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Abstract

We compare inflation targeting and price-level targeting in a simple
New Keynesian framework, with particular attention to multiple
steady-states, regions of indeterminacy in parameter space, and global
stability. First, we show that the well-known problem of multiple
steady-state equilibria under a Taylor rule with inflation targeting is absent
under a modified Taylor rule and price-level targeting. Second, we show
that the model’s dynamics in the neighbourhood of the steady state are
determinate for a much wider range of parameter values under price-level
targeting, in particular for different values of the central bank’s reaction
function. Third, we compare the size and shape of the convergent
manifolds under the two different monetary policy regimes.

1 Introduction

There is an extensive literature that compares the performance of inflation

targeting (henceforth IT) and price-level path targeting (henceforth PT) in terms
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of their abilities to stabilize the economy and enhance economic welfare.1 Under

rational expectations and perfect central-bank credibility, PT has the advantage

of conveying an expectational advantage in the face of an unexpected innovation

to inflation. Under PT, the central bank commits to offsetting the impact of an

unexpected inflation shock on the price level. In response to a positive inflation

shock, the central bank commits to achieving a rate of inflation that is

temporarily lower than the long-run target rate. This lowers expectations of

future inflation, and firms that set their prices for several periods will choose a

lower price than in response to the same shock under IT.2

Many of the studies comparing the performance of IT and PT have used New

Keynesian models solved by approximating agents’ first order conditions in the

neighbourhood of a zero-inflation deterministic steady state. Some studies take

into account the zero lower bound on the central bank’s policy rate while still

approximating first order conditions around the zero-inflation steady steady

state.3

A fundamental problem with this approach is that it ignores the possibility of

multiple steady states. Benhabib, Schmitt-Grohé and Uribe (2001, 2001b,

1See Ambler (2009) for a survey on PT that discusses its potential advantages and disadvan-
tages compared to PT.

2We know that the optimal (Ramsey) interest rate rule in the canonical Keynesian model im-
plies a stationary price level. This result was shown by Clarida, Galı́ and Gertler (1999) and
Woodford (1999) (with just equations (1) and (2) below and where the central bank chooses the
inflation rate to minimize a quadratic loss function that depends on inflation and the output gap.
This suggests that simple PT rules may do better than simple IT rules.

3Adam and Billi (2006) linearize the equations of the model and then use projection methods
to account for the zero bound on the central bank’s policy rate. Amano and Ambler (2009) use
higher-order approximations and use a smooth approximation to the kink in the central bank’s
reaction function at the zero bound.
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henceforth BSU) showed that the zero lower bound on the central bank’s policy

rate implies that under IT there must be two deterministic steady-state equilibria.

The literature comparing IT and PT has focused for the most part on the

equilibrium where the central bank achieves its target for the inflation rate, while

ignoring a second “liquidity-trap” equilibrium at which the nominal interest rate

is stuck at or near the zero bound and the inflation rate is negative. The inflation

rate is close to satisfying the Friedman rule, which in the context of the New

Keynesian model is highly suboptimal because it implies a large, negative output

gap.

Mendes (2011) recently conjectured that history-dependent policy rules could

eliminate the multiplicity of steady-state equilibria (he focused on stochastic

steady states) and demonstrated that this is the case for a simple rule where the

central bank’s desired policy rate depends negatively on the time spent at the zero

bound. The PT regime is an example of history dependence since past

innovations to inflation are corrected. It is therefore possible that a PT regime

conveys additional benefits compared to IT by eliminating low-inflation

equilibria.

This paper compares IT and PT in a simple New Keynesian model with

particular attention to the existence of multiple steady states, regions of

indeterminacy in parameter space, and global stability. We show the following.

1. There is only one deterministic steady-state equilibrium under PT.

2. Under PT, there exists a second “quasi steady state” in the deterministic
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case in which the gap between the price level and its optimal path grows

without bound over time. This quasi steady state corresponds to the

low-inflation deterministic steady state under IT.

3. Under PT, there can only be one stochastic steady state equilibrium. If the

policy rate is at the lower bound, insofar as agents expect that the interest

rate will eventually leave the lower bound in response to a positive shock

to inflation, the central bank’s commitment to moving the price level back

to its target path means that the only possible value for the unconditional

expectation of inflation is the central bank’s target inflation rate.

4. The model’s dynamics are determinate for a much wider range of

parameter values under PT than under IT. In particular, determinacy

depends much less on the parameter values of the central bank’s interest

rate reaction function. [Section still to come.]

5. When we drop the assumption of rational expectations and introduce

adaptive learning in order to apply global stability analysis from the

engineering literature, the PT regime is globally stable, while (as shown by

Evans, Guse and Honkapohja, 2008) under IT a negative shock can push

the economy into a region of its state space where it veers off toward a

low-inflation steady state. [Section still to come.]

6. Following Brunner and Strulik (2002) and using backward integration to

solve the model, we show that the size of the convergent manifold under

PT is much larger than under IT. [Section still to come.]
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2 Theoretical Framework

We consider the basic New Keynesian macroeconomic model given by the

following set of equations.4 The equations can be derived in the standard way by

linearizing firms’ and households’ first order conditions around a deterministic

steady state.5

πt = (1− β)π∗ + βEtπt+1 + ϕyt, (1)

where πt is inflation, π∗ is trend or target inflation, yt is the output gap, and Et is

the mathematical expectations operator conditional on information available at

time t. We assume here that π∗ > 0, so that the central bank aims for a positive

inflation rate in the long run.6

The New Keynesian IS equation given by

yt = Etyt+1 −
1

γ
(it − Etπt+1 − rt) , (2)

where rt is the natural real interest rate and it is the short-term nominal interest

rate, set directly by the central bank.

The natural rate of interest follows the stochastic process given by

rt ∼ N
(
r, σ2

r

)
. (3)

4We follow much of the literature and Adam and Billi (2006) and Mendes (2011) in particular
in using linearized equations except for the central bank’s interest rate reaction function.

5See Galı́ (2008) for a detailed derivation of the equations of the standard New Keynesian
model. The equations of the model are more complicated when linearized around a non-zero
steady-state rate of inflation. See Bakhshi et al. (2007) for details.

6Mendes (2011) considers negative values of π∗, and shows that the Friedman rule is impossi-
ble in the presence of stochastic shocks to the real rate of interest.
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Under IT, the model is completed by the following Taylor rule.

idt = rt + π∗ + ρπ (πt − π∗) + ρyyt + vt, (4)

where idt is the desired nominal rate of interest, and where ρπ > 1 so that the

Taylor principle is satisfied. The actual nominal rate of interest is given by

it = max
(
0, idt

)
, (5)

so that the nominal interest rate is subject to a zero lower bound.

Under PT, the monetary policy rule becomes

idt = rt + π∗ + ρp (pt − p∗t ) + ρ∗yyt + vt, (6)

where pt is the price level (in logs) and where π∗
t is the projected path of the

price-level target (also in logs). The price-level target path evolves according to

p∗t = p∗t−1 + π∗,

where once again π∗ is trend inflation. This allows for a price-level target that is

not necessarily constant. The realized nominal interest rate is still given by (5).

The main distinguishing feature between IT and PT is whether or not unexpected

shocks that affect the inflation rate are corrected in the long run or not.

Under PT, it will be convenient to consider the following transformed version of
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the model, which introduces the deviation between the price level and its target

path as an extra state variable. The Phillips curve (1) can be transformed as

follows:

(pt − pt−1) = (1− β)π∗ + βEt (pt+1 − pt) + ϕyt

⇒ (pt − p∗t )−
(
pt−1 − p∗t−1

)
+
(
p∗t − p∗t−1

)
= (1− β)π∗ + βEt

(
pt+1 − p∗t+1

)
− β (pt − p∗t ) + β

(
p∗t+1 − p∗t

)
+ ϕyt.

Since
(
p∗t − p∗t−1

)
=

(
p∗t+1 − p∗t

)
= π∗, we get

(pt − p∗t )−
(
pt−1 − p∗t−1

)
= βEt

(
pt+1 − p∗t+1

)
− β (pt − p∗t ) + ϕyt. (7)

The New Keynesian IS curve (2) becomes

yt = Etyt+1 −
1

γ

(
it − Et

(
pt+1 − p∗t+1

)
+ (pt − p∗t ) + π∗ − rt

)
. (8)

The other equations of the model require no transformations.

3 Deterministic Steady States

3.1 Deterministic Steady State under IT

Even before the crisis hit, some researchers questioned the stability properties of

the IT framework. BSU (2001, 2001b) showed that IT regimes must theoretically

have two steady states under perfect foresight. There is one equilibrium in which
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inflation is equal to its target. The other equilibrium is a “liquidity-trap”

equilibrium with the nominal interest rate stuck at or near its lower bound and

characterized by deflation.

The logic of their argument is illustrated in Figure 1 (taken from Mendes, 2011).

The Fisher equation gives a linear relation (with a slope equal to one) between

steady-state inflation and the nominal interest rate. The Taylor rule together and

the zero lower bound imply a kinked relation between inflation and the nominal

interest rate. The positively-sloped segment of this curve has a slope greater than

one if the Taylor principle is satisfied. This means that there must be two points

of intersection between the two curves and two steady states. The steady state

with a zero nominal interest rate has the property that π = −r. This satisfies the

Friedman rule, but the equilibrium is “bad” in this context because it implies a

negative output gap which is potentially quite large depending on the parameters

of the model.

The result derived by BSU holds under perfect foresight. Evans, Guse and

Honkapohja (2008) showed the possibility of large shocks like the ones that

initiated the Great Recession leading to deflationary spirals in environments with

expectations formed using an adaptive learning rule. Adaptive learning is

particularly relevant when analyzing possible changes in the monetary policy

framework: subsequent to changes in the framework itself, individuals will

typically have to learn how the new regime functions. Their inflation

expectations will adapt as they learn how the new regime functions.

We show in Appendix A that there are exactly two deterministic steady states for
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our model under IT, in line with the results of BSU. The liquidity-trap steady

state, in particular, has the properties that

π = −r,

and

y = −(1− β)

ϕ
(r + π∗) .

The first of these two equations is just the Friedman rule. This would be socially

optimal in a model without nominal rigidities and with a well-defined money

demand function. Here, it is not, since it also involves a negative output gap,

which is potentially quite large if the ϕ parameter is small, i.e. if inflation is

relatively insensitive to the output gap, which will be the case if with large

nominal price rigidities (firms adjust their prices infrequently) or large real

rigidities (firms’ optimal reset prices are not very sensitive to the output gap).

4 Deterministic Steady State under PT

We show in Appendix B that there can only be one true deterministic steady state

in which the deviation of the price level from its target path is constant, that is

(
pt+1 − p∗t+1

)
= (pt − p∗t ) =

(
pt−1 − p∗t−1

)
≡ pd
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This equilibrium must have the property that the deviation of the price level pd

must be equal to zero, which also implies a zero output gap. This result would

seem to imply that the economy cannot remain stuck indefinitely at the zero

lower bound.

However, there is also a “quasi-steady-state equilibrium”, equivalent to the

liquidity-trap equilibrium in the IT case. We characterize this quasi steady state

in Appendix B, starting from the assumption that the realized interest rate is at

the lower bound. All of the model’s variables are constant in this quasi steady

state except for the price-level gap (pt − p∗t ), which must be decreasing at a rate

equal to −(r + π∗).

Since the price-level gap is not at rest, and the central bank’s desired interest rate

is also decreasing over time. However, there is no feedback from this gap to the

rest of the model as long as the realized nominal interest rate is stuck at zero.

There is no mechanism to pry the economy away from this low-inflation quasi

steady state.

We argue in the next section that as long as agents expect that, sooner or later, a

shock will push the economy away from the liquidity-trap quasi steady state, so

that the unconditional expectation of the realized nominal interest rate is

bounded above zero, then the only possible stochastic steady state is one in

which the inflation rate is equal on average to its target rate.
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5 Stochastic Steady States

5.1 Stochastic Steady State under IT

This case has been covered in detail by Mendes (2011). He shows that there can

be either two, one, or zero stochastic steady states in a model like the one

developed here. The two-steady-state case is similar to the deterministic case and

holds when the volatility of stochastic shocks to the real rate of interest is

sufficiently low. If the volatility of the real interest rate is sufficiently high, the

expected nominal interest rate for any given rate of inflation increases.7

5.2 Stochastic Steady State under PT

In Appendix C, we show that if there is a stochastic steady state under the PT

regime, it must have the characteristic that the gap between the price level and

the desired price-level path is constant. This immediately implies that the

inflation rate is on average equal to the target rate of inflation. We also show that

the low-inflation deterministic quasi steady state of the previous subsection does

not exist when we consider stochastic steady states.

The stochastic steady state under PT has several interesting properties. As noted

in the previous paragraph, the unconditional expectation of the inflation rate is

equal to target inflation. This means that there is no inflationary bias or

deflationary bias under PT. The expected value of the output gap is zero. The

7The nominal interest rate it has a distribution truncated at zero, and its unconditional expec-
tation is an increasing function of the variance of the innovation to rt given by σ2

r .
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expected value of the realized interest rate is just the unconditional mean of the

real interest rate plus the target inflation rate. There is a wedge between the

unconditional expectation of the desired interest rate and the realized interest

rate. This follows from equation (5) which implies that the realized interest rate

is a (left) truncated variable compared to the desired interest rate. Taking

unconditional expectations of the modified Taylor rule leads immediately to the

following expression for the relation between the wedge and the expected

price-level gap.

Epd = − 1

ρp

(
Ei− Eid

)
< 0.

The unconditional expectation of the price level gap is negative, and depends

inversely on ρp, the parameter that determines how strongly the central bank

reacts to the price-level gap. Under pure price-level targeting with ρp →∞, the

expected price level gap and the wedge between the realized and desired interest

rate disappear. This means that as the central bank reacts more and more strongly

against deviations of the price level from its target path, the probability of hitting

the lower bound goes goes to zero.

The economic intuition for these results is straightforward. Given the modified

Taylor rule, the central bank has a commitment to restore the price level to its

target path after any shock. Even if the economy is at in an equilibrium in which

the zero lower bound on the policy rate is binding, agents expect that sooner or

later a positive shock will occur that will move the economy away from the lower

bound. Then, along the transition path back to the target price-level path,
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inflation will be higher than the target rate π∗. Averaging over periods where the

economy is at the zero bound and periods where it is not, inflation is equal to the

target rate.

We also show that the desired nominal interest rate, while lower on average than

the realized nominal interest rate because of the zero-bound problem, is

arbitrarily close to the realized interest rate on average as the central bank reacts

more and more strongly to price-level deviations, that is to say for large values of

the ρp parameter.

6 Determinacy in Parameter Space

We use the techniques described in Ratto (2008) to analyze the stability of the

model in parameter space. Dittmar and Gavin (2004) already explored, in the

context of a standard New Keynesian model, regions of the parameter space

under IT and PT and concluded that the model’s dynamics were determinate for a

wider range of parameter values under PT than under IT.

The advantage of the methodology proposed by Ratto (2008) is that it explores

the parameter space in a systematic way, and uncovers the parameters that are

most important for determining stability versus instability and indeterminacy.

[Section incomplete.]
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7 Global Stability

7.1 Global Stability in A Model with Learning

The mathematical techniques used to analyze global stability have mostly been

developed for dynamic systems with a standard definition of stability. In

dynamical systems used in engineering and physics, state variables are typically

all predetermined. Without forward-looking or jump variables, saddlepoint

stability is clearly not desirable.

In a model with learning, all state variables in the model become

backward-looking, and techniques from the engineering literature for dynamical

systems can be applied without modification.

[Section incomplete.]

7.2 Global Stability in the Model with Rational Expectations

The development of techniques for analyzing global stability are less developed

for economic models with forward-looking or non-predetermined state variables.

Here we use backward integration (see Brunner and Strulik, 2002) to analyze the

nature of the stable manifold leading to the unique steady-state equilibrium under

PT, and compare it to the stable manifold leading to the high-inflation steady

state under IT.

[Section incomplete.]
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8 Conclusions

Appendices

A Deterministic Steady State under IT

We show the existence of precisely two deterministic steady states in this case.

Dropping time subscripts from the equations of the model gives

π = (1− β)π∗ + βπ + ϕy, (9)

i = r + π, (10)

id = r + π∗ + ρππ − ρππ∗ + ρyy, (11)

i = max
(
0, id

)
. (12)

There are two possible cases, i = id > 0 and i = 0. First consider the case with a

positive nominal interest rate in the steady state. Equations (10) and (11) together

imply that

π = π∗ + ρππ − ρππ∗ + ρyy

⇒ (1− ρπ) (π − π∗) = ρyy,

while equation (9) implies

(1− β) (π − π∗) = ϕy.
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We have two linear equations in two unknowns, the first of which has a positive

slope and the second of which has a negative slope. The unique solution is y = 0

and π = π∗. This is the steady state where inflation is equal to target inflation and

the output gap is zero.

Now consider the case where i = 0. Equation (11) now just gives the level of the

desired interest rate in the deterministic steady state, which must be negative.

The Fisher relation (10) gives

π = −r.

Substituting into (9) and solving gives the following unique solution for the

output gap:

y = −(1− β)

ϕ
(r + π∗) .

This is the low-inflation steady state. It is clearly an undesirable steady state

given the model. The inflation rate is equal to the negative of the real interest

rate, which satisfies the Friedman rule, but the economy is stuck with a negative

income gap which is potentially quite large. It would be theoretically possible to

eliminate the negative output gap by setting π∗ = −r. This is just the Friedman

rule. As is well-known, it also has the advantage of equating the real rates of

return on money and short-term bonds, leading to a socially-optimal level of real

money balances (of course money demand is does not explicitly enter our

model). While this works in a deterministic setting, Mendes (2011) shows that it

leads to non-existence of the steady state when stochastic shocks to the real

interest rate are added to the model.
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B Deterministic Steady State under PT

B.1 True Steady State

First, consider a true steady state in which all of the model’s state variables are

constant, in particular

(
pt+1 − p∗t+1

)
= (pt − p∗t ) =

(
pt−1 − p∗t−1

)
≡ pd,

where pd is the deviation of the price level from its target path. The value of pd is

possibly different from zero, but in fact it is easy to show that this cannot be the

case. The transformed version of the New Keynesian Phillips curve (2)

immediately gives

0 = ϕy ⇒ y = 0.

Substituting into the New Keynesian IS curve (8), we immediately get

i = r + π∗.

The only true steady state has an output gap of zero and a positive nominal

interest rate. The modified Taylor rule (6) then implies that

(pt − p∗t ) = pd = 0.

The price level follows its target path in the steady state.
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B.2 Quasi Steady State

If we start by simply assuming i = 0, we can back out the following solutions for

the other variables of the model in the long run. The untransformed version of

the New Keynesian IS curve (2) then immediately implies that

π = −r.

Once again, we have the Friedman rule, but this will again imply a negative

output gap in the steady state. Substituting in the transformed version of the New

Keynesian IS curve (8) gives

(
pt+1 − p∗t+1

)
− (pt − p∗t ) = −r − π∗,

which implies (using the transformed version of the New Keynesian Phillips

curve) that

y = −(1− β)

ϕ
(r + π∗) .

We get the same solution for inflation, the output gap, and the nominal interest

rate as in the liquidity-trap steady state under IT.

The solution is a “quasi” steady state because one of the model’s state variables,

the gap between the price level and its target path, is not at rest. With a negative

rate of inflation, this gap decreases without bound, and the central bank’s desired

interest rate also decreases without bound. However, since the constraint of the

zero bound is binding in this equilibrium, there is no feedback from the
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price-level gap to the rest of the model.

C Stochastic Steady State under PT

As noted in the text, Mendes (2011) gives and exhaustive treatment of the

stochastic steady state under IT.

As shown by Mendes, the liquidity-trap equilibrium under IT involves an

expected nominal interest rate that remains constant and that is superior to the

expected desired interest rate. The lower bound makes the realized interest rate a

left-truncated normal random variable, whose expectation depends positively on

the variance of the underlying shocks in the model.

Here, we consider the existence of either a steady state in which the

unconditional expectations of all of the model’s state variables are constant, or a

quasi steady state in which all variables have constant unconditional means

except for possibly the gap between the price level and its desired path and the

desired interest rate. In the quasi steady state, the unconditional expectation of

the inflation rate is constant so that

E
(
pdt − pdt−1

)
≡ E∆pdt ∀t

≡ E∆pd

is constant. This implies that Epdt is a deterministic function of time.

Dropping time subscripts, and taking unconditional expectations of variables, we
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get

E∆pd = βE∆pd + ϕEy,

Ey = Ey − 1

γ

(
Ei− E∆pd − π∗ − r

)
,

Eidt = r + π∗ + ρpEpdt + ρ∗yEy,

Ei = E max
(
0, idt

)
.

We immediately have a contradiction. The expectation of the realized interest

rate depends on the expectation of a nonlinear function of a variable that is not

constant, so it cannot be constant. So there is no steady state that satisfies the

criterion that variables other than the gap between the price level and its target

path (and the desired interest rate) are constant.

So if a stochastic steady state with these properties exists, it must be the case that

the unconditional expectation of the deviation of the price level is constant. This

means that we must have

E∆pd = 0.

From the first equation we must have Ey = 0. If the stochastic equilibrium exists,

it must be the case that the unconditional expectation of the output gap is zero.

The intuition for this result is straightforward. With any expected inflation rate

that is different from π∗, the expected price-level gap must be changing over

time. The modified Taylor rule then implies that the unconditional expectation of

the desired interest rate must be changing over time, which implies that the

unconditional expectation of the realized nominal interest rate cannot be
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constant.

We then get, from the New Keynesian IS curve, that

Ei = r + π∗.

Substituting into the modified Taylor rule gives

Eid = Ei+ ρpEpd.

If the shocks of the model (the shock to the real interest rate and the shock to the

modified Taylor rule itself) are normally distributed, the unconditional

distributions of the variables in the model must be normal, and the realized real

interest rate is a truncated normal distribution. It is left-truncated, so it must be

the case that

Ei > Eid.

We have

Epd = − 1

ρp

(
Ei− Eid

)
< 0.

On average, there will be a non-zero price-level gap. Its expected value is

negative and depends on the strength with which the central bank varies its

desired interest rate in response to the price-level gap. Under pure price-level gap

targeting, as ρp →∞, the expected price-level gap tends to zero. The

interpretation of this is clear. If the central bank reacts strongly against

price-level deviations from the desired price-level path, the zero bound will
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rarely be binding and the desired nominal interest rate will be close, on average,

to the realized nominal interest rate.

References

Adam, Klaus and Roberto Billi (2006), “Optimal Monetary Policy under

Commitment with a Zero Bound on Nominal Interest Rates.” Journal of

Money, Credit and Banking 38, 1877–1905

Amano, Robert and Steve Ambler (2009), “Price-Level Targeting and the Zero

Lower Bound.” draft, Bank of Canada and UQAM

Ambler, Steve (2009), “Price-Level Targeting and Stabilization Policy: A

Survey.” Journal of Economic Surveys 23, 974–997

Bakhshi, Hasan, Hashmat Khan, Pablo Burriel-Llombart, and Barbara Rudolf

(2007), “The New Keynesian Phillips Curve under Trend Inflation and

Strategic Complementarity.” Journal of Macroeconomics 29, 37–59

Benhabib, Jess, Stephanie Schmitt-Grohé and Martı́n Uribe (2001), “Monetary
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