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Abstract

Building on sibling difference regressions, a new IV strategy for esti-
mating heterogenous interaction effects in obesity is proposed. Identifi-
cation depends on a testable restriction: standardized direct responses to
variations in own covariates differ across different types of siblings. The
sibling difference model is a testable special case. Using the NLSY79 chil-
dren dataset, the null hypothesis of the sibling difference model of no sib-
ling interaction effect or contextual effect on weight or BMI is not rejected
using a specification test which is simple to implement. However, when
we estimate the more general model we find small but statistically signifi-
cant peer effects. Brothers are estimated to have a small negative reaction
to an increase in their siblings’ obesity whereas sisters have a small positive
reaction.



In many countries, including the United States, the fraction of the popu-
lation who are obese has risen significantly in recent decades.1,2 Childhood
obesity has also concurrently risen (Anderson and Butcher 2006). This rise in
obesity has severe health and economic consequences for society (e.g. Colditz
1999; Visscher and Seidell 2001). Although obesity has a quantitatively signifi-
cant genetic component, many researchers believe that the recent rapid rise in
obesity across countries is primarily due to behavioral considerations.3

In an influential paper using observational data, Christakis and Fowler 2007
argued that obesity also has a social interaction component: If one’s peers be-
come obese, one is also more likely to become obese. Their methodology has
been criticized (e.g. Cohen-Cole and Fletcher 2008a; 2008b). In view of the so-
cial cost of obesity and how it responds to behavioral factors, it is important
to continue to develop different methodologies for detecting whether there are
social interactions effects in obesity using observational data.

The objective of this paper is to estimate sibling interaction effects in child-
hood obesity using observational data. Since Manski 1993, researchers know
that the correlation in siblings’ behaviors is due to interaction effects as well
as observed (contextual effects) and unobserved factors common to the family.
The unobserved common family effects make it difficult to identify the interac-
tion effects without additional identifying restriction.4,5 A standard approach
to deal with the identification problem is to instrument for the behavior of the
sibling (e.g. Oettinger 2000). Due to the difficulty of coming up with valid in-
struments, we are not aware of any such study on estimating sibling interaction
effects on obesity.6

Abstracting from sibling interaction effects, there is an active literature us-
ing sibling and twin difference regressions to estimate the effect of own covari-
ates on behavior. These sibling difference regressions have been used to study
the effects of birth order, gender, birth weight, neighborhoods, family struc-
ture, parental employment, age of immigration, etc. on a child’s schooling,
earnings or other outcomes.7 Explicitly or implictly, this literature makes three

1A measure of individual obesity is when the Body Mass Index (BMI = kg
(height in m)2 ) exceeds

30.
2Antipatis and Gill 2001; Bliech, et. al. 2007; Chou, et. al. 2002.
3Rashad, Grossman and Chou 2006 argued that the rise in the labor force participation rate of

women led to more consumption of fast food which in turned led to a rise in obesity. Cutler, et.
al. 2003 made a related point on the increasing availability of commercially prepared foods which
have higher calories. Rashad and Grossman 2004 is a survey.

4Carman and Kooreman (2010) provide an exposition specific to estimating social interaction
effects on obesity.

5Blume, et. al. 2010 surveys different methods developed to estimate peer interaction effects
since Manski.

6In an innovative paper, Fletcher and Lehrer 2011 used within family variation in genetic mark-
ers as instruments for obesity to estimate the effects of own obesity on other individual outcomes.
We leave the use of these genetic markers in our context to future research.

7E.g. Altonji and Dunn 2000; Behrman 1997; Behrman and Taubman 1986; Black, et. al. 2005;
Black, et. al. 2007; Bőhlmark 2008; Bommier and Lambert 2004; Chen, et. al. 2009; Emerson and
Souza 2008; Ermisch, et. al. 2004; Lindert 1977; Ota and Moffatt 2007; Page and Solon 2003; Tenikue
and Verheyden 2010.
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assumptions:8

SD1. Sibling differences in own covariates are orthogonal to differences in the
unobserved common family factors.

SD2. Siblings’ covariates do not directly affect own behavior.

SD3. There is no sibling interaction effect.

With these three assumptions, sibling difference regressions are used to ob-
tain consistent estimates of the direct effects of own covariates on behavior.

Building on sibling difference regressions, this paper considers a new in-
strumental variable (IV) strategy for estimating sibling interaction effects in
the absence of variables that are uncorrelated with the unobserved family fac-
tors to use as instrumental variable candidates. We require a strengthening of
assumption SD1 to assumption:

A1. Sibling differences in own covariates are orthogonal to the levels of unob-
served common family factors.

We add two assumptions:

A2. Contextual effects are either absent or are orthogonal to sibling differences
in own covariates

A3. Standardized responses to variations in own covariates differ for different
observable types of siblings.

With these three assumptions, we construct valid instrumental variable can-
didates from covariates that are correlated to unobserved common family fac-
tors. In general, the sibling interaction effects model is identified. So we can
dispense with assumption SD3 as needed. We can also relax somewhat as-
sumption SD2.

Like assumption SD1 of the sibling difference literature, our assumption A1
is maintained and untestable without additional data.9 With A1, we can test
assumptions SD2 and SD3 which are necessary for a coherent interpretation of
sibling difference regressions. With A1- A3, we can estimate a model of sibling
interaction effects in which an important special case, the sibling difference
model, is nested.

Assumption A2 is slightly weaker than SD2. It allows for the possibility
that the covariates satisfy a certain symmetry property, in which case the re-
maining parameters can be identified regardless of the presence or absence of
contextual effects. If this symmetry property fails, however, we can follow the
siblling difference literature and simply set the contextual effects to zero.

8A careful statement of the methodology is in Ermish, Fancesconi and Pevalin 2004.
9Fletcher and Lehrer 2011) show that assumption SD1 is testable with valid instruments for

the covariates of interest in a sibling difference regression. In general, such instruments are not
available which is the primary reason for the sibling difference literature.
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Assumption A3 is the identification condition for our estimator. It is neces-
sary and sufficient to guarantee that our instruments are not orthogonal to the
covariate on the peer effect coefficient in our estimating equation. If it fails, we
lose identification. It can be stated in terms of the rank of a matrix involving
observables, so we can and do test A3. However, having a more primitive
statement of the rank condition allows us to see what’s driving the identifica-
tion and to recognize a priori those environments where identification can be
expected to be weak or even fail. For example, it is easy to see that the standard
(Manski) linear interaction effects model with i.i.d. data and common parame-
ters violates assumption A3. Intuitively, heterogeneity in the distribution of
covariates across different observable types of siblings or their response coeffi-
cients aids identification because it generates more distinct observable moment
conditions than additional parameters, enough for identification.10

Most papers on estimating peer effects estimate one peer effect parameter.
We focus on estimating gender specific interaction coefficients, one for each
gender. We can also estimate sibling interaction effects which depend on the
specific observable types of the pair of siblings under consideration. In the case
of gender, we can estimate up to four gender interaction effects which depend
on the pair specific gender interaction.

We estimate sibling interaction effects on weight and BMI using the NLSY79
adults and children (CNLSY) datasets (**NB: In this draft, we only report re-
sults from the CNLSY). Each pair of biological siblings closest in ages are con-
sidered a separate sibling pair. Our two observable types are gender: male
and female. In other words, we are assuming (and testing) assumption A3 for
brothers versus sisters. Own covariates include age, height and birth weight in
the child sample, and their interactions with age.

Following Cohen-Cole and Fletcher 2008a, we first do a placebo test by es-
timating a sibling interaction effects model of own height. An individual’s
height is determined primarily by genetic and environmental factors. Control-
ling for common family factors and own covariates, there should be no sibling
interaction effect on height nor a direct effect of a sibling’s covariates on own
height.

After investigating the presence of sibling interaction effect on height, we
next investigate the presence of sibling interaction effects on weight and BMI.

After sample selection rules detailed below, we end up with 1810 sibling
pairs from the CNLSY. The correlation in weight between siblings is 0.73. The
question is whether sibling interaction effects account for much of this corre-
lation as opposed to common genetic and family factors. The correlation in
BMI between sibling is 0.37. Since BMI is proportional to weight divided by
the square of height, this correction for height, which is not subject to sibling
interaction effect, already halves the correlation in obesity between siblings.

First in all cases, whether for height, weight or BMI, assumption A3 is not
rejected at p-values below 0.0001. Thus there is enough variation across gender

10The extra observable moment conditions have potential wider applicability than our specific
instrumental variable approach.
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in standardized own responses in our dataset to use our methodology for our
dependent variables.11

Based on our analysis, we cannot reject the sibling difference model that
there is no sibling interaction or contextual effect on own height. When we
estimated sibling interaction effects by gender using a two-step procedure, we
obtained imprecisely estimated small negative interaction elasticities (>-0.03).
Thus there was little or no evidence against the hypothesis that there is not
sibling interaction effect on height.12

We then tested the sibling difference model for both weight and BMI. There
was little evidence to reject the sibling difference model for weight or BMI. In
other words, there was little evidence against no sibling interaction effect and
no contextual effect.

When we estimated sibling interaction effects by gender, brothers have a
small negative reaction to their sibling’s weight gain whereas sisters have a
small positive reaction to their sibling’s weight gain. Negative estimates may
be due to competition for food within a family and or averse response by a
child to their sibling’s change in weight.

When we use BMI as a dependent variable, the point estimates of own ef-
fects were significantly less precise, in some cases. Our estimates of the sibling
interaction effects were implausibly large and precisely estimated. Since BMI
imposes the restriction that the elasticity of weight with respect to height is 2, it
may be the case that the model for BMI is misspecified. Another reason for the
discrepancy between the results from weight and height is that for weight, we
used height and its interaction with age as covariates which have significant
explanatory power. For BMI, we used birth weight and its interaction with age
as covariates which has less explanatory power.

In summary, there is little evidence against the sibling difference model
for weight or BMI. When we estimate sibling interaction effects by gender on
weight, our estimates are quantitatively small, negative for brothers and posi-
tive for sisters. While not the main focus of their paper, Christakis and Fowler
2007 estimated a positive sibling interaction effect for obesity. Our estimates
do not support their finding.

There are few studies that estimate sibling interaction effects with other
dependent variables using observational data.13 Oettinger 2000 studies sib-
ling interaction effects in schooling by birth order using standard instrumental
variable technique. Also using the 79 NLSY, he finds that the schooling attain-
ment of older siblings affect the younger siblings but not vice versa. Another
paper is Altonji, Cattan and Ware 2010. They use a dynamic correlated random

11This is not the case for the NLSY dataset and other dependent variables. We were unable to get
precise estimates of sibling interaction effects on earnings or schooling attainment with the sample
sizes available. We also could not estimate precise sibling interaction effects on weight or BMI for
adults in the NLSY.

12We obtain curious results, however, using GMM estimation that we are still working to un-
derstand. So, we summarize in this section only our empirical results based on our two-step
estimator.

13Recents studies use field experiments to estimate the sibling peer effects in schooling attain-
ment (E.g. Barrera-Osorio, et. al. 2008; Ferreira 2009).
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effects model with time varying family effects to study sibling peer effects in
risky behaviors such as smoking, drinking and drug use in the 79 NLSY. They
assume that initially, an older sibling can influence a younger sibling but not
vice versa for identification. They find evidence for weak sibling peer effects
for risky behaviors. Kuziemko 2006 studied sibling peer effect on the timing of
fertility using data from both the Panel Study of Income Dynamics and NLSY.
She found that a woman is more likely to have a child within two years of her
sister having a child.

1 The Framework

Consider an independent sample of families, h = 1, .., H. Each family has two
siblings, i = 1, 2.

All data are demeaned by birth order and gender.
Let yih be the dependent variable of sibling i in household h. In this paper,

yih may be log(height), log(weight), or log(BMI).
Let gih be the gender of sibling i in household h. gih = fm, f g where m is a

male and f is a female.
Let Qih be a K� 1 vector of own covariates with the property that E(Qih �

Q�ih)(Qih �Q�ih)
0 is positive definite.

Subpressing the h subscript, the outcome equation for sibling i in household
h is:

yi = πgi y�i +Q0ieβgi +Q0�iγgi + υi i = 1, 2 (1)

υi 6? Qi, Q�i (2)

where υi is an error term of the outcome equation. Because υi contains left
out variables, including unobservable factors that are common to both siblings,
υi is not assumed to be orthogonal to Qi or Q�i.

πgi , the sibling interaction effect, is allowed to be gender specific. In some
settings, even a gender pair specific sibling interaction effect, πgi g�i , is identi-
fied. We stick with the simpler formulation because, in our empirical work, we
are unable to precisely estimate the parameters of the more general model.

Note that i0s sibling’s covariates, Q�i, are allowed to directly influence yi.
The above model can be written in Manski’s linear in mean peer effects

model form,

yi = πgi y�i +Q0iβgi + [Qi +Q�i]
0γgi + υi (3)

βgi =
eβgi � γgi

There are two important special cases of our interaction model (3).
First, there is the influential sibling difference model:
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yi = Q0ieβgi + υi i = 1, 2 (4)

and assumption SD1:

E(Qi �Q�i)(υi � υ�i) = 0 (5)

Assumption SD1, which is untested, says that family differences in covari-
ates are orthogonal to family differences in error terms in equation (4).

Also, πgi and γgi are assumed to be zero. That is, there is no sibling interac-
tion effect or contextual effect in the sibling difference model. In most empirical
applications, these exclusion restrictions are also untested.

We will build on the sibling difference model by strengthening assumption
SD1. In return, we can identify πgi as well as test whether πgi = 0 and γgi = 0.

Before proceeding, it is useful to clarify what we identify if we run the usual
difference regression in the presence of peer and contextual effects. Restrict
attention to same-sex sibling households, i.e. those with g1 = g2. Differencing
(3) yields

y1 � y2 = πg1(y2 � y1) (6)

+ (Q1 �Q2)
0 βg1 + ν1 � ν2

Therefore, we can write the difference as

∆y = (Q1 �Q2)
0 βg1

1+ πg1

+
(ν1 � ν2)

1+ πg1

g1 = g2 2 fm, f g (7)

Under assumption SD1 (implied by A1) and our requirement that the co-
variance matrix of (Qi �Q�i) is positive definite, which are the standard as-
sumptions used in the sibling difference literature, we can identify

βm

1+ πm
and

β f

1+ π f
(8)

So, we can treat these parameters as known when addressing the identification
of the peer effects. Define fQi = Q0iβgi /

�
1+ πgi

�
. Substituting back into (3),

we obtain

yi = πgi y�i +
�
1+ πgi

� fQi + [Qi +Q�i]
0γgi + υi

, yi �fQi = πgi

�
y�i +fQi

�
+ [Qi +Q�i]

0γgi + υi (9)

For the purpose of studying identification, if we are willing to maintain SD1
we can act as if our interest is the estimation of (9), where the variable fQi is
observed. Our approach is to suggest an IV estimator that is orthogonal to
[Qi +Q�i]

0γgi + υi but correlated with
�

y�i +fQi

�
.

A second special case of our model occurs when there is no heterogene-
ity. Manski’s original model assumes that the parameters in (3) are not gender
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specific. Also Qi and Q�i are independently and identically drawn from the
same multivariate distribution. Thus there is no parametric difference in the
determinants of outcomes or covariates for different members of a peer group.
As we will show below, our identification strategy fails, as is well known from
Manski’s original work, under his homogeneity postulate. However, we be-
lieve that when the peer group is a sibling group of mixed gender, this ho-
mogeneity assumption is too strong. Our identification strategy depends on
heterogeneity in the determinants of outcomes or covariates by gender. Im-
portantly, the presence of this heterogeneity is testable.

We now state our assumptions:
Assumptions

E((Qi �Q�i)υi) = 0 i = 1, 2 (A1)

E((Qi �Q�i)(Qi +Q�i)
0γgi ) = 0 i = 1, 2 (A2)

E((Qi �Q�i)(Qi
βgi

1+ πgi

+Q�i
βg�i

1+ πg�i

) 6= 0 (A3)

A1 strenghtens assumption SD1. It says that the difference in covariates is
orthogonal to the level of the error in equation (3). A1 implies SD1 but not vice
versa. Like assumption SD1 in the sibling difference model, we maintain A1.

A2 is satisfied if Qi and Q�i are exchangeable, which is sufficient to gen-
erate the required "symmetry" property E(Qi � Q�i)(Qi + Q�i)

0 = 0. This
symmetry property is testable. If exchangeability is not satisfied, A2 is also
satisfied if there is no contextual effect, i.e. γgi = 0.

A3 says that the standardized parameters of own covariates which deter-
mine outcomes differ by gender. This is a testable assumption. Generically,
A3 can be satisfied if E(Qi � Q�i)(Qi + Q�i)

0 6= 0 and/or βgi 6= βg�i and/or
πgi 6= πg�i .

14

For notational simplicity, we have written the assumptions in terms of the
differences of all the covariates. But it should be clear, from our discussion
of what can be identified from the sibling difference regression, that we can
replace (Qi�Q�i)with any known nontrivial linear combination c0(Qi�Q�i)
in A1-A3.

We can motivate A1 and A2 in two ways.

Under the first set of assumptions, A, the covariates satisfy certain symme-
try restrictions:

Aa. f (υijQi, Q�i) is exchangeable in Qi, Q�i (Altonji and Matzkin 2005):

υi = λgi (Qi +Q�i) +ωi; ωi?Qi, Q�i

Ab: Qi and Q�i are exchangeable:

E(Qi �Q�i)(Qi +Q�i)
0 = 0

14Let the observable difference between siblings be birth order. Following Altonji, et. al. 2010,
assume that the older sibling’s behavior affects the younger sibling and not vice versa. Then A2 is
generically satisfied since the interaction effects of the two siblings are different.
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Aa says that the projection of υi on Qi and Q�i is the same as the projection
onto their sum. Aa and Ab impy A1 and A2. Aa implies assumption SD1 of
the sibling difference model.

If A applies, contextual effects may be present but only the sum γgi + λgi of
its effects on outcomes can be estimated.

Alternatively under a second set of assumptions, B, the covariates have a
factor structure and there is no contextual effect:

Qi = φF+ wi; F ? wi, w�i

υi = ηgi h+ εi; εi ? h, wi, w�i

γgi = 0; i = 1, 2

B also implies A1 and A2. It also implies assumption SD1 of the sibling
difference model.

A and B are closely related, but neither implies the other.

In A, exchangeability of Qi and Q�i implies that E(Qi�Q�i)Q0i = E(Q�i�
Qi)Q0�i. Then A3 has to be satisfied by βgi 6= βg�i and/or πgi 6= πg�i . A2
automatically holds.

In B, A3 may also be satisified by E(Qi � Q�i)Q0i 6= E(Q�i � Qi)Q0�i. But
if we relax Ab, we must rule out the presence of contextual effects to obtain A2.

We now have the following theorem:

Theorem 1

1. Assume A1, A2 & A3. Then πgi in equation (3) is identified.

2. Under A1, the sibling difference model

yi = Q0ieβgi + υi i = 1, 2 (10)

πgi = 0 and γgi = 0

is testable.

Proof: See appendix

The theorem says that gender specific interaction effects are identified.
If K � 2, the theorem can be extended to identify gender pair specific inter-

action effects, πgi g�i . We can also allow for intercepts by birth order.
In order to provide intuition as to how we get identification of interaction

effects relative to Manski’s original linear in means peer effects model, note
that A3 introduces more parameters than in his model. His formulation:

E(Qi �Q�i)Q0i = E(Q�i �Qi)Q0�i; βgi = β; πgi = π;

violates A3.
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When gi 6= g�i, his model implies for brothers (m) and sisters ( f ):

cov(ym, ym) = cov(y f , y f )

Cov(ym, Qm) = Cov(y f , Q f )

Cov(ym, Q f ) = Cov(y f , Qm)

Under our assumption A3,

cov(ym, ym) 6= cov(y f , y f ) (11)

Cov(ym, Qm) 6= Cov(y f , Q f ) (12)

Cov(ym, Q f ) 6= Cov(y f , Qm) (13)

which gives us significantly more distinct observable moments relative to the
additional parameters.

2 Testing the sibling difference model

Assume A1.

Step 1. Use the sample of sisters, ( f , f ), to take sibling differences of equa-
tion (3). Then estimate the resulting differenced equation by OLS to get an
estimate of βSD:

yi � y�i = [Qi �Q�i]
0βSD

f +
υi � υ�i
1+ π f

(14)

βSD
f = β f (1+ π f )

�1

bβSD
f is a consistent estimate of β f (1+ π f )

�1.

Step 2. Consider the sample of girls in mixed gender, ( f , m), siblings. Using
equation (3), estimate γ f in

y f �Q0f βSD
f = Z f γ f + w f (15)

w f = π f y� f +Q0f
�

β f � βSD
f

�
+ [Qi +Q�i]

0γ f + υ f

= π f

�
y� f +Q0f βSD

f

�
+ [Qi +Q�i]

0γ f + υ f

using [Qm �Q f ] as instrumental variable candidates for Z f . If the sibling dif-
ference model is correct, then we should have γ f = 0 for any choice of Z f
which provides the basis for a useful specification test. Interesting choices for
Z f include (i) Z f = Qm�Q f ,(ii) Z f = y� f +Q0f βSD

f , and (iii) Z f = Q f . Choos-

ing Z f = Qm�Q f seems natural to test E(Qm�Q f )
�

y f �Q0f βSD
f

�
= 0, as we

would expect if the sibling difference specification was correct, along with A1.
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Choosing Z f = y� f + Q0f βSD
f provides a one-dimensional test of the siblling

difference model, which may have more power than the K-dimensional test
in (i). Moreover, under A1-A3, γ f estimates π f . However, implementing the
specification test is complicated by the fact that in practice we would replace
y f �Q0f βSD

f with y f �Q0f bβSD
f , so we must take into account the parameter un-

certainty in bβSD
f when making inferences about γ. We describe how to do this

in the next session for the case Z f = y� f + Q0f βSD
f . But the choice Z f = Q f

leads to an important simplification which makes it particularly well-suited as
a specification test.

Conside estimation of the βIV
f in

y f = Q0f βIV
f + ew few f = π f y� f + [Qi +Q�i]

0γ f + υ f

using [Qm �Q f ] as instruments for Q f . Q f γ f = 0 in (3) iff βIV
f = βSD

f . But, asbβIV
f and bβSD

f are constructed from independent samples, using bβIV
f � bβSD

f to test

βSD
f = βIV

f is straightforward. Part B of the appendix evaluates (βIV
f � βSD

f )

in the presence of peer and contextual effects and shows that it is generically
nonzero.

Under A, bβIV
f is a consistent estimator for β f as long as π f = 0 (no peer

effect).
Under B, bβIV

f is a consistent estimator for β f as long as π f = 0, and γgi = 0
(no contextual effect).

Under A, if π f = 0, then

p lim βIV
f = p lim βSD

f = β f

So if A is valid and we reject H0 : βIV
f = βSD

f , we will have rejected the
hypothesis that π f = 0. The test sheds no light on the presence of contextual
effects.

Similarly, If B valid and we reject H0 : βIV
f = βSD

f , we will have rejected the
joint hypothesis that π f = 0 and γ f = 0.

We can repeat step 1 for the sample of brothers and step 2 for the sample of
boys in mixed gender siblings to test for the corresponding sibling difference
model for boys.

3 Estimating π f

We first provide a two step estimator that is easy to understand and follows
closely our constructive approach to identification.
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Step 1: Use the sample of sisters, ( f , f ), to estimate βSD
f = β f (1+ π f )

�1 by
OLS as was done above.

Step 2: Using equation (3) and treating βSD
f as given, estimate π f with sis-

ters from mixed gender, ( f , m), sample:

y f �Q0f βSD
f = π f

h
ym +Q0f βSD

f

i
+ω f (16)

ω f = [Q f +Qm]
0γ f + υ f (17)

by plugging in our estimate of bβSD
f for βSD

f in equation (16) and using [Qm�
Q f ] as an instrument for

h
ym +Q0f bβSD

f

i
.

Assumption A1&A2 implies that ω f is orthogonal to our instrument even
though contextual effects, γ f 6= 0, are potentially present.

In the two step estimator, we plug in bβSD
f for our second step. This makes

the two step estimator inefficient relative estimating equations (14) and (16)
simultaneously by GMM.

We can also include a third step and estimate γ f + λ f , which may be of
interest, by running the OLS regression

y f � π f ym � (1+ π f )Q0f βSD
f = [Q f +Qm]

0
�

γ f + λ f

�
+ eω f

and plugging in the estimated values from Step 1 and Step 2 for the unknown
parameters on the left hand side of the equality.

4 Data

We use two datasets for our empirical work. One is the 1978 National Longi-
tudinal Study of Youths (NLSY). The second dataset consists of the children of
the women in the NLSY (CNLSY).

We will discuss the CNLSY sample first. An observation is a sibling pair
consisting of two contiguously aged siblings. In order to maximize the num-
ber of observations, if there are more than two siblings in the dataset, middle
siblings were counted twice, once as the younger sibling of an older sibling,
and once as the older sibling with a younger sibling. We ignored the within
family correlation across observations. We deleted outliers by birth weight,
weight and height in 1990, shrinkage in height, and individuals younger than
age 2 in 1990. We ended up with 1810 sibling pairs.

Table 1 shows that the average age of the older and younger sibling was 9.4
and 6.4 respectively. 0.505 older siblings and 0.519 younger siblings were male.
We do not reject the hypothesis that there is no sex ratio difference by birth or-
der at the 1% significance leve. The average birth weight of older and younger
siblings were 115 and 117 ounces respectively. The difference in average height
and weight between older and younger siblings was 7 inches and 378 ounces
respectively. The difference in average BMI by birth order was 0.8 kg/m2. The
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hypotheses of no difference in average height, weight and BMI by birth order
are each rejected at the 5% significance level.

The correlations in birth weight, weight, height and BMI in 1990 between
siblings were 0.40, 0.68, 0.73 and 0.37 respectively.

5 Empirical results

In all regressions, all variables were demeaned by birth order and gender. For
each covariate, qgi, in the mixed gender siblings sample, we regress (qm + q f )
on (Qm � Q f ). We always rejected the hypothesis of exchangeability of Qm

and Q f for all the covariates.15 Thus our sibling difference tests and estimation
results proceeded under the set of assumptions B which excluded contextual
effects.

Table 2 presents estimates where the dependent variable is the log of height
in inches. The height of a child is of course affected by his or her age. Another
well known determinant of a child’s health is his or her birth weight.16 Col-
umn 1 presents estimates of the sibling difference in log height (∆LHTg) on sib-
ling differences in age (∆AGEg), log of birth weight (∆LBWg) and (∆(AGEg �
LBWg)) for same gender siblings, gi = m, f . For both genders, there were 797
observations which means that the gender specific coefficients were estimated
using approximately 400 observations each. For brothers, the coefficients on
∆AGEg and ∆(AGEg � LBWg) are precisely estimated. For sisters, all three
coefficients are precisely estimated. The test for the equality of the male and
female coefficients, eβ f = eβm, has a p-value of 0.02. Thus our test of the sibling
difference model and IV estimate of the sibling interaction effects will have
power.

Using the sample of mixed gender siblings of 811 observations, Column (2)
provides IV estimates of the effects of AGEm, LBWm and AGEm � LBWm on
LHTm where the instruments were ∆Qi. Using the Kleibergen-Paap rank test,
the test of Assumption A3 has a p-value smaller than 0.001. All three coeffi-
cients were estimated precisely. The point estimates of the coefficients from
the IV regression is quantitatively similar to that from the sibling difference
regression. The test of equality of the boys’ coefficients between column (1)
and (2) has a p-value of 0.65. So there is no evidence against the sibling differ-
ence model. Since we do not expect a sibling interaction effect on height, this
finding is reassuring.

Column (4) presents IV estimates of the effects of AGE f , LBW f and AGE f �
LBW f on LHTf where the instruments were ∆Qg. Again, using the Kleibergen-
Paap rank test, the test of Assumption A3 has a p-value smaller than 0.001. All
three coefficients were estimated precisely. The point estimates of the coeffi-
cients from the IV regression is quantitatively similar to that from the sibling
difference regression. The test of equality of the girls’ coefficients between col-

15We did not reject this hypothesis for some covariates in some tables.
16See Black 2007 and the references therein.
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umn (1) and (4) has a p-value of 0.54. So again there is no evidence against the
sibling difference model.

We summarize the results of the tests of the SD model for height. For both
boys and girls, the estimates of the coefficients of the own effects were largely
precisely estimated in columns (1), (2) and (4). Based on the Kleibergen-Paap
rank test for the IV regressions, there is no evidence against Assumption A3.
Thus the lack of evidence against the SD model for brothers and sisters is not
due to lack of power. Rather, it strongly suggests that there is no sibling inter-
action effect in the determination of height. Moreover, since exchangeability
of Qgi fail, being unable to reject the SD model also implies that there is no
contextual effect in the determination of height.

In columns (3) and (5), we use the two step estimator IV to estimate the
sibling interaction effects, πm and π f , respectively. We did not correct the stan-
dard errors for using a constructed regressor in the second stage. Thus the
reported standard errors for the interaction effects are underestimates of the
true standard errors. The point estimate for πm was �0.010 with a standard
error of 0.052. The point estimate of π f was -0.022 with a standard error of
0.057. Both point estimates are quantitatively small and given the downward
biased standard errors, we certaintly cannot reject the hypothesis that there is
no sibling interaction effect in height for both brothers and sisters.

In column (6), we use a two step GMM estimator to estimate πm and π f .17

Under GMM, the sibling difference regressions and the IV regressions are esti-
mated simultaneously with non-linear cross equations restrictions. The GMM
estimates for πm and π f are -0.13 with a standard error of 0.004 and 0.044 with
a standard error of 0.006. The negative point estimate for πm and its associated
small standard error is behaviorally implausible. The point estimate for π f is
0.04 and is statistically different from zero at the 0.01 significance level. Com-
paring the results from the SD tests, the two step IV estimates for πm and π f ,
the behavioral implausibility of sibling interaction effects in the determination
of height, it is likely that the GMM estimator has poor properties given our
small sample size.18

Based on our analysis of the determination of height, we tentatively con-
clude that our testing and estimation strategy for sibling interaction effects has
power. The two step IV estimator is more robust than than the GMM estima-
tor given our small sample size. Both the SD test and two step IV estimator
suggest that there is no sibling interaction effect in height.

Table 3 presents estimates where the dependent variable is the log of weight
in 1990. In addition to age, we use height as a determinant of weight, consistent
with the use of BMI, which weight corrected for height, in the medical litera-
ture. We relax the implicit BMI restriction which says that the coefficient of log
height on log weight is 2. Column 1 presents OLS estimates of the sibling dif-
ference in log weight (∆LWTg) in 1990 on sibling differences in age (∆AGEg),

17The first step is used to construct a consistent estimate of the variance covariance matrix which
is used to construct the GMM estimator in the second step.

18We experimented with other system estimators and obtained different point estimates. These
diversity of estimates raises more doubt about system estimation with our sample size.
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log of height in 1990 (∆LHTg) and (∆(AGEg � LHTg)) for same gender sib-
lings, g = m, f . For both genders together, there were 876 observations. For
brothers as well as sisters, all coefficients were precisely estimated. The test
for the equality of the male and female coefficients, eβ f = eβm, has a p-value of
0.78. That is, we cannot reject the hypothesis that eβ f = eβm which raises the
questions as to how powerful is our test of the sibling difference model and
whether we will obtain precise estimates of the sibling interaction effects.

Using the sample of mixed gender siblings of 890 observations, Column (2)
provides IV estimates of the effects of AGEm, LHTm and AGEm � LHTm on
LWTm where the instruments were ∆Qi. Using the Kleibergen-Paap rank test,
the test of Assumption A3 has a p-value smaller than 0.001. Since we do not
reject the hypothesis that eβ f = eβm, Assumption A3 can hold only if

E(Q f �Qm)(Q f +Qm) 6= 0

which means we have to reject exchangeability of Q f and Qm. As discussed
earlier, we always rejected the hypothesis of exchangeability of Qm and Q f for
all the covariates. Thus there should be no concern about weak instruments.

All three coefficients in column (2) were estimated precisely. The point esti-
mates of the coefficients from the IV regression is quantitatively similar to that
from the sibling difference regression. The test of equality of the boys’ coef-
ficients between column (1) and (2) has a p-value of 0.68. Since all the coeffi-
cents in both columns (1) and (2) were estimated precisely, the lack of evidence
against the SD model is not due to lack of power. This is very strong evidence
that there is little or no sibling interaction effect on weight among boys.

Column (3) presents our two step IV estimate of πm. The point estimate of
πm is -0.077 with a standard error of 0.029. As discussed above, the precision
of the estimate is a lower bound.

Column (4) presents IV estimates of the effects of AGE f , LHTf and AGE f �
LHTf on LWTf where the instruments were ∆Qg. Again, using the Kleibergen-
Paap rank test, the test of Assumption A3 has a p-value smaller than 0.001. All
coefficients were again estimated precisely. The point estimates of all the coef-
ficients from the IV regression were quantitatively similar to that from the sib-
ling difference regression. The test of equality of the girls’ coefficients between
column (1) and (4) has a p-value of 0.59. All the estimates of the coefficients
in both columns (1) and (4) were precisely estimated. Thus again, the lack of
evidence against the SD model for sisters is not due to lack of power.

Column (5) presents the two step IV estimate of π f . The point estimate
for π f was 0.008 with a standard error of 0.039. The point estimate for π f is
small. We cannot reject the hypothesis that it is zero although a small positive
estimate cannot be rejected.

Column (6) presents GMM estimates of the entire model. All the parame-
ters of the model were estimated precisely. The estimate for πm was -0.059 with
a small standard error. Since we do not reject the SD model, the estimate for
πm suggests a small negative interaction effect for brothers toward their sib-
ling’s weight. Negative sibling interaction effect in weight cannot be ruled out
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apriori. One sibling may react against the other sibling being too heavy or too
thin. Another mechanism is that the two siblings compete for food within the
family.

The point estimate of π f was 0.02 also with a small standard error. In this
case, our non rejection of the SD model for girls and the precisely estimated
small positive estimate for π f suggests that sisters are positively influenced by
their siblings’ weight.

We summarize the results in Table 3. We obtain precise estimates of almost
all coefficients for all the estimated models. We cannot reject the hypothesis
that eβ f = eβm which implies that when the IV regressions do not suffer from a
weak instrument problem, exchangeablitity of Qm and Q f is rejected. Since we
also cannot reject the SD model, the sibling interaction effects are either zero
or quantitatively small. Our point estimates of πm and π f are in fact quanti-
tatively small. Interestingly enough, the estimate of πm is negative whereas
that for π f is positive. Thus there is some evidence that boys react differently
than girls toward their siblings weight gain. Finally the difference in signs for
the estimates of the sibling interaction effect by gender supports the validity of
Assumption A3.

Table 4 presents estimates where the dependent variable is the log of BMI.
If the previous model on the determination of weight is correct, the implicit
restriction of BMI that the log of weight is twice the log of height already gen-
erates model misspecification. Since BMI is standard dependant variable in the
literature on the determinants of obesity, we also investigate its determinants
here.

Column 1 presents estimates of the sibling difference in log BMI (∆LHTg)
in 1990 on sibling differences in age (∆AGEg), log of birth weight (∆LBWg)
and (∆(AGEg � LBWg)) for same gender siblings, g = m, f . For both genders,
there were 797 observations. For brothers, the coefficient on ∆AGEg is precisely
estimated. For sisters, the coefficients on ∆AGEg) and ∆LBWg are precisely
estimated. The test for the equality of the male and female coefficients, eβ f =eβm, has a p-value of 0.26. Thus we cannot reject the hypothesis that eβ f =eβm. This is not different from our investigation in Table 3 using LWTg as a
dependent variable although some covariates are different. On the other hand,
since eβ f and eβm are not all estimated precisely in column (1), there is a question
on the power of the test.

Using the sample of mixed gender siblings of 811 observations, Column (2)
provides IV estimates of the effects of AGEm, LBWm and AGEm � LBWm on
LBMIm where the instruments were ∆Qi. Using the Kleibergen-Paap rank test,
the test of Assumption A3 has a p-value smaller than 0.001. The coefficients on
AGEm and LBWm were estimated precisely. The point estimates of the coeffi-
cients from the IV regression is quantitatively similar to that from the sibling
difference regression. The test of equality of the boys’ coefficients between col-
umn (1) and (2) has a p-value of 0.69. While there is no evidence against the
sibling difference model, since the point estimates of the boys’ coefficients are
rather imprecise, and only two coefficients in column (2) were estimated pre-

16



cisely, it is possible that the inability to reject the SD model for boys is due to a
lack of power.

Column (3) presents our two step IV estimate of πm. The point estimate of
πm is -0.087 with a standard error of 0.032. The precision of the point estimate is
implausible given that we cannot reject the SD model and also the imprecision
of the estimates in columns (1) and (2). Moreover the relatively large negative
point estimate of πm is behaviorally suspect. We tentatively conclude that there
may be evidence consistent with a small negative sibling interaction effect for
boys.

Column (4) presents IV estimates of the effects of AGE f , LBW f and AGE f �
LBW f on LBMI f where the instruments were ∆Qg. Again, using the Kleibergen-
Paap rank test, the test of Assumption A3 has a p-value smaller than 0.001. The
coefficients on AGEm and LBWm were estimated precisely. The point estimates
of the coefficients on AGEm and LBWm from the IV regression is quantitatively
similar to that from the sibling difference regression. The test of equality of the
girls’ coefficients between column (1) and (4) has a p-value of 0.97. The esti-
mates of the coefficients on AGEm and LBWm in both columns (1) and (4) were
precisely estimated. Thus the lack of evidence against the SD model for sisters
is not due to lack of power.

Column (5) presents the two step IV estimate of π f . The point estimate for
π f was 0.049 with a standard error of 0.048. The point estimate for π f is small.
We cannot reject the hypothesis that it is zero. However the relatively large
standard cannot preclude a positive interaction effect.

Column (6) presents GMM estimates of the entire model. All the parame-
ters of the model were estimated precisely. The estimate for πm was -0.097 with
a small standard error. The point estimate of π f was 0.12 again with a small
standard error. The precision of the estimates by GMM is somewhat implausi-
ble given the single equation results in columns (1), (2) and (4), and the lack of
evidence against the SD model for both brothers and sisters.

We summarize our results from Table 4 on BMI as follows. Due to the small
sample size and the potential for model misspecification of the BMI model due
to its restriction on the interaction between weight and height, the estimates
from the sibling difference regression and the IV regression are imprecise. Mo-
roever our inability to reject of eβ f = eβm raises the question of power in our test-
ing and estimation procedure. We do not reject the SD model for both brothers
and sisters, perhaps partly due to lack of power. Taken at face value, the point
estimates for πm and π f in Table 4 suggest that brothers react negatively to
their sibling’s BMI whereas sisters react positively to their sibling’s BMI.

The results from Tables 2, 3 and 4 suggest that to a first order, sibling in-
teraction effects in weight are either zero or quantitatively small. More inter-
estingly, the estimated interaction effects are qualitatively different. Brothers
react negatively to their siblings weight gain whereas sisters react positively.
Due to our small sample, these conclusions are provisional. In particular, the
small sample properties of GMM may be an issue.
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Appendix
A. Proof of Theorem 1: In what follows, we rule out a priori degenerate

cases for the peer effect parameters (πm = �1, π f = �1, πmπ f = 1),.
For mixed-sex sibling households, it is convenient to rewrite the model

given by eq(3) explicitly in terms of the data for the male and female sibling

ym = πmy f +Q0mβm + (Qm +Q f )
0γm + νm (18)

y f = π f y f +Q0f β f + (Qm +Q f )
0γ f + ν f

Solving the two equations for ym and y f yields

ym =
1
∆

�
Q0mβm + πmQ0f β f + (Qm +Q f )

0
�

γm + πmγ f

�
+ νm + πmν f

�
(19)

y f =
1
∆

�
Q0f β f + π f Q0mβm + (Qm +Q f )

0
�

γ f + π f γm

�
+ ν f + π f νm

�
where ∆ = 1� πmπ f .

To demonstrate the identification of the peer effect parameters, first focus
on the equation for males in the mixed-sex sibling household. Define eQm =
Q0mβm/(1+ πm). We can rewrite the model for males from eq(18) as

ym = πmy f + (1+ πm) eQm + (Qm +Q f )
0γm + νm

, ym � eQm = πm

�
y f + eQm

�
+ (Qm +Q f )

0γm + νm (20)

Assumptions A1 and A2 imply

E(Qm �Q f )νm = E(Qm �Q f )ν f = 0 (21)

E(Qm �Q f )(Qm +Qg)
0γm = E(Qm �Q f )(Qm +Q f )

0γ f = 0

Premultiplying eq(20) by Qm � Q f and taking expectations, the identifica-
tion/rank condition for πm is

rank
�

E(Qm �Q f )
�

y f + eQm

��
= 1 (22)
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But

E(Qm �Q f )
�

y f + eQm

�
(23)

= E(Qm �Q f )

 
Q0f β f + π f Q0mβm

1� πmπ f
+

Q0mβm

1+ πm

!

= E(Qm �Q f )

 
Q f

0 β f

1� πmπ f
+Q0m

 
π f βm

1� πmπ f
+

βm

1+ πm

!!

= E(Qm �Q f )

0@Q f
0 β f

1� πmπ f
+Q0m

0@
�

1+ π f

�
βm�

1� πmπ f

�
(1+ πm)

1A1A
=

�
1+ π f

�
�

1� πmπ f

�E(Qm �Q f )

 
Q f

0 β f

1+ π f
+Q0b

βm

1+ πm

!

By the same line of argument, the identification condition for πg is

(1+ πm)�
1� πmπ f

�E(Qm �Q f )

 
Q f

0 β f

1+ π f
+Q0m

βm

1+ πm

!
6= 0 (24)

As we’ve ruled out degenerate cases for (πm, π f ), we see that the same condi-
tion guarantees identification of both peer effect coefficients.

A necessary condition for identification of the peer effect parameters is

βm

1+ πm
6= 0 or

β f

1+ π f
6= 0 (25)

If condition Ab holds, then βm
1+πm

6= β f
1+π f

is necessary and sufficient. Notice

that even if βm
1+πm

=
β f

1+π f
6= 0, so there is no heterogeneity in the sibling differ-

ence regression coefficients across gender, we can still identify the peer effects
provided there is enough heterogeneity in the covariate distribution such that

E(Qm �Q f )
�

Q f +Qm

�0
6= 0.

B. Evaluating βIV
m � βSD

m
If the sibling difference model eq(10) is correct, then assumption A1 implies

that for males from mixed sibling households

E(Qm �Q f )
�

ym � Q0mβSD
m

�
= E(Qm �Q f )Q0m

�
βIV

m � βSD
m

�
= 0 (26)

which just says that the difference in sibling covariates should be orthogonal to
the "level" disturbance. The relationship in (26) is easily estimated. But, using
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the results above, we can evaluate the left hand side of (26) in the presence of
peer and contextual effects. For mixed sibling households,

E(Qm �Q f )
�

ym � Q0mβSD
m

�
= E(Qm �Q f )

�
ym � eQm

�
= E(Qm �Q f )

�
πm

�
y f + eQm

�
+ (Qm +Q f )

0γm

�
by (20)

=
πm

�
1+ π f

�
�

1� πmπ f

� E(Qm �Q f )

 
Q f

0 β f

1+ π f
+Q0m

βm

1+ πm

!

+
1�

1� πmπ f

�E(Qm �Q f )(Qm +Q f )
0(γm + πmγ f )

A nonzero value for the right hand side would allow us to reject the sibling
difference model under the maintained assumption A1. So πm 6= 0 and the
identification condition A3, or violation of A2 are generically sufficient to allow
us to test the sibling difference regression model.

The value of E(Qm � Q f )
�

y f � eQ f

�
can be obtained using the same rea-

soning and looks similar–just switch all the m and f subscripts.
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Table 1: CNLSY 1990 (1810 sibling pairs) 

 Mean Std Deviation Min Max 

     BMI o       18.14473      4.908905      10.08769      116.4734 

      BMI y        17.388      5.892946      8.509078      116.4734 

       Height o      53.89779      7.849119            13            76 

       Height y      46.27293      8.747018            13            72 

       Weight o      1255.129      569.4895           336          3984 

       Weight y |      877.5823      438.4566           336          3280 

         Birth weight o      114.8652      20.59823            29           229 

         Birth weight y      116.8265      22.48571             6     248 

        Age o      9.403867      3.136103             2            19 

        Age y       6.38895      3.153716             2            17 

     Male o      .5049724      .5001134             0  1  

     Male y       .519337       .499764             0             1 

  

Correlations 

 BMI o BMI y Ht o Ht y Wt o Wt y BW o 

     BMI o     1.0000       

      BMI y 0.3667    1.0000      

       Height o  0.2783    0.0369    1.0000     

       Height y  0.2505   -0.0793    0.7324    1.0000    

       Weight o   0.6749    0.1648    0.8459    0.6423    1.0000   

       Weight y |   0.3710    0.3213    0.6644    0.8492    0.6768    1.0000  

         Birth weight o 0.0320    0.0025   -0.0285   -0.0692    0.0013   -0.0447    1.0000 

         Birth weight y   -0.0101    0.0098   -0.0265   -0.0383   -0.0191   -0.0058    0.4041 

 

  



Table 2: NCLSY [Height 1990] 

 (1) (2) (3) (4) (5) (6) 
 OLS IV IV IV IV GMM 
DEP VAR LHT LHTm LHTm-Qm m LHTf LHTf- Qf f LHT, LHT
       
AGEm 0.121**      
 (0.0551)      
LBWm 0.0853**      
 (0.0396)      
AGEm×LBWm -0.0105      
 (0.00802)      
AGEf 0.224***      
 (0.0642)      
LBWf 0.144***      
 (0.0368)      
AGEf×LBWf -0.0203***      
 (0.00762)      
AGEm  0.188***    0.256*** 
  (0.0700)    (0.00637) 
LBWm  0.128***    0.244*** 
  (0.0415)    (0.0103) 
AGEm×LBWm  -0.0184**    -0.0449***
  (0.00832)    (0.00129) 
πm   -0.0103   -0.131*** 
   (0.0519)   (0.00441) 
AGEf    0.259***  0.385*** 
    (0.0610)  (0.00660) 
LBWf    0.178***  0.408*** 
    (0.0347)  (0.0108) 
AGEf×LBWf    -0.0282***  -0.0705***
    (0.00700)  (0.00134) 
πf     -0.0217 0.0436*** 
     (0.0572) (0.00594) 
       
Observations 797 811 812 811 812 1608 
R-squared 0.431 0.412 0.015 0.500 0.037  
Qm & Qf Exch  N N N N  
IV rank test (pv)  0 0 0 0  

m= f  test (pv) 0.0234      
SD test (pv)  0.6535  0.5410   

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 



Table 3: NCLSY [Weight 1990] 

 (1) (2) (3) (4) (5) (6) 
 OLS IV IV IV IV GMM 
DEP VAR LWT LWTm LWTm-Qm m LWTf LWTf- Qf f LWT, LWT
       
AGEm 0.00831      
 (0.100)      
LBWm 0.0674      
 (0.179)      
AGEm×LBWm 0.0146      
 (0.0208)      
AGEf -0.124      
 (0.129)      
LBWf -0.233      
 (0.222)      
AGEf×LBWf 0.0445*      
 (0.0267)      
AGEm  -0.0742    -0.330*** 
  (0.0762)    (0.0201) 
LBWm  -0.0823    -0.270*** 
  (0.115)    (0.0318) 
AGEm×LBWm  0.0269*    0.0825*** 
  (0.0156)    (0.00415) 
πm   0.169   0.0119 
   (0.195)   (0.0345) 
AGEf    -0.679***  -0.142*** 
    (0.128)  (0.0264) 
LBWf    -0.889***  -0.336*** 
    (0.185)  (0.0465) 
AGEf×LBWf    0.156***  0.0473*** 
    (0.0271)  (0.00549) 
πf     -0.520*** -0.665*** 
     (0.128) (0.0434) 
       
Observations 797 811 811 811 811 1508 
R-squared 0.336 -0.423 -0.384 -0.550 0.713  
Qm & Qf Exch  N N N N  
IV rank test (pv)   0 1.34e-06 0 0.000932  

m= f  test (pv) 0.4321      
SD test (pv)  0.0670  0.0004   

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 



Table 4: NCLSY [BMI 1990] 

 (1) (2) (3) (4) (5) (6) 
 OLS IV IV IV IV GMM 
DEP VAR LBMI LBMIm LBMIm-Qm m LBMIf LBMIf- Qf f LBMI, LBMI
       
AGEm 0.247*      
 (0.128)      
LBWm 0.131      
 (0.110)      
AGEm×LBWm -0.00567      
 (0.0224)      
AGEf 0.283**      
 (0.134)      
LBWf 0.197**      
 (0.0974)      
AGEf×LBWf -0.0166      
 (0.0199)      
AGEm  0.412***    0.186*** 
  (0.0984)    (0.0115) 
LBWm  0.200***    0.325*** 
  (0.0635)    (0.0163) 
AGEm×LBWm  -0.0202    -0.0167*** 
  (0.0128)    (0.00233) 
πm   -0.0865***   -0.0970*** 
   (0.0315)   (0.00504) 
AGEf    0.314***  0.189*** 
    (0.117)  (0.0119) 
LBWf    0.198***  0.284*** 
    (0.0707)  (0.0168) 
AGEf×LBWf    -0.0172  -0.0157*** 
    (0.0146)  (0.00243) 
πf     0.0492 0.120*** 
     (0.0481) (0.00846) 
       
Observations 797 811 811 811 811 1608 
R-squared 0.522 0.542 0.149 0.583 -0.087  
Qm & Qf Exch  N N N N  
IV rank test (pv)   0 0 0 0  

m= f  test (pv) 0.2610      
SD test (pv)  0.6916  0.9767   

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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