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Abstract

In this paper we model financial durations by discrete and continuous-time point
processes in state-space form (SSF). We illustrate our analysis on a duration dataset
analysed in Engle (2000). For estimation of intensity and static parameters, we resort
to particle filters. We compare estimates delivered by simulation-based filters, with
methodology suggested in Engle (2000) and Bauwens and Veredas (2004).

We conclude that the smooth particle filter (SPF) of Pitt (2002) is an efficient method
for off-line parameter estimation and on-line filtering of univariate SSF duration models.
We have applied the particle MCMC of Andrieu et al. (2008) to univariate models and
offer a comparison with estimates from the SPF.
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1 Introduction

In this paper we model duration data, defined as times between arrivals of events. In
particular, we focus on financial durations and fit the dataset analysed in Engle (2000).
Financial durations comprise thousands of observations arising in quick succession. Markov
models formulated in state space form (SSF) allow on-line efficient computational methods to
infer about latent intensity

{
ψt

}T
t=1. From a modelling perspective, a Markovian formulation

of latent intensity captures the dependence among durations. Also, discrete and continuous-
time formulations of intensity dynamics are plausible.

To avoid biased inference introduced by local linearisation of nonlinear and non-Gaussian
SSF models, we resort to numerical simulation. Sequential sampling of the filtering den-
sity

{
p(ψ0:t | Ft)

}T
t=1, by particle filters (PFs) allows learning about the state by using all the

information currently available, Ft ≡
{
yt
}T

t=1.
On-line parameter estimation of unknown parameters θ, is more challenging than fil-

tering because PFs cannot sample from the joint p(ψ0:t, θ | Ft), accurately. For parameter
estimation we consider two off-line approaches which make use of the PF output. Firstly,
the smooth particle filter (SPF) of Pitt (2002), delivers at cost O(N) smooth log-likelihood
estimates that can be maximised. When the latent state is not univariate, the alternative is to
adopt the recently suggested particle Markov Chain Monte Carlo (PMCMC) of Andrieu et
al. (2008). The PMCMC uses unbiased particle likelihood estimates to build a Markov chain
with stationary distribution p(θ | FT).

Current methodology for inference of duration models is based on Shephard and Pitt
(1997), where draws from nonlinear log-likelihood are obtained by using a combination
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of importance sampling and the Kalman filter and smoother. Koopman and Lucas (2008)
applies the method of Shephard and Pitt (1997) to model default risk. Koopman et al. (2008)
introduces a new model for credit rating transitions and inference is based on Monte Carlo
maximum likelihood by adopting Shephard and Pitt (1997). Instead McNeil and Wendin
(2007) apply the Gibbs sampling to fit a generalised linear mixed model of credit default risk
(another class of data modelled by duration models). Inference of the stochastic conditional
duration (SCD) model of Bauwens and Veredas (2004) is implemented in Strickland et al.
(2006) by integrating latent variables out of the posterior by a hybrid Gibbs and Metropolis-
Hastings (MH) algorithm.

In this paper we concentrate on methods which directly use the PF output, exploiting
its strength in estimating the unobserved intensity without the need for careful choice of
proposal densities or data-specific tuning. In cases of univariate latent models for durations,
PFs do not rely on linear approximations and represent a valid alternative to inference by
Markov Chain Monte Carlo methods (MCMC).

The structure of the paper is as follows. In section 1.1 we introduce duration data
that we use throughout the article and review univariate models of duration. We present
results of existing methodology for comparison with our approach to modelling. Section
2 highlights the filtering recursions that form the basis of simulation-based filters. We
also discuss two methods for off-line parameter estimation. Section 3 estimates univariate
models with the SPF and develops a methodology for inference of Cox processes. Section
4 presents extensions of univariate models to the bi-variate case and summarises with the
main conclusions.

1.1 Duration dataset

Throughout this article we use a duration dataset that consists of three months of IBM trade
durations, ranging from 01/11/90 to 31/01/91. Durations are measured in seconds. We have
followed the coded routines of Engle (2000) to filter seasonality by piecewise linear splines
with knots set every half an hour, starting at 10.00 am. The total number of seasonally
adjusted durations is T = 52144. Summary statistics of the dataset are Max = 23.87, Min =
0.027, Ȳ = 0.999, σ2

Y = 1.754 and QLB(15) = 8040. We denote the Ljung-Box statistic based on
15 lags by QLB(15).

1.2 ACD model

The autoregressive conditional duration (ACD) introduced in Engle and Russell (1998), be-
longs to the family of general autoregressive conditional heteroskedastic (GARCH) models.
The ACD allows dependence by setting a deterministic linear difference equation for the
intensity ψt. The ACD is an observation-driven model rather than parameter-driven and
so the likelihood is directly evaluated. The conditional distribution of durations allows ML
estimation through the prediction decomposition. The Weibull ACD(2,2) (WACD(2,2)) that
we fit is of the form,

ψt = ω +
∑2
`=1 α`yt−` +

∑2
`=1 φ`ψt−`

yt = ψtξt, ξt ∼We(κ,Γ(1 + 1
κ ))

where yt represents the time in seconds between successive trades. The parametrisation of ξt

ensures that E [ξt] = 1, so κ is identifiable. The WACD(2,2) is parametrised with restrictions
in their parameter values (α` > 0 and φ` > 0, ` = 1, 2), so that intensity is constraint to be
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positive. The WACD(2,2) estimates low values of ψt in periods of short duration or high
frequency of arrivals.

Maximum likelihood estimates (MLEs) are obtained by maximising the log-likelihood
function

`(θ) =

T∑
t=1

log
(
κ
yt

)
+ κ log

Γ(1 + 1
κ )yt

ψt

 − Γ(1 + 1
κ )yt

ψt

κ


by the method of Broyden, Fletcher, Goldfarb and Shanno (BFGS). The results are displayed
in Table 1. Standard errors are in brackets. MLEs show that persistence of data is very high.

ω̂ α̂1 α̂2 ψ̂1 ψ̂2 κ̂
0.014108 0.063628 0.062170 −0.058487 0.92042 0.91332
(0.00141) (0.00246) (0.00283) (0.01774) (0.0165) (0.00303)

`(θ̂) = −47741.9173 QLB(15) = 49.0696
Persistence = 0.9877 χ2

0.95(15) = 25

Table 1: MLEs for WACD(2,2)

Standardised residuals ξ̂t := yt

ψ̂t
, are correlated as evidenced by QLB(15) > χ2

0.95(15).
Figure 1.2 shows off-line estimates of intensity. We observe that the WACD(2,2) tracks

high intensity by decreasing ψ̂t. The correlogram shows significant spikes that evidence that
some dependence remains in the residuals. This is confirmed by the histogram of ξ̂t passed
through their cumulative distribution function (cdf).

êt = 1 − exp
{
−Γ

(
1 +

1
κ̂

)
ξ̂t

}κ̂
.

1.3 SCD model

The stochastic conditional duration (SCD) proposed in Bauwens and Veredas (2004) is a
discrete time formulation of a univariate latent variable process

ψt = ω(1 − φ) + φψt−1 + εt, εt ∼ N(0, σ2
ε)

yt = exp{ψt}ξt, ξt ∼We(κ, 1). (1)

The SCD models dependence by an stationary autoregressive of first order (AR(1)). Unlike
the ACD model, the SCD introduces an error term, εt in the equation for intensity which is
independent of ξt. Observed durations yt are marginally distributed according to a mixture
of log-normal and Weibull densities. In Bauwens and Veredas (2004), inference about ψt

and θ = (ω,φ, σ2
ε, κ) is implemented by quasi-maximum likelihood (QML). In section 3, we

will consider more efficient methods for inference. Lack of accuracy in the approximation of
a log-Weibull by a Gaussian density will yield biased state and parameter estimation. The
log-linearised version of (1) results in an observation equation

log{yt} = −
0.57722
κ

+ ψt + ζt, ζt ∼ N(0,
π2

6κ2 ). (2)
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Figure 1: Intensity and residuals of the WACD(2,2) model. Top-left: Off-line estimates of intensity
for first 6000 durations against arrival times. Top-right: QQ plot of standardised residuals
against the U(0, 1) distribution. Bottom-left: Correlogram of standardised residuals. Bottom-
right: Histogram of standardised residual passed through the cdf for the whole dataset.

To assess robustness of the log-linearised model, Bauwens and Veredas (2004) compute
standardised residuals according to the original multiplicative formulation ξ̂t in (1) and to
the log-linearised version ζ̂t in (2). Results are displayed in Table 2. Clearly, both Q15

LB(ξ̂t)
and

Q15
LB(ζ̂t)

exceed the critical value χ2
0.95(15) = 25, so the hypothesis that the log-linearised model

delivers random residuals is rejected.

ω̂ φ̂ σ̂2
ε κ̂

−0.1846 0.9834 0.007880 1.07928
(0.02403) (0.086562) (0.08344) (0.003319)
`(θ̂) = −84562.036 Q15

LB(ξ̂t)
= 140.35 Q15

LB(ζ̂t)
= 61.09

Table 2: MLEs by QML for log-linearised SCD

2 Filtering and parameter estimation

The following section describes the recursions that lead to state and off-line parameter
estimation by PFs. Off-line parameter estimation uses particle log-likelihood estimates
delivered at the end of the sample T.

2.1 Filtering recursions

To learn about
{
ψt

}T
t=1, the solution is to sample sequentially from the joint filtering density{

p(ψ0:t | Ft, θ)
}T

t=1. See Gordon et al. (1993), Pitt and Shephard (1999) and Doucet and
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Johansen (2008) for further details. In this section, the vector of observations θ, is regarded
as known.

The particle approximation to the filtering density is based on

p(ψ0:t | Ft, θ) ∝ f (ψt | ψt−1, θ)g(yt | ψt, θ)p(ψ0:t−1 | Ft−1, θ),

where p(. | .) represents the filtering density at t − 1, f (. | .) the transition density of the state
equation and g(. | .) the conditional likelihood.

A filter recursion updates N random samples from the filtering density at t − 1{
ψ( j)

t−1,
1
N

}N

j=1
∼ p(ψ0:t−1 | Ft−1, θ),

first by forecasting the state

ψ∗( j)
t ∼ f (ψt | ψ

( j)
t−1, θ)

and secondly by weighting according to the conditional likelihood once yt is available

ω( j)
t ∝ g(yt | ψ

∗( j)
t , θ).

At t, the updated particle approximation to the filtering density{
ψ∗( j)

t , ω( j)
t

}N

j=1
∼ p(ψ0:t | Ft, θ)

is asymptotically consistent.
To avoid exponential grow of the variance of the weights, we occasionally re-sample

existing particles according to their weights. Then, under mixing conditions on the latent
process, the increase of the error over time is only linear.

2.2 Off-line parameter estimation

The constant of proportionality of the joint filtering distribution represents, by prediction
decomposition, the likelihood function L(θ) := p(FT | θ),

p(FT | θ) =

T∏
t=1

p(yt | Ft−1, θ). (3)

Each independent term in the likelihood can be estimated because the densities involved
can be evaluated

p(yt | Ft−1, θ) =

∫
g(yt | ψt, θ) f (ψt | Ft−1, θ) dψt

= Eψt|Ft−1

[
g(yt | ψt, θ)

]
Thus, a particle approximation to the log-likelihood, at the end of the sample is available

̂̀(θ) ≈
T∑

t=1

log

 1
N

N∑
j=1

ω( j)
t

 .
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2.2.1 Smooth particle filter

If the mapping θ 7→ ̂̀(θ) were smooth, we could find the MLEs by maximising ̂̀(θ) with a
BFGS. However, re-sampling introduces discontinuities in the approximation. A marginal
change in θ, will dramatically affect the vector of re-sampled particles due to discreteness of
the empirical distribution function Fθ(ψt).

For univariate states, the smooth particle filter (SPF) of Pitt (2002) bypasses discontinuities
in θ 7→ ̂̀(θ) by approximating the discrete Fθ(ψt) with a continuous one, denoted by F̂θ(ψt).
A piecewise linear approximation ensures that F̂θ(ψt) → Fθ(ψt) as N → ∞. After smooth
re-sampling F̂θ(ψt) changes smoothly in θ while the computational cost is maintained at
O(N)

2.2.2 Particle MCMC

In Bayesian inference, we are concerned with sampling from p(θ | FT) ∝ L(θ)p(θ) to make
inference about θ. The problem is that we do not directly know L(θ) but by (3) we generate
an unbiased estimate L̂(θ).

The main idea of the PMCMC of Andrieu et al. (2008) is to use L̂(θ) to build a Markov
chain with stationary distribution p(θ | FT). Thus, L̂(θ) allows sampling from p(θ | FT) up
to proportionality. This idea is exploited in Andrieu et al. (2008) to propose a marginal MH
algorithm with acceptance probability

α(θnew | θold) = min

 L̂(θnew)p(θnew)q(θold | θnew)

L̂(θold)p(θold)q(θnew | θold)
, 1

 . (4)

This sampler requires independent evaluations of L̂(θnew) per iteration, which is computa-
tionally expensive. The PMCMC accepts moves to areas of high likelihood L̂(θnew) > L̂(θold)
and seems and appealing alternative to models with multivariate states. In the latest case,
the SPF cannot be applied.

However, α(θnew | θold) is not a continuous function of L̂(θ). Lack of smoothness of L̂(θ)
implies that, contrary to Roberts and Rosenthal (2001), the acceptance rates of the MH will
be low, despite decreasing the scaling of the proposals. A simple Monte Carlo experiment
carried with simulated data from a noisy AR(1), illustrates this argument. Random walk

Observations Scaling L(θ)KF L̂(θ)GSS L̂(θ)SPF

T = 200 σ = 0.8 40.8 34.6 37.3
T = 1000 σ = 0.43 40.3 27.5 31.3

Table 3: PMCMC acceptance ratios for exact and estimated log-likelihoods

proposals for the dependence parameter φ of the AR(1) are scaled according to σ. Table 3
shows that acceptance rates are maintained only for the case of the exact likehood L(θ)KF,
delivered by the Kalman filter. For the discontinuous L̂(θ)GSS delivered by the Gordon et al.
(1993) filter, acceptance rates are lower than those corresponding to estimates of L̂(θ)SPF by

the SPF.
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Chopin (2004) proves that the variance of L̂(θ), increases linearly with the number of
observations

V
[̂
L(θ)

]
L2(θ)

≤ D
T
N
. (5)

Therefore, an increase of the number of particles N, proportional to T is necessary to control
the variance of L̂(θ). In the following experiment implemented with simulated data, again
generated from a noisy AR(1), we change the number of particles N and the number of
observations. Table 4 shows that for fixed θ, we need to increase N proportionally to T in

N T = 1000 T = 5000 T = 10000
200 5.645 9.487 13.043

1000 1.796 3.958 4.557
5000 0.975 1.576 1.977

10000 0.602 1.281 1.973

Table 4: Standard deviations of particle log-likelihood estimates for L̂(θ)GSS .

order to achieve moderate standard deviations for L̂(θ)GSS.
These results show that in the case of long time series, the PMCMC may be computation-

ally very expensive.

3 Estimation of univariate duration models

3.1 Inference of the SCD by SPF and PMCMC

In this section we implement parameter estimation and filtering for the whole dataset T =

52144. The number of particles is set to N = 2000. MLEs, standard errors, value of `(θ̂MLE)
and Q15

LB(ξ̂t)
are shown on Table 5. Computing time of MLEs barely took 1 hour on a desktop

ω̂ φ̂ σ̂2
ε κ̂

−0.154 0.979 0.013 0.970
(0.0233) (0.0500) (0.0317) (0.0035)
`(θ̂) = −47377.00 Q15

LB(ξ̂t)
= 32.57

Table 5: MLEs for SCD by PFs

PC. Significant differences with estimates for the WACD(2,2) of Table 1 are that the mean
ω is negative. That is due to the different parametrisation of the WACD(2,2) that forces ψ̂t

to be positive. The value of `(θ̂) for the SCD is 364 log-likelihood units larger than for the
WACD(2,2). Also residuals for the SCD have a lower Q15

LB(ξ̂t)
statistic than for the WACD(2,2).

Regarding similarities, the persistence for the SCD also shows a high value.

7



Figure 3.1 shows on-line estimates of ψt, computed once the static parameters are esti-
mated. Intensity is estimated on-line by the weighted mean

ψ̂t =

∑N
j=1ψ

∗( j)
t ω( j)

t∑N
j=1ω

( j)
t

.

In contrast with the WACD(2,2), the latent factorψt in the SCD tracks periods of high intensity
with more accuracy than ψ̂t for the WACD(2,2). Also estimates of ψt for the SCD decrease
their magnitude to track periods of short durations.

The effective sample size (ESS) of Liu and Chen (1998) computed at arrival times,
measures the performance of the filter, by giving an estimate of the variance of the weights.
For filtering, we implement stratified re-sampling for each observed duration, so that the
variance of the weights is zeros and the ESS becomes N. The histogram of residuals, for the
whole dataset is obtained by

F(yt | Ft−1, θ) =

∫
F(yt | ψt, θ)p(ψt | Ft−1, θ) dψt (6)

≈
1
N

N∑
j=1

F(yt | ψ
( j)
t )

introduced in Pitt and Shephard (1999) as a model diagnostic. The cumulative distribution
F(yt | ψt) is the cdf of observations.
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Figure 2: Particle filtering applied to SCD model. Top-left: Filtering means for first 6000
durations against arrival times, N = 2000. Top-right: Histogram of residuals for the whole
dataset computed according to (6). Bottom: ESS for first 6000 durations approximated by
(
∑N

j=1ω
( j)
t )2/

∑N
j=1(ω( j)

t )2.

Now, we show results of the PMCMC applied only to a subset of the first T = 4000
durations, for computational reasons outlined in section 2.2.2. Those durations have ap-
proximately accrued during two days of financial trading. We have set the initial values to
the MLEs that we have found with the SPF (Table 7 ) and scale each proposal with corre-
sponding standard deviations for the parameters. The number of iterations is Iter = 20000
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and the number of particles is set to N = 1000. Acceptance rate is 0.362 and computing
time was 10 hours. To dominate the tails of the posterior p(θ | FT) we choose as random
term for the proposals a t distribution with 3 degrees of freedom. To avoid correlation in
the chains for φ and σ2

ε, we have parametrised the unknown variance as γ := σ2
ε

1−φ2 . Positive
proposals for κ and σ2

ε are generated from a logarithmic random walk. Parameters ω and ψ
are proposed from symmetric random walk and ψ is transformed to (−1, 1) domain with a
logit transformation. The prior that we have chosen for the parameters is p(θ) = γ−1/2 exp−σ2

ε .

Quantiles
Parameters 2.5% 50.0% 97.5%

ω̂ 0.0333 0.1069 0.1962
φ̂ 0.8819 0.9260 0.9537

σ̂2
ε 0.0194 0.0270 0.03627
κ̂ 0.9056 0.9321 0.9644̂̀(θ) −4746.84 −4742.83 −4740.43

Table 6: Posterior summaries for SCD by PMCMC, T = 4000, N = 1000

Posterior summaries of Table 6 are very close to the MLEs of Table 7 computed by PFs.

ω̂ φ̂ σ̂2
ε κ̂

0.1085 0.9224 0.02690 0.9311
(0.0342) (0.0883) (0.0796) (0.0125)

`(θ̂) = −4742.1191

Table 7: MLEs for SCD by PFs, T = 4000, N = 1000

3.2 Modelling and inference of the Cox process

The third univariate model that we consider is a Cox process, quite popular for modelling
clustered point patterns (e.g. Waagepetersen (2004)). The Cox process is a SSF model that
formulates univariate intensity as an Ornstein-Uhlenbeck process that generates observed
arrivals at discrete times. Continuous-time formulation of intensity is closer to the nature
of this estimation problem and also allows appropriate scaling of the model according to
inter-arrival times.

In this section, we change notation and denote arrival times by yt, where yt is the actual tth

arrival time. Durations are now defined by yt− yt−1, as time between two arrivals. We follow
the convention of denoting random variables by upper case letters and their realisations by
lower case. Assuming a Cox process,

dΨs = −φ (Ψs − ω) ds + σεdBs, s > 0

p(yt | {Ψs; yt−1 ≤ s ≤ yt}) = ν(ψyt) exp

− yt∫
yt−1

ν(Ψs) ds

 (7)

durations are generated by an inhomogeneous Poisson process with intensity function
ν : Ψs → R+, defined as ν(.) ≡ exp(Ψs). The Markov assumption on {Ψs; s > 0} enables
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application of particle filters for on-line estimation of intensity ν(ψyt) at arrival times. Previ-
ous work in Fearnhead et al. (2008) implemented filtering for a Cox process by using Exact
simulation of diffusions (as in Beskos et al. (2006)) and the auxiliary particle filter of Pitt and
Shephard (1999). In this article, we follow a discretisation scheme to use the outcome of a
particle filter algorithm for off-line estimation of the parameters.

To apply PFs to the Cox process, we need the transition density and the conditional
likelihood in closed form, as was shown in section 2.1. The transition density of an Ornstein-
Uhlenbeck process is known and easy to sample from. On the other hand, the conditional
likelihood

p(yt | yt−1, ψyt−1 , ψyt) := ν(ψyt)E

exp

−
yt∫

yt−1

ν(Ψs) ds


 (8)

involved in the weights is intractable because it depends upon the entire path of Ψs in the
interval [yt−1,yt).

A basic solution to approximate (8) is to discretise the interval [yt−1,yt). This approach
is equivalent to augment observed arrivals with additional observations in-between arrival
times. We introduce a parameter ∆ > 0 which represents the maximum duration between
two arrivals. If the duration is smaller than ∆ we do not discretise. On the contrary, if
yt − yt−1 > ∆, then the ratio (yt−yt−1)

∆
defines the M number of discretised points and δ =

yt−yt−1

M+1
defines the width of each sub-interval. Since times between arrivals are informative of no
arrival, we define data at times{

yt−1 = τ(t)
0 < τ(t)

1 < · · · < τ(t)
M = yt

}T

t=1

which is a superset of the observed arrivals. Thus we use the auxiliary variables τ(t)
M to

construct a data set {zm}
M
m=1, where zm = 1 if τm = yt for some t, and 0 otherwise. In this

setting, the conditional likelihood

P
[
Zm = 0 | zm−1, ψτm−1 , ψτm

]
= exp

{
−ν(ψτm−1)δ

}
.

depends only on state ψτm−1 so that the SPF can be applied for parameter estimation.
Notice that ∆ determines the accuracy of the approximation to (8) and crucially affects

the particle approximation to the log-likelihood function. We have carried Monte Carlo
experiments to understand the effect that discretisation ∆, has on parameter estimation. For
50 duration datasets of T = 2000, generated with fixed parameter values at ω = −1, φ = 0.3
and σ2

ε = 0.15 we have estimated MLEs, setting N = 1000. Table 8 illustrates bias, mean
squared error (MSE) and variance of the MLEs for two levels of discretisation. Table 8 shows

Discretisation ∆ = 20 ∆ = 0.5
Parameters ω̂ φ̂ σ̂2

ε ω̂ φ̂ σ̂2
ε

Bias 0.113 0.026 −0.037 0.0126 −0.0107 −0.0096
MSE 0.0138 0.0208 0.0048 0.0015 0.0051 0.00217

Variance 0.0010 0.0201 0.0035 0.0014 0.0051 0.00208

Table 8: Bias, MSE, and variance of parameter estimates for different ∆

that for crude distretisation, represented by ∆ = 20, bias and MSE of MLEs is much larger
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than for finer discretisation, ∆ = 0.5. Therefore, it is recommended to work with integrated
quantities to avoid biased parameter estimates.

After understanding discretisation bias, we estimate the parameters of a Cox process,
setting N = 2000 and ∆ = 0.5 Due to identifibility problems we define γ := σ2

ε

2φ to estimate φ,

ω̂ γ̂ := σ2
ε

2φ σ̂2
ε φ̂

−0.1424 0.2934 0.0316 0.0539
(0.0154) (0.0295) (0.0334) N.A
`(θ̂) = −47437 e−φ̂ = 0.9476
Q15

LB(ε̂t)
= 37.62

Table 9: MLEs for Cox process by SPF, N = 1000

since there is more information for σ2
ε. The log-likelihood `(θ̂) is 60 log-likelihood units lower

than that for the SCD but 304 larger than that for the WACD(2,2). Persistence is calculated
by e−φ̂ = 0.9476, which is moderately high. The Ljung-Box statistic is slightly worse than for
the SCD model. These results, justify introducing a Cox process with a Negative-Binomial
which models conditional over-dispersion better than a Poisson process.

With the MLEs from Table 9 we implement filtering. Residuals for the Cox process are
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Figure 3: Particle filtering applied to Cox process
Top-left: Estimates of intensity ν(ψyt) = exp(ψyt) for first 6000 durations against arrival

times, N = 1000. Top-right: Estimates of {Ψyt} against arrival times. Bottom-left: ESS for
first 6000 durations. Bottom-right: Histogram of residuals for the whole dataset computed

according to (9)

computed according to

F(yt | Ft−1, θ) ≈
1
N

N∑
j=1

1 − exp

− M∑
d=1

ν(ψ( j)
τd

)

 (9)
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Figure 3.2, shows the results, where intensity and latent value of the Ornstein-Uhlenbeck
equation are shown. For the Cox process, estimates of latent intensity and unobserved
excursion of the Ornstein-Uhlenbeck increase. Periods of high latent intensity are clearly
shown. Also, in periods of high intensity, more often re-sampling increases the ESS.

4 Conclusions

Motivated by the peak of the standardised residuals distributed around 0, we are interested
in fitting multifactor models. All the models discussed in this paper allow superposition of
intensities. The WACD(2,2) model fitted in section 1.2 can be superimposed, defining total
intensity Υt := ψt + λt, where ψt represents the short-term and λt the long-term intensity,

ψt = λt + φ(ψt−1 − λt−1) + α(yt−1 − λt−1)
λt = ω(1 − ρ) + ρλt−1 + β(yt−1 − ψt−1)
yt = Υtξt, ξt ∼We(κ,Γ(1 + 1

κ )).

The motivation of the two-component version of ACD models is discussed at length in
Engle and Lee (1999). Inference on superimposed models is far from straightforward. In
the equation for observed durations, there is information about the sum of intensities but
not about each individual intensity. This makes estimation of parameters for each intensity
difficult. For parameter estimation, we work instead with the reduced form of the model

ψt = ω(1 − α − φ)(1 − ρ) + (α + β)yt−1 + (−αβ − βφ − αρ)yt−2

+ (φ + ρ − β)ψt−1 + (αβ + βφ − φρ)ψt−2

yt = ψtξt, ξt ∼We(κ,Γ(1 +
1
κ

)).

so that observed durations depend on one intensity. The dynamic equation for ψt is still a
GARCH(2,2) but now parametrised in terms of its roots, so that these are constrained to be
real. The MLEs are summarised on Table 10. The log-likelihood estimate `(θ̂) from two-

ω̂ α̂ β̂ φ̂ ρ̂ κ̂
1.1395 0.021102 0.049524 0.98712 0.95942 0.91536

(0.13265) (0.0025487) (0.0030485) (0.0026593) (0.0049055) (0.0030343)
`(θ̂) = −47661.0055956 QLB(15) = 29.4776
Persistence = 0.98712 χ2

15 = 25

Table 10: MLEs for two-component WACD(2,2)

component WACD(2,2) is 80 log-likelihood units higher than the same value for WACD(2,2).
The value of persistence given for the parameter with largest root φ̂, is very close to persis-
tence implied by the WACD(2,2). The value of QLB(15) shows a dramatic improvement over
equivalent statistic for the WACD(2,2). The two-component WACD(2,2) is clearly superior
to the WACD(2,2).

The next model that allows superposition of intensities is the SCD model. Some prelim-
inary results using QML are presented here. However, from simulations we have seen that
the QML gives unreliable estimates.
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The two-component SCD models intensity as the sum of two independent AR(1). In-
tensity is again, the sum of short-term ψt, and λt long-term intensity Υt := ψt + λt. First,
we apply the sub-optimal QML to the two-component SCD model, for the whole dataset
T = 52144. With respect to the SCD, the two-component SCD shows an improvement of 90

ω̂ φ̂ σ̂2
ε ρ̂ σ̂2

η κ̂
−0.1818 0.9509 0.01425 0.9991 0.0002 1.0861
(0.06839) (0.1121) (0.1021) (0.3545) (0.3452) (0.00345)
`(θ̂) = −84472.5085 Q15

LB(ξ̂t)
= 53.82 Q15

LB(ζ̂t)
= 31.59

Table 11: QML Two-component model SCD

log-likelihood units. Also Q15
LB(ξ̂t)

and Q15
LB(ζ̂t)

show less dependence. However, large stan-
dard errors evidence identifiability problems due to bi-modality of the linearised likelihood
function.

Before applying the PMCMC to the two-component SCD, we fit the same model for
T = 4000 observations and we find extremely bad estimates with large standard errors,
which evidence that we cannot apply the PMCMC for identifiability issues. The same
problem applies to the two-component Cox process.

We are currently experimenting with the PMCMC, however it is challenging to scale the
method well for such long series.

We conclude summarising the findings of the applied methodology to durations and
suggesting directions for future work.

This paper shows that latent variable models are preferable to observation driven models
in scenarios of high frequency regime and long time series. Despite intractability of the
likelihood function due to latent variables, particle filters offer a computationally convenient
tool for on-line inference and parameter estimation of univariate duration models. Latent
variables allow flexibility in the formulation of dynamics, whether in discrete or continuous-
time, and lend themselves to formulate valid models to capture dependence.

The SCD model has proved superior to the WACD(2,2) in modelling the duration dataset
of Engle (2000). By particle filters, the SCD is capable of tracking latent intensity, allows
off-line parameter estimation and model diagnostics. Table 2 and Figure 3.1 evidence that
the SCD is a valid model for dependence.

Attempts to model durations by a two-component WACD(2,2) and also by a two-
component SCD by QML show that bi-variate models yield better residuals than univariate
models. This is not new, and corroborates results of Roberts et al. (2004) and Griffin and
Steel (2008).

Regarding the Cox process, we find desirable to model over-dispersion by a Negative-
Binomial, rather than by a Poisson process. The smooth particle filter works well applied to a
Cox process, which becomes another possible model for modelling duration-type data. The
appealing feature of continuous-time formulation of intensity is that it allows appropriate
scaling of the model according to inter-arrival times.

We are currently experimenting with the PMCMC, however it is challenging to tune the
method so that it scales well for long series. Our aim is to extend the applicability of particle
filters to bi-variate latent models by application of the PMCMC. At the moment, inference for
those are attainable only by MCMC. Unfortunately, non-continuous likelihood estimates and
evaluation of the likelihood at each iteration make the PMCMC algorithm very expensive

13



computationally. Also, there are identifiability problems in the bivariate models that we are
using, which we are trying to overcome.
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