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Abstract

This paper develops a theoretical framework about firms’ quality, scope and bound-

ary decisions. In our framework, a firm’s choice of scope (or number of suppliers) affects

its revenue share in equilibrium. With a larger scope, the firm has to hire more sup-

pliers, which means the firm as well as each supplier get smaller shares of revenue in

equilibrium, thus their incentive for investing in inputs qualities are lower, resulting in

lower quality outputs, and thus lower revenue. Therefore, there is a trade off between

larger scope (which implies an output with higher functionality), and higher revenue

share (which improves the incentive of quality investments and implies an output with

higher quality). In equilibrium, a firm’s organizational choices will depend both on

its productivity, and the kind of industry it is in. In industries where scope and firm

productivity are complements, higher productivity firms choose to integrate and lower

productivity firms choose to outsource. In industries where scope and firm productivity

are substitute, higher productivity firms choose to outsource while lower productivity

firms choose to integrate.
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1 Introduction

In many markets, such as those for TVs and white goods, there are pronounced differences

in the role played by quality. For TVs, quality is the key to success: the largest firms have

the highest quality, they have the highest level of R&D and patenting, and they rely on an

extensive, vertically integrated supply network in which suppliers also invest in developing

quality. In refrigerators, the key to success is productive efficiency: the largest firms have low

quality (they have a past record of R&D and patenting that established the brand name),

and rely on an extensive network of arm’s length suppliers.
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1 Introduction
Supplier Networks and Relationship-Specific Investments in the TV Market

Company
Market 
Share

Quality 
(Share sold 

to rich)

Share of 
Shipments 

Owned Suppliers

Share of 
Suppliers 
Owned

Buyer 
Patents Comment on Patents (ordered by shipments)

Samsung 19% 22% 80% 9 33% 1,633 Tatung 78; AU Optronics 378; Hannstar 212
Sony 14% 31% 89% 6 83% 431 AU Optronics 378
Vizio (Amtran) 13% 6% 0% 2 0% 0 Foxconn 64; Amtran 11
LG Electronics 11% 17% 47% 6 33% 1,239 AU Optronics 378; TPV 0;  
Panasonic 8% 3% 77% 8 50% 459 Ranko 0; B M Nagano 0; Hitachi 1,114

Mitsubishi Small 5% 25% 4 50% 222 Futaba 0; Samsung 1,663
Toshiba Small 4% 1% 8 13% 535 AU Optronics 378; BenQ 21; Orion 3
Phillips Small 2% 27% 11 9% 326 LG Philips 552; Quanta 14; Suzhou 0
Sharp Small 2% 46% 11 36% 1,589 Orion 3; Funai 28; Goh 0; Hirata 0; Kuroda 0

Buyer Name Volume

Share of 
Volume 
Owned

Number of 
Suppliers

Share of 
Supplier 
Owned

Buyer 
Patents Supplier Patents

LG Corp 97,131 1.00 13 0.38 475 All are 0
General Electric Co (GE) 84,713 0.00 21 0.10 304 Samsung 364; Sampo 0; Ghuangsho Wanbao 0
Sanyo Electric Co Ltd 38,762 0.00 9 0.11 137 Samsung 364; Matsushita 95
Haier Group 14,088 0.74 7 0.29 7 All are 0
Whirlpool Corp 11,918 0.03 10 0.20 498 Xingxing 0; Daewoo 98; Meda 0
The Mackle Company 5,972 0.00 11 0.00 0 All are 0
BSH Bosch & Siemens 2,959 0.34 2 0.50 106 Daewoo 98
Emerson 2,541 0.00 1 0.00 18 Totomak 0
Costco Wholesales Corp 1,829 0.00 2 0.00 0 Xingxing 0; Whirlpool 498
Sub-Zero Freezer Co Inc 297 0.00 1 0.00 12 Scott Tech 0

Table 1: Supplier Networks and Relationship-Specific Investments in the TV and Fridge
Markets

• Firms choose quality endogenously and we see that in equilibrium firms have di↵erent

qualities. In Antras, in equilibrium, all have the same quality.

1

Table 1: Supplier Networks and Relationship-Specific Investments in the TV and Fridge
Markets

[Weak — empirics are still to be done] Table 1 provides some evidence of this. The top

panel deals with TVs. The two top suppliers have the highest quality (as measured by the

share of sales to customers with income in excess of $200,000 as well as by Consumer Reports),
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80% of their purchases from suppliers are from vertically integrated suppliers, and both have

large numbers of TV-related patents and buy from vertically integrated suppliers, and both

have large numbers of TV-related patents and buy from suppliers with large numbers of

TV-related patents (including AU Optronics, a high-end manufacturer of flat panels). In

contrast, the lower-quality firms (Vizio) have small numbers of suppliers who are at arm’s

length and have modest numbers of patents. In the refrigerator market, the typical firm has

an even larger number of suppliers, but these are typically not owned by the firm and often

have more fridge-related patents than the firm.

This paper examines the nexus between quality, supplier networks, and the make-or-buy

decision. It tries to understand both across industries and within industries why we see such

variation. We begin with the observation that consumer’s valuations of products depends

two dimensions of quality. First, it depends on what we refer to as ’functionality’. The

archetypical example is a smartphone such as Apple’s iPhone 4, which embodies dozens of

functions including phone, wifi, camera, etc. Less archetypically, but more common empiri-

cally, functionality deals with ’product lines’: a firm produces many sizes of TVs and many

types of refrigerators. The second dimension of consumer’s valuation is the quality of each

function/product, here understood in a more conventional sense of reliability or better de-

sign. We model the firm’s choices of functions or, alternatively, the size of the product line.

In conjunction with suppliers it then comes up with a blueprint for exactly what the function

will look like. We assume that each function is developed in conjunction with a single sup-

plier and that the development of a blueprint requires relationship-specific, non-contractible

investments from both the firm and its supplier. The larger are the investments, the higher

is the quality of the function.

This paper identifies two determinants of functionality and quality of individual functions.

First, the greater the functionality–i.e., the larger the number of suppliers–the greater is the

hold-up problem. This is modeled by assuming that the firm and all N suppliers engage

in multilateral bargaining so that, roughly speaking, each receives a share 1/(N + 1) of
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revenues. This creates a tension: products with many functions and hence many suppliers

generate more revenue, but also create a larger hold-up problem. For reasons familiar from

the property rights theory of the firm (specifically, Antràs (2003)) to overcome the hold-up

problem larger firms will vertically integrate their suppliers.

The second determinant deals with a managerial tension: some managers are good at cut-

ting costs, others are good at identifying functions that are valued by consumers and building

the supplier networks needed to deliver these functions. Specifically, in ”ideas-oriented’ in-

dustries more productive firms are firms with a high marginal return to more functions

(productivity and functions are complements in the profit function). These industries be-

have like TVs in that the most productive firms will have many integrated suppliers and will

have high levels of relationship-specific investments in each function’s quality. The starting

point of this paper is two strands of the literature. The first is work by Antràs (2003) and

Antràs and Helpman (2004) on the vertical integration decision when there is a single firm

and supplier, each making relationship-specific, non-contractible investments. The second

is work by Acemoglu et al. (2007) about the optimal size of production networks in which

a single firm (who makes only contractible investments) deals with many suppliers who are

making non-contractible investments. We depart from this literature in a large number of

ways.

2 Setup

2.1 Preferences and Production

Representative consumer’s preferences:

U =

{∫
ω

[ϕ(ω)νy(ω)](σ−1)/σ dω

}σ/(σ−1)
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where ω is a product index, y(ω) is a consumption level, ϕ(ω)ν is a demand shifter (ν is a

parameter and ϕ is explained in detail below), and σ is the elasticity of substitution. We

assume σ > 1 and ν(σ − 1) < 1.

Production of a variety has three stages. The firm first decides on a level of functionality

N , that is, on the number of functions the product will have or on the number of products in

the product class. For example, an iPhone 4 has many functions (wifi, voice recognition, apps

etc.) and a Mercedes has many products (sports car, sedan etc.). Second, the firm identifies

N suppliers, each of which will help the firm develop one of the functions. This blueprint

or ‘ideas’ stage involves non-contractable inputs from both the firm and the supplier. Third,

in the ‘production’ stage the final good is produced in a complete-contracting environment.

The ideas stage is the key stage and we discuss it in detail next.

In the ideas stage each function is developed using the shared inputs of the firm and the

supplier. For simplicity, we assume that each function is developed by the firm with the help

of a single supplier.1 A function can be of variable quality. For example, voice recognition

is better in some cell phones than in others and compressors are better in some refrigerators

than in others. Let qj be the quality of function j = 1, . . . , N . It depends on the firm’s input

hj and the seller’s input mj:

qj = hηjm
1−η
j /η̂

where η̂ ≡ ηη(1− η)1−η. Quality qj and inputs (hj,mj) are non-contractible.

Consumer valuation of functionality and function quality are captured by the demand

shifter

ϕ = D(N, θ) min{q1, q2, ..., qN} (1)

where θ ∈ [0, 1] is a firm index that replaces ω; it plays no role yet, but we will later interpret

it as the firm’s productivity as in Melitz (2003).

The particular functional form in equation (1) is not all that important to our argument.

1It is possible to allow for multiple suppliers of a single function — this would allow the firm to reduce
the hold-up problem.
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We obtain similar results with either a utility function that is CES in functions (of which

equation (1) is the special case of perfect complements) or with O-Ring utility.2 What is

very important is that the buyer and all suppliers are essential in a Shapley-value sense.

That is, ϕ = 0 if any player is not part of the team. This will ensure that the buyer’s

Shapley value is decreasing in the size of the team (N). Restated, essentiality rather than

the functional form of equation (1) is what provides our key modelling assumption, namely,

that more functionality comes at the cost of greater hold-up.3

The marginal cost of input j ∈ {h,m} is Cj(N, θ). For simplicity, we assume that

Cj(N, θ) = wjC(N, θ) where the constant wj captures the prices of inputs and other things

that are log-separable from N and θ. Note that both D and C depend on θ. Not surprisingly,

we will find (roughly) that only D/C matters. This is the usual point that demand shifters

and productivity are isomorphic. We assume below that D/C is increasing in θ.

Demand for the final product y is

y = Aϕαp−σ where α ≡ ν(σ − 1) ∈ (0, 1).

The firm is a monopolistic competitor and sets price equal to [σ/(σ − 1)]c. This generates

revenues

R = Âϕα = Â [D(N, θ) min{q1, q2, ..., qN}]α (2)

where Â ≡ σ−σ[(σ − 1)/c]σ−1A.

2.2 Timing

1. The firm and all the suppliers observe θ.

2For CES,
{∑N

j=1 q
β
j

}1/β

which, under the symmetry that we impose below, becomes N1/βq. For O-Ring,

B(N)ΠN
j=1qj , which when symmetry is imposed and logs taken becomes lnB(N)N ln(q). These different

specifications affect the functional form of the optimal inputs (hj ,mj), but otherwise do not matter.
3In contrast, AAH do not assume that players are essential. In their setup, the Shapley value is independent

of N .
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2. The firm chooses organizational form k = O, V , adopts technology N , and offers con-

tract {τj}Nj=1, where τj is an upfront payment to supplier j.

3. Potential suppliers decide whether to apply for the contracts and the firm chooses N

suppliers from applicant pool.

4. The firm and the suppliers simultaneously choose their investment levels {(hj,mj)j=1,2,...,N}.

5. The firm and the suppliers bargain over the division of future revenue. At this stage,

the firm and the suppliers can decide to withdraw their investments.

6. Ideas are generated (ϕ is determined). Output is produced and sold. Revenue is divided

according to the bargaining agreement.

2.3 Hold-up

We assume that in the negotiation stage, if supplier j decides to withdraw from the production

process, the quality of his input drops from qj to ∆kqj, where k ∈ {O, V } and ∆O < ∆V .

3 Equilibrium

3.1 SSPE

We define an SSPE as a tuple {N, τ, h,m}, where N is the firm’s choice of functionality. τ

is the firm’s up-front payment to every supplier, that is, τj = τ for j = 1, ..., N . Similarly,

h is the firm’s investment for each function, and m is each supplier’s investment. That is

(hj,mj) = (h,m), for j = 1, ..., N .

SSPE can be characterized by backward induction as in AAH. Since this is familiar (and

notationally difficult) territory, we jump immediately to the revenue in any SSPE. This is

given by R = Â {D(N, θ)hηm1−η/η̂}α.
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Lemma 1. In every SSPE4, the firm’s Shapley value under organizational form k ∈ {O, V }

is γk(N)R where

γk(N) =
δkN + 1

N + 1
.

where δk ≡ (∆k)α. Each seller’s Shapley value is (1− γk(N))R/N .

In AAH, the firm’s share of revenue γk is independent of N . Here, organizations with more

suppliers face larger hold-up problems. This is reflected in the fact that γk is decreasing in N .

This has an important implication. If in our model γk were independent of N then the choice

of number of suppliers and choice of organizational form would not interact. Specifically, the

choice of organizational form would be determined as in Antràs (2003) or as in AH (2004)

with fV = fO i.e., if η is large all firms integrate and if η is small all firms outsource. Here, a

productive firm may want to have a large N and this will lead to a smaller share of revenue

(a small γk); the firm may find it optimal to offset this loss of revenue by moving from the

O form to the V form, which has the effect of increasing the firm’s revenue share from γO

to γV . In essence, productive firms will want to vertically integrate to offset the

endogenously greater hold-up problem that comes with having more suppliers.

3.2 Optimal Choice of Idea Inputs (hj,mj)

The firm’s problem is familiar from Antras (2003) and Antras and Helpman (2004). It may

be written as:

max
(h1,h2,...,hN )

γk(N)
Â

η̂α

[
D(N, θ) min

1≤j≤N
{hηjm1−η

j }
]α
− chC(N, θ)

N∑
j=1

hj (FP1)

s. t. mj = arg max
mj

1− γk(N)

N

Â

η̂α

[
D(N, θ) min

1≤j≤N
{hηjm1−η

j }
]α
− cmC(N, θ)mj (IC1)

τj +
1− γ(N)

N

Â

η̂α

[
D(N, θ) min

1≤j≤N
{hηjm1−η

j }
]α
− cmC(N, θ)mj ≥ 0 (PC1)

Note that the firm does not choose mj. The suppliers choose this subject to the incentive

4The existence of a SSPE is proved in Appendix ?.
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compatibility constraint (IC1). The participation constraint (PC1) means that the supplier’s

surplus (which equals his up-front payment τj, plus his Shapley value, less his cost of invest-

ment) should be greater than or equal to his outside option. We set the outside option to 0

as this will allow us to exploit some powerful monotone comparative statics tools.

We assume that α < 1 so that the supplier’s problem (the maximand of IC1) and the

firm’s problem (FP1) are concave.

Assumption 1. 0 < α < 1

Lemma 2. In any SSPE, the unique solution (hj,mj) to the firm’s problem is:

mk(N, θ, η) = κA
1− η
cm

{[
γk(N)

]αη [
1− γk(N)

]1−αη}1/(1−α)
[
D(N, θ)α

NC(N, θ)

]1/(1−α)

(3)

hk(N, θ, η) =
γk(N)

1− γk(N)

cm/(1− η)

ch/η
mk(N, θ, η). (4)

where κ ≡ {α(σ − 1)σ−1σ−σc1−σ}1/(1−α).

These are messy expressions, but ones that are not fundamentally new. The only new

insight comes from equation (4): h/m will vary within an industry not only because different

firms choose different organizational forms k, but also because they choose different-sized

organizations and this effects hk/mk via the effects of N on γk. Thus, our framework offers

a natural explanation of the enormous within-industry heterogeneity in relationship-specific

investments that we see in the data.5

5There are two main (old) insights from equations (4). First and obviously, the optimal input levels are
both less that the first-better (contractible) input levels. Second, hk/mk equals the first-best input ratio if
and only if γk = 1/2. This points to how the Grossman-Hart logic plays out in this model. When η is large
so that the firm’s investment is most important, the firm wants to choose a form that will raise hk/mk. This
is the form with the larger γk and, since γV (N) > γO(N), vertical integration is preferred.
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3.3 Optimal Choice of Organization Size N and Form {O, V }

Plugging in the Lemma 2 optimal inputs into the firm’s problem FP1, the firm’s problem

simplifies to

max
k∈{O,V },N∈(1,∞)

Πk(N, θ, η) = κAG(N, θ)Ψ(γk(N), η), (P2)

where

G(N, θ) ≡
[

D(N, θ)

NC(N, θ, η)

] α
1−α

,

Ψ(γ, η) ≡ 1− α[γη + (1− γ)(1− η)]

[γη(1− γ)1−η]−
α

1−α
,

and κ is a constant that depends on (σ, η, c, ch, cm, ν).

It is now apparent that only G = D/(NC) matters, not D or NC separately.6 Note that

up to this point we have not said anything about θ. It is now clear that the appropriate

assumption is that G is increasing in θ.

Assumption 2. G(N, θ) is strictly increasing in θ ∈ [0, 1].

This is a good spot to compare our model with that of Antras and Helpman (2004,

equation 10), where N = 1. Their model has an almost identical profit function: In our

notation it is basically Πk(1, θ, η) = θσ−1Ψ(γ, η) where, as is standard in Melitz-like models,

G(1, θ) = θσ−1. However, there are four differences of note. (1) N 6= 1 is a choice variable. (2)

There are no fixed costs of organizations (fV and fO in their notation). Recall that in their

model, when there are no fixed costs as is the case here (or even when there are fixed costs

and fV = fO) then their model reduces to Antras (2003). That is, when η is small all firms

outsource and when η is large all firms vertically integrate. (3) The most important difference

is that Ψ(γk(N), η) depends on N . In Antras (or Antras and Helpman with fV = fO), the

firm chooses the organizational form k that maximizes Ψ(γk(1), η) where γk(1) and η are

6Note that in the expressions for hk and mk, what matters is Dα/NC, so D and NC matter separately.
However, they only matter for the levels of hk, mk and hence for quality qj . They do not matter separately
for anything else whatsoever.
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parameters. In our setting, there is an interaction between the choice of organization and

the choice of functionality. The larger is the organization (N), the smaller is γk. This creates

a tension: the firm might want to grow bigger in order to have higher demand, but this

exacerbates the hold-up problem. In short, we have heterogeneity of organizational forms

without fixed costs because we have endogenized the extent of the hold-up problem.

This is also a good spot to compare our profit function to that in AAH. First, in their

model only the supplier makes a relationship-specific investment (η = 0) so that the firm

always outsources. Second, in their model the Shapley value is completely determined by

exogenous parameters so that there is no trade-off between size and hold-up.

We now make assumptions that make it easier to solve for the optimal N . We will use

first-order conditions and so ignore the integer constraint on N . The following assumption

ensures that there is a unique optimal Nk and that it is bounded away from 1 and infinity.

Assumption 3. (1) ∂2 lnG(N,θ)
∂(lnN)2

< 0, (2) limN→1
∂ lnG(N,θ)
∂ lnN

> 1
2
, and (3) limN→∞

∂ lnG(N,θ)
∂ lnN

< 0.

Note that some of our main results rely on monotone comparative static arguments and thus

do not require convexity or uniqueness.7

4 Two Types of Industries

There are two types of industries, ideas-oriented and cost-oriented. In ideas-oriented in-

dustries, consumers highly value functionality N so that DN > 0 is salient. Further, high-

productivity firms are also the firms that develop the best functions in the sense that each

function generates a high marginal revenue. Mathematically, DN is increasing in θ or D(N, θ)

is log supermodular in (N, θ). One can get at this same notion of ideas-oriented industries

from the cost side by noting that in these industries, high-productivity firms are really good

at managing the integration of complex designs. With complex designs, more functional-

ity raises the marginal costs for each supplier because each firm-supplier pair must ensure

7This might be overstated: Be more careful.
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its design is compatible with all the other suppliers’ designs. That is CN > 0. However,

high-productivity firms are better able to manage these rising costs: CN is decreasing in θ or

C(N, θ) is log submodular in (N, θ). Whether tackled from the demand side or the supply

side, both imply the following:

Assumption 4. Ideas-oriented industries: G(N, θ) is log supermodular in (N, θ).

In cost-oriented industries, the manager is good at keeping costs down (Cθ < 0), but

this focus on lower costs is to the exclusion of a focus on good functionality. Porter’s (1996)

“What is strategy” is precisely about the tension between being cost-efficient and being able

to build a product with many intertwined functions that support each other and cannot be

disentangled (cream-skimmed) by competitors. This means that in cost-oriented indudstries,

high-productivity firms do not get a big bang for their functionality. Mathematically, DN is

decreasing in θ.

Assumption 5. Cost-oriented industries: G(N, θ) is log submodular in (N, θ).

5 Ideas-Oriented Industry

5.1 Heterogeneity of Organizational Forms

Theorem 1. There exist two threshold values of η, η and η, with 0 < η < η < 1, such that:

1. For η < η industries, all firms choose outsourcing;

2. For η > η industries, all firms choose vertical integration;

3. For η < η < η industries, there exists a θ∗(η), such that

(a) firms with θ < θ∗(η) choose outsourcing;

(b) firms with θ > θ∗(η) choose vertical integration;

(c) θ∗(η) is strictly decreasing in η.
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Compared to Antràs (2003), AH (2004, 2008) and AAH (2007), we have heterogeneity of

organizational form within industry that does not rely on assumption about fixed organiza-

tional cost. In Antràs (2003), all firms outsource in small η industries. In AH (2004, 2008),

productive firms integrate because of higher fixed cost of integration (fV > fO). In AAH

(2007), firms never integrate because there is not firm relationship-specific investment.

5.2 The Trade-Off Between Hold-up and Organizational Size

Theorem 2. In industries with η < η < η, the following results are true:

1. NO(θ, η), NV (θ, η) and N∗(θ, η) are strict increasing in θ.

2. γO(NO(θ, η)) and γV (NV (θ, η)) are strictly decreasing in θ.

3. NO(θ∗(η), η) < NV (θ∗(η), η) and γO(NO(θ∗(η), η)) < γV (NV (θ∗(η), η)).

Parts 1 and 2 of theorem 2 capture the key tradeoff of the paper: a more productive firm has

a larger supplier network (larger N), but also a larger hold-up problem (a smaller Shapley

value or share of revenue γ). Part 3 deals with a firm that is just indifferent between the two

organizational forms. As the firm moves from O to V , two offsetting things happen to its

share of revenue. The direct effect is the improved outside option (δO < δV ), which raises its

share of revenue. The indirect effect is that the firm increases it supplier network (NO < NV )

which lowers the firm’s share of revenue. Part 3 states that the direct effect dominates.

5.3 Component Quality q, Overall Quality ϕ, and Revenues R

By Lemma 2

qk(N, θ, η) =

{
αÂ

η̂1−α
D(N, θ)αγk(N)η[1− γk(N)]1−η

NC(N, θ, η)

}1/(1−α)

,

ϕk(N, θ, η) =

{
αÂ

η̂1−α
D(N, θ)γk(N)η[1− γk(N)]1−η

NC(N, θ, η)

}1/(1−α)

.
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and R is proportional to ϕk(N, θ, η).

Log supermodularity is enough for our previous results. However, it is not enough to

ensure that higher-productivity firms have higher quality and revenues. The issue is that

we have argued that either DN > 0, CN > 0 or both so that GN is not signed. The

natural assumption in ideas-oriented industries is that the demand-side benefits of higher

functionality are not too offset by supply-side costs.

Assumption 6. Ideas-oriented industries: ∂ lnG/∂ lnN > −1/2.

Theorem 3. q(θ, η), ϕ(θ, η) and R(θ, η) are strictly increasing in θ.

6 Ideas-Oriented Industries – Intuition (NEEDS MA-

JOR RE-WRITE)

In ideas-oriented industries, log supermodularity of G(N, θ, η) immediately implies that

Nk(θ, η) is increasing in θ. More productive firms have more functionality and a larger

number of suppliers.

Consider Antràs (2003) or Antràs and Helpman (2004), which here means that N = 1 is

fixed. They show that if the firm could choose its revenue share (call it γ), it would choose γ

to maximize Ψ(γ). The optimal γ is given in equaiton (10) of Antràs and Helpman (2004).8

Generalizing this to our setting, suppose the firm could choose N and γ, or in terms of

primatives, N and δ. δ ∈ [0, 1) is a continuous choice variable that replaces the parameters

δO and δV . As in 1, define γ(N, δ) ≡ (δN + 1)/(N + 1). The firm chooses (N, δ) to maximize

profits or, equivalently log profits

π(N, δ) ≡ g(N, θ) + ψ(γ(N, δ), η))

8In our notation their equation (10) is γ(η) =
{

[η(αη + 1− α)−
√
η(1− η)(1− αη)(αη + 1− α)]/[2η − 1]

}
.
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where g = lnG and ψ ≡ ln Ψ. The first order conditions are ψγγδ = 0 or

ψγ(γ, η) = 0 (5)

and gN + ψγγN = 0 or

gN(N, θ) =
1− δ

(1 +N)2
ψγ(γ, η) (6)

where (1− δ)/(1 +N)2 = −∂γ/∂N .

Equation (5) establishes that the optimal choice delivers an optimal γ, denoted γ(η), is

independent of θ. The δ(N) curve is the set of pairs (N, δ) for which γ(N, δ) = γ(η) i.e.,

[1 + δ(N)]/[1 +N ] = γ(η) or

δ(N) = γ(η) + [γ(η)− 1]/N.

δ(N) is plotted in figure 1. Equation (6) establishes that the optimal N depends on θ. For

example, if g is supermodular than N increases in θ. In this case, less-productive firms are

to the southwest of δ(N) and more-productive firms are to the northeast.9

9By assumption 3, N is finite so that δ(N) has an upper bound γ(η). Since N ≥ 1, δ(N) has a lower
bound 2γ(η)− 1.
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Figure 1: δ(N) in Ideas-Oriented Industries

When η is close to either 0 or 1, figure 1 shows that Antras and Helpman logic goes

through exactly as in their work. They show that ψγ < 0 above δ(N) and ψγ > 0 below

δ(N). When η is close to 0 then γ(η) is close to 0 and the δ(N) curve is everywhere below

δO. Hence δV > δO > δ(N) for all N . But then for all N , ψγ < 0 and the firm does best by

lowering γ(N, δ). Since γ(N, δ) is increasing in δ, the firm does best by lowering δ. Restated,

the firm prefers δO to δV or outsourcing to vertical integration.

When η is close to 1, γ(η) is close to 1 and the δ(N) curve is everywhere above δV . Now

ψγ > 0 and the argument is reversed: the firm prefers to raise δ. Hence, the firm prefers δO

to δV or outsourcing to vertical integration.

For intermediate values of

so that δV > δO > γ(η). That is, very small, δV > δO > δ(N), all firms choose outsourcing

because δO is closer to their ”ideal” choices of δ and N . If η is very large, δO < δV < δ(N),
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all firms choose integration because δV is closer to their ”ideal” choices of δ and N . So there

must be an η in between where some θ such that firms with productivity θ∗ is indifferent

between outsourcing and vertical integration.

of all the firms within an industry. δ(N) is an ”iso-γ” line because the γ that maximizes

ψ does not depend on firms’ productivities and is thus the same for all firms within the same

industry. As AH shows, ψγ < 0 above δ(N) and ψγ > 0 below δ(N). Since N is fininte by

our assumption, δ(N) has an upperboud γ(η) and a lower bound 2γ(η)−1. If η is very small,

δV > δO > δ(N), all firms choose outsourcing because δO is closer to their ”ideal” choices of

δ and N . If η is very large, δO < δV < δ(N), all firms choose integration because δV is closer

to their ”ideal” choices of δ and N . So there must be an η in between where some θ such that

firms with productivity θ∗ is indifferent between outsourcing and vertical integration. Call it

θ∗(η). Firms with the low θ are to the SW of δ(N). They would want to outsource because

δO is closer to their ideal choice. As θ increases, firms’ choices of δ and N moves to the NE.

When a firm’s ideal choice is above δO, they would want a higher δ. They can only do so

by choosing δV , which might be too large for some firms such that it contracts these firms’

profits. So these firms choose δO even though it is not ideal. But as θ increases, the ideal

choices of firms with productivity θ move NE. δO gets farther and farther away from these

firms’ ideal choice, while δV gets closer. Until θ reaches θ∗(η), where firms with productivity

θ∗(η) are indifferent between choosing δO and δV . When θ > θ∗(η), firms will find it optimal

to choose δV because δO is way too low for them.

Turning to theorem 2, for a firm that is indifferent between outsourcing and vertical

integration, denote by NO and NV his choice of funtionality under outsourcing and vertical

integration, and γO and γV as his revenue shares under these two organizational forms.

Since (δO, NO) is below δ(N) and (δV , NV ) is above δ(N), it must be that ψγ(γ
O, η) > 0 and

ψγ(γ
V , η) < 0. According to the first order condition, this means that gN(NO, θ∗, η) > 0 and

gN(NV , θ∗, η) < 0. Since gNN < 0, this implies that NO < NV . Thus if this θ∗(η) firm jumps

from outsourcing to vertical integration, his choice of N increases.

17



We know that a firm’s revenue share γ = (δN+1)/(N+1) is increasing in δ and decreasing

in N . So as the θ∗(η) jumps from outsourcing to vertical integration, his δ increases, which

increases γ, but his N increases, which decreases γ. Which effect dominates? If we think of

the firm’s gain by choosing vertical integration, the answer is straightforward. As θ increases,

firm would increase N within the same organizational form. Meanwhile, γ decreases because

δ is constant within the same organizaitonal form. As θ increases even further, firms will find

their revenue share γ has decreased to a point that they want to increase it by jumping to

V . Since the firm’s purpose for jumping into V is a larger revenue share, he will not chooce

too large an N such that γ is actually lower than when he was outsourcing. This means that

even though the firm will choose a larger N , he will not make N so large that γV is actually

lower than γO. So it must be that γV > γO.

6.1 Cost-Oriented Industry

Recall that in cost-oriented industries, G(N, θ) is log supermodular. This immediately implies

that the most productive, high profitability firms will have smaller supplier networks. This

means in Figure 1, high θ is to the SW of δ(N). So high productivity firms will find it optimal

to outsource because δO is closer to their ideal choice, vice versa.

Theorem 4. There exist two threshold values of η, η and η, with 0 < η < η < 1, such that:

1. For η < η industries, all firms choose outsourcing;

2. For η > η industries, all firms choose vertical integration;

3. For η < η < η industries, there exists a θ∗(η), such that

(a) firms with θ > θ∗(η) choose outsourcing;

(b) firms with θ < θ∗(η) choose vertical integration;

(c) θ(η) is strictly increasing in η.

Theorem 5. In industries with η < η < η, the following results are true:
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1. NO(θ, η), NV (θ, η) and N∗(θ, η) are strict decreasing in θ.

2. γO(NO(θ), η) and γV (NV (θ), η) are strictly increasing in θ.

3. NO(θ∗(η), η) > NV (θ∗(η), η) and γO(NO(θ∗(η), η)) < γV (NV (θ∗(η), η)).

6.2 Quality and Revenues – Approach 1

As before, higher productivity translates into higher profits, but it need not translate into

lower In addition, higher functionality does not raise D by very much (DN is small) so that

the small benefits of increased functionality are offset by the higher costs (∂(NC)/∂N =

NCN + C > 0):

Assumption 7. Cost-oriented industries: ∂ lnG/∂ lnN < −1/2.

Theorem 6. q(θ, η), ϕ(θ, η) and R(θ, η) are strictly increasing in θ.

6.3 Quality and Revenues – Approach 2

Alternatively, we could drop assumption 7 and keep assumption 6. Then we would get that

higher productivity firms have lower component quality q, lower overall quality ϕ and lower

sales. Then to generate higher sales, we could load productivity onto the marginal cost of

the production stage (c above). Specifically, if we assume that in cost-oriented, c is sharply

decreasing in productivity θ, then I think we would get:

Theorem 7. q(θ, η) and ϕ(θ, η) are strictly decreasing in θ and R(θ, η) is strictly increasing

in θ.
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A Proof of Lemma 1

Each player’s Shapley value is the average of her contributions to all coalitions that consist

of players ordered below her in all permutations of the order. A coalition generates one of

three possible values.

1. In a coalition without the firm, the value is 0.

2. In a coalition with the firm and all the suppliers, the value is revenue R = ÂD(N, θ)αqα,

where q = hηm1−η/η̂ as in the statement of the Lemma.

3. In a coalition with the firm, but not all the suppliers, the minimum quality is δkq so

that the value is revenue δkR = ÂD(N, θ)α(∆kq)α, where δk ≡ (∆k)α.

Consider the firm’s contribution. Pick a permutation (a ranking of each player from 0

to N) and let g(B) be the firm’s rank in this permutation. If g(B) < N then there is at

least one supplier not in the coalition and the firm’s contribution is δkR i.e., case 3 less case

1. If g(B) = N then all suppliers are in the coalition and the firm’s contribution is R i.e.,

case 2 less case 1. The share of permutations with g(B) = N is 1/(N + 1). The share of

permutations with g(B) < N is N/(N + 1). Therefore, the firm’s Shapley value is

R
1

N + 1
+ δkR

N

N + 1
=
δkN + 1

N + 1
R

The value generated by a coalition of all players is R (case 2). Since the Shapley value is

efficient, suppliers must receive

R− δkN + 1

N + 1
R =

1− δk
N + 1

NR

The Shapley value is symmetric so that all suppliers have the same Shapley value. Di-

viding the above expression by the N suppliers gives each supplier’s Shapley value: [(1 −

δk)/(N + 1)]R.
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B Shapley Value under CES and O-Ring Production

Function

B.1 CES

Suppose the demand shifter is:

ϕ = D(N, θ)N−1/βQ

where Q =
(∑N

j=1 q
β
j

)1/β

. In a symmetric equilibrium, qj = q for all j. Revenue is

R = Âϕα = ÂD(N, θ)αqα. The scale effect from CES is killed by N−1/β. Same as the

previous section, a coalition generates one of three possible values:

1. In a coalition without the firm, the value is 0.

2. In a coalition with the firm and all the suppliers, the value is revenue R = ÂD(N, θ)αqα.

3. In a coalition with the firm, but not all the suppliers, the overall quality is Q =[
nqβ + (N − n)(∆kq)β

]1/β
= [n + (N − n)(∆k)β]1/βq, where n is the number of sup-

pliers who are in the coalition. And the corresponding value is ÂD(N, θ)αN−α/βQα =

ÂD(N, θ)αN−α/β[n+ (N − n)(∆k)β]α/βqα = [n/N + (1− n/N)(∆k)β]α/βR.

Let g(B) ∈ {0, ..., N} be the firm’s rank within a permutation. If g(B) = N then

all the suppliers are in the coalition and the firm’s contribution is R = ÂD(N, θ)αqα. If

g(B) = n < N then n suppliers are in the coalition and the firm’s contribution is {[1 −

(∆k)β]n/N + (∆k)β}α/βR. Note that g(B) = N is a special case of g(B) = n with n = N .

The share of permutations with g(B) = n is 1/(N +1) for n = 0, ..., N . So the firm’s Shapley

value is

1

N + 1

N∑
n=0

{[1− (∆k)β]n/N + (∆k)β}α/βR = γ(N,∆k)R
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where γ(N,∆k) ≡
∑N
n=0{[1−(∆k)β ]n/N+(∆k)β}α/β

N+1
. It is obvious that γ(N,∆k) is strictly decreas-

ing in N , meaning that the firm’s share of revenue decreases as the number of suppliers

becomes larger. And γ(N,∆k) is increasing in ∆k, meaning that under vertical integration,

the firm gets a higher share of revenue, conditional on the same functionality N .

As an additional illustration, we show that when β → −∞, the Shapley value here

converges to the that in the main text (since min function is a special case of CES function

when β → −∞).

Start from γ(N,∆k) = 1
N+1

∑N
n=0[n/N+(1−n/N)(∆k)β]α/β. Write it as 1

N+1
{1+(∆k)α+∑N−1

n=1 [(n/N)1β+(1−n/N)(∆k)β]α/β}. When β → −∞, the term behind the summation mark

becomes
(
min{1,∆k}

)α
= (∆k)α ≡ δk, so γ(N,∆k) can be written as 1

N+1
{1+δkN} = δkN+1

N+1
,

which is what we have for the min function.

B.2 O-Ring

Suppose the overall quality is an o-ring function of the individual functions:

Q =
N∏
j=1

qj

Then demand shifter is ϕ = D(N, θ)Q and revenue is ÂD(N, θ)αQα. In a symmetric

equilibrium, qj = q for all j. Revenue is R = ÂD(N, θ)αqαN . Again, there are three values

that can be generated by a coalition:

1. In a coalition without the firm, the value is 0.

2. In a coalition with the firm and all the suppliers, the value is revenueR = ÂD(N, θ)αqαN .

3. In a coalition with the firm, but not all the suppliers, the overall quality is Q =

qn(∆kq)N−n = (∆k)N−nqN , where n is the number of suppliers who are in the coalition.

And the corresponding value is ÂD(N, θ)αQα = (∆k)α(N−n)R. Note that gain, case 2

is a special case of case 3 when n = N .
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Using the same logic, the firm’s Shapley value is

1

N + 1

N∑
n=0

(δk)N−nR = γ(N, δk)R

where δk ≡ (∆k)α, and γk(N, δk) ≡ 1−(δk)N+1

(1−δk)(N+1)
. It can also be shown that γ(N, δk) is

increasing in ∆k and decreasing in N .

C Proof of the Existence of an SSPE

Lemma 3. There exists a symmetric equilibrium, such that (hj,mj) = (h,m) for j = 1, ..., N ,

where (h,m) is uniquely solved by:

hk(N, θ, η) = arg max
h′

γk(N)
Â

η̂α
D(N, θ)αh′αηmα(1−η) −NwhC(N, θ)h′

and

mk(N, θ, η) = arg max
m′

1− γk(N)

N

Â

η̂α
D(N, θ)αhαηm′α(1−η) − wmC(N, θ)m′

Proof. First, consider firm’s problem:

max
(h1,h2,...,hN )

γk(N)
Â

η̂α
D(N, θ)αmin{hαη1 m

α(1−η)
1 , ..., hαηN m

α(1−η)
N } − whC(N, θ)

N∑
j=1

hj

Suppose all suppliers stick to their equilibrium strategies. Firm’s problem can be simplified

to

max
(h1,h2,...,hN )

γk(N)
Â

η̂α
D(N, θ)αmin{hαη1 , hαη2 ..., hαηN }mα(1−η) − whC(N, θ)

N∑
j=1

hj

If the firm deviates by choosing (h1, h2, ..., hN) 6= (h, h, ..., h):

1. Firm always chooses (h1, h2, ..., hN) such that h1 = h2 = ... = hN . If not, then the

firm can do strictly better by lowering the levels of all hi > minj=1,2,...,N{hj} to hi =
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minj=1,2,...,N{hj}. So firm’s problem can be further simplified to:

max
h′

γk(N)
Â

η̂α
D(N, θ)αh′αηmα(1−η) − whC(N, θ)Nh′

2. It is never optimal for the firm to choose h′ 6= h because the objective function is

strictly concave in h′, so h′ = h is, by definition, the unique maximizer of the objective

function.

Now consider supplier j’s problem:

max
mj

1− γk(N)

N

Â

η̂α
D(N, θ)αmin{hαη1 m

α(1−η)
1 , ..., hαηN m

α(1−η)
N } − wmC(N, θ)mj

Suppose the firm and all the other players stick to the equilibrium strategy. Supplier j’s

problem can be written as:

max
mj

1− γk(N)

N

Â

η̂α
D(N, θ)αhαηmin{mα(1−η),m

α(1−η)
j } − wmC(N, θ)mj

If supplier j deviates by choosing mj 6= m, supplier j will be strictly worse off because

supplier’s objective function is strictly concave in mj, that means mj = m is the unique

maximizer of the supplier’s objective function.

D Proof of Lemma 2

Substituting in hj = h and mj = m to the firm and the supplier’s problems in the above

lemma and solve for h and m gives the following expressions:

hk(N, θ, η) =

{
αÂ

η̂

D(N, θ)α

NC(N, θ)

[
ηγk(N)

wh

]1−α+αη [
(1− η)(1− γk(N))

wm

]α−αη}1/(1−α)
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mk(N, θ, η) =

{
αÂ

η̂

D(N, θ)α

NC(N, θ)

[
ηγk(N)

wh

]αη [
(1− η)(1− γk(N))

wm

]1−αη
}1/(1−α)

Substituting them into the definition of q, ϕ and R, we can get the following expressions:

qk(N, θ, η) =

{
αÂ

D(N, θ)α

NC(N, θ)

(
γk(N)

wh

)η (
1− γk(N)

wm

)1−η
}1/(1−α)

ϕk(N, θ, η) =

{
αÂ

D(N, θ)

NC(N, θ)

(
γk(N)

wh

)η (
1− γk(N)

wm

)1−η
}1/(1−α)

Rk(N, θ, η) =

{
αÂ1/α D(N, θ)

NC(N, θ)

(
γk(N)

wh

)η (
1− γk(N)

wm

)1−η
}α/(1−α)

E Proof of Theorem 1 and 2

Recall that the firm’s problem is

max
k∈{O,V },N∈[1,∞)

Πk(N, θ, η) = Â1/(1−α)G(N, θ)Ψ(γk(N), η)

The log-transformation of this problem can be written as:

max
k∈{O,V },N∈[1,∞)

πk(N, θ, η) = ã+ g(N, θ) + ψ(γk(N), η)

where πk(N, θ, η) ≡ ln Πk(N, δ, η), ã ≡ 1/(1 − α) ln Â, g(N, θ) ≡ lnG(N, θ), and ψ(γ, η) ≡

ln Ψ(γ, η).

As explained in the remarks, we will adopt the methodology used in AH (2004), where

we allow the firm to choose δ as a continuous variable. So the above problem can be written

as:

max
N,δ

π(N, δ, θ, η) = ã+ g(N, θ) + ψ(γ(N, δ), η)
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where γ(N, δ) ≡ δαN+1
N+1

, and g(N, θ), ψ(γ) are the same as defined before. Denote the solution

to the first problem (where we choose the optimal N taking k as given) as Nk(θ), and the

solution to the second problem (where we choose the optimal N and δ) as N(θ) and δ(θ).

Denote the ’ultimate’ optimal solution as N∗(θ).

We solve for these two theorems in two steps:

1. If there exists a θ∗ such that πV (NV (θ∗, η), θ∗, η) = πO(NO(θ∗, η), θ∗, η), then

(a) NV (θ∗, η) > NO(θ∗, η), γV (NV (θ∗, η)) > γO(NO(θ∗, η));

(b) θ∗ is unique and firms with θ > θ∗ integrate and firms with θ < θ∗ outsource;

(c) θ∗(η) is strictly decreasing in η.

2. θ(η), η and η exist.

The following proofs solve these two steps progressively.

E.1 π(N, δ, θ, η) is strictly concave in (N, δ)

π(N, δ, θ, η) is strictly concave in (N, δ) iff its Hessian matrix is negative definite. Its Hessian

matrix, using first order conditions to simplify, can be written as

πNN πNδ

πδN πδδ

 =

gNN + ψγγγ
2
N , ψγγγNγδ

ψγγγNγδ, ψγγγ
2
δ


It is negative definite iff gNN , ψγγ < 0.

ψγγ = −
{

α(2η − 1)

1− α[γη + (1− γ)(1− η)

}2

− α

1− α

[
η

γ2
+

1− η
(1− γ)2

]
< 0.

So π(N, δ, θ, η) is strictly concave iff gNN = α
1−α

{
∂2 lnD(N,θ)

(∂ lnN)2
− ∂2 lnC(N,θ,η)

(∂ lnN)2
+ 1
}
< 0, or

∂2 lnC(N,θ,η)
(∂ lnN)2

> ∂2 lnD(N,θ)
(∂ lnN)2

+ 1. This is equivalently to saying that G(N, θ, η) is log-concave

in N .
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E.2 N(θ, η) and δ(θ, η) strictly increasing in θ

Since π(N, δ, θ, η) is strictly concave in (N, δ), the optimal (N, δ) is determined by the two

first order conditions, πN = 0 and πδ = 0. Differentiating these two equations with respect

to θ and rearranging, dN/dθ
dδ/dθ

 =


1
det
πδδ −πNδ

−πNδ πNNπNθ

πδθ


where det is the determinant of the Hessian matrix.Using first order conditions to simplify,

dN/dθ
dδ/dθ

 =
gNθψγγ
det

 γ2
δ

−γδγN


We know that ψγγ < 0, det > 0. γδ = N

N+1
> 0 and γN = δ−1

(N+1)2
< 0. So dN

dθ
, dδ
dθ
> 0 iff

gNθ > 0 or ∂ lnD(N,θ)
∂θ

> ∂ lnC(N,θ,η)
∂θ

.

E.3 Nk(θ, η) strictly increasing in θ

We know that πk(N, θ, η) = ã+ g(N, θ, η) +ψ(γk(N), η), and πkNθ = gNθ. So gNθ > 0 implies

πkNθ > 0, and that Nk(θ, η) is strictly increasing in θ.

E.4 Properties of θ∗ (If it exists)

E.4.1 NV (θ∗, η) > NO(θ∗, η), γV (NV (θ∗, η)) > γO(NO(θ∗, η)).

Suppose δ(N) crosses δ = δO at (nO, δO), and crosses δ = δV at (NV , δV ). Since δ(N) is

increasing in N and δO < δV , nO < nV . Depending on the values of NO and NV , there

are 9 cases as shown in the table below. In short, we use elimination to show that if there

exists a θ∗ such that πV (NV (θ∗, η), θ∗, η) = πO(NO(θ∗, η), θ∗, η), then we must be in the

middle cell of the table (the one where nO < NO, NV < nV ). Then we prove that in this

cell, NV (θ∗, η) > NO(θ∗, η), and γV (NV (θ∗, η)) > γO(NO(θ∗, η), η). For simplicity, we write
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NO(θ∗, η), NV (θ∗, η), γO(NO(θ∗, η)) and γV (NV (θ∗, η)) as NO, NV , γO and γV .

NV < nO nO < NV < nV nV < NV

NO < nO N/A N/A N/A

nO < NO < nV N/A NV > NO,γV > γO N/A

nV < NO N/A N/A N/A

1. NV < nO

N

𝛿(N)

𝛿%

𝛿&

n% n&N&

This case cannot happen. Suppose NV < nO. Start from (NV , δV ) and move to

(NV , δO). The value of π(N, δ, θ, η) increases because all the points along this route are

above δ(N), meaning that πδ(N, δ, θ, η) < 0 along this route as we decrease the value

of δ while keeping N constant. Thus

π(NV , δV , θ∗, η) < π(NV , δO, θ∗, η) ≤ max
N∈(1,∞)

π(N, δO, θ∗, η)
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In the above inequality, the left term is πV (NV (θ∗), θ∗, η) and the right term is πO(NO(θ∗, η), θ∗, η).

So πV (NV (θ∗), θ∗, η) < πO(NO(θ∗, η), θ∗, η). This contradicts with the definition of θ∗.

2. NO > nV

N

𝛿(N)

𝛿%

𝛿&

n% n& N%

This case cannot happen. Suppose NO > nV . Start from (NO, δO) and move to

(NO, δV ). The value of π(N, δ, θ, η) increases because all the points along this route are

below δ(N), meaning that πδ(N, δ, θ, η) < 0 as we increase the value of δ while keeping

N constant. Thus

π(NO, δO, θ∗, η) < π(NO, δV , θ∗, η) ≤ max
N∈[1,∞)

π(N, δV , θ∗, η)

In the above inequality, the left term is πO(NO(θ∗, η), θ∗, η) and the right term is

πV (NV (θ∗, η), θ∗, η). So πO(NO(θ∗, η), θ∗, η) < πV (NV (θ∗, η), θ∗, η). This contradicts

with the definition of θ∗.
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3. NO < nO, nO < NV < nV This case cannot happen either. To see this, draw an iso-γ

line through (NV , δV ). Suppose it crosses δ = δO at (N ′, δO). There are two cases:

N ′ ≥ NO and N ′ < NO. Since in this case, both NO and NV are above δ(N), it must

be that ψγ(γ
O, η), ψγ(γ

V , η) < 0. By Lemma 6, Nk satisfies πkN(Nk) = gN(Nk, θ∗) +

ψγ(γ
k)γkN = 0. So ψγ(γ

k, η) < 0 implies gN(Nk, θ∗) < 0 because γkN = δk−1
(N+1)2

< 0.

Thus in this case where NO < nO and nO < NV < nV , gN(Nk, θ∗) < 0 for k ∈ {O, V }.

(a) NO ≤ N ′ < NV

N

𝛿(N)

𝛿%

𝛿&

n% n&N% N&N'

By Assumption 4, gNN(N, θ) < 0. So gN(NV , θ∗) < gN(N ′, θ∗) ≤ gN(NO, θ∗) < 0.

If we move from (δV , NV ) to (δO, N ′) along the iso-γ line, ψ(γ, η) remains constant.

But g(N, θ) increases because gN(N, θ) remains negative as we decrease the value

of N . Then move from (N ′, δO) to (NO, δO). Both g(N, θ∗, η) and ψ(γ) increase

because gN(N, θ∗), ψγ(γ, η) remain negative as we decrease N and γ by decreasing
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N while keeping δ constant. Thus

π(NV , δV , θ∗, η) < π(N ′, δO, θ∗, η) ≤ π(NO, δO, θ∗, η)

The left term in the above inequality is πV (NV , θ∗, η) and the right term is

πO(NO, θ∗, η). So πV (NV , θ∗, η) < πO(NO, θ∗, η). This contradicts with the defi-

nition of θ∗.

(b) N ′ < NO < NV

N

𝛿(N)

𝛿%

𝛿&

n% n&N% N&N'

𝛿'

In this case, gN(NV , θ∗) < gN(NO, θ∗) < 0 still holds. But gN(N ′, θ∗, η) may be

positive. Move from (δV , NV ) to (δ
′
, NO) along the iso-γ line. ψ(γ) remains con-

stant. g(N, θ∗, η) increases because gN(N, θ∗, η) remains negative as N decreases

from NV to NO. Then move from (δ
′
, NO) to (δO, NO). g(N, θ∗, η) remains con-

stant. ψ(γ, η) increases because all points along this route are above δ(N) meaning
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that ψγ(γ, η) < 0 as we decrease the value of γ by decreasing δ while keeping N

constant. Thus the value of π(N, δ, θ∗, η) increases along this route. Thus

π(NV , δV , θ∗, η) < π(NO, δ′, θ∗, η) < π(NO, δO, θ∗, η)

The left term in the above inequality is πV (NV , θ∗, η), and the right term is

πO(NO, θ∗, η). So πV (NV , θ∗, η) < πO(NO, θ∗, η). This contradicts with the defi-

nition of θ∗.

4. NO < nO, NV > nV

N

𝛿(N)

𝛿%

𝛿&

n% n& N&N%

This case cannot happen either. In this case, NO is above δ(N) and NV is below

δ(N). So ψγ(γ
O, η) < 0 < ψγ(γ

V , η). Using the first order conditions for NO and NV ,

gN(NO, θ∗) < 0 < gN(NV , θ∗). This implies NO > NV because gNN(N, θ) < 0. This

contradicts with NO < NV . So this case cannot happen.
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5. nO < NO < nV , NV > nV In this case, both NO and NV are below δ(N). Draw an

iso-γ line through (NO, δO). Suppose it crosses δ = δV at (N ′, δV ). There are two

possible cases: N ′ ≤ NV and N ′ > NV .

(a) NO < N ′ ≤ NV

N

𝛿(N)

𝛿%

𝛿&

n% n& N&N% N'

NO < N ′ < NV implies gN(NO, θ∗) > gN(N ′, θ∗) > gN(NV , θ∗) > 0. So as we

move from (NO, δO) to (N ′, δV ) along the iso-γ line, ψ(γ, η) remains constant. But

g(N, θ) increases because gN(N, θ∗, η) remains positive as N increases from NO to

N ′. Then move from (N ′, δV ) to (NV , δV ). Both g(N, θ, η) and ψ(γ, η) increase

because gN and ψγ(γ, η) remain positive as we increase N and γ by increasing N

and keeping δ constant. Thus

π(NO, δO, θ∗, η) < π(N ′, δV , θ∗, η) ≤ π(NV , δV , θ∗, η)
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The left term is just πO(NO, θ∗, η) while the right term is just πV (NV , θ∗, η). So

we reach at πO(NO, θ∗, η) < πV (NV , θ∗, η). This contradicts the definition of θ∗.

(b) NO < NV < N ′

N

𝛿(N)

𝛿%

𝛿&

n% n& N&N% N'

𝛿'

In this case, we still have gN(NO, θ∗) > gN(NV , θ∗) > 0 since both NO and NV are

below δ(N). But gN(N ′, θ∗) may be negative. Start at (NO, δO). Move to (NV , δ′)

along the iso-γ line. ψ(γ) remains constant. But g(N, θ∗) increases because

gN(N, θ∗) remains positive as N increases from NO to NV . So π(NO, δOθ∗, η) <

π(NV , δ′, θ∗, η). Then move from (NV , δ′) to (NV , δV ). g(N, θ∗) remains constant

because N does not change. But ψ(γ, η) increases because this whole route is

below δ(N), meaning that ψγ(γ, η) remains positive as γ increases (we increase δ

while keeping N constant). Thus

π(NO, δO, θ∗, η) < π(NV , δ′, θ∗, η) < π(NV , δV , θ∗, η)

34



The left term is πO(NO, θ∗, η) and the right term is πV (NV , θ∗, η). So πO(NO, θ∗, η) <

πV (NV , θ∗, η). This contradicts the definition of θ∗.

6. nO < NO, NV < nV Now we have ruled out all other cases except for this one last case.

This means if there exists a θ∗ such that πO(NO, θ∗, η) = πV (NV , θ∗, η), then it must

be that nO < NO, NV < nV . Now we prove that NO < NV , and γO < γV .

(a) NO < NV In this case, (NO, δO) is below δ(N) and (NV , δV ) is above δ(N). So

gN(NO, θ∗) > 0 > gN(NV , θ∗). gNN(N, θ) < 0 implies that NO < NV .

(b) γO < γV Refer to the figure below:

N

𝛿(N)

𝛿%

𝛿&

n% n&N&N%

𝛿'

Start at (NO, δO) and move to (NO, δ′), the γ increases as we increase δ and keep

N constant. Then move from (NO, δ′) to (nV , δV ) along δ(N), γ remains constant

because δ(N) is an iso-γ line itself (with γ constant at γ(η)). Then move from
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(nV , δV ) to (NV , δV ), γ increases because N decreases and δ remains constant.

Thus The left term is γO and the right term is γV . So γO < γV .

E.4.2 θ∗ unique, with θ > θ∗ firms integrate, θ < θ∗ firms outsource.

By Envelope Theorem, d
dθ
πk(θ, η) = πkθ (θ, η) = gθ(N

k(θ, η), θ) > 0 iff gθ(N
k(θ, η), θ) =

α
1−α

{
∂ lnD(N,θ)

∂θ
− ∂ lnC(N,θ,η)

∂θ

}
> 0, or ∂ lnD(N,θ)

∂θ
> ∂ lnC(N,θ,η)

∂θ
.

We have shown in the previous section that NV (θ∗, η) > NO(θ∗, η). So gθ(N
V (θ∗, η), θ∗) >

gθ(N
O(θ∗, η), θ∗) because gNθ > 0 by Assumption ?. Thus πVθ (θ∗, η) > πOθ (θ∗, η).

𝜃𝜃*

𝜋$ 𝜋%(𝜃)

𝜋((𝜃)

πO(θ, η) and πV (θ, η) have single crossing because if they cross more than once, πVθ (θ∗, η) >

πOθ (θ∗, η) would be violated at least once. Therefore θ∗ is unique. Moreover, for θ > θ∗, it

must be that πV (θ, η) > πO(θ, η). So firms with θ > θ∗ choose integration, and vice versa.
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E.4.3 θ∗(η) is decreasing in η

We have shown that if θ∗ exists, it is unique for a given η, thus θ(η) is a function. By the

definition of θ∗,

πV (NV , θ∗(η), η) = πO(NO, θ∗(η), η)

By Implicit Function Theorem,

dθ(η)

dη
= −π

V
η (NV , θ(η), η)− πOη (NO, θ(η), η)

πVθ (NV , θ(η), η)− πOθ (NO, θ(η), η)

where πVθ (NV , θ(η), η)−πOθ (NO, θ(η), η) = gθ(N
V , θ(η), η)−gθ(NO, θ(η), η). Since NV > NO

and gNθ > 0, gθ(N
V , θ(η), η) > gθ(N

O, θ(η), η). So the denominator is positive.

πVη (NV , θ(η), η)− πOη (NO, θ(η), η) = ψη(γ
V , η)−ψη(γO, η). γV > γO and ψγη > 0 implies

ψη(γ
V , η) − ψη(γO, η) > 0. Thus the numerator is also positive. So dθ(η)/dη < 0, and θ(η)

is strictly decreasing in η, if it exists.

E.5 1 < N(θ, η) <∞

The strict concavity of π(N, δ, θ, η) implies that πNN < 0 for all values of δ, θ and η. So

1 ≤ N(θ, η) < ∞ if limN→1 π(N, δ, θ, η) ≥ 0 and limN→∞ π(N, δ, θ, η) < 0. Nk(θ, η) is

a special case of N(θ, η) when δ takes the value of δk. Thus 1 < N(θ, η) < ∞ implies

1 < Nk(θ, η) <∞. We know that

πN(N, δ, θ, η) =
α

1− α

{
∂

[
ln

D(N, θ)

NC(N, θ)

]
/∂N

}
− 1− δ

(N + 1)2
· ψγ(γ(N, δ), η),
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lim
N→1

πN(N, δ, θ, η)

=
α

1− α · lim
N→1

∂

[
ln

D(N, θ)

NC(N, θ)

]
/∂N − 1− δα

4
· ψγ(

δα + 1

2
, η)

>
α

1− α · lim
N→1

∂

[
ln

D(N, θ)

NC(N, θ)

]
/∂N − 1− δα

4
· ψγ(

δα + 1

2
, 1)

=
α

1− α

{
lim
N→1

∂

[
ln

D(N, θ)

NC(N, θ)

]
/∂N − (1− δα)2

2(1 + δα)(2− α− αδα)

}
≥ α

1− α

{
lim
N→1

∂

[
ln

D(N, θ)

NC(N, θ)

]
/∂N − lim

δ→0

(1− δα)2

2(1 + δα)(2− α− αδα)

}
=

α

1− α

{
lim
N→1

∂

[
ln

D(N, θ)

NC(N, θ)

]
/∂N − 1

4− 2α

}
>

α

1− α

{
lim
N→1

∂

[
ln

D(N, θ)

NC(N, θ, η)

]
/∂N − 1

2

}

limN→1 πN(N, δ, θ, η) > 0 if limN→1 ∂ ln
[

D(N,θ)
NC(N,θ,η)

]
/∂N > 1/2.

lim
N→∞

πN(N, δ, θ, η) =
α

1− α · lim
N→∞

∂

[
ln

D(N, θ)

NC(N, θ, η)

]
/∂N − 0 · ψγ(δα)

=
α

1− α · lim
N→∞

∂

[
ln

D(N, θ)

NC(N, θ, η)

]
/∂N

limN→∞ πN(N, δ, θ, η) < 0 iff limN→∞ ∂
[
ln D(N,θ)

NC(N,θ,η)

]
/∂N < 0.

Thus we have proved that limN→1 π(N, δ, θ, η) > 0 and limN→∞ π(N, δ, θ, η) < 0. So

N = 1 and N = ∞ can never be optimal, thus 1 < N(θ, η) < ∞ for any value of δ. This

implies that 1 < Nk(θ, η) <∞ for k = O, V .
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E.6 Existence of θ(η), η and η.

We have shown in the previous section that 1 ≤ Nk(θ, η) < ∞. So there must be an upper

bound and a lower bound for the continuous function N(θ, η). Define N and N as 10:

N = inf
θ∈[0,1],η∈(0,1)

N(θ, η)

and

N = sup
θ∈[0,1],η∈(0,1)

N(θ, η)

Recall that if δ(N) crosses δ = δO and δ = δV , the crossing points are (δO, nO) and

(δV , nV ), where nO = 1−γ(η)
γ(η)−δO , and nV = 1−γ(η)

γ(η)−δV .

When η < γ−1( δ
ON+1
N+1

), nO = 1−γ(η)
γ(η)−δO > N . This means δ(N) is always below δ = δO:

𝛿"

𝛿#

N

𝛿(N)

n"

In this case, all firms will choose outsourcing (under the same logic in Appendix ?) i.e.,

πO(θ, η) > πV (θ, η), for all θ.

When η > γ−1( δ
V N+1

N+1
), nV = 1−γ(η)

γ(η)−δV < N. This means δ(N) is always above δ = δV :

10N and N exist because of the Completeness Axiom.
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𝛿"

𝛿#

N

𝛿(N)

n#

In this case, all firms choose vertical integration, i.e., πV (θ, η) > πO(θ, η), for all θ.

Combining the above two figures, πV (θ, η) − πO(θ, η) < 0 when η < γ−1( δ
O+1
N+1

) and > 0

when η > γ−1( δ
V N+1

N+1
). By continuity, for each value of θ, there must be at lease one η(θ) such

that η is such that πV (θ, η) = πO(θ, η). And there cannot be more than one η that satisfies

this condition because this would violate the condition that θ(η) is strictly decreasing in η

(see Appendix ?). Thus there is a one-to-one mapping from θ to η. Since θ(η) is strictly

decreasing, η(θ) is also strictly decreasing over the interval θ ∈ [0, 1]. So η(1) ≤ η(η) ≤ η(0).

Define η ≡ η(1) and η ≡ η(0). For η < η, πV (θ, η)−πO(θ, η) < 0 for all θ, all firms choose

outsourcing; For η > η, πV (θ, η)−πO(θ, η) > 0, all firms choose vertical integration. (This is

because πV (θ, η)−πO(θ, η) is strictly increasing in η when θ(η) exists, as shown in Appendix

?) If we were to draw a graph of θ(η), it should look like this:
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1

𝜂

𝜃

𝜂 𝜂

𝜃(𝜂)

F Proof of Theorem 3

By Lemma 2, the equilibrium value of q can be expressed as a function of N , θ and η:

qk(N, θ, η) =

{
αÂ

D(N, θ)α

NC(N, θ)

(
γk(N)

wh

)η (
1− γk(N)

wm

)1−η
}1/(1−α)

ϕk(N, θ, η) =

{
αÂ

D(N, θ)

NC(N, θ)

(
γk(N)

wh

)η (
1− γk(N)

wm

)1−η
}1/(1−α)

dqk

dθ
=
∂qk

∂N

dNk

dθ
+
∂qk

∂θ

We have proved that dNk/θ > 0. So dqk/dθ > 0 if ∂qk/∂θ > 0 and ∂qk/∂N > 0, or

equivalently, if ∂ ln qk/∂θ > 0 and ∂ ln qk/∂N > 0.
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∂ ln qk

∂θ
=

1

1− α

{
α
∂ lnD(N, θ)

∂θ
− ∂ lnC(N, θ)

∂θ

}

∂ ln qk

∂N
=

1

1− α

{
α
∂ lnD(N, θ)

∂N
− ∂ lnC(N, θ)

∂N
− 1

N
+ η

∂ ln γk(N)

∂N
+ (1− η)

∂ ln[1− γk(N)]

∂N

}

Similarly, the equilibrium value of ϕ can also be expressed as a function of N , θ and η,

ϕk(N, θ, η) = D(N, θ)qk(N, θ, η)

=

{
αÂ

η̂1−α
D(N, θ)γk(N)η[1− γk(N)]1−η

NC(N, θ, η)

}1/(1−α)

dϕk/dθ > 0 if ∂ lnϕk/∂θ > 0 and ∂ lnϕk/∂N > 0.

∂ lnϕk

∂θ
=

1

1− α

{
∂ lnD(N, θ)

∂θ
− ∂ lnC(N, θ)

∂θ

}
∂ lnϕk

∂N
=

1

1− α

{
∂ lnD(N, θ)

∂N
− ∂ lnC(N, θ)

∂N
− 1

N
+ η

∂ ln γk(N)

∂N
+ (1− η)

∂ ln[1− γk(N)]

∂N

}
∂ ln qk/∂θ > 0 implies ∂ lnϕk/∂θ > 0 because ∂ lnD(N, θ)/∂θ > 0. ∂ ln qk/∂N > 0

implies ∂ lnϕk/∂N > 0 because and ∂ lnD(N, θ)/∂N > 0.

∂ ln qk/∂θ > 0 iff

α
∂ lnD(N, θ)

∂θ
− ∂ lnC(N, θ)

∂θ
> 0,

or

∂

[
ln

D(N, θ)α

NC(N, θ, η)

]
/∂θ > 0.

∂ ln qk/∂N > 0 iff
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α
∂ lnD(N, θ)

∂N
− ∂ lnC(N, θ)

∂N
− 1

N
+ η

∂ ln γk(N)

∂N
+ (1− η)

∂ ln[1− γk(N)]

∂N
> 0.

This can be re-written as

∂

[
ln
D(N, θ)α

NC(N, θ)

]
/∂N > −η∂ ln γk(N)

∂N
− (1− η)

∂ ln[1− γk(N)]

∂N

where −η ∂ ln γk(N)
∂N

− (1−η)∂ ln[1−γk(N)]
∂N

has an upper-bound of 1/2.11. So a sufficient condition

for ∂ ln qk

∂N
> 0 is ∂

[
ln D(N,θ)α

NC(N,θ,η)

]
/∂N > 1/2.

We conclude that if ∂
[
ln D(N,θ)α

NC(N,θ,η)

]
/∂θ > 0 and ∂

[
ln D(N,θ)α

NC(N,θ,η)

]
/∂N > 1/2, qk(θ, η) and

ϕk(θ, η) are strictly increasing in θ. It is immediate from R = Âϕα that R is also strictly

increasing in θ.

G Proof of Theorem 4 and 5

The proof of Theorem 4 and 5 follows the same logic as the proof of Theorem 1 and 2.

H Proof of Theorem 6

dqk

dθ
=
∂qk

∂N

dNk

dθ
+
∂qk

∂θ

Using the same logic as before, we prove in the previous section that dNk/θ > 0. So

dqk/dθ > 0 if ∂qk/∂θ > 0 and ∂qk/∂N < 0, or equivalently, if ∂ ln qk/∂θ > 0 and ∂ ln qk/∂N <

0.

∂ ln qk

∂θ
=

1

1− α

{
α
∂ lnD(N, θ)

∂θ
− ∂ lnC(N, θ, η)

∂θ

}
11−∂ ln{γk(N)η [1−γk(N)]1−η}

∂N = 1−(δk)α
(N+1)2

{
η
γk
− 1−η

1−γk

}
= 1−(δk)α

(N+1)2

{[
1
γk

+ 1
1−γk

]
η − 1

1−γk

}
< 1−(δk)α

(N+1)2
1
γk

=

1−(δk)α
(N+1)((δk)αN+1)

< 1
N+1 < 1/2
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∂ ln qk(N, θ, η)

∂N
=

1

1− α

{
α
∂ lnD(N, θ)

∂N
− ∂ lnC(N, θ, η)

∂N
− 1

N
+
∂ ln{γk(N)η[1− γk(N)]1−η}

∂N

}

Similarly, dϕk/dθ > 0 if ∂ lnϕk/∂θ > 0 and ∂ lnϕk/∂N > 0.

∂ lnϕk

∂θ
=

1

1− α

{
∂ lnD(N, θ)

∂θ
− ∂ lnC(N, θ, η)

∂θ

}
∂ lnϕk(N, θ, η)

∂N
=

1

1− α

{
∂ lnD(N, θ)

∂N
− ∂ lnC(N, θ, η)

∂N
− 1

N
+
∂ ln{γk(N)η[1− γk(N)]1−η}

∂N

}

∂ lnϕk/∂θ > 0 implies ∂ ln qk/∂θ > 0 because ∂ lnD(N, θ)/∂θ < 0. ∂ lnϕk/∂N < 0

implies ∂ ln qk/∂N < 0 because and ∂ lnD(N, θ)/∂N > 0.

∂ lnϕk/∂θ > 0 iff

∂ lnD(N, θ)

∂θ
− ∂ lnC(N, θ, η)

∂θ
> 0

or

∂

[
ln

D(N, θ)

NC(N, θ, η)

]
/∂θ > 0

∂ ln qk/∂N < 0 iff

α
∂ lnD(N, θ)

∂N
−∂ lnC(N, θ, η)

∂N
− 1

N
+
∂ ln{γk(N)η[1− γk(N)]1−η}

∂N
< 0, or∂

[
ln

D(N, θ)

NC(N, θ, η)

]
/∂N < −∂ ln{γk(N)η[1− γk(N)]1−η}

∂N

where −∂ ln{γk(N)η [1−γk(N)]1−η}
∂N

has a lower-bound of −1/2.12 So a sufficient condition for

∂ ln qk

∂N
> 0 is ∂

[
ln D(N,θ)α

NC(N,θ,η)

]
/∂N < −1/2.

So we conclude that if ∂
[
ln D(N,θ)

NC(N,θ,η)

]
/∂θ > 0 and ∂

[
ln D(N,θ)α

NC(N,θ,η)

]
/∂N < −1/2, qk(θ, η)

and ϕk(θ, η) are strictly increasing in θ. It is immediate from R = Âϕα that R is also strictly

12−∂ ln{γk(N)η [1−γk(N)]1−η}
∂N = 1−(δk)α

(N+1)2

{
η
γk
− 1−η

1−γk

}
= 1−(δk)α

(N+1)2

{[
1
γk

+ 1
1−γk

]
η − 1

1−γk

}
>

− 1
1−γk

1−(δk)α
(N+1)2 = − 1

N(N+1) > −1/2
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increasing in θ.

I Proof of Theorem 7

[TBA.]

45


