the information matrix under normality reported

in the statement of Proposition 5. For other elliptical distributions we can proceed analogously.

In addition, it follows from (A10) that the elliptically symmetric semiparametric scores

for α† coincide with the parametric ones, and that the elliptically symmetric semiparametric

efficiency bound will be block diagonal between π, (c,γ), and α†, where the first and last blocks

coincide with the corresponding blocks of the information matrix, and the second one with the

corresponding bound in the static factor model.

Finally, let us consider the tests based on the Gaussian PML scores sαt(θs,0,0) and sα∗t(θs,0,0)

when yt|It−1;φ is i.i.d. D(π,Σ(θs);%) but not necessarily normal or elliptical. The structure of
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Zdt(θ), together with (A11) and the fact that Aθθt(φ) equals Iθθt(θs,0,0), implies that A(φ)

will be block diagonal between (α,α∗) and (π, c,γ) irrespective of the true distribution of yt.

In addition, it is easy to see that

Aα†α†(φ) = E[Aα†α†t(φ)|θs,0;%] = Vα†α†(θs,0;%)¯ Vα†α†(θs,0;0).

A closely related argument shows that Bt(φ) will also be block diagonal between (α,α∗) and

(π, c,γ). Further, the stationarity of yt implies that

Bα†α†(φ) = E[Bα†α†t(φ)|θs,0;%] = Vα†α†(θs,0;%)¯ Vα†α†(θs,0;%),

which is generally different from Aα†α†(φ). ¤

Proposition 6

Given that in model (23) μt(θ) = π and

vec[Σt(θ)] = DNvech(Σ) +DNAvech[(yt−1 − π)(yt−1 − π)0 −Σ],

we will have that dμt(θ) = dπ and

dvec[Σt(θ)] = DNdvech(Σ) + {vech0[(yt−1 − π)(yt−1 − π)0 −Σ]⊗DN}dvec(A)

−DNA{D+
N(IN2 +KNN)[(yt−1 − π)⊗ IN ]dπ + dvech(Σ)}

so that the only non-zero elements of the Jacobian will be ∂μt(θ)/∂π
0 = IN ,

∂vec[Σt(θ)]

∂π0
= −DNAD

+
N(IN2 +KNN )[(yt−1 − π)⊗ IN ]

∂vec[Σt(θ)]

∂σ0
= DN (IN(N+1)/2 −A),

∂vec[Σt(θ)]

∂a0
= {vech0[(yt−1 − π)(yt−1 − π)0 −Σ]⊗DN},

where D+
N = (D

0
NDN)

−1DN is the Moore-Penrose inverse of DN . But since we are only inter-

ested in evaluating these derivatives under the null hypothesis of α = 0, we will have that

Zdt(π,σ,0) =

⎡⎣ Σ−1/20 0

0 1
2D

0
N (Σ

−1/20 ⊗Σ−1/20)
0 1

2{vech[(yt−1 − π)(yt−1 − π)0 −Σ]⊗D0
N}(Σ−1/20 ⊗Σ−1/20)

⎤⎦ .
Hence, the Gaussian score vector under the null will be given by

⎡⎣ sπt(π,σ,0)sσt(π,σ,0)
sat(π,σ,0)

⎤⎦ =
⎡⎢⎢⎣

Σ−1(yt − π)
1
2D

0
N (Σ

−1 ⊗Σ−1)DNvech[(yt − π)(yt − π)0 −Σ]
1
2{IN(N+1)/2 ⊗ [D0

N(Σ
−1 ⊗Σ−1)DN ]}

×vec{vech[(yt − π)(yt − π)0 −Σ]vech0[(yt−1 − π)(yt−1 − π)0 −Σ]}

⎤⎥⎥⎦ ,
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and the conditional information matrix by

Iθθt(θ) =

⎡⎣ Σ−1 0
0 1

2D
0
N (Σ

−1 ⊗Σ−1)DN

0 1
2{vech[(yt−1 − π)(yt−1 − π)0 −Σ]⊗D0

N (Σ
−1 ⊗Σ−1)DN}

0
1
2{vech0[(yt−1 − π)(yt−1 − π)0 −Σ]⊗D0

N (Σ
−1 ⊗Σ−1)DN}

1
2{vech[(yt−1 − π)(yt−1 − π)0 −Σ]vech0[(yt−1 − π)(yt−1 − π)0 −Σ]⊗D0

N (Σ
−1 ⊗Σ−1)DN}

⎤⎦ .
But since

E[(yt−1 − π)(yt−1 − π)0] = Σ (A13)

regardless of the distribution of yt, Iθθ(θ) will be block diagonal between π, σ and a. Conse-

quently, in computing our ML-based tests we can safely ignore the sampling uncertainty in the

sample means, variances and covariances of yt.

Given that we are basing our test on

vec{vech[(yt − π)(yt − π)0 −Σ]vech0[(yt−1 − π)(yt−1 − π)0 −Σ]}

= {vech[(yt−1 − π)(yt−1 − π)0 −Σ]⊗ IN(N+1)/2}vech[(yt − π)(yt − π)0 −Σ]

= 2{IN(N+1)/2 ⊗ [D+
N (Σ⊗Σ)D

+0
N ]}sat(π,σ,0)

the asymptotic covariance matrix of vec[S̄yy(1)] will be

4{Vaa(θs,0;0)⊗ Vaa(θs,0;0)},

where

Vaa(θs,0;η) = V
n
1√
2
vech[(yt − π)(yt − π)0 −Σ]

o
.

But since

V {vec[(yt−1 − π)(yt−1 − π)0 −Σ]}

= (Σ1/2 ⊗Σ1/2)V [vec(ε∗t−1ε∗0t−1 − IN)](Σ1/20 ⊗Σ1/20)

= (Σ1/2 ⊗Σ1/2)[(κ+ 1)(IN2 +KNN) + κvec(IN)vec
0(IN )](Σ

1/20 ⊗Σ1/20)

= (κ+ 1)(IN2 +KNN )(Σ⊗Σ) + κvec(Σ)vec0(Σ) = H(κ), (A14)

when the conditional distribution of yt is elliptically symmetric, we will have that

Vaa(θs,0;η) = 1
2D

+
NH(κ)D

+0
N = (κ+ 1)D+

N(Σ⊗Σ)D
+0
N +

κ

2
vech(Σ)vech0(Σ)]. (A15)

Finally, the result in Proposition 6 follows from the fact that

V−1aa (θs,0;0) = D0
N (Σ

−1 ⊗Σ−1)DN .
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When yt|It−1;φ is i.i.d. D(π,Σ(θs);%) but not necessarily normal or elliptical, the structure

of Zdt(θ), together with (A13) and the fact that At(θ) and It(θ) coincide, implies that A(θ) will

also be block diagonal between π, σ and a irrespective of the true distribution of yt. Likewise,

it is easy to see that B(θ) will also be block diagonal between (π,σ) and a. As a result, the

asymptotic covariance matrix of vec[S̄yy(1)] will be

4{Vaa(θs,0;%)⊗ Vaa(θs,0;%)}.

In non-elliptical cases, we can find Vaa(θs,0;%) by replacing V [vec(ε∗t−1ε∗0t−1 − IN)] in (A14) by

the 2,2 block of K (%). ¤

Proposition 7

Given that in model (25) μt(θ) = π and

Σt(θ) = CΛt(θ)C
0 + Γ,

we will have that dμt(θ) = dπ and

dΣt(θ) = (dC)Λt(θ)C
0 +C[dΛt(θ)]C

0 +CΛt(θ)(dC
0) + dΓ,

so that

∂vec[Σt(θ)]

∂θ0
= (IN2 +KNN )[CΛt(θ)⊗ IN ]

∂vec(C)

∂θ0
+ (C⊗C)∂vec[Λt(θ)]

∂θ0
+EN

∂vecd(Γ)

∂θ0
,

where

∂vech[Λt(θ)]

∂θ0
= {vech0[E(ft−1ft−1 − Ik|Yt−1,θ)]⊗ Ik(k+1)/2}

∂vec(A)

∂θ0

+A

½
∂vech[E(ft−1ft−1|Yt−1,θ)]

∂θ0

¾
.

But since we are only interested in evaluating these derivatives under the null hypothesis of

α = 0, in which case Λt(θ) = Ik and E(ft−1ft−1|Yt−1,θ)] = fkt−1(θ)f 0kt−1(θ) +Ωk(θ), we will

have that

Zdt(θs,0) =

⎡⎢⎢⎢⎢⎣
Σ−1/20(θs) 0

0 1
2J
0(C0 ⊗ IN )(IN2 +KNN)[Σ

−1/20(θs)⊗Σ−1/20(θs)]
0 1

2E
0
N [Σ

−1/20(θs)⊗Σ−1/20(θs)]

0
1
2{vech[fkt−1(θ)f 0kt−1(θ) +Ωk(θ)− Ik]⊗D0

k}
×[C0Σ−1/20(θs)⊗C0Σ−1/20(θs)]

⎤⎥⎥⎥⎥⎦ ,
where J as the matrix that implicitly imposes the identifiability conditions on C through the

relationship vec(C) = Jc. Consequently

Zd(φ) =

⎡⎢⎢⎣
Σ−1/20(θs) 0

0 1
2J
0(C0 ⊗ IN)(IN2 +KNN)[Σ

−1/20(θs)⊗Σ−1/20(θs)]
0 1

2E
0
N [Σ

−1/20(θs)⊗Σ−1/20(θs)]
0 0

⎤⎥⎥⎦
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and

Wd(φ) =
£
00 J0C0Σ−1(θs)

1
2vecd

0[Σ−1(θs)] 00
¤0
, (A16)

where we have used the fact that

E[fkt−1(θ)f
0
kt−1(θ) +Ωk(θ)− Ik|θs,0] = 0. (A17)

irrespective of the distribution of yt.

Hence, the score vector under the null will be given by

⎡⎢⎢⎣
sπt(θs,0,η)
sct(θs,0,η)
sγt(θs,0,η)
sαt(θs,0,η)

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

δ[ςt(θs);η]Σ
−1(θs)(yt − π)

J0vec{δ[ςt(θs);η]C0Σ−1(θs)(yt − π)(yt − π)0Σ−1(θs)−C0Σ−1(θs)}
1
2vecd{δ[ςt(θs);η]Σ−1(θs)(yt − π)(yt − π)0Σ−1(θs)−Σ−1(θs)}
1
2 [IN(N+1)/2 ⊗ (D0

kDk)]vec[vech{δ[ςt(θs);η]C0Σ−1(θs)(yt − π)
×(yt − π)0Σ−1(θs)C−C0Σ−1(θs)C}vech0[fkt−1(θ)f 0kt−1(θ) +Ωk(θ)− Ik]]

⎤⎥⎥⎥⎥⎦ ,
Therefore, the only innovation relative to the static factor model are the scores sαt(θs,0,η).

In this sense, if we assume that Γ > 0 we can use the Woodbury formula once again to show

that

sαt(θs,0,η) =
1

2
[IN(N+1)/2 ⊗ (D0

kDk)]vec[vech{δ[ςt(θs);η]fkt(θ)f 0kt(θ) +Ωk(θ)− Ik}

×vech0{fkt−1(θ)f 0kt−1(θ) +Ωk(θ)− Ik}]

Using the expression for Zdt(θs,0,η) it is also easy to show that the conditional information

matrix Iθθt(θs,0) will be block diagonal between π, (c,γ,η) and α, with the first two blocks

being exactly the same as in the static factor model after excluding the restricted elements of

C. Thus, in computing our ML-based tests we can safely ignore the sampling uncertainty in

estimating θs and η.

In addition, given that we can also express

sαt(θs,0,η) =
1
2{vech[fkt−1(θ)f

0
kt−1(θ)+Ωk(θ)−Ik]⊗(D0

kDk)}vech{δ[ςt(θs);η]fkt(θ)f 0kt(θ)+Ωk(θ)−Ik}

we can write

Iααt(θ,0,η) = [ 1√2vech[fkt−1(θ)f
0
kt−1(θ) +Ωk(θ)− Ik]⊗ (D0

kDk)]

×Vαα(θs,η;η)× [ 1√2vech
0[fkt−1(θ)f

0
kt−1(θ) +Ωk(θ)− Ik]⊗ (D0

kDk)]

where

Vαα(θs,η;η) = V

∙
1√
2
vech{δ[ςt(θs);η]fkt(θ)f 0kt(θ) +Ωk(θ)− Ik}

¸
= mss(η)D

+
k [C

0Σ−1(θs)C⊗C0Σ−1(θs)C]D+0
k

+
[mss(η)− 1]

2
vech[Σ−1(θs)C]vech

0[Σ−1(θs)C].
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Thus, the only remaining item is the calculation of fourth order terms appearing in Vαα(θs,0;η).

But

V {vech[fkt−1(θ)f 0kt−1(θ) +Ωk(θ)− Ik]} (A18)

= D+
k [C

0Σ−1/20(θs)⊗C0Σ−1/20(θs)]V [vec(ε∗t−1ε∗0t−1 − Ik)][Σ−1/2(θs)C⊗Σ−1/2(θs)C]D+0
k

= D+
k [C

0Σ−1/20(θs)⊗C0Σ−1/20(θs)][(κ+ 1)(IN2 +KNN ) + κvec(IN)vec
0(IN )]

×[Σ−1/2(θs)C⊗Σ−1/2(θs)C]D+0
k

= 2(κ+ 1)D+
k [C

0Σ−1(θs)C⊗C0Σ−1(θs)C]D+0
k + κvech[Σ−1(θs)C]vech

0[Σ−1(θs)C],

so Vαα(θs,0;η) mimics Vαα(θs,η;η) if we replace mss(η) by κ + 1. Hence, the information

matrix will be

Jαα(θs,0) = Vαα(θs,0;η)⊗ (D0
kDk)Vαα(θs,η;η)(D0

kDk). (A19)

If we then set mss(η) = 1 and κ = 0, we can use the same argument as in the proof of Proposition

6 to derive the test statistic in the statement of Proposition 7. For other elliptical distributions

we can proceed analogously.

In addition, it follows from (A16) that the elliptically symmetric semiparametric scores

for α coincide with the parametric ones, and that the elliptically symmetric semiparametric

efficiency bound will be block diagonal between π, (c,γ), and α where the first and last blocks

coincide with the corresponding blocks of the information matrix, and the second one with the

corresponding bound in the static factor model.

Finally, let us consider the tests based on the Gaussian PML scores sαt(θs,0,0) when

yt|It−1;φ is i.i.d. D(π,Σ(θs);%) but not necessarily normal or elliptical. The structure of

Zdt(θ), together with (A17) and the fact that At(θ) and It(θ) coincide, implies that A(φ) will

be block diagonal between α and (π, c,γ) irrespective of the true distribution of yt. In addition,

it is easy to prove that

Aαα(φ) = E[Aααt(φ)|θs,0;%] = Vαα(θs,0;%)⊗ (D0
kDk)Vαα(θs,0;0)(D0

kDk).

A closely related argument shows that B(φ) will also be block diagonal between α and (π, c,γ).

Further, the stationarity of yt implies that

Bαα(φ) = E[Bααt(φ)|θs,0;%] = Vαα(θs,0;%)¯ (D0
kDk)Vαα(θs,0;%)(D0

kDk),

which is generally different from Aαα(φ). ¤
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Proposition 8

The proof of this proposition combines many elements of the proofs of Propositions 2 and

5. Given that model (26) reduces to model (5) when α = 0 and α∗ = 0 for every possible value

of the parameters π, ρ,ρ∗, c and γ, while it reduces to model (16) when ρ = 0 and ρ∗ = 0 for

every possible value of the parameters π, c,γ,α and α∗, then it trivially follows that under the

joint null of ρ† = 0 and α† = 0 we will have that

Zdt(θs,0,0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ−1/20(θs)
0
0

fkt−1(θs)c0Σ−1/20(θs)
diag[vkt−1(θs)]Σ−1/20(θs)

0
0

0
1
2(c

0 ⊗ IN)(IN2 +KNN )[Σ
−1/20(θs)⊗Σ−1/20(θs)]0

1
2E

0
N [Σ

−1/20(θs)⊗Σ−1/2(θs)]
0
0

1
2 [f

2
kt−1(θs) + ωk(θs)− 1][c0Σ−1/20(θs)⊗ c0Σ−1/2(θs)]

1
2dg[vkt−1(θs)v

0
kt−1(θs) + cc

0ωk(θs)− Γ]E0N [Σ−1/20(θs)⊗Σ−1/2(θs)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

whence

Zd(φ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ−1/20(θ) 0

0 1
2(c

0 ⊗ IN)(IN2 +KNN)[Σ
−1/20(θs)⊗Σ−1/20(θs)]

0 1
2E

0
N [Σ

−1/20(θs)⊗Σ−1/2(θs)]
0 0
0 0
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

Wd(φ) =
£
0 c0Σ−1(θs)

1
2vecd

0[Σ−1(θs)] 0 0 0 0
¤0
. (A20)

As a result, the score vector under the null will be

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

sπt(θs,0,0,η)
sct(θs,0,0,η)
sγt(θs,0,0,η)
sρt(θs,0,0,η)
sρ∗t(θs,0,0,η)
sαt(θs,0,0,η)
sα∗t(θs,0,0,η)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ[ςt(θs),η]Σ
−1(θs)(yt − π)

δ[ςt(θs),η]Σ
−1(θs)(yt − π)(yt − π)0Σ−1(θs)c−Σ−1(θs)c

1
2vecd[δ[ςt(θs),η]Σ

−1(θs)(yt − π)(yt − π)0Σ−1(θs)−Σ−1(θs)]
fkt−1(θs)δ[ςt(θs);η]c0Σ−1(θs)(yt − π)

diag[vkt−1(θs)]δ[ςt(θs);η]Σ−1(θs)(yt − π)
1
2 [f

2
kt−1(θs) + ωk(θs)− 1]{δ[ς(θs),η]c0Σ−1(θs)(yt − π)(yt − π)0Σ−1(θs)c

−c0Σ−1(θs)c}
1
2dg[vkt−1(θs)v

0
kt−1(θs) + cc

0ωk(θs)− Γ]
×vecd[δ[ςt(θs),η]Σ−1(θs)(yt − π)(yt − π)0Σ−1(θs)−Σ−1(θs)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

But this score is simply made up of the components of the different special cases that we have

already studied, so the only thing left to do is to study the blocks of the information matrix and
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the other efficiency bounds that corresponds to the cross product of

[sρt(θs,0,0,η), s
0
ρ∗t(θs,0,0,η)]

with

[sαt(θs,0,0,η), s
0
α∗t(θs,0,0,η)].

When the observed variables are elliptically distributed, the vector

[fkt−1(θs),v
0
kt−1(θs)]

is unconditionally orthogonal to the vector

{[f2kt−1(θs) + ωk(θs)− 1], vecd0[vkt−1(θs)v0kt−1(θs) + cc0ωk(θs)− Γ]},

so all the relevant off-diagonal blocks of Iθθ(φ0), S̊(φ0), A(φ0) and B(φ0) will be 0, which

confirms the additive decomposition of the different joint tests under elliptical symmetry.

For general distributions, though, the expressions for A(φ0) and B(φ0) are more involved.

Specifically, while it is still true that these matrices will remain block diagonal between (ρ†,α†)

and θs regardless of the true distribution of yt in view of (A4) and (A11), and thatA(φ0) will also

be block diagonal between ρ† and α†, with the relevant expressions for Aρ†ρ†(φ0) and Aα†α†(φ0)

as in the proofs of Propositions 2 and 5, respectively, it will no longer be true that B(φ0) will be

block diagonal between Ar and Arch parameters, even though Bρ†ρ†(φ0) = Aρ†ρ†(φ0). Nev-

ertheless, straightforward calculations show that the blocks of Bt(φ0) corresponding to (ρ†,α†)

will be given by

diag

⎡⎢⎢⎢⎣
fkt−1(θs)

Γ−1/2vkt−1(θs)
1√
2
[f2kt−1(θs) + ωk(θs)− 1]

1√
2
Γ−1vecd[vkt−1(θs)v0kt−1(θs) + cc

0ωk(θs)− Γ]

⎤⎥⎥⎥⎦
×
∙ Vρ†ρ†(θs,0;%) Vρ†α†(θs,0;%)
V 0
ρ†α†(θs,0;%) Vα†α†(θs,0;%)

¸

×diag

⎡⎢⎢⎢⎣
fkt−1(θs)

Γ−1/2vkt−1(θs)
1√
2
[f2kt−1(θs) + ωk(θs)− 1]

1√
2
Γ−1vecd[vkt−1(θs)v0kt−1(θs) + cc

0ωk(θs)− Γ]

⎤⎥⎥⎥⎦ ,
which confirms (29) in view of the stationarity of yt. ¤

53



References

Abramowitz, M. and Stegun, I.A. (1964): Handbook of mathematic functions, AMS 55,

National Bureau of Standards.

Amengual, D. and Sentana, E. (2010): “A comparison of mean-variance efficiency tests”,

Journal of Econometrics 154, 16-34,

Anderson, T.W. and Rubin, H. (1956): “Statistical inference in factor analysis”, in J. Ney-

mann, ed., Proceedings of the III Berkeley symposium on mathematical statistics and probability,

University of California, Berkeley.

Andrews, D.W.K. (2001): “Testing when a parameter is on the boundary of the maintained

hypothesis”, Econometrica 69, 683-734.

Bai, J. and Ng, S. (2008): “Large dimensional factor analysis”, Foundations and Trends in

Econometrics, 3, 89—163.

Balestra, P., and Holly, A. (1990), “A general Kronecker formula for the moments of the

multivariate normal distribution”, DEEP Cahier 9002, University of Lausanne.

Bekker, P.A. (1989): “Identification in restricted factor models and the evaluation of rank

conditions”, Journal of Econometrics 41, 5-16.

Bollerslev, T. (1986): “Generalized autoregressive conditional heteroskedasticity”, Journal

of Econometrics 31, 307-327.

Bollerslev, T., and J. M. Wooldridge (1992): “Quasi maximum likelihood estimation and

inference in dynamic models with time-varying covariances”, Econometric Reviews 11, 143-172.

Box, G. E. P. and D.A. Pierce (1970): “Distribution of the autocorrelations in autoregressive

moving average time series models”, Journal of the American Statistical Association 65, 1509—

1526.

Breusch, T. S. and Pagan, A.R. (1980): “The Lagrange Multiplier test and its applications

to model specification in econometrics”, Review of Economic Studies 47, 239-253.

Calzolari, G., Fiorentini, G. and Sentana, E. (2004): “Constrained indirect estimation”,

Review of Economic Studies 71, 945-973.

Cochrane, J.H. (1991): “Volatility tests and efficient markets: a review essay”, Journal of

Monetary Economics 27, 661-676.

Connor, G. (1984): “A unified beta pricing theory”, Journal of Economic Theory 34, 13-31.

Connor, G., Goldberg, L.R. Korajczik, R.A. (2009): Portfolio risk analysis, mimeo,

http://economics.nuim.ie/staff/connor/documents/cgk_january_version_final_version.pdf

Crowder, M.J. (1976): “Maximum likelihood estimation for dependent observations”, Jour-

nal of the Royal Statistical Society B, 38, 45-53.

54



Davidson, R. and MacKinnon, J.G. (1998): “Graphical methods for investigating the size

and power of tests statistics”, The Manchester School 66, 1-26.

Davies, R. B. (1977): “Hypothesis testing when a nuisance parameter is present only under

the alternative”, Biometrika 64, 247-254.

Davies, R. B. (1987): “Hypothesis testing when a nuisance parameter is present only under

the alternative”, Biometrika 74, 33-43.

Demos, A. and Sentana, E. (1998): “Testing for Garch effects: a one-sided approach”,

Journal of Econometrics, 86, 97-127.

Dempster, A., Laird, N., and Rubin, D. (1977): “Maximum likelihood from incomplete data

via the EM algorithm”, Journal of the Royal Statistical Society B 39, 1-38.

Diebold, F.X. and M. Nerlove (1989): “The dynamics of exchange rate volatility: a multi-

variate latent factor Arch model”, Journal of Applied Econometrics 4, 1-21.

Doz, C. and Lenglart, F. (1999): “Dynamic factor models: test of the number of factors and

estimation with an application to the French Industrial Business Survey”, Annales d’Economie

et Statistique 54, 91-128.

Duchesne, P. and Lalancette, S. (2003): “On testing for multivariate Arch effects in vector

time series models”, Canadian Journal of Statistics 31, 275-292.

Dufour, J.M., Khalaf, L. and Beaulieu, M.C. (2008): “Multivariate residual-based finite-

sample tests for serial dependence and Arch effects with application to asset pricing models”,

Journal of Applied Econometrics, forthcoming.

Dungey, M., Martin, V.L. and Pagan, A.R. (2000): “A multivariate latent factor decompo-

sition of international bond yield spreads”, Journal of Applied Econometrics 15, 697-715.

Dunn, J.E. (1973): “A note on a sufficiency condition for uniqueness of a restricted factor

matrix”, Psychometrika 38, 141-143.

Engle, R.F. (1982): “Autoregressive conditional heteroskedasticity with estimates of the

variance of United Kingdom inflation”, Econometrica 50, 987-1007.

Engle, R.F. (1984): “Wald, likelihood ratio and Lagrange multiplier tests in econometrics”,

in Handbook of Econometrics vol II, ed. Griliches and Intrilligator (Amsterdam: North Holland),

775-826.

Fang, K.-T., Kotz, S., and Ng, K.-W. (1990), Symmetric multivariate and related distribu-

tions, Chapman and Hall.

Fiorentini, G. and Sentana, E. (2007): “On the efficiency and consistency of likelihood

estimation in multivariate conditionally heteroskedastic dynamic regression models”, CEMFI

Working Paper 0713.

55



Fiorentini, G., Sentana, E. and Calzolari, G. (2003): “Maximum likelihood estimation and

inference in multivariate conditionally heteroskedastic dynamic regression models with student

t innovations”, Journal of Business and Economic Statistics 21, 532-546.

Fiorentini, G., Sentana, E. and Shephard, N. (2004): “Likelihood estimation of latent gen-

eralised Arch structures”, Econometrica 72, 1481-1517.

Godfrey, L.G. (1988): Misspecification tests in econometrics: the Lagrange multiplier prin-

ciple and other approaches, Econometric Society Monographs.

Guilkey, D.K. (1974): “Alternative tests for a first-order vector autoregressive error specifi-

cation”, Journal of Econometrics 4, 95-104.

Hafner, C.M. and Rombouts, J.V.K. (2007): “Semiparametric multivariate volatility mod-

els”, Econometric Theory 23, 251-280.

Harvey, A.C. (1982): “A test of misspecification for systems of equations”, LSE Econometrics

Programme Discussion Paper A31.

Harvey, A.C. (1989): Forecasting, structural models and the Kalman filter, Cambridge Uni-

versity Press, Cambridge.

Harvey, A., Ruiz, E. and Sentana, E. (1992): “Unobservable component time series models

with Arch disturbances”, Journal of Econometrics 52, 129-158.

Hendry, D.F. (1971): “Maximum likelihood estimation of systems of simultaneous regression

equations with errors generated by a vector autoregressive process”, International Economic

Review 12, 257-272.

Hodgson, D.J. and Vorkink, K.P. (2003): “Efficient estimation of conditional asset pricing

models”, Journal of Business and Economic Statistics 21, 269-283.

Hodrick, R. J. (1992): “Dividend yields and stock returns: alternative procedures for infer-

ence and measurement”, Review of Financial Studies 5, 357-386.

Hong, Y. (1996): “Consistent testing for serial correlation of unknown form” Econometrica

64, 837-864.

Hong Y. and R.S. Shehadeh (1999): “A new test for Arch effects and its finite sample

performance”, Journal of Business and Economic Statistics 17, 91—108.

Hosking, J. R. M. (1981): “Lagrange-multiplier tests of multivariate time series models”,

Journal of the Royal Statistical Society B 43. 219-230.

Jegadeesh, N. (1989): “On testing for slow decaying components in stock prices”, mimeo,

Anderson Graduate School of Management, University of California at Los Angeles.

Jegadeesh, N. and G.G. Pennacchi (1996): “The behavior of interest rates implied by the

term structure of eurodollar futures”, Journal of Money, Credit and Banking 28, 426-446.

56



Jennrich, R.I. (1978): “Rotational equivalence of factor loading matrices with specified val-

ues”, Psychometrika 43, 421-426.

Kano, Y. (1983): “Consistency of estimators in factor analysis”, Journal of the Japan Sta-

tistical Society 13, 137-144.

King, M.A., Sentana, E. and Wadhwani, S.B. (1994): “Volatility and links between national

stock markets”, Econometrica 62, 901-933.

Koenker, R. (1981): “A note on studentizing a test for heteroskedasticity”, Journal of Econo-

metrics 17, 107-112.

Lawley, D.N. and Maxwell, A.E. (1971): Factor analysis as a statistical method, 2nd ed.,

Butterworths, London.

Lehmann, B., and Modest, D. (1988): “The empirical foundations of the Arbitrage Pricing

Theory”, Journal of Financial Economics 21, 213-254.

Lütkepohl, H. (1993): Introduction to multiple time series analysis, 2nd. ed., Springer,

Berlin.

Magnus, J.R. (1988): Linear structures, Oxford University Press, New York.

Magnus, J.R. and Neudecker, H. (1988): Matrix differential calculus with applications in

Statistics and Econometrics, Wiley, Chichester.

Mardia, K.V. (1970): “Measures of multivariate skewness and kurtosis with applications”,

Biometrika 57, 519-530.

Mencía, J. and E. Sentana (2009a): “Multivariate location-scale mixtures of normals and

mean-variance-skewness portfolio allocation”, Journal of Econometrics 153, 105-121.

Mencía, J. and E. Sentana (2009b): “Distributional tests in multivariate dynamic models

with Normal and Student t innovations”, mimeo, CEMFI.

NAG (2001): NAG Fortran 77 Library Mark 19 Reference Manual.

Newey, W.K. (1985): “Maximum likelihood specification testing and conditional moment

tests”, Econometrica 53, 1047-70.

Newey, W.K. and McFadden, D.L. (1994): “Large sample estimation and hypothesis testing”,

in R.F. Engle and D.L. McFadden (eds.) Handbook of Econometrics vol. IV, 2111-2245, Elsevier.

Nijman, T. and Sentana, E. (1996): “Marginalization and contemporaneous aggregation of

multivariate Garch processes”, Journal of Econometrics 71, 71-87.

RiskMetrics Group (1996): RiskMetrics Technical Document.

Ross, S.A. (1976): “The arbitrage theory of capital asset pricing”, Journal of Economic

Theory, 13, 341-360.

Ross, S.A. (1978): “Mutual fund separation in financial theory - the separating distribu-

57



tions”, Journal of Economic Theory 17, 254-286.

Rubin, D.B. and D.T. Thayer, D.T. (1982): “EM algorithms for ML factor analysis”, Psy-

chometrika 57, 69-76.

Sentana, E. (2000): “The likelihood function of conditionally heteroskedastic factor models”,

Annales d’Economie et de Statistique 58, 1-19.

Sentana, E. (2004): “Factor representing portfolios in large asset markets”, Journal of Econo-

metrics 119, 257-289.

Sentana, E., Calzolari, G. and Fiorentini, G. (2008): “Indirect estimation of large condi-

tionally heteroskedastic factor models, with an application to the Dow 30 stocks”, Journal of

Econometrics 146, 10-25.

Sentana, E. and Fiorentini, G. (2001): “Identification, estimation and testing of conditionally

heteroskedastic factor models”, Journal of Econometrics 102, 143-164.

Sentana, E. and M. Shah (1993): “An index of co-movements in financial time series”,

CEMFI Working Paper 9415.

Silverman B.W. (1986): Density estimation, Chapman and Hall.

Tauchen, G. (1985): “Diagnostic testing and evaluation of maximum likelihood models”,

Journal of Econometrics 30, 415-443.

Wegge, L.E. (1996): “Local identifiability of the factor analysis and measurement error model

parameter”, Journal of Econometrics 70, 351-382.

58



B Kalman filter recursions

B.1 Static factor models

Model (1) can be regarded as a time-series state-space representation, with ft as the state,

yt = cft+vt as the measurement equation, and ft = 0 · ft−1+ ft as transition equation. In this

framework, it is straightforward to prove that the Kalman filter prediction equations are

μt(θs) = π, (B21)

ft|t−1(θs) = 0,

and

Σt(θs) = cc0 + Γ, (B22)

ωt|t−1(θs) = 1,

while the updating equations are:

ft|t(θs) = c
0Σ−1(θs)(yt − π) = fkt(θs),

ωt|t(θs) = 1− c0Σ−1(θs)c = ωk(θs).

If we define vt|t(θs) = E(vt|Yt;θs) =ΓΣ−1(θs)(yt − π) = vkt(θs), then the matrix

V

µ
ft
vt

¯̄̄̄
Yt;θs

¶
=

µ
1− c0Σ−1(θs)c −c0Σ−1(θs)Γ
−ΓΣ−1(θs)c Γ− ΓΣ−1(θs)Γ

¶
=

µ
ωk(θs) −cωk(θs)
−cωk(θs) cc0ωk(θs)

¶
will be of rank 1 because vkt(θs) = yt − π − cfkt(θs). Similarly, V [( fkt v0kt )

0|θs] will be of

rank N because fkt(θs) = c0Γ−1vkt(θs).

Importantly, given the degenerate nature of the transition equation, smoothing is unnecessary

in this case, so that fkt(θs) = E(ft|YT ;θs) and ωkt(θs) = V (ft|YT ;θs) (see e.g. Diebold and

Nerlove (1989) or Harvey (1989)).

Finally, if Γ > 0, then we can use the Woodbury formula to prove that

fkt(θs) = ωkt(θ)c
0Γ−1(yt − π),

ωk(θs) = (1 + c0Γ−1c)−1,

Σ−1(θs) = Γ−1 − ωk(θs)Γ
−1cc0Γ−1,

which greatly simplifies the computations (see Sentana (2000)).
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B.2 Conditionally homoskedastic dynamic factor models

Although from a computational point of view this is not the most efficient formulation, for

our purposes it is convenient to write model (5) in state-space form as

yt = π + ( c IN )

µ
xt
ut

¶
,µ

xt
ut

¶
=

∙
ρ 0
0 diag(ρ∗)

¸µ
xt−1
ut−1

¶
+

µ
ft
vt

¶
.

Subject to an assumption about initialisation, such as that (x0,u00) is drawn from its stationary

distribution, the Kalman filter prediction equations will be

μt(θ) = π + ( c IN )

µ
xt|t−1(θ)
ut|t−1(θ)

¶
, (B23)µ

xt|t−1(θ)
ut|t−1(θ)

¶
=

∙
ρ 0
0 diag(ρ∗)

¸µ
xt−1|t−1(θ)
ut−1|t−1(θ)

¶
, (B24)

and

Σt(θ) = ( c IN )Ωt|t−1(θ)

µ
c0

IN

¶
, (B25)

Ωt|t−1(θ) =

∙
ρ 0
0 diag(ρ∗)

¸
Ωt−1|t−1(θ)

∙
ρ 0
0 diag(ρ∗)

¸
+

µ
1 0
0 Γ

¶
, (B26)

while the updating equations will beµ
xt|t(θ)
ut|t(θ)

¶
=

µ
xt|t−1(θ)
ut|t−1(θ)

¶
+Ωt|t−1(θ)

µ
c0

IN

¶
Σ−1t (θ)

∙
yt − π − ( c IN )

µ
xt|t−1(θ)
ut|t−1(θ)

¶¸
and

Ωt|t(θ) = Ωt|t−1(θ)−Ωt|t−1(θ)

µ
c0

IN

¶
Σ−1t (θ)( c IN )Ωt|t−1(θ).

In this sense, note that

( c IN )Ωt|t(θ)

µ
c0

IN

¶
= 0,

which simply reflects the fact that ut|t(θ) = yt − π − cxt|t(θ).

B.3 Conditionally heteroskedastic factor models with constant conditional
means

If we define (ft,v0t) as the state variables, the state-space representation of model (16) is

yt = π + ( c IN )

µ
ft
vt

¶
,µ

ft
vt

¶
=

µ
0 0
0 0

¶µ
ft−1
vt−1

¶
+

µ
ft
vt

¶
,

V

∙µ
ft
vt

¶¯̄̄̄
It−1;θ

¸
=

µ
λt(θ) 0
0 Γt(θ)

¶
.
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Subject to an assumption about initialisation, such as that (f0,v00) are drawn from their sta-

tionary distribution, the Kalman filter prediction equations will be

μt(θ) = π, (B27)µ
ft|t−1(θ)
vt|t−1(θ)

¶
=

µ
0
0

¶
,

and

Σt(θ) = cc0λt(θ) + Γt(θ), (B28)

Ωt|t−1(θ) =

µ
λt(θ) 0
0 Γt(θ)

¶
,

while the updating equations will beµ
ft|t(θ)
vt|t(θ)

¶
=

µ
λt(θ)c

0

Γt(θ)

¶
Σ−1t (θ)(yt − π)

and

Ωt|t(θ) =

µ
λt(θ)− λ2t (θ)c

0Σ−1t (θ)c −λt(θ)c0Σ−1t (θ)Γt(θ)
−Γt(θ)Σ−1t (θ)cλt(θ) Γt(θ)− Γt(θ)Σ−1t (θ)Γt(θ)

¶
.

If Γt(θ) > 0, then we can use the Woodbury formula to prove that

ft|t(θ) = ωt|t(θ)c
0Γ−1t (θ)(yt − π),

ωt|t(θ) = [c0Γ−1t (θ)c+ λ−1t (θ)]
−1,

Σ−1t (θ) = Γ−1t (θ)− ωt|t(θ)Γ
−1
t (θ)cc

0Γ−1t (θ),

which greatly simplifies the computations (see Sentana (2000)).

The degenerate nature of the transition equation implies that smoothing is also unnecessary

in this case, so that ft|t(θ) = E(ft|YT ;θ) and ωt|t(θ) = V (ft|YT ;θ) (see Diebold and Nerlove

(1989)).

B.4 Conditionally heteroskedastic dynamic factor models

Following Harvey, Ruiz and Sentana (1992), we can write model (26) using the following

state representation:

yt = π + ( c IN 0 0 )

⎛⎜⎜⎝
xt
ut
ft
vt

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
xt
ut
ft
vt

⎞⎟⎟⎠ =

⎛⎜⎜⎝
ρ 0 0 0
0 diag(ρ∗) 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝

xt−1
ut−1
ft−1
vt−1

⎞⎟⎟⎠+
⎛⎜⎜⎝
1 0
0 IN
1 0
0 IN

⎞⎟⎟⎠µ ft
vt

¶
,

V

∙µ
ft
vt

¶¯̄̄̄
It−1;θ

¸
=

µ
λt(θ) 0
0 Γt(θ)

¶
.
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Subject to some initial conditions, the prediction equations will be

μt(θ) = π + ( c IN )

µ
xt|t−1(θ)
ut|t−1(θ)

¶
, (B29)µ

xt|t−1(θ)
ut|t−1(θ)

¶
=

∙
ρ 0
0 diag(ρ∗)

¸µ
xt−1|t−1(θ)
ut−1|t−1(θ)

¶
,µ

ft|t−1(θ)
vt|t−1(θ)

¶
=

µ
0
0

¶
,

and

Σt(θ) = ( c IN )Ω11t|t−1(θ)

µ
c0

IN

¶
, (B30)

Ω11t|t−1(θ) =

µ
ρ 0
0 diag(ρ∗)

¶
Ω11t−1|t−1(θ)

µ
ρ 0
0 diag(ρ∗)

¶
+

µ
λt(θ) 0
0 Γt(θ)

¶
,

Ω12t|t−1(θ) = Ω22t|t−1(θ) =

µ
λt(θ) 0
0 Γt(θ)

¶
,

while the updating equations will beµ
xt|t(θ)
ut|t(θ)

¶
=

µ
xt|t−1(θ)
ut|t−1(θ)

¶
+Ω11t|t−1(θ)

µ
c0

IN

¶
Σ−1t (θ)

£
yt − π − cxt|t−1(θ)− ut|t−1(θ)

¤
,µ

ft|t(θ)
vt|t(θ)

¶
=

µ
λt(θ)c

0Σ−1t (θ)
£
yt − π − cxt|t−1(θ)− ut|t−1(θ)

¤
Γt(θ)Σ

−1
t (θ)

£
yt − π − cxt|t−1(θ)− ut|t−1(θ)

¤ ¶
,

and

Ω11t|t(θ) = Ω11t|t−1(θ)−Ω11t|t−1(θ)
µ
c0

IN

¶
Σ−1t (θ)( c IN )Ω11t|t−1(θ),

Ω12t|t(θ) =

µ
λt(θ) 0
0 Γt(θ)

¶
−Ω11t|t−1(θ)

µ
λt(θ)c

0Σ−1t (θ)c c0Σ−1t (θ)Γt(θ)
λt(θ)Σ

−1
t (θ)c Σ−1t Γt(θ)

¶
,

Ω22t|t(θ) =

µ
λt(θ)− λ2t (θ)c

0Σ−1t (θ)c −λt(θ)c0Σ−1t (θ)Γt(θ)
−λt(θ)Γt(θ)Σ−1t (θ)c Γt(θ)− Γt(θ)Σ−1t (θ)Γt(θ)

¶
.

Once again, if Γt(θ) > 0 then we can use the Woodbury formula to simplify the computations.

Interestingly, the expression for Ω22t|t(θ) coincides with the analogous expression when there

are no dynamics in the mean, although the expression for Σt(θ) is obviously different.

C Local power calculations

Let mt(θ1,θ2) denote the h influence functions used to develop the following moment test

of H0 : θ2 = 0:

MT = Tm̄0
T (θ10,0)Ψ

−1m̄T (θ10,0), (C31)

where m̄T (θ10,0) is the sample average of mt(θ) evaluated under the null, and Ψ is the corre-

sponding asymptotic covariance matrix. In order to obtain the non-centrality parameter of this
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test under Pitman sequences of local alternatives of the form H0 : θ2T = θ̄2/
√
T , it is convenient

to linearise mt(θ10,0) with respect to θ2 around its true value θ2T . This linearisation yields

√
Tm̄T (θ10,0) =

√
Tm̄T (θ10,θ2T ) +

1

T

XT

t=1

∂mt(θ10,θ
∗
2T )

∂θ02
θ̄2,

where θ∗2T is some “intermediate” value between θ2T and 0. As a result,

√
Tm̄T (θ10,0)→ N [M(θ10,0)θ̄2,Ψ],

under standard regularity conditions, where

M(θ10,0) = E[∂mt(θ10,0)/∂θ
0
2],

so that the non-centrality parameter of the moment test (C31) will be

θ̄
0
2M

0(θ10,0)Ψ
−1M(θ10,0)θ̄2. (C32)

On this basis, we can easily obtain the limiting probability of MT exceeding some pre-

specified quantile of a central χ2h distribution from the cdf of a non-central χ2 distribution with

h degrees of freedom and non-centrality parameter (C32).

Finally, note that (C32) remains valid when we replace θ10 by its ML estimator under the

null if mt(θ1,0) and the scores corresponding to θ1 are asymptotically uncorrelated when H0

is true, as in all our tests. In addition, both M(θ10,0) and Ψ coincide with the (2,2) block of

the information matrix when mt(θ1,θ2) are the scores with respect to θ2. This result confirms

that the non-centrality parameters of LM and Wald tests will be the same under sequences of

local alternatives, which simplifies their computation.

Serial correlation tests

Let us assume without loss of generality that π = 0. Hosking’s test is effectively based on

the influence functions

mlt(θs,ρ
†) = vec[yty

0
t−1 −Gyy(1)]

evaluated at ρ† = 0. But since

Gyy(1) = cc
0ρ+ diag(γ ¯ ρ∗)

for the model considered in section 2.2.4 in view of (7), and

vec[Gyy(1)] = (c⊗ c)ρ+ vec[diag(γ ¯ ρ∗)],

it trivially follows that

Ml(θs,0) = E[∂mlt(θs,0)/∂ρ
†0] = −[ (c⊗ c) ENΓ ].
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Hence, we will have that

Ml(θs,0)ρ̄
† = −[(c⊗ c)ρ+ENγρ

∗]

when

ρ̄†0 = ( ρ ρ∗ι0N ).

As for the asymptotic covariance matrix, the proof of Proposition 3 implies that if ρ† = 0, then

√
Tmlt(θs,0) =

√
Tvec(yty

0
t−1)→ N(0,Σ⊗Σ)

irrespective of the distribution of yt.

Since the diagonal serial correlation test uses the influence functions

vecd[yty
0
t−1 −Gyy(1)] = E

0
Nvec[yty

0
t−1 −Gyy(1)],

it is easy to obtain the corresponding Jacobian matrix by premultiplying Ml(θs,0) by E0N .

Specifically,

E0NMl(θs,0)ρ̄
† = −[(c¯ c)ρ+ γρ∗].

We can also exploit the properties of EN (see Magnus (1988)) to show that under the null

√
Tvecd(yty

0
t−1)→ N(0,Σ¯Σ).

Finally, to obtain the non-centrality parameter for the serial correlation test of w0yt, we

simply have to exploit the fact that the relevant influence functions are

w0yty
0
t−1w−w0Gyy(1)w = (w

0 ⊗w0)vec[yty0t−1 −Gyy(1)],

so that the appropriate Jacobian will be (w0 ⊗w0)Ml(θs,0), whence

(w0 ⊗w0)Ml(θs,0)ρ̄
† = −[(w0c)2ρ+ (w0Γw)ρ∗].

Similarly, it is straightforward to show that

√
T (w0yty

0
t−1w)→ N [0, (w0Σw)2].

ARCH tests

To keep the algebra simple, we assume once again that π = 0, that the conditional variances

of common and specific factors have been generated according to (21) and (22), respectively,

and that the conditional distribution is elliptically symmetric. Hosking’s test applied to all the

squares and cross-products of yt is effectively based on the influence functions that correspond
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to the first-order autocovariance matrix of vec(yty0t), Syy(1) say, evaluated at α† = 0. More

specifically,

mst(θs,α
†) = vec{[vec(yty0t −Σ)vec0(yt−1y0t−1 −Σ)]− Syy(1)}.

But since

E(yty
0
t|It−1;θ) = cc0λt + Γt

so that

vec[E(yty
0
t −Σ|It−1;θ)] = (c⊗ c)(λt − 1) +EN (γt − γ),

and

vec(yt−1y
0
t−1 −Σ) = (c⊗ c)(f2t−1 − 1) + vec(vt−1v

0
t−1 − Γ) + (IN2 +KNN )(c⊗ IN)ft−1vt−1,

then it follows that

Syy(1) = E[vec(yty
0
t −Σ)vec0(yt−1y0t−1 −Σ)] = E{E[vec(yty0t −Σ)|It−1;φ]vec0(yt−1y0t−1 −Σ)]}

= E{[(c⊗ c)(λt − 1) +EN (γt − γ)][(c0 ⊗ c0)(f2t−1 − 1)

+vec0(vt−1v
0
t−1 − Γ) + ft−1v

0
t−1(c

0 ⊗ IN )(IN2 +KNN )}

= (cc0 ⊗ cc0)E[(λt − 1)(f2t−1 − 1)] + (c⊗ c)E[(λt − 1)(v0t−1 ¯ v0t−1 − γ0)]E0N

ENE[(γt − γ)(f2t−1 − 1)](c0 ⊗ c0) +ENE[(γt − γ)(v0t−1 ¯ v0t−1 − γ0)]E0N

because of the assumed elliptical symmetry and lack of cross-sectional correlation between ft

and the v0its, and the fact that we are assuming univariate Arch(1) processes for them. This

last assumption also implies that

E[(λt−1)(f2t−1−1)] = αV (f2t−1) = α[E(f4t−1)−1] = α

∙
3(κ+ 1)(1− α2)

1− 3(κ+ 1)α2 − 1
¸
= α

(3κ+ 2)

1− 3(κ+ 1)α2 ,

where κ is the multivariate excess kurtosis coefficient. Similarly

E[(γit − γi)(v
2
it−1 − γi)] = αiV (v

2
it−1) = αi

(3κ+ 2)

1− 3(κ+ 1)α2i
γ2i .

In addition, we can show that

E[(γit − γi)(v
2
jt−1 − γj)] = αicov(v

2
it−1, v

2
jt−1) = αi[E(v

2
it−1v

2
jt−1)− γiγj ] = αiγiγj

κ

1− (κ+ 1)αiαj
,

E[(λt − 1)(v2it−1 − γi)] = αcov(f2t−1, v
2
it−1) = αγi

κ

1− (κ+ 1)ααi
,

E[(γit − γi)(f
2
t−1 − 1)] = αicov(f

2
t−1, v

2
it−1) = αiγi

κ

1− (κ+ 1)ααi
.
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From here, it is straightforward to see that under the null of conditional homoskedasticity

in common and idiosyncratic factors the only non-zero derivatives will be

∂E[(λt − 1)(f2t−1 − 1)/∂α = (3κ+ 2)

∂E[(γit − γi)(v
2
it−1 − γi)]/∂αi = (3κ+ 2)γ2i

∂E[(γit − γi)(v
2
jt−1 − γj)]/∂αi = κγiγj

∂E[(λt − 1)(v2it−1 − γi)]/∂α = κγi

∂E[(γit − γi)(f
2
t−1 − 1)]/∂αi = κγi

whence we can obtain the appropriate Jacobian matrix

Ms(θs,0) = ∂E[mt(θs,0)]/∂α
†0.

Finally, we will have that

Ms(θs,0)ᾱ
† = −vec{(cc0 ⊗ cc0)(3κ+ 2)α+ (c⊗ c)γ0E0Nκα

+ENγ(c
0 ⊗ c0)κα∗ +EN [2(κ+ 1)(Γ¯ Γ) + κγγ0]E0Nα

∗} (C33)

when

ᾱ†0 = ( α α∗ι0N ).

As for the asymptotic covariance matrix, the proof of Proposition 6 implies that if ρ† = 0,

then

√
Tmst(θs,0) =

√
Tvec[vec(yty

0
t −Σ)vec0(yt−1y0t−1 −Σ)]→ N{0, [H(κ)⊗H(κ)]},

when the conditional distribution of yt is elliptically symmetric, where H(κ) is defined in (A14).

But given that the autocovariance matrix of vech(yty0t) will be

D+
NE[vec(yty

0
t −Σ)vec0(yt−1y0t−1 −Σ)]D+0

N = D+
NSyy(1)D

+0
N ,

it is straightforward to obtain the relevant limiting mean vector as

(D+
N ⊗D

+
N )Ms(θs,0)ᾱ

†.

Similarly, the proof of Proposition 6 also implies that
√
T

T

XT

t=1
vec[vech(yty

0
t −Σ)vech0(yt−1y0t−1 −Σ)]→ N [0, (D+

NH(κ)D
+0
N ⊗D

+
NH(κ)D

+0
N )],

where 1
2D

+
NH(κ)D

+0
N is defined in (A15).

From here, we can obtain the non-centrality parameter for the test that only looks at the

marginal autocovariances of vech(yty0t) by premutiplying by E
0
N(N+1)/2.
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In turn, the diagonalisation matrix EN allows us to obtain the autocovariance matrix of

vecd(yty
0
t −Σ) as

E0NE[vec(yty
0
t −Σ)vec0(yt−1y0t−1 −Σ)]EN = E

0
NSyy(1)EN ,

whence we can obtain the non-centrality parameter for the test that only looks at the marginal

autocovariances of vecd(yty0t) by premutiplying Ms(θs,0)ᾱ
† by (E0N ⊗ E0N ). An analogous

manipulation yields the asymptotic covariance matrix of the relevant influence functions.

Finally, it is straightforward to obtain the autocovariance structure of the squares of any

linear combination of yt, w0yt say, by exploiting the fact that

E[(w0yt)
2(w0yt−1)

2] = vec0(ww0)E[vec(yty
0
t)vec

0(yt−1y
0
t−1)]vec(ww

0).

Similarly, it is easy to prove that
√
T

T

XT

t=1
(w0yt)

2(w0yt−1)
2 → N [0, (3κ+ 2)(w0Σw)2]

under the null.

D Inference with elliptical innovations

Some useful distribution results

A spherically symmetric random vector of dimension N , ε◦t , is fully characterised in Theorem

2.5 (iii) of Fang, Kotz and Ng (1990) as ε◦t = etut, where ut is uniformly distributed on the

unit sphere surface in RN , and et is a non-negative random variable independent of ut, whose

distribution determines the distribution of ε◦t . The variables et and ut are referred to as the

generating variate and the uniform base of the spherical distribution. Assuming that E(e2t ) <∞,

we can standardise ε◦t by setting E(e
2
t ) = N , so that E(ε◦t ) = 0, V (ε

◦
t ) = IN . Specifically, if ε

◦
t

is distributed as a standardised multivariate student t random vector of dimension N with ν0

degrees of freedom, then et =
p
(ν0 − 2)ζt/ξt, where ζt is a chi-square random variable with N

degrees of freedom, and ξt is an independent Gamma variate with mean ν0 > 2 and variance

2ν0. If we further assume that E(e4t ) < ∞, then the coefficient of multivariate excess kurtosis

κ0, which is given by E(e4t )/[N(N +2)]− 1, will also be bounded. For instance, κ0 = 2/(ν0− 4)

in the student t case with ν0 > 4, and κ0 = 0 under normality. In this respect, note that since

E(e4t ) ≥ E2(e2t ) = N2 by the Cauchy-Schwarz inequality, with equality if and only if et =
√
N

so that ε◦t is proportional to ut, then κ0 ≥ −2/(N + 2), the minimum value being achieved in

the uniformly distributed case.
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Then, it is easy to combine the representation of elliptical distributions above with the higher

order moments of a multivariate normal vector in Balestra and Holly (1990) to prove that the

third and fourth moments of a spherically symmetric distribution with V (ε◦t ) = IN are given by

E(ε◦tε
◦
t
0 ⊗ ε◦t ) = 0, (A1)

and

E(ε◦tε
◦
t
0⊗ ε◦tε◦t 0) = E[vec(ε◦tε

◦
t
0)vec0(ε◦tε

◦
t )] = (κ0+1)[(IN2 +KNN)+ vec (IN) vec

0 (IN )], (A2)

respectively.

D.1 Log-likelihood function, score vector and information matrix

Let φ = (θ0,η)0 denote the p + r parameters of interest, which we assume variation free.

Ignoring initial conditions, the log-likelihood function of a sample of size T based on a par-

ticular parametric spherical assumption will take the form LT (φ) =
PT

t=1 lt(φ), with lt(φ) =

dt(θ) + c(η) + g [ςt(θ),η], where dt(θ) = −1/2 ln |Σt(θ)| corresponds to the Jacobian, c(η) to

the constant of integration of the assumed elliptical density, and g [ςt(θ),η] to its kernel, where

ςt(θ) = ε∗0t (θ)ε
∗
t (θ), ε

∗
t (θ) = Σ

−1/2
t (θ)εt(θ) and εt(θ) = yt − μt(θ).

Let st(φ) denote the score function ∂lt(φ)/∂φ, and partition it into two blocks, sθt(φ) and

sηt(φ), whose dimensions conform to those of θ and η, respectively. Then, it is straightforward

to show that if Σt(θ) has full rank and μt(θ), Σt(θ), c(η) and g [ςt(θ),η] are differentiable,

sθt(φ) =
∂dt(θ)

∂θ
+

∂gt [ςt(θ),η]

∂θ
= [Zlt(θ),Zst(θ)]

∙
elt(φ)
est(φ)

¸
= Zdt(θ)edt(φ),

sηt(φ) = ∂c(η)/∂η + ∂g [ςt(θ),η] /∂η = ert(φ),

where

Zlt(θ) = ∂μ0t(θ)/∂θ ·Σ
−1/20
t (θ),

Zst(θ) =
1

2
∂vec0 [Σt(θ)] /∂θ·[Σ−1/20t (θ)⊗Σ−1/20t (θ)],

elt(θ,η) = δ [ςt(θ),η] ε
∗
t (θ),

est(θ,η) = vec
©
δ [ςt(θ),η] ε

∗
t (θ)ε

∗0
t (θ)− IN

ª
,

δ [ςt(θ),η] = 2∂g [ςt(θ),η] /∂ς,

and ∂μt(θ)/∂θ
0 and ∂vec [Σt(θ)] /∂θ

0 depend on the particular specification adopted. For ex-

ample, δ [ςt(θ),η] is equal to (Nη + 1)/[1 − 2η + ηςt(θ)] in the student t case, and to 1 under

Gaussianity

Given correct specification, the results in Crowder (1976) imply that et(φ) = [e0dt(φ), ert(φ)]
0

evaluated at the true parameter values follows a vector martingale difference, and therefore, the
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same is true of the score vector st(φ). His results also imply that, under suitable regularity

conditions, the asymptotic distribution of the feasible ML estimator will be
√
T (φ̂T − φ0) →

N [0, I−1(φ0)], where I(φ0) = E[It(φ0)|φ0], where

It(φ) = −E [ht(φ)|zt, It−1;φ] = V [st(φ)|zt, It−1;φ] = Zt(θ)M(η)Z0t(θ),

ht(φ) =
∂st(φ)

∂φ0
=

∂2lt(φ)

∂φ∂φ0
,

Zt(θ) =

µ
Zdt(θ) 0
0 Iq

¶
=

µ
Zlt(θ) Zst(θ) 0
0 0 Iq

¶
,

andM(η) = V [et(φ)|φ]. In this context, Proposition 1 in Fiorentini and Sentana (2007) states

that:

Proposition 9 If ε∗t |zt, It−1;φ is i.i.d. s(0, IN ,η) with density exp[c(η) + g(ςt,η)], then

M(η) =

⎛⎝ Mll(η) 0 0
0 Mss(η) Msr(η)
0 M0

sr(η) Mrr(η)

⎞⎠ ,

Mll(η) = V [elt(φ)|φ] = mll(η)IN ,

Mss(η) = V [est(φ)|φ] = mss(η) (IN2 +KNN) + [mss(η)− 1]vec(IN )vec0(IN),
Msr(η) = E[est(φ)e

0
rt(φ)

¯̄
φ] = −E

©
∂est(φ)/∂η

0¯̄φª = vec(IN )msr(η),

Mrr(η) = V [ ert(φ)|φ] = −E[∂ert(φ)/∂η0
¯̄
φ],

mll(η) = E

½
δ2[ςt(θ),η]

ςt(θ)

N

¯̄̄̄
φ

¾
= E

½
2∂δ[ςt(θ),η]

∂ς

ςt(θ)

N
+ δ[ςt(θ),η]

¯̄̄̄
φ

¾
,

mss(η) =
N

N + 2

h
1 + V

n
δ[ςt(θ),η]

ςt
N

¯̄̄
φ
oi
= E

½
2∂δ[ςt(θ),η]

∂ς

ς2t (θ)

N(N + 2)

¯̄̄̄
φ

¾
+ 1,

msr(η) = E

∙½
δ[ςt(θ),η]

ςt(θ)

N
− 1
¾
e0rt(φ)

¯̄̄̄
φ

¸
= −E

½
ςt(θ)

N

∂δ[ςt(θ),η]

∂η0

¯̄̄̄
φ

¾
.

In the multivariate standardised student t case, in particular:

mll(η) =
ν (N + ν)

(ν − 2) (N + ν + 2)
, mss(η) =

(N + ν)

(N + ν + 2)
, msr(η) = −

2 (N + 2) ν2

(ν − 2) (N + ν) (N + ν + 2)
,

Mrr(η) =
ν4

4

∙
ψ0
³ν
2

´
− ψ0

µ
N + ν

2

¶¸
−

Nν4
£
ν2 +N(ν − 4)− 8

¤
2 (ν − 2)2 (N + ν) (N + ν + 2)

,

where ψ(.) is the di-gamma function (see Abramowitz and Stegun (1964)), which under normality

reduce to 1, 1, 0 and N(N + 2)/2, respectively.

D.2 Gaussian pseudo maximum likelihood estimators

Let θ̃T = argmaxθ LT (θ,0) denote the Gaussian pseudo-ML (PML) estimator of the con-

ditional mean and variance parameters θ in which η is set to zero. As we mentioned in the

introduction, θ̃T remains root-T consistent for θ0 under correct specification of μt(θ) and Σt(θ)

even though the conditional distribution of ε∗t |zt, It−1;φ0 is not Gaussian, provided that it has

bounded fourth moments. Proposition 2 in Fiorentini and Sentana (2007) derives the asymptotic

distribution of the pseudo-ML estimator of θ when ε∗t |zt, It−1;φ0 is elliptical:
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Proposition 10 If ε∗t |zt, It−1;φ0 is i.i.d. s(0, IN ,η0) with κ0 <∞, and the regularity conditions
A.1 in Bollerslev and Wooldridge (1992) are satisfied, then

√
T (θ̃T − θ0)→ N [0, C(φ0)], where

C(φ) = A−1(φ)B(φ)A−1(φ),
A(φ) = −E [hθθt(θ,0)|φ] = E [At(φ)|φ] ,

At(φ) = −E[hθθt(θ;0)| zt, It−1;φ] = Zdt(θ)K(0)Z0dt(θ),
B(φ) = V [sθt(θ,0)|φ] = E [Bt(φ)|φ] ,

Bt(φ) = V [sθt(θ;0)| zt, It−1;φ] = Zdt(θ)K(κ)Z0dt(θ),

and K (κ)=V [edt(θ,0)| zt, It−1;φ]=
∙
IN 0
0 (κ+1) (IN2+KNN )+κvec(IN )vec

0(IN)

¸
, (D34)

which only depends on η through the population coefficient of multivariate excess kurtosis

κ = E(ς2t |η)/[N(N + 2)]− 1. (D35)

Given that κ = 2/(ν − 4) for the student t distribution (see appendix A), it trivially follows

that in that case Bt(φ) reduces to

∂μ0t(θ)

∂θ
Σ−1t (θ)

∂μt(θ)

∂θ0
+

ν − 2
2(ν − 4)

∂vec0 [Σt(θ)]

∂θ

£
Σ−1t (θ)⊗Σ−1t (θ)

¤ ∂vec [Σt(θ)]

∂θ0

+
1

2(ν − 4)
∂vec0 [Σt(θ)]

∂θ
vec

£
Σ−1t (θ)

¤
vec0

£
Σ−1t (θ)

¤ ∂vec [Σt(θ)]

∂θ0
.

More generally, if ε∗t |It−1;θ0,%0 is i.i.d. (0, IN) with density function f(ε∗t ;%), where %

are some shape parameters and % = 0 denotes normality, then Proposition 2 in Fiorentini and

Sentana (2007) remains valid except for the fact that:

Bt(φ) = Zdt(θs)K (%)Z0dt(θs),

where

K (%) = V [edt(θ,0)| It−1;θ,%] (D36)

is the matrix of third and fourth order central moments of ε∗t , whose first block is the identity

matrix of order N .

D.3 Elliptically symmetric semiparametric estimators of θ

Hodgson and Vorkink (2001), Hafner and Rombouts (2007) and other authors have suggested

semi-parametric estimators of θ which limit the admissible distributions of ε∗t |zt, It−1;φ0 to the

class of spherically symmetric ones. Proposition 7 in Fiorentini and Sentana (2007) provides the

resulting elliptically symmetric semiparametric efficient score and the corresponding efficiency

bound:

Proposition 11 When ε∗t |zt, It−1,φ0 is i.i.d. s(0, IN ,η0) with −2/(N + 2) < κ0 < ∞, the
elliptically symmetric semiparametric efficient score is given by:

s̊θt(φ0)=Zdt(θ0)edt(φ0)−Ws(φ0)

½∙
δ[ςt(θ0),η0]

ςt(θ0)

N
− 1̧ − 2

(N+2)κ0+2

∙
ςt(θ0)

N
− 1̧

¾
,

(D37)
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where

Ws(φ0) = Zd(φ0)[0
0, vec0(IN)]

0 = E[Zdt(θ0)|φ0][00, vec0(IN)]0

= E

½
1

2
∂vec0 [Σt(θ0)] /∂θ·vec[Σ−1t (θ0)]

¯̄̄̄
φ0

¾
, (D38)

while the elliptically symmetric semiparametric efficiency bound is

S̊(φ0) = Iθθ(φ0)−Ws(φ0)W
0
s(φ0) ·

½∙
N + 2

N
mss(η0)− 1

¸
− 4

N [(N + 2)κ0 + 2]

¾
. (D39)

In practice, edt(φ) has to be replaced by a semiparametric estimate obtained from the joint

density of ε∗t . However, the elliptical symmetry assumption allows us to obtain such an estimate

from a nonparametric estimate of the univariate density of ςt, h (ςt;η), avoiding in this way the

curse of dimensionality (see appendix B1 in Fiorentini and Sentana (2007) for details).
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Table 1

Test power

(a) AR(1) tests. DGP: Gaussian (ρ=.03,ρ∗i=.045,α=α
∗=β=β∗=0)

Common Specific Joint Hosking
PML ML SSP PML ML SSP PML ML SSP Gen Vecd EWP

Rejection rate 0.121 0.121 0.126 0.395 0.396 0.401 0.402 0.402 0.411 0.203 0.110 0.121
Size adjusted 0.116 0.115 0.117 0.390 0.391 0.376 0.398 0.399 0.381 0.209 0.109 0.117

(b) AR(1) tests. DGP: Student t6 (ρ=.03,ρ∗i=.045,α=α
∗=β=β∗=0)

Common Specific Joint Hosking
PML ML SSP PML ML SSP PML ML SSP Gen Vecd EWP

Rejection rate 0.120 0.143 0.155 0.391 0.500 0.524 0.397 0.509 0.539 0.202 0.110 0.120
Size adjusted 0.119 0.143 0.138 0.394 0.502 0.479 0.399 0.511 0.489 0.206 0.110 0.118

(c) ARCH(1) tests. DGP: Gaussian (ρ=ρ∗=0,α=α∗=.05,β=β∗=.75)

Common Specific Joint Hosking
PML ML SSP PML ML SSP PML ML SSP Gen Vech Vecd EWP

Rejection rate 0.263 0.261 0.228 0.391 0.391 0.315 0.469 0.473 0.389 0.279 0.197 0.219 0.259
Size adjusted 0.270 0.270 0.264 0.401 0.405 0.391 0.480 0.487 0.475 0.215 0.192 0.222 0.265

(d) ARCH(1) tests. DGP: Student t6 (ρ=ρ∗=0,α=α∗=.05,β=β∗=.75)

Common Specific Joint Hosking
PML ML SSP PML ML SSP PML ML SSP Gen Vech Vecd EWP

Rejection rate 0.229 0.238 0.259 0.377 0.397 0.444 0.438 0.484 0.543 0.510 0.293 0.258 0.226
Size adjusted 0.265 0.267 0.268 0.339 0.384 0.423 0.390 0.467 0.517 0.196 0.189 0.223 0.265

(e) GARCH(1,1) tests (β̄=β̄∗=.94). DGP: Gaussian (ρ=ρ∗=0,α=α∗=.05,β=β∗=.75)

Common Specific Joint
PML ML SSP PML ML SSP PML ML SSP

Rejection rate 0.321 0.321 0.292 0.499 0.499 0.437 0.592 0.594 0.525
Size adjusted 0.358 0.355 0.350 0.538 0.540 0.533 0.631 0.635 0.622

(f) GARCH(1,1) tests (β̄=β̄∗=.94). DGP: Student t6 (ρ=ρ∗=0,α=α∗=.05,β=β∗=.75)

Common Specific Joint
PML ML SSP PML ML SSP PML ML SSP

Rejection rate 0.286 0.330 0.352 0.456 0.545 0.600 0.530 0.652 0.714
Size adjusted 0.337 0.372 0.380 0.511 0.554 0.612 0.574 0.662 0.726



Table 2

Descriptive statistics
Industry portfolios

Correlations
Sector Means Std.dev. Cnsmr Manuf HiTec Hlth Other

Cnsmr .566 4.481 1
Manuf .543 4.178 .804 1
HiTec .497 5.320 .734 .718 1
Hlth .733 4.995 .710 .668 .634 1
Other .500 4.998 .878 .848 .739 .708 1

Notes: Sample: January 1953-December 2008. Industry definitions: Cnsmr: Consumer Durables,
NonDurables, Wholesale, Retail, and Some Services (Laundries, Repair Shops). Manuf: Manufactur-
ing, Energy, and Utilities. HiTec: Business Equipment, Telephone and Television Transmission. Hlth:
Healthcare, Medical Equipment, and Drugs. Other: Other — Mines, Constr, BldMt, Trans, Hotels, Bus
Serv, Entertainment, Finance.



Table 3

Estimates of Σ = cc0 + Γ
Industry portfolios

Factor Loadings Specific Variances
Sector PML ML SSP PML ML SSP

Cnsmr 4.130 4.309 4.292 3.024 3.263 3.215
Manuf 3.708 3.840 3.847 3.710 3.683 3.705
HiTec 4.223 4.337 4.342 10.465 8.453 8.997
Hlth 3.791 4.120 4.075 10.574 10.915 10.870
Other 4.740 4.900 4.909 2.518 3.105 3.062

Notes: Sample: January 1953-December 2008. Industry definitions: Cnsmr: Consumer Durables,
NonDurables, Wholesale, Retail, and Some Services (Laundries, Repair Shops). Manuf: Manufactur-
ing, Energy, and Utilities. HiTec: Business Equipment, Telephone and Television Transmission. Hlth:
Healthcare, Medical Equipment, and Drugs. Other: Other — Mines, Constr, BldMt, Trans, Hotels, Bus
Serv, Entertainment, Finance. PML refers to the Gaussian-based ML estimators, ML to the Student t
ones, and SSP to the elliptically symmetric semiparametric estimators.



Table 4a
Serial correlation tests (p-values, %)

Ar(1) Ar(3) Ar(12)
PML ML SSP PML ML SSP PML ML SSP

Common factor 0.35 2.64 1.35 19.75 35.49 24.04 39.59 53.85 59.63
Specific factors 1.46 2.70 1.45 1.40 8.84 4.11 0.06 0.00 0.00

Joint 0.11 0.87 0.30 1.52 11.31 4.71 0.11 0.00 0.00

Table 4b
Conditional heteroskedasticity tests (p-values, %)

Arch(1) Garch(1,1)
PML ML SSP PML ML SSP

Common factor 0.36 6.12 1.79 0.00 0.26 0.01
Specific factors 0.00 0.00 0.00 0.00 0.00 0.00

Joint 0.00 0.00 0.00 0.00 0.00 0.00

Notes: Sample: July:1962-June:2007. Industry definitions: Cnsmr: Consumer Durables, NonDurables,
Wholesale, Retail, and Some Services (Laundries, Repair Shops). Manuf: Manufacturing, Energy, and
Utilities. HiTec: Business Equipment, Telephone and Television Transmission. Hlth: Healthcare, Medical
Equipment, and Drugs. Other: Other — Mines, Constr, BldMt, Trans, Hotels, Bus Serv, Entertainment,
Finance. PML refers to the (fully robust) tests based on the Gaussian ML estimators, ML to the Student
t ones, SSP to the elliptically symmetric semiparametric estimators.
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(a) Baseline signal to noise ratio

 

 

Figure 1: Power of mean dependence tests at 5% level against local alternatives

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

T1/2 ρ

 P
ow

er
 

(b) Low signal to noise ratio
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(c) High signal to noise ratio

Joint LM
LM on common factor
LM on Specific factors
Hosking
Diagonal Hosking
EWP



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

T1/2 ρ

 P
ow

er
 

(a) Common

 

 

Figure 2: Power of mean dependence tests at 5% level against local alternatives
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(a) Baseline signal to noise ratio

 

 

Figure 3: Power of variance dependence tests at 5% level against local alternatives
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(b) Low signal to noise ratio

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

T1/2 α

 P
ow

er
 

(c) High signal to noise ratio

Joint LM
LM on common factor
LM on Specific factors
Hosking
Diagonal Hosking (vech)
Diagonal Hosking (vecd)
EWP



0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

T1/2 α

 P
ow

er
 

(a) Common

 

 

Figure 4: Power of variance dependence tests at 5% level against local alternatives
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(a) Mean dependence tests

 

 

Figure 5: Power of serial dependence tests at 5% level against local alternatives
DGP: Student t with 6 df
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