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ABSTRACT 
 

We study the location and productivity of more than 1,000 research and development (R&D) 
labs located in the Northeast corridor of the U.S. Using a variety of spatial econometric 
techniques, we find that these labs are substantially more concentrated in space than the 
underlying distribution of manufacturing activity. Ripley’s K-function tests over a variety of 
spatial scales reveal that the strongest evidence of concentration occurs at two discrete distances: 
one at about one-quarter of a mile and another at about 40 miles. These findings are consistent 
with empirical research that suggests that some spillovers depreciate very rapidly with distance, 
while others operate at the spatial scale of labor markets. We also find that R&D labs in some 
industries (e.g., chemicals, including drugs) are substantially more spatially concentrated than 
are R&D labs as a whole. 
  
Tests using local K-functions reveal several concentrations of R&D labs (Boston, New York-
Northern New Jersey, Philadelphia-Wilmington, and Washington, DC) that appear to represent 
research clusters. We verify this conjecture using significance-maximizing techniques (e.g., 
SATSCAN) that also address econometric issues related to “multiple testing” and spatial 
autocorrelation.  
 
We develop a new procedure for identifying clusters – the multiscale core-cluster approach — to 
identify labs that appear to be clustered at a variety of spatial scales. We document that while 
locations in these clusters are often related to basic infrastructure, such as access to major roads, 
there is significant variation in the composition of labs across these clusters. Finally, we show 
that R&D labs located in clusters defined by this approach are, all else equal, substantially more 
productive in terms of the patents or citation-weighted patents they receive.   

 
JEL Codes: O31 and R11 
 
Keywords: Agglomeration economies, Knowledge spillovers, Geographic concentration, 
Innovation, R&D  
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1. INTRODUCTION 
 
Of the Marshallian externalities that motivate the literature on agglomeration economies, 
knowledge spillovers have proven to be the hardest to verify empirically. If knowledge spillovers 
are indeed economically important, there might be evidence of such externalities in the 
geographic pattern of private research and development (R&D) activity.  In this paper, we 
construct a new data set of the location of private R&D labs in the Northeast corridor of the 
United States. We employ a variety of advanced spatial econometric techniques to detect and 
characterize a number of R&D clusters, and we verify that R&D labs located in these clusters are 
indeed more productive (in terms of patenting) than are labs located elsewhere. 
 
That R&D labs are geographically concentrated is immediately evident from examining a 
national map of the locations of private R&D establishments (Figure 1). Notice the very high 
concentration of R&D labs in the Northeast corridor — stretching from northern New Hampshire 
to Virginia.  Other concentrations appear around the Great Lakes, southern California, and 
California’s Bay Area. What is not immediately clear from the map is that spatial concentration 
of R&D is significantly greater than manufacturing activity in general, a fact established in 
Buzard and Carlino (2011). 
 
A number of previous papers have used the Ellison and Glaeser (1997)—hereafter EG— 
concentration index to measure the clustering of manufacturing employment at the zip code, 
county, MSA, and state levels of geography.  Rather than using fixed geographic units, we 
delineate the spatial structure of the concentrations of R&D labs. For this purpose, we use 
Ripley’s (1976) K-function methods to analyze locational patterns over a range of selected 
spatial scales (e.g., within a quarter mile, 1 mile, 5 miles, etc.).  This approach allows us to 
consider the spatial extent of the agglomeration of R&D labs as well as how rapidly the 
clustering of labs attenuates with distance. Following Duranton and Overman (2005) — hereafter 
referred to as DO — and Ellison, Glaeser, and Kerr (2010), we look for geographic clusters of 
labs that represent statistically significant departures from spatial randomness using simulation 
techniques.  Specifically, “randomness” in this case is not taken to mean a uniform distribution 
of R&D activity. Rather, since we are primarily interested in R&D concentration not explainable 
by manufacturing alone, we focus on departures from the distribution of manufacturing 
employment.  
 
In the first phase of the analysis, we employ global K-function statistics to test for the presence 
of significant clustering over a range of scales. There are two important findings from this global 
analysis. First, the clustering of labs is by far most significant (based on p-values) at very small 
spatial scales, such as distances of about one-quarter of a mile.  Second, we find that the 
significance of clustering dissipates rapidly with distance.  This rapid attenuation of significant 
clustering at small spatial scales is consistent with the view that knowledge spillovers are highly 
localized.  The finding of rapid attenuation of significant clustering is particularly important 
since, among the Marshallian externalities, knowledge spillovers have proven to be the hardest to 
verify empirically.  Rosenthal and Strange (2001) find that proxies for knowledge spillovers 
positively affect EG concentration measures but only at zip code levels.  Rosenthal and Strange 
(2008) introduce spatial decay into the estimation of agglomeration externalities, but they 
assume no attenuation within the first mile.  Arzaghi and Henderson (2008) show that for ad 
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agencies in New York City, information spillovers attenuate very rapidly, within several blocks.  
If knowledge spillovers operate, we would expect them to be important in location decisions of 
knowledge-based activities such as R&D.  Importantly, our finding that the most significant 
localization of R&D labs occurs within a two- to three-block radius and attenuates rapidly 
thereafter is consistent with the mounting evidence for the attenuation of human capital 
spillovers at small spatial scales. 
 
We also observe a secondary mode of significance at a scale of about 40 miles. This will be seen 
to correspond roughly to the scales of the four major R&D agglomerations identified in the 
second phase of our analysis — one each in Boston, New York-Northern New Jersey, 
Philadelphia-Wilmington, and Virginia, including the District of Columbia (hereafter referred to 
as Washington, DC).  The scale of this clustering is roughly comparable to that of labor markets 
and hence is consistent with the view that agglomeration economies at the level of labor markets 
(e.g., externalities associated with pooling and matching) are important for innovative activity.  
 
Given the strong clustering found at small scales, the question remains as to where this clustering 
occurs.  In the second stage of the analysis, explicit clusters are identified by a new procedure 
based on local K-functions, which we designate as the multiscale core-cluster approach. This 
new approach yields a natural nesting of clusters at different spatial scales.  These core clusters 
yield a hierarchy that can serve to reveal the relative spatial concentrations of R&D labs over a 
range of spatial scales.  In particular, at scales of 5 and 10 miles, these core clusters reveal the 
presence of the four major agglomerations mentioned above. As a consistency check, these 
results are essentially replicated using the significance-maximizing procedures developed by 
Besag and Newell (1991) and Kulldorff (1997).  
 
Given the significant concentration of overall labs at small scales conditional on the location of 
manufacturing employment, we also look at the concentration of labs conducting R&D in 
specific two-digit SIC industries conditional on the location of total R&D labs using global K-
function analysis. We find at small spatial scales (such as within a two- to three-block area) that  
37 percent of the industries studied are significantly more concentrated compared with overall 
R&D labs, while none are significantly more dispersed.  The rapid attenuation of localization of 
labs in individual industries bolsters our view that at least one important component of 
knowledge spillovers must be highly localized. 
 
Finally, we consider whether the patterns of clustering we describe in this paper have any 
economic significance.  The model developed by Lucas and Rossi-Hansberg (2002) suggests that 
having a high density of similar establishments is important for enhancing local productivity for 
industries in which knowledge spillovers play a central role. We demonstrate that the clustering 
of R&D labs is positively and significantly correlated with standard measures of research 
productivity – the number and quality of patents obtained by employees working at those labs.  
Specifically, we find that labs located in a one-half mile cluster are almost three times more 
likely to patent and almost three times more likely to have one of their patents cited compared 
with labs outside a one-half mile R&D cluster. 
 
To place these results in perspective, we begin in the next section with a review of the relevant 
literature. This is followed in Section 3 with a brief discussion of data sources. The statistical 
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methodology and test results for the global analyses of spatial clustering is developed in Section 
4, while the local analyses of clustering is discussed in Section 5.  In Section 6 we introduce a 
new approach (multiscale core-cluster approach) for identifying explicit R&D clusters. In 
Section 7 we provide a detailed discussion of the internal spatial structure of the four major R&D 
agglomerations identified by our analysis. In Section 8 we consider whether the patterns of 
clustering we describe have any economic significance.  We conclude in Section 9.  
 
2. LITERATURE REVIEW 
 
A number of previous papers have used a spatial Gini coefficient to measure the geographical 
concentration of economic activity.  Audretsch and Feldman (1996) were among the first to use a 
spatial Gini approach to show that innovative activity at the state level tends to be considerably 
more concentrated than is manufacturing employment.  EG extended the spatial Gini coefficient 
to condition not only on the location of manufacturing employment but to also on an industry’s 
industrial structure.   A number of recent studies have used the EG index to measure the 
clustering of manufacturing employment at the zip code, county, MSA, and state levels (see, for 
example, Ellison and Glaeser, 1997; Rosenthal and Strange, 2001; and Ellison, Glaeser, and 
Kerr, 2010).   Holmes and Stevens (2004) take a broader approach and  use employment data for 
all U.S. industries, not just manufacturing, and find that among the 15 most concentrated 
industries, six are in mining and seven are in manufacturing; only two industries fall outside 
mining and manufacturing (casino hotels and motion picture and video distribution).   
 
The EG index suffers from a number of important aggregation issues that result from using a 
fixed spatial scale.  One aggregation issue is known as the modifiable area unit problem 
(MAUP).  The problem is that conclusions reached when the underlying data are aggregated to a 
particular set of boundaries (say counties) may differ markedly from conclusion reached when 
the same underlying data are aggregated to a different set of boundaries (say MSAs).  And the 
MAUP becomes more severe as the level of aggregation increases.  Another problem is that 
authors often provide only indexes of localization, without any indication of the statistical 
significance of their results.  Without such statistical analyses, it is not clear whether the 
concentrations found differ from concentrations that would have been found if the locations of 
economic activity were randomly chosen. 
 
To address these issues, DO used micro data to identify the postal codes for each manufacturing 
plant in the UK, thus allowing these data to be geocoded.  Geocoding is important since DO are 
not bound by a fixed geographical classification but base their approach on the actual distance 
between firms.  Additionally, rather than using a specific index to measure geographic 
concentration, such as the EG index, DO take a nonparametric approach (based on kernel 
densities).  Essentially, DO construct frequency distributions of the pair-wise distances between 
plants in a given industry. When the mass of the distribution is concentrated at short distances, 
this represents a spatial concentration of plants in the industry.  Alternatively, if the mass of the 
distribution is concentrated at longer distances, this represents a more dispersed spatial pattern. 
Importantly, DO consider whether the number of plants at a given distance is significantly 
different from the number that would have been found if their locations were randomly chosen.   
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A few other studies have used continuous measures of concentration.  In addition to considering 
a discrete measure of co-agglomeration (measured at the state, MSA, and county levels), Ellison, 
Glaeser, and Kerr (2010) follow DO and also consider more spatially continuous measures of co-
agglomeration.  Marcon and Puech (2003) use distance-based methods to evaluate the spatial 
concentration of French manufacturing firms and find that some industries are concentrated, 
while other industries are dispersed. Arbia, Espa, and Quah (2008) use a K-function approach to 
study the spatial distribution of patents in Italy during the 1990s.  Kerr and Kominers (2010) 
develop a model where the costs of interaction among agents define the distance over which 
forces for agglomeration of activity operate.  In one application, Kerr and Kominers (2010) use 
data on patent citations and show that technologies with short distances over which agents 
interact are characterized by smaller and denser concentrations relative to technologies allowing 
for interactions over longer distances.   
 
Our work differs from past studies in a number of ways.  Rather than looking at the geographic 
concentration of firms engaged in the production of goods (such as manufacturing), we use a 
new location-based data set that allows us to consider the spatial concentration of private R&D 
establishments.  Hence, rather than focusing on the overall concentration of R&D employment, 
we analyze the clustering of individual R&D labs.1 Our analytical approach also permits such 
clustering to be identified at a range of scales in continuous space, rather than at a single 
predefined scale. While this multiple-scale approach is similar in spirit to that of DO, our test 
statistics are based on Ripley’s K-function rather than the “K-density” approach of DO. One 
advantage of K-functions is that they can easily be disaggregated to yield information about the 
spatial locations of clusters at various scales. Our tests for the localization of R&D labs also 
control for industrial concentration and, in particular, the concentration of manufacturing 
employment.2

 

  Finally, in addition to these cluster-identification results, we present an initial 
analysis of the economic significance of such clusters in terms of increased patent productivity of 
labs within clusters. 

3. DATA  
 
Our primary data source is the 1998 vintage of the Directory of American Research and 
Technology. Using the complete address information for each R&D establishment, we were able 
to geocode the locations of more than 3000 labs. For this paper, we limited the analysis to 1,035 
R&D labs in 10 states comprising the Northeast corridor of the United States (Connecticut, 
Delaware, Maryland, Massachusetts, New Hampshire, New York, New Jersey, Pennsylvania, 
Rhode Island, and Virginia, including the District of Columbia — the Washington, DC cluster). 
These labs are plotted in Figure 2.3

                                                 
1 The study by Guimarães, Figueiredo, and Woodward (2007) is the only other study we are aware of that looks at 
spatial clustering at the establishment level. Specifically, they look at the geographic concentration of over 45,000 
plants in 1999 for concelhos (counties) in Portugal.  

 Since there are approximately 6,043 zip codes in these states, 
there is on average one R&D facility for every 6 zip codes in this part of the country.  

2Duranton and Overman (2005) suggest five properties for a good index of concentration. The index should (1) be 
comparable across industries, (2) control for overall concentration of industry, (3) control for industrial 
concentration, (4)  be unbiased with respect to scale and aggregation, and (5) test for the significance of the results.  
It can be shown that the index of concentration used in this study satisfies these conditions. 
3 In some cases, a company reported multiple labs at the same address. For the analysis presented in this paper, we 
treated these cases as separate labs. As a robustness check, we also generated a map in which multiple labs owned 
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Even at the most aggregate level, it is easy to establish that R&D activity is relatively 
concentrated in these 10 states. For example, in 1998 one-third of private R&D labs (and 32 
percent of private R&D expenditures) were located within this region, as compared with 22 
percent of total employment (21 percent of manufacturing employment) and 23 percent of the 
population. This concentration is consistent with Audretsch and Feldman (1996), who report that 
three of the top four states in terms of innovation in their data include Massachusetts, New 
Jersey, and New York. 
  
In our formal analysis below, the concentration of R&D establishments is measured relative to a 
baseline of economic activity as reflected by the amount of manufacturing employment in the zip 
code, as reported in the 1998 vintage of Zip Code Business Patterns.4 These data are plotted in 
Figure 3. Since our main objective is to describe the localization of total R&D labs, 
manufacturing employment represents a good benchmark, since the vast majority of our R&D 
labs are owned by manufacturing firms.5

 

  Since R&D labs may choose locations for different 
reasons than those of manufacturing establishments, later in the paper, we also examine the 
concentration of labs conducting R&D in specific industries, as compared to the locations of all 
R&D labs. 

In Section 8 of this paper, we examine the relationship between our identification of clusters and 
the research productivity of labs in these clusters (measured by patents and patent citations). 
Thus, our final source of data is patents, and the citations to them, that are obtained by firms that 
own R&D labs in our data set. The starting point is the patent data constructed in earlier studies 
(Carlino et al., 2007 and Carlino and Hunt, 2009). Using data obtained by the U.S. Patent and 
Trademark Office, we allocated nearly all patents granted during the 1990s to inventors living in 
the U.S. to the county associated with the home address of the first inventor listed on the patent.  
 
To obtain measures of the quality of these patents, we matched these data to the OECD/EPO 
Patent Citations Database (Webb et al., 2005). This provides a count of the number of citations a 
patent receives in patents obtained by subsequent inventors around the world. Much like citations 
to journal articles, these “forward” citations are indicative of the quality or value of the patented 
invention.  For example, forward citations are correlated with the highly skewed distribution of 
the value of patented inventions (Harhoff et al. 1999), and they explain a significant part of the 
value that patents confer on the firms that own them (Hall et al. 2005).   
 
We next linked these patents to the firms that originally owned them via a match to the NBER 
Patent Citations Data File (Hall et al. 2001). This provides us with a company name and 
alphanumeric identifier (CUSIP), which we use to associate R&D labs in our data set with the 
companies obtaining patents in these other data. Unfortunately, much of this matching must be 
done by hand. In addition, the companies included in the NBER data are all publicly held, while 
                                                                                                                                                             
by the same company and with a common street address were treated as a single lab. This reduces our lab count to 
951. We repeated all our analyses using this alternative map and found essentially the same results.   
4 It should be noted that, by using these data, we are implicitly assuming that manufacturing employment is 
distributed uniformly across points within a given zip code. 
5 There are two notable exceptions in our labs data: electronics wholesaling (which includes firms such as Apple 
computers) and software. As a robustness check, we ran many of our tests using total employment as a backcloth 
and found comparable results.   
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a significant proportion of the R&D labs in our data were owned by firms that were not publicly 
traded at the time the NBER data set was constructed.  
 
In all, we are able to assign patents and their associated forward citations to 351 of the 1035 labs 
in our data set.6

 

 While hardly ideal, these data are sufficiently rich to permit us to conduct some 
basic tests of the relationship between our measures of clustering and the productivity of R&D 
labs.  

4. GLOBAL CLUSTER ANALYSIS 
 
The key question of interest here is whether the overall pattern of R&D locations in the 10 states 
we examine exhibits more clustering than would be expected from the spatial concentration of 
manufacturing in those states. To address this question statistically, our null hypothesis is that 
R&D locations are determined entirely by the distribution of manufacturing employment:  
 

0H : The probability of finding a randomly selected R&D lab in any given area is proportional to 
manufacturing employment in that area.  
 
Although we do not have employment data for arbitrary areas, our zip code geography for the 
Northeast corridor should be sufficiently disaggregated to provide reasonable approximations for 
the purposes of our global cluster analysis (as unions of zip code areas).  
 
A simple two-stage Monte Carlo procedure for generating locations consistent with our null 
hypothesis is to randomly draw a zip code with a probability that is proportional to 
manufacturing employment in that zip code, relative to manufacturing jobs in all zip codes in our 
data, and then to choose a random location within that zip code.  By repeating this procedure for 
a set 1035n =  location choices, one generates a pattern, ( ( , ) : 1,.., )i i iX x r s i n= = = , of potential 
R&D locations that is consistent with 0H , where ( , )i ir s represents the latitude and longitude 
coordinates (in decimal degrees) at point i. This process is repeated many times for each R&D 
location in the data set. In this way, we can test whether the observed point 
pattern, 0 0 0 0( ( , ) : 1,.., )i i iX x r s i n= = = , of R&D locations is “more clustered” than would be 
expected if the pattern were generated randomly (i.e., randomly drawn from the manufacturing 
employment distribution).  
 
In the next section we introduce the appropriate test statistics in terms of K-functions. In Section 
4.2 and Section 4.3 we summarize our test results for global clustering. In Section 4.4 we 
consider the relative concentration of labs conducting R&D in specific (two-digit SIC) industries 
as compared to the locations of all R&D labs. In other words, we investigate whether labs in 
some industries exhibit more clustering than R&D labs in general.  
 
4.1 K-Functions  
 

                                                 
6 We dropped four labs in Rochester, NY because they were outliers.  These labs were associated with either 
Eastman Kodak or the Xerox Corporation.  This leaves us with a final sample of 347 labs. 
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The most popular measure of clustering for point processes is Ripley’s (1976) K-function, 
( )K d ,7

( )K d
  which (for any given mean density of points) is essentially the expected number of 

additional points within distance d of any given point. Hence if  is higher than would be 
expected under 0H , this may be taken to imply clustering of R&D locations relative to 
manufacturing at a spatial scale d.   
 
For testing purposes, it is sufficient to consider sample estimates of ( )K d . If for any given point i 
in pattern ( : 1,.., )iX x i n= = , we denote the number (count) of additional points in X within 

distance d of i  by ( )iC d , then the desired sample estimate, ˆ ( )K d , is given simply by the 
average of these point counts, i.e., by 8

 
   

1
1ˆ ( ) ( )n

iinK d C d
=

= ∑                                                                                   (1) 
 

As described in the preceding section, we draw a set of point patterns, 
( : 1,.., ) , 1,..,s s

iX x i n s N= = = , for a selection of radial distances, 1( ,.., )kD d d= , and calculate 
the resulting sample K-functions, ˆ{ ( ) : }, 1,..,sK d d D s N∈ = . For each spatial scale, d D∈ , 
these values yield an approximate sampling distribution of ( )K d  under our null hypothesis.  
 
If one simulates a number of point patterns, ( : 1,.., ) , 1,..,s s

iX x i n s N= = = , by the above 
procedure, and for a selection of radial distances, 1( ,.., )kD d d= , constructs the corresponding 
sample K-functions, ˆ{ ( ) : }, 1,..,sK d d D s N∈ = , then at each scale, d D∈ , these values yield an 
approximate sampling distribution of ( )K d  under 0H . Hence if the corresponding value, 0ˆ ( ),K d  
for the observed point pattern, 0X , of R&D locations is sufficiently large relative to this 
distribution, then this can be taken to imply significant clustering relative to manufacturing. 
More precisely if the value 0ˆ ( )K d is treated as one additional sample under 0H , and if the 
number of these 1N +  sample values at least as large as 0ˆ ( )K d  is denoted by 0( )N d , then the 
fraction, 
 

 
0 ( )( )

1
N dP d
N

=
+

        (2) 

 
is a (maximum likelihood) estimate of the p-value for a one-sided test of hypothesis 0H .  
 

                                                 
7 The term “function” refers to the fact that ( )K d is in principle defined for all 0d ≥ . 
8 These average counts are usually normalized by the estimated mean density of points. But since this estimate is 
constant for all point patterns considered, it has no effect on testing results. 
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For example, if 999N =  and 0( )N d  = 10, so that ( ) 0.01P d =  then under 0H , there is only a 

one-in-a-hundred chance of observing a value as large as 0ˆ ( )K d . Thus at spatial scale d there is 
significant clustering of R&D locations at the 0.01 level of statistical significance.  
 
 4.2 Test Results for Global Clustering 
 
Our Monte Carlo test for clustering was carried out with 999N =  simulations at radial distances, 

{0.25,0.5,0.75,1,2,...,99,100}d D∈ = , i.e., at quarter-mile increments below 1 mile, and at 1-
mile increments from 1 to 100 miles.  We find that clustering is so strong, relative to 
manufacturing employment, that the estimated p-values were 0.001 for all spatial scales we 
considered. Thus our conjecture that private R&D activities exhibit significant agglomeration is 
extremely well supported by the data. 
 
Note that, using our approach, the smallest possible p-value that can be generated is 1 ( 1)N + .  
For 999,N =  the smallest possible p-value is then 0.001, which suggests that we may be 
underestimating the statistical significance of our results. Of course, we could increase the 
number of draws, but we chose 999N =  because it was sufficiently large to obtain reliable 
estimates of the sampling distributions under 0H .  Analysis of these distributions—both in terms 
of Shapiro-Wilk (1965) normality tests and normal quantile plots (not shown)—indicates that 
they were well approximated by the normal distribution for all the spatial scales we tested.  
 
4.3 Variation in Global Clustering by Spatial Scale   
 
To obtain a sharper discrimination between results at different spatial scales, we calculate the z-
scores for each observed estimate, 0ˆ ( )K d , as given by 
 

 
0ˆ ( )( ) , {0.25,0.5,0.75,1,2,...,99,100}d

d

K d Kz d d
s
−

= =  (3)  

 
where dK  and ds  are the corresponding sample means and standard deviations for the 1N +  
sample K-values. These z-scores are depicted in Figure 4.  Notice first that the lowest z-score is 
already more than seven standard deviations away from the mean, which explains the constancy 
of p-values reported above. 
 
A key finding from the global K-function analysis is that the overall clustering of R&D labs is by 
far most significant (based on z-scores) at very small spatial scales, such as distances of one-
quarter mile. While still highly significant, the z-scores decline rapidly up to a spatial scale of 
about 5 miles. We also observe a secondary mode of significant clustering for the totality of all 
labs at about 40 miles (Figure 4). In terms of standard deviations, this is about half as 
pronounced as the primary mode.   
 
This pattern of z-scores is consistent with two strands of empirical research on human capital 
spillovers and agglomeration economies. For example, there are a number of papers that 
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establish very rapid attenuation of effects with distance in studies of the concentration of 
manufacturing employment (Rosenthal and Strange, 2001 and 2008, and Elvery and 
Sveikauskas, 2010), of innovative activity (Audretsch and Feldman, 1996; Keller, 2002; and 
Agrawal, Kapur, and McHale, 2008); and of locations of advertising firms in New York City 
(Arzaghi and Henderson, 2008). Other studies find evidence of positive effects of agglomeration 
at much greater distances (Rosenthal and Strange, 2008, and Elvery and Sveikauskas, 2010). For 
example, Carlino et al. (2007) establish robust correlations between patent intensity (patents per 
capita) and job density (jobs per square mile) for 280 U.S. cities in the 1990s. Such patterns are 
consistent with models of labor market search that exhibit matching externalities (Berliant et al., 
2006, and Hunt, 2007).   
 
4.4 Relative Clustering of R&D Labs by Industry   
 
We believe that the distribution of manufacturing jobs is a reasonable, relatively objective basis 
for assessing patterns of clustering by private R&D facilities. Nevertheless, the reasons for 
establishing an R&D lab in a particular location may differ from those that determine the 
location of manufacturing establishments.  For example, R&D labs may be more drawn to areas 
with a more highly educated labor force than would be typical for most manufacturing 
establishments.  Some R&D labs may co-locate not because of the presence of spillovers but 
rather because of subsidies provided by state and local governments. One example might include 
partial public funding of technology parks.  
 
In this section of the paper, we modify our null hypothesis: we assume the probability of finding 
a randomly selected R&D lab associated with a particular industry is proportional to the total 
number of R&D labs in that area. The cost of this approach is that we cannot say anything about 
the clustering of R&D labs in general. The benefit is two-fold. First, we can incorporate into our 
null hypothesis factors that are likely to influence the location of R&D in general. Second, we 
can assess whether specific industries exhibit more spatial concentration of their R&D than for 
all R&D labs taken together. Note that we are explicitly imposing a more severe test for spatial 
concentration, since we have already established that R&D facilities are significantly more 
concentrated in space than manufacturing activity in general. 
 
To accomplish this, we grouped labs in terms of their primary industrial research areas at the 
two-digit SIC level.9  We apply a variant of the global K-function procedure by taking random 
draws of the count of R&D labs from the full population of 1,035 labs.10

                                                 
9 The two-digit level is used to achieve sufficient sample sizes for testing purposes. This yields 19 industrial groups 
with corresponding SIC designations: 10, 13, 20-23, 26-30, 32-39, and 73. It also reduces the likelihood that the 
presence of outliers, in terms of industry specialization, might also lead to false positives. Consider, for example, a 
company developing an advanced large caliber cannon, which may require a proving ground isolated from other 
activities. 

 Table 1 reports the p-
values for each of the 19 two-digit SIC industries for selected distances. We find that at a 
distance of a quarter-mile, seven of these 19 industries (37 percent) are significantly more 

10 In particular, this identification procedure is carried out (in a manner similar to that in DO) in terms of standard 
random-permutation tests based on global K-function statistics.  
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localized (at the .05 level) than are R&D labs in general,11  and none are significantly more 
dispersed.12

 
  

The z-scores for the seven industries with the most significant patterns of clustering are displayed 
graphically in Figure 5. Because we are especially interested in the attenuation of z-scores at 
small scales, these z-scores are given in increments of 0.25 miles up to 5 miles. For all but one of 
these industries, clustering of R&D labs is by far most significant at very small spatial scales — 
a quarter mile or less. The lone exception is Miscellaneous Manufacturing Industries (SIC 39), 
where the highest z-score occurs at a distance of just under two miles.  
 
In addition, Figure 5 reveals a very rapid distance decay of the z-scores for each of the seven 
industries. The rapid spatial attenuation of z-scores suggests that at least one important 
component of knowledge spillovers in these industries is highly localized. For most of these 
industries there is nearly a monotonic decline in z-scores as spatial scale increases. In four 
instances, at distances above 3 miles, the industry’s R&D labs are no more concentrated spatially 
than R&D labs in general. Two exceptions do stand out: Chemicals and Business Services. Labs 
in these industries are also spatially concentrated, relative to all R&D labs, at much large spatial 
scales. Note that, in our data, all but one of the R&D labs in the Business Services category are 
associated with firms engaged in computer programming or data processing.  
 
The results for the Chemical and Allied Products industry (SIC 28) merit some additional 
discussion, if for no other reason than this category includes labs engaged in pharmaceutical 
R&D, a very important segment of the U.S. economy. In our data, this category of labs accounts 
for about 40 percent of all labs, a share more than twice as large as any other two-digit SIC 
industry. Thus, at least within the geographic area we study in this paper, this industry is a major 
contributor to the overall clustering pattern of R&D shown in Figure 4. Nevertheless, as Figure 5 
demonstrates, our evidence of clustering occurs in many other industries. In other words, the 
clustering of R&D labs is not a phenomenon specific to drugs and chemicals. 
 
5. LOCAL CLUSTER ANALYSES  
 
The global analysis documents that R&D facilities in these 10 states are indeed clustered at a 
variety of spatial scales. In this section we a use variation of our techniques to identify specific 
R&D clusters and the labs that belong to them.  The main tool for accomplishing these tasks is 
the local version of sample K-functions for individual pattern points (first introduced by Getis, 
1984).13 i Basically, this local version at  is simply the count of all additional pattern points 

                                                 
11 The seven industries include Textile Mill Products; Stone, Clay and Glass; Fabricated Metals; Chemicals and 
Allied Products (this category includes drugs); Instruments and Related Products; Miscellaneous Manufacturing 
Industries;  and Business Services.  
12 With respect to dispersion, two of the 19 industries are found to be significantly more dispersed starting at a 
distance of 5 miles, while an additional industry exhibits some degree of relative dispersion at 50 miles.  
13 The interpretation of the population local K-function, ( )iK d , for any given point i is simply the expected number 

of additional pattern points within distance d of i. Hence ˆ ( )iK d is basically a (maximum likelihood) estimate of size 

one for ( )iK d .  For a range of alternative measures of local spatial association, see Anselin (1995).  
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within distance d of i . In terms of the notation in expression (1) above, the local K-function, ˆ
iK , 

at location i  is given for each distance, d, by,14

 
 

           ˆ ( ) ( )i iK d C d=       (4) 
 

Hence the global K-function, K̂ , in expression (1) is simply the average of these local functions. 
 

5.1 Local Testing Procedure 
 
For the remainder of the paper, we use the same null hypothesis employed in section 4.1 (R&D 
labs are distributed in a manner proportional to the distribution of manufacturing employment). 
The only substantive difference from the procedure used in that section is that the actual point 
pattern associated with location i, ix , is held fixed. The appropriate simulated values,  
ˆ ( ) , 1,..,s

iK d s N= , under 0H  are obtained by generating point patterns, ( : 1,.., 1)s s
jX x j n= = − ,  

of size 1n − , representing all points other than i . The resulting p-values for a one-sided test of 
0H  with respect to point i  take the form,  

 
0 ( )( )

1
i

i
N dP d
N

=
+

      (5) 

 
where 0( )iN d  is again the number of these 1N +  draws that produce values at least as large as 

0ˆ ( )iK d .  
 
An attractive feature of these local tests is that the resulting p-values for each point i  in the 
observed pattern can be mapped. This allows us to check visually for regions of significant 
clustering. In particular, groupings of very low p-values serve to indicate not only the location 
but also the approximate size of possible clusters. Such groupings based on p-values necessarily 
suffer from “multiple testing” problems, which we address rigorously in later sections.   
 
5.2 Test Results for Local Clustering  
 
For our local cluster analysis, simulations were performed using 999N =  test patterns of size 

1n −  for each of the ( 1035)n =  R&D locations in observed pattern 0X . The set of radial 
distances (in miles) used for the local tests was {0.5,0.75,1,2,5,10,11,12..,100}D = .  
 
In our global analysis, the associated p-values were essentially the same for nearly all spatial 
scales. That is not the case for the local analysis. It is not surprising to find that many isolated 
R&D locations exhibit no local clustering whatsoever, so that wide variations in significance 
                                                 
14 It should be noted that the original form proposed by Getis (1984) involves both an “edge correction” based on 
Ripley (1976) and a normalization based on stationarity assumptions for the underlying point process. However, in 
the present Monte Carlo framework, these refinements have little effect on tests for clustering. Hence we choose to 
focus on the simpler and more easily interpreted “point count” version above.  
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levels are possible at any given spatial scale. It is also natural to expect variations in tests of 
statistical significance at different spatial scales. At very small scales (say, less than one-quarter 
of a mile), we expect to find a wide scattering of very small clusters, such as industrial parks that 
include more than one R&D lab. At the other extreme (say 100 miles), we expect to find very 
large clusters, based mostly on the strong overlap of K-function areas around each location. From 
a visual perspective, at least, the most interesting scales are those intermediate scales at which 
one begins to see more “coherent” clusters.  
 
A visual inspection of p-value maps for our tests shows that the clearest patterns of distinct 
clustering can be captured by the smaller set of distances {0.5,1,5,10}.  Of these four, the single 
best distance for revealing the overall clustering pattern in the entire data set appears to be 5 
miles, as illustrated in Figure 6.15

i
  For clarity, we have shown only three levels of p-values. As 

seen in the legend, those R&D locations, , exhibiting maximally significant clustering 
[ (5) 0.001iP = ] are shown in black, and those with p-values not exceeding 0.005 are shown as 
dark gray. Here it is evident that essentially all of the most significant locations occur in four 
distinct groups, which can be roughly described (from north to south) as the “Boston,” “New 
York City,” “Philadelphia,” and “Washington DC” agglomerations.16

 

 But while these patterns 
are visually compelling, it is important to establish the results more formally. 

6.  IDENTIFYING CLUSTERS USING ROBUST METHODS  
 
The global cluster analysis in Section 4 identified the scales at which clustering is most 
significant (relative to manufacturing employment). The local cluster analysis in Section 5.1 
provided information about where clustering is most significant at each spatial scale. But neither 
of these methods formally identifies or defines “clusters,” the combinations of specific labs that 
belong in a set of labs subject to mutual influence by other members of the set. In this section, 
we apply some additional techniques to identify clusters. In the process of doing so, we will 
address some econometric issues that could potentially contaminate these and our earlier results.  
 
6.1 The Multiple-Testing Problem 
 
Our method of identifying clusters is by construction a local cluster analysis. Because we are 
testing over multiple locations (some nearby) and spatial scales (some quite large), we must 
address two aspects of a “multiple testing” problem.17

 
  

Suppose there was in fact no local clustering of R&D labs (so that the observed pattern 0X of 
R&D locations could not be distinguished statistically from the patterns generated under our null 
hypothesis). Suppose also that all local K-function tests were statistically independent from each 
other. Then by construction, we should still expect 5 percent of our resulting test statistics to be 
statistically significant at the .05 level. So when many such tests are involved (in our case, 1,035 
tests at each scale, d D∈ ), we are bound to find some degree of  “significant clustering” using 
standard testing procedures. As is well known, this type of “false positive rate” can be mitigated 
                                                 
15 We use the results for the entire set of distances in the robustness sections that follow.   
16 The one exception here is a small but significant agglomeration in Pittsburgh. 
17 A global cluster analysis, conducted over many spatial scales, may also suffer from this problem, but the problem 
is made worse for the local cluster technique, which we address in the text. 
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by reducing the p-value threshold level deemed to be “significant.” That is one reason why we 
focus only on p-values no greater than 0.005 in Figure 5.  
 
This adjustment alone is not sufficient in instances where the assumption of statistical 
independence of the tests is also violated. This is a likely possibility when our statistics for 
detecting local clustering are calculated over radial distances that are larger than half the distance 
between any two points for which the statistic is being calculated. The resulting p-value map 
must necessarily exhibit some degree of (positive) spatial autocorrelation, much in the same way 
that kernel smoothing of spatial data induces autocorrelation.18

 
  

6.2 The Significance-Maximizing Approach 
 
A number of econometric approaches have been developed for resolving multiple testing 
problems in spatial applications. Perhaps the best known are the original work of Besag and 
Newell (1991) and the more recent work of Kulldorff (1997). Both approaches resolve the 
multiple-testing problem by conducting only a single test.   
 
In the present setting, we focus on zip code areas (cells) and replace individual locations with 
counts of R&D labs in each area (cell counts). Using centroid distance between cells, candidate 
clusters are then defined as unions of m-nearest neighbors to given “seed” cells, and a test 
statistic is constructed to determine the single most significant cluster.  In both of these 
significance-maximizing procedures, the notion of “significance” is essentially defined with 
respect to tests based on the same null hypothesis, 0H , above.19

 

  To determine a second most 
significant cluster, the zip code areas in the most significant cluster are removed, and the same 
procedure is then applied to the remaining zip code areas.  This procedure is typically repeated 
until some significance threshold (such as a p-value exceeding .05) is reached.   

While this repeated series of tests might appear to reintroduce multiple testing, such tests are by 
construction defined over successively smaller spatial domains and hence are not directly 
comparable. Notice also that at each step of this procedure, the cluster identified has an explicit 
form, namely, a seed zip code area together with its current nearest neighbors.  So both of the 
problems raised for K-function analyses above are at least partially resolved by this significance-
maximizing approach. 

 
We have applied both the Besag-Newell procedure and Kulldorff’s SATSCAN procedure to our 
data and found them to be in remarkably good agreement with each other. Thus, we present only 
the results of the (more popular) SATSCAN procedure. In this setting, we ran the maximum of 
10 iterations allowed by the SATSCAN software20

                                                 
18  For a full discussion of these issues in a spatial context, see, for example, Castro and Singer (2006). 

  and the results from the union of these 

19  In our present setting, the Besag-Newell (1991) procedure directly uses 0H  to define a nonhomogeneous Poisson 
process of R&D frequency counts in each zip code area. The appropriate test statistic is then simply the observed 
total count in each candidate cluster. The SATSCAN procedure of Kulldorff (1997) uses a more complex likelihood-
ratio statistic (under 0H ) for each candidate cluster and then employs essentially the same simulation procedure in 

Section 4.1 above to simulate the sampling distribution of this statistic under 0H . 
20 This software is freely available online at http://www.satscan.org/download_satscan.html.  

http://www.satscan.org/download_satscan.html�
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iterations are plotted in Figure 7. Comparing this figure to Figure 6 (derived using our local K-
function), it is evident that both procedures are identifying essentially the same areas. 
 
Turning next to the specific clusters identified by SATSCAN, we start with the single most 
significant cluster found in “stage 1” of the procedure, as shown by the darkened set of zip code 
areas in Figure 8 (where the slightly darker zip code in the center is the starting seed).  This 
cluster is essentially the “Boston cluster,” referred to in Figure 6 above. For purposes of 
comparison, the Boston area of Figure 6 has been superimposed on Figure 8 to show that the two 
most statistically significant groupings of R&D labs (based on the local K-function analysis) in 
the Boston area are essentially contained in this cluster. Again, there appears to be a reasonable 
correspondence between the results reported in section 5 and those found here. 
 
Still, the patterns presented in Figure 6 naturally raise the question as to why two distinct 
groupings of labs identified in the local K-function analysis should constitute a single cluster as 
identified by the SATSCAN procedure. It is due to the approximately circular shapes of 
candidate clusters defined by this particular implementation of the procedure.21

 

 In particular, no 
circular approximation to either of these two groupings is more significant than the single 
circular cluster shown.  

An even more dramatic example is provided by the single largest cluster in the New York area, 
just north of New York City in Figure 7, which is shown enlarged in Figure 9 (again the relevant 
portion of Figure 6 has been superimposed). Here it is evident that all significant concentration 
of R&D labs (at scale d = 5 miles) lies along the southern edge of this cluster. While there is a 
smaller concentration of labs in the east central portion, it is clear that attempts to capture these 
concentrations by circular shapes may have distorted the identification of the actual cluster. 22

 
  

In addition to this shape limitation, the sequential nature of cluster identification in these 
procedures introduces other types of “path-dependence” problems. In particular, the removal of 
clusters identified at each stage necessarily modifies the neighborhood relations among the 
remaining zip codes at later stages. So at a minimum, these modifications require careful 
“conditional” interpretations of all clusters beyond the first cluster.23

 
 

To conclude, tests using both the Newell procedure (not shown) and Kulldorff’s SATSCAN 
procedure are generally consistent with the results found in our local K-function analysis. This 
suggests that the results reported in Section 5 are not attributable to the kinds of multiple testing 
problems outlined above. Nevertheless, we can improve upon our implementation of the 
SATSCAN procedure for the purposes of formally identifying clusters. We accomplish this in 
the next section. 
 
 

                                                 
21 Our particular model corresponds to the “continuous Poisson” option in the SATSCAN software, for which 
neighborhoods are required to be “circular” (as defined by a seed area together with its first m-neighbors). 
22 It should be noted that the option of using more general “elliptical” clusters is available in certain SATSCAN 
modeling options other than the “continuous Poisson” option used here. 
23 Methods for addressing such path dependencies have been developed, but they require global optimization which 
can be intractable for some applications. See Mori and Smith (2009). 
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6.3 A Multiscale Core-Cluster Approach  
 
It is useful to consider an alternative approach to cluster identification that explicitly uses the 
multiscale nature of local K-functions. This procedure starts with the results of the local point-
wise clustering procedure in Section 5.2 and seeks to identify subsets of points that can serve as 
“core” cluster points at a given selection of spatial scales, d . Here we focus on the three scales, 

{1,5,10}d ∈ , that appear to capture the essential substructure of the four main clusters in Figure 
6. In most of the discussion below, we focus on the 5-mile scale for purposes of illustration and 
consider scales 1 and 10 only when substantive comparisons between the scales are made.  
 
At each scale, d , a core point is an R&D lab with an associated p-value of .001 or lower, 
derived in the local K-function analysis using the 999 simulations described in section 5.1.24 In 
order to exclude “isolated” points that simply happen to be in areas with little or no 
manufacturing, we also require that there be at least four other R&D labs within this d-mile 
radius. Finally, to identify distinct clusters of such points, we created a d-mile-radius buffer 
around each core point (in ArcMap) and identified the sets of points in each connected 
component of these buffer zones as a core cluster of points at level d. Hence each such cluster 
contains a given set of “connected” core points along with all other points that contributed to 
their maximal statistical significance at level d.25

 
  

The advantages of this core-cluster approach are best illustrated by examples. We begin with the 
single most significant cluster identified by SATSCAN—the Boston cluster shown in Figure 8.  
We noted earlier that the local K-function analysis produced two distinct concentrations of R&D 
labs within a single cluster as identified using the SATSCAN procedure. The corresponding 
results for the multiscale approach are shown in Figure 10. The core points for the spatial scales 

1,5,10d = are plotted along with their corresponding core clusters.  
 
For example, at the 5-mile scale we see that there are indeed two core clusters, defined by all of 
the labs inside each of the dark gray buffer zones (with corresponding core points also shown in 
dark gray). However, when the scale is expanded to 10 miles, these two clusters merge into a 
single core cluster that is roughly comparable to the SATSCAN cluster in Figure 6, but which 
now contains precisely those labs that contribute to the significance of at least one core point at 
this scale.  
 
Conversely, when the scale is reduced to 1 mile, a richer picture of local concentration emerges. 
Here the largest core cluster at the 5-mile scale is now seen to contain six individual 1-mile core 
clusters, while the smaller core cluster at 5 miles contains only a single 1-mile core cluster. Note 
finally that while such clusters tend to be nested by scale, this is not always the case. In particular 

                                                 
24 The use of 999 simulations was designed to maintain comparability with the SATSCAN results, where 999 is the 
maximum allowable number of simulations. As a check, we also ran the local cluster simulations in Section 5.1 with 
9,999 simulations. The core points identified from this exercise were, with a few minor exceptions, the same as 
those obtained from the original 999 simulations.  
25 The present definition of “core cluster” is designed to ensure that individual clusters are disjoint sets. 
Topologically, this requires that each such cluster be generated by sets of core points that are 2d-path connected, 
where a 2d-path is a sequence of points in the set with adjacent points no more than a distance of 2d apart. In other 
words, “adjacent” core points on such paths should be capable of sharing at least one d-neighbor. 
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there is a conspicuous 1-mile core cluster near the bottom of the figure that is not contained in 
any 5-mile core cluster. There happens to be a concentration of five R&D labs in close proximity 
that are relatively isolated from the other labs. So while this concentration is picked up at the 1-
mile scale (and in fact at the half-mile scale as well), it is too small by itself to be picked up at 
the 5-mile scale. 
 
Our second example illustrates one of the strong local concentrations of R&D labs that 
contribute to the peak of significance for the smallest spatial scales described in Section 4.3. 
Figure 11 plots a cluster of 17 labs just south of Central Park in New York City.  The figure 
shows core points at the quarter-mile and half-mile scale as well as the 1-mile scale. The quarter-
mile core cluster of five labs is denoted by the darkest buffer containing four black points (where 
the lowest of these points contains two labs). This is a particularly strong cluster since all labs 
are within one-quarter mile of each other, and hence all are core points at the quarter-mile scale. 
The larger 1-mile core cluster is indicated by the dashed buffer. The 1-mile core points are more 
difficult to show, since they are also half-mile or even quarter-mile core points. To distinguish 
these, a larger circle has been placed around each of the eight 1-mile core points.  All points 
other than the five white points (labeled “Other Labs”) are half-mile core points, with the 
associated core cluster shown in dark gray. The only one of these that is neither a 1-mile nor a 
quarter-mile core point is shown by the single dark gray point (which also contains two labs).  
 
To gain further insight into the differences between these core clusters, the zip codes shown in 
Figure 11 are shaded to depict the relative number of manufacturing jobs. The darkest one of 
these has more manufacturing jobs (22 thousand) than any other zip code in our data set. Notice 
that the 1-mile core cluster overlaps part of this dense manufacturing area, while the quarter-mile 
and half-mile core clusters do not. This explains why the half-mile core point closest to this area 
(the two labs at the dark gray point) as well as the quarter-mile core point closest to this area (the 
two labs at the lowest black point) are not also core points at the 1-mile scale. It is also of interest 
to note that this strong concentration of labs was not among the 10 most significant clusters 
identified by SATSCAN (although it might very well be close to the top 10).26

 
  

These examples serve to illustrate some of the attractive features of this multiscale core-cluster 
approach. First and foremost, such representations add a scale dimension not present in other 
clustering methods. In essence, this approach extends the multiscale feature of local K-functions 
from individual points to clusters of points. Moreover, individual core-cluster shapes are seen to 
be more sensitive to the actual configuration of points than those found in the significance-
maximizing method. Finally, since all core clusters are determined simultaneously, the problems 
of “path dependencies” discussed above do not arise.   
 
Still, this multiscale approach is not a substitute for more standard approaches such as 
significance-maximizing. In particular, this method cannot be used to gauge the relative 
statistical significance of clusters (such as determining whether clustering in Boston is more 
significant than in New York). While individual core points can be said to reflect relative 
(threshold) significance levels, there is no way to assign precise statistical significance to the 

                                                 
26This also shows that at micro scales such maximal-significance procedures can be very sensitive to the particular 
shapes of zip code areas (cells). In this case, the two adjacent zip code areas containing most of these labs happen to 
be closer to other neighbors (in centroid distance) than they are to each other. 
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core clusters they generate.  Moreover, such representational schemes offer no formal criteria for 
choosing the key parameter values by which they are defined (the d-scales to be represented, the 
p-value thresholds and d -neighbor thresholds for core points, and even the connected-buffer 
approach to identifying distinct clusters). Hence the main objective of this procedure is to yield 
visual representations of clusters that capture both their relative shapes and concentrations in a 
natural way. Since there is no universally accepted definition of “clusters,” it seems prudent to 
analyze this problem from many viewpoints and look for areas of substantial agreement among 
them. 
 
7. DESCRIPTION OF SPECIFIC R&D CLUSTERS   
 
In this section we provide a more detailed discussion of the internal spatial structure of the four 
major agglomerations found at the metropolitan level. In particular, in section 7.1 we identify the 
primary research areas associated with individual core clusters of labs. In Section 7.2 we relate 
these spatial structures to key local geographic features such as proximity to freeways and the 
presence of university centers. Finally, we briefly compare the spatial structures of those R&D 
labs with primary research areas in specific industries. 

 
7.1 Major Areas of Agglomeration  
Figure 12 plots all the core clusters at spatial scales of 1,5,10d =  miles. The outer gray contours 
correspond to core clusters at scale 10d = , for example. This map can be compared to the K-
function results for 5d =  in Figure 6 and the results using SATSCAN plotted in Figure 7. 
Reviewing these maps, it is clear that each technique reveals Boston, New York, Philadelphia, 
and Washington, DC, to be areas of significant spatial concentration in R&D, relative to the 
underlying pattern of manufacturing activity. The clusters identified using the multiscale 
approach for 10d =  correspond reasonably well to the ones identified via SATSCAN, but they 
are closer in shape to the pattern of the most significant local p-values found for labs using the 
local K-function approach. Given the multiplicity of techniques we have employed, these results 
seem quite robust. 
 
The Boston Agglomeration 
 
There are 187 R&D labs within Boston’s single 10-mile cluster (Figure 10).27

  

  Most of these labs 
conduct R&D in five three-digit SIC code industries: computer programming and data 
processing, drugs, lab apparatus and analytical equipment, communications equipment, and 
electronic equipment.  The largest 5-mile cluster shown in Figure 10 contains 108 labs, which 
account for 58 percent of all labs in the larger 10-mile cluster.  At the 1-mile scale, Boston has 
eight clusters, six of which are centered in the largest 5-mile cluster. The largest of these 1-mile 
clusters contains 30 labs, half of which conduct research on drugs.   

The New York City Agglomeration 
  
The single largest cluster identified within our 10-state study area is the 10-mile cluster above 
New York City (Figure 13) that stretches from Connecticut to New Jersey. This cluster contains 

                                                 
27 The map legend in Figure 10 applies to all map figures in this section. 
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a total of 235 R&D labs. Sixty-four (27 percent) of these labs conduct research on drugs, and 37 
(16 percent) do research on industrial chemicals. Within this highly elongated 10-mile cluster, 
three distinct 5-mile clusters were identified.  Most of the concentration is seen to occur in the 
two clusters west of New York City, which in particular contain five of the nine 1-mile clusters 
identified. Among these 1-mile clusters, the largest is the “Central Park” cluster shown in Figure 
11.  About two-thirds of the 17 labs in this cluster are conducting research on drugs, perfumes 
and cosmetics, or computer programming and data processing. 
 
The Philadelphia Agglomeration 
  
As seen in Figure 14, there is a large 10-mile cluster to the west of Philadelphia (where the city 
of Philadelphia is shown in darker gray), where there are a total of 49 labs.  Of these 49 labs, 16 
labs conduct research on drugs, and another 16 labs do research in the plastics materials and 
synthetic resins industry. This cluster in turn contains two 5-mile clusters. The most prominent of 
these is centered in the King of Prussia area directly west of Philadelphia and contains 30 labs, 
with 40 percent doing research on drugs. The second 5-mile cluster is centered in the city of 
Wilmington to the southwest.  Here about 25 percent of the labs are also engaged in research on 
drugs, but most (almost 60 percent) are doing research on plastics materials and synthetic resins.   
 
The Washington, DC, Agglomeration  
 
The final area of concentration is the 10-mile cluster around Washington, DC, which contains 76 
R&D labs as shown in Figure 15 (with the city of Washington, DC, in darker gray), where three 
5-mile clusters can also be seen. The most prominent of these is directly west of Washington, 
DC, and contains 37 (almost one-half) of the labs in the larger cluster. Thirty percent of the firms 
in this 5-mile cluster do research in the areas of computer programming and data processing.  In 
turn, this cluster contains two 1-mile clusters, the largest of which (to the north) contains 16 labs, 
with 44 percent conducting research on drugs. 28

 
   

The Pittsburgh Area  
 
In addition to these four major areas of agglomeration, notice from Figure 12 that there is a 
smaller agglomeration consisting of two 1-mile core clusters in the Pittsburgh area, one of which 
is contained in a 5-mile cluster. These are shown enlarged in Figure 16 (with the city of 
Pittsburgh in darker gray). In the 5-mile cluster (dark gray buffer), there are eight labs, six of 
which are in its 1-mile sub-cluster (dashed black buffer). Five of these are actually at the same 
location, denoted by the half-mile cluster (solid black buffer), where the three main areas of 
research are in plastics materials and synthetic resins, chemicals, and paints and allied products.  
The 1-mile cluster on the eastern edge of Pittsburgh contains seven labs, with the center three 
defining the half-mile cluster shown. All but one of these seven labs is conducting research in the 
areas of laboratory apparatus and analytical, optical, measuring, and control equipment.  

                                                 
28 It is also worth noting that the 5-mile cluster containing these two 1-mile clusters appears to be somewhat 
questionable in this case. Here a scale choice of, say, around 4 miles would have produced two distinct clusters that 
might provide a more appropriate representation of this particular configuration. However, for the sake of 
comparability across the study area, we have chosen to use a common set of scales throughout.   
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7.2 The Importance of Highways and Universities 
 
It is likely that access to both major highways and major research universities is an important 
determinant of the location and development of innovative activity.  This is clearly evident in the 
four major agglomerations identified here. 
 
Boston Area 
 
A prime example is provided by the locations of R&D labs in the Boston area. As seen in Figure 
10, the largest 1-mile cluster (just west of Boston) is centered in Cambridge, home to both 
Harvard and MIT.  The strength of the Boston area’s R&D activity has been especially supported 
by the strength of MIT in electrical engineering, a core discipline for R&D in the computer and 
electronics industries.  Turning next to Figure 17, observe that Cambridge also has good access 
to both Interstate 93 (running north-to-south) and Interstate 90 (running east-to-west). Similarly, 
many of the labs in the major 5-mile Boston cluster of Figure 10 are seen in Figure 17 to be 
located along Route 128 (Interstate 95), which is the inner ring highway around the city.  In 
particular, four of the six 1-mile clusters in this grouping are located along the Route 128 
corridor.  This corridor also has junctions with Interstate 93 and Interstate 90.  Further to the 
west of Route 128, the smaller 5-mile cluster in Figure 10 is seen to be centered precisely on the 
intersection of Interstate 90, with the outer circumferential highway being Interstate 495. 
 
New York Area 
 
Given its size, the New York area is by far the most complex. But here again, both the shapes 
and locations of core clusters are heavily influenced by major highways. In particular, the main 
5-mile cluster west of New York City shown in Figure 13 is seen from Figure 18 to be nested 
within the triangle of Interstates 78, 287, and 80 (also 280) and is most concentrated in 
Morristown just south of the 287-80 intersection. Even more dramatic is the elongated shape of 
the northern 5-mile cluster stretching along Interstate 87. As for universities, the 5-mile cluster 
southwest of New York City is clearly concentrated around Princeton University, which is active 
in all areas of research. Finally, the strong “Central Park” cluster in Manhattan is of course in 
close proximity to a host of research universities, including both Columbia and New York 
University.  
 
Philadelphia Area 
 
Another example of the importance of highways, and especially locations close to the junction of 
two major highways, is seen by comparing the Philadelphia core clusters of Figure 14 with the 
major routes shown in Figure 19.  Notice first that the major 5-mile cluster (west of Philadelphia) 
essentially follows the confluence of both the Pennsylvania Turnpike (Interstate 76) and Route 
202.  In fact, the only significant 1-mile sub-cluster (located in King of Prussia, PA) is almost 
precisely at the intersection of these two major routes.  Further south, Route 202 basically runs 
through the middle of the second 5-mile cluster in Figure 14 (located in Wilmington, DE).   The 
labs in the Philadelphia cluster are also in close proximity to a number of high-quality 
engineering and medical schools — including the University of Pennsylvania, Drexel University, 
Temple University, and Lehigh University.    
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Washington, DC, Area 
  
Finally, in the metropolitan area of Washington, DC, we see from a comparison of Figure 15 and 
Figure 20 that essentially all core R&D points of the main 5-mile cluster (including its two 1-
mile sub-clusters) are stretched along Interstate 270 to the north of Washington, together with the 
“Washington Beltway” (Interstate 495) to the west. In addition, the smaller 5-mile clusters to the 
east and west of the main cluster exhibit close proximity to Interstate 95 and Interstate 66, 
respectively.  In terms of universities, the University of Maryland is just north of Washington, 
DC, inside the Beltway. In particular, the 5-mile cluster to the east along Interstate 95 is between 
the University of Maryland (to the south) and Johns Hopkins University in Baltimore (to the 
north). 29

 
 

8. CLUSTERS AND R&D LAB PRODUCTIVITY   
 
What is the economic significance of the agglomeration of R&D labs? In particular, are the 
measurable returns associated with locating an R&D facility in close proximity to others? In this 
section we provide some initial evidence that R&D labs located within clusters – as defined by 
our techniques – are more productive in the sense that they produce more patents or patents of 
higher quality. 
 
As described in Section 3 above, we are able to assign patents to specific R&D labs using data 
on U.S. patents granted in the 1990s, matched with their associated “forward” citations and the 
companies that initially owned those patents. For very large firms with many R&D facilities 
located around the country, it can be difficult to associate a given patent with just one of those 
labs. We are able to resolve this ambiguity by verifying that the home address of the first 
inventor on the patent is located in a county nearby the R&D facility. Still, we are not able to 
associate patents with all R&D labs included in our data, primarily because many of these labs 
were owned by private firms and some of the patent data we use are associated primarily with 
publicly held companies (see above). In the end we are able to link patents to about one-third of 
the labs in our sample. While this is hardly ideal, the resulting censoring is likely to work in 
favor of our null hypothesis—that location in one of our R&D clusters is not associated with 
more patenting. 
 
8.1 Specification 
 
Because the patents (citations) are counts, our regressions are estimated using limited dependent 
variable models. An obvious candidate is the Poisson model, but this specification suffers from 
the relatively strong assumption of equi-dispersion. So, in addition to estimating Poisson models, 
we also estimate the more general negative binomial specification. In all our regressions, we 
report robust standard errors (White correction) to control for any heteroskedasticity.   
 
We report regression results using two dependent variables. The first is a count of patents 
received by inventors living near the R&D lab of the company the patent was assigned to. The 
second is a count of the citations associated with those patents. Specifically, we regress the 
                                                 
29As Figure 22 reveals, the 5-mile core cluster just west of the city of Pittsburgh (as seen in Figure 16) is almost 
precisely at the intersection of two major routes (Interstate 279 and Interstate 79) . 
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number of patents (or citations) obtained by lab l during the period 1990-1999 on a set of dummy 
variables that specify whether the lab is located in a cluster of radius m, denoted ,l mC , where m = 
{one-half mile, 1 mile, 5 miles, and 10 miles}. In addition, to control for variations in R&D lab 
size, we include as explanatory variables the number of Ph.D.s employed in the R&D lab, lPhD  
(as reported in the Directory of American Research and Technology).   
 
A discussed in Section 3, not all of the R&D labs can be matched to patents obtained by firms 
who own those labs. For the set of labs we could not match, a portion of those did not actually 
produce any patents in the 1990s, but a portion did obtain some patents, but we do not observe 
these in our data.  In the present analysis, we focus on the set of labs for which we could locate 
patents.  Thus, our regressions for patent counts need to take into account that this is a sample 
truncated to labs that have received at least one patent in the 1990s. For regressions explaining 
patent counts, we use the zero truncated Poisson and the zero truncated negative binominal 
procedures.30

 

  Because not all patents in our data have a positive number of forward citations for 
regressions explaining patent citations, we therefore use the standard Poisson and the standard 
zero truncated negative binominal.   

Spillovers are one possible way to account for the concentration among R&D labs that we 
observe, but other forces, such as an area’s natural advantages, also might be at work.  An 
important natural advantage that an area may offer for innovative activity lies in its workers and 
institutions, especially its universities. Universities are key players not only in creating new 
knowledge through the basic research produced by their faculties but also in supplying a pool of 
knowledge workers on which R&D depends.  
 
We address this concern in two ways. First, we include a set of MSA fixed effects to absorb the 
contributions of city characteristics that vary little by distance. Second, we include in the 
regressions the lab’s distance to the closest engineering school, denoted lU .    
 

                                  
6

0 1 2 , 7
3

l l l m l m l l
m

y U PhD C MSAβ β β β β ε
=

= + + + + +∑                              (7) 

 
The regression sample consists of 347 labs. Table 2 shows the summary statistics for the 
variables used in the analysis. The average lab produced about 74 patents and received 95 
citations during the 1980 to 1999 sample period.  A typical lab has just under 30 Ph.D.s and is 
located about 12 miles from the nearest engineering school. 
 
8.2 The Estimated Relationship between R&D Clusters and Productivity 
 
Table 3 presents the findings for both a Poisson regression and a negative binominal regression. 
The findings for the Poisson specification are broadly consistent with those in the negative 
binomial regressions. Still, tests for over-dispersion, based on the technique of Cameron and 
Trivedi (1998), show that the negative binomial is the preferred specification in this case. 
 

                                                 
30We use the zero truncated Poisson (ZTP) and zero truncated negative binominal (ZTNB) procedures in STATA. 
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The main finding is that there is evidence of a robust correlation (after controlling for fixed 
effects and a number of relevant characteristics that vary in distance from the specific R&D lab) 
between clustering of R&D labs at two radii (at one-half mile and at 10 miles) and patenting. 
These two spatial distances correspond to some of the largest Z-scores derived in our global tests 
of clustering described in section 4.31

 

 R&D labs located within a half-mile or a 10-mile cluster 
are, all else equal, more than two to three times as productive, compared to labs that are not 
located in a cluster. These results suggest that our tests of clustering are identifying something 
more than a geographic curiosity. 

9. CONCLUDING REMARKS  
 
In this article, we use several distance-based econometric techniques to analyze the spatial 
concentration of the locations of over 1,000 R&D labs in a 10-state area in the Northeast corridor 
of the United States. Rather than using a fixed spatial scale, we attempt to describe the spatial 
concentration of labs more precisely by examining spatial structure at different scales using 
Monte Carlo tests based on Ripley’s K-function.  Geographic clusters at each scale are then 
identified in terms of statistically significant departures from random locations reflecting the 
underlying distribution of manufacturing activity (employment).   
 
Two important findings emerged from the global K-function analysis.  First, the clustering of 
labs is, by far, most significant (based on z-scores) at very small spatial scales, such as distances 
of about one-quarter of a mile, with significance attenuating rapidly during the first half mile. 
The rapid attenuation of significant clustering at small spatial scales is consistent with the view 
that knowledge spillovers are highly localized. We also observe a secondary mode of 
significance at a scale roughly associated with metropolitan areas.  This secondary cluster is 
consistent with the view that agglomeration economies associated with the scale of labor markets 
(e.g., externalities associated with pooling and matching of skilled workers) are important for 
innovative activity.   
 
While the global K-function analysis indicates that there is very significant clustering of R&D 
locations relative to manufacturing employment, it provides little more information other than 
the spatial scale (distances) at which clustering appears to be most significant.  Local K-function 
analysis is useful for identifying the location and extent of specific concentrations of labs.  In this 
paper, we introduce a novel way to identify clusters, called the multiscale core-cluster approach.  
The local K-function analysis identified four major clusters (one each in Boston, New York-
Northern New Jersey, Philadelphia-Wilmington, and Washington, DC).  These four clusters 
roughly correspond to the size of the secondary mode of clustering (approximately at a distance 
of 40 miles) identified by the global K-function.  We also found that R&D labs tend to 
concentrate along major highways and often at or near junctions of major highways. 
Nevertheless, each of these clusters has distinct characteristics, especially in terms of the mix of 
industries the R&D labs serve. 
 
There is a rich theoretical literature describing a variety of mechanisms for agglomeration 
economies as well as knowledge spillovers that may explain the spatial distribution of both 
                                                 
31 We don’t attempt to explain causation in our analysis; we merely seek to establish a robust correlation between 
the patterns of clustering in our data and the research outputs produced by those labs. 
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production and innovation. Empirical tests of these theories are beset with the problem of 
observational equivalence. How can we identify the precise mechanisms at work?  
 
The results of this paper suggest that one approach to this problem is to examine locational 
configurations of firms at a variety of spatial scales. In particular, our results suggest two 
possibilities. Perhaps there are two mechanisms of spillovers that explain patterns of clustering at 
two distinct scales (next door and at the level of local input markets). Or there could be a single 
mechanism that, for reasons not well understood, operates simultaneously at two spatial scales. 
The former suggests that empirical work must be sufficiently flexible to allow for multiple 
mechanisms, both for the purposes of identification and to avoid confounding results. The latter 
suggests that a very particular form of spatial spillover is at work that could help to narrow the 
range of candidate theories to be tested. 
 
An important question is the extent to which the spatial concentrations of R&D labs identified in 
this paper contribute to the productivity of innovative activity.   We demonstrate that the 
clustering of R&D labs is positively and significantly correlated with standard measures of 
research productivity: the number and quality of patents obtained by employees working at those 
labs.  Specifically, we show that labs located in a one-half mile cluster are almost three times 
more likely to either be granted a patent or to have one of their patents cited, compared with labs 
outside a one-half mile R&D cluster. 
 

 
 



24 
 

REFERENCES 
 

Agrawal, Ajay, Devesh Kapur, and John McHale. “How Do Spatial and Social Proximity 
Influence Knowledge Flows? Evidence from Patent Data,” Journal of Urban Economics, 
Vol. 64 (2008), pp. 258-69.  

Anselin, L. “Local Indicators of Spatial Association – LISA,” Geographical Analysis, Vol. 27 
(1995), pp. 93-115.  

Arbia,  Giuseppe, Giuseppe Espa, and Danny Quah.  “A Class of Spatial Econometric Methods 
in the Empirical Analysis of Clusters of Firms in the Space,” Empirical Economics, Vol. 
34 (2008), pp. 81–103 

Arzaghi, Mohammad, and J. Vernon Henderson. “Networking Off Madison Avenue,” Review of 
Economic Studies, Vol. 75 (2008), pp. 1011-1038. 

Audretsch, David B., and Maryann P. Feldman. “R&D Spillovers and the Geography of 
Innovation and Production,” American Economic Review, Vol. 86 (1996), pp. 630-40. 

Berliant, Marcus, Robert R. Reed III, and Ping Wang. “Knowledge Exchange, Matching, and 
Agglomeration,” Journal of Urban Economics, Vol. 60 (2006), pp. 69–95. 

Besag, J., and J. Newell. “The Detection of Clusters in Rare Diseases,” Journal of the Royal 
Statistical Society, Vol. 154 (1991), pp. 327-333. 

Buzard, Kristy, and Gerald A. Carlino. “The Geography of Research and Development Activity 
in the U.S.,” in Handbook of Economic Geography and Industry Studies,” Frank 
Giarratani, Geoff Hewings, and Philip McCann (eds.), Cheltenham: Edward Elgar 
Publishing (2011) 

Cameron, A. Colin, and Pravin K. Trivedi.  Regression Analysis of Count Data,  
Econometric Society Monograph No.30, Cambridge University Press, (1998). 

Carlino, Gerald, Satyajit Chatterjee, and Robert Hunt. “Urban Density and the Rate of 
Invention,” Journal of Urban Economics, Vol. 61 (2007), pp. 389-419. 

Carlino, Gerald, and Robert Hunt. “What Explains the Quantity and Quality of Local Inventive 
Activity?,” Brookings-Wharton Papers on Urban Affairs (2009), pp. 65-124. 

Castro, M.C., and B.H. Singer. “Controlling the False Discovery Rate: A New Application to 
Account for Multiple and Dependent Tests in Local Statistics of Spatial Association,” 
Geographical Analysis, Vol. 38 (2006), pp. 180-208. 

Directory of American Research and Technology, 23rd ed. New York: R.R. Bowker, (1999). 

Duranton, Gilles, and Henry G. Overman. “Testing for Localization Using Micro-Geographic 
Data,” Review of Economic Studies, Vol. 72 (2005), pp. 1077-1106. 

Ellison, Glenn, and Edward. L. Glaeser. “Geographic Concentration in U.S. Manufacturing 
Industries: A Dartboard Approach,” Journal of Political Economy, Vol. 105 (1997), pp. 
889-927. 

Ellison, Glenn, Edward L. Glaeser, and William Kerr. “What Causes Industry Agglomeration? 
Evidence from Coagglomeration Patterns,” American Economic Review, Vol. 100 (2010), 
pp. 1195-1213. 



25 
 

Elvery, Joel A and Leo Sveikauskas. “How Far Do Agglomeration Effects Reach?” Unpublished 
Paper, Cleveland State University, (2010). 

Getis, A., “Interaction Modeling Using Second-Order Analysis,” Environment and Planning, 
Vol. 16 (1984), pp.  173-183. 

Guimarães, Paulo, Octávio Figueiredo, and Douglas Woodward. “Measuring the Localization of 
Economic Activity: A Parametric Approach,” Journal of Regional Science, Vol. 47 
(2007), pp. 753-44. 

Hall, Bronwyn H., Adam B. Jaffe, and Manuel Trajtenberg. “Patent Citations and the Geography 
of Knowledge Spillovers: A Reassessment – Comment,” American Economic Review, 
Vol. 95 (March 2005), pp. 461- 464.  

Hall, Bronwyn H., Adam B. Jaffe, and Manuel Trajtenberg. 2001. “The NBER Patent Citations 
Data File: Lessons, Insights and Methodological Tools,” NBER Working Paper No. 
8498. 

Harhoff, Dietmar, Francis Narin, F. M. Scherer, and Katrin Vopel. “Citation Frequency and the 
Value of Patented Inventions,” Review of Economics and Statistics, Vol. 81 (1999), pp. 
511–15. 

 Holmes, Thomas J., and John J. Stevens. “Spatial Distribution of Economic Activities in North 
America,” in: J.V. Henderson and J.-F Thisse (eds.), Handbook of Regional and Urban 
Economics, Vol. IV: Cities and Geography. North Holland, Amsterdam: Elsevier (2004). 

Hunt, Robert. “Matching Externalities and Inventive Productivity,” Federal Reserve Bank of 
Philadelphia Working Paper No. 07-7 (2007). 

Keller, W. “Geographic Localization of International Technology Diffusion,” American 
Economic Review, Vol. 92 (2002), pp. 120-142 

Kerr, William R., and Scott Duke Kominers. "Agglomerative Forces and Cluster Shapes," 
Harvard Business School Working Papers 11-061, Harvard Business School, 2010. 

Kulldorff, M. “A Spatial Scan Statistic,” Communications in Statistics: Theory and Methods, 
Vol. 26 (1997), pp. 1487-1496. 

Lucas, R. E., Jr. and Esteban Rossi-Hansberg.  “On the Internal Structure of Cities,” 
Econometrica, Vol. 70 (2002), pp. 1445–1476. 

Marcon, E., and Puech, F. “Evaluating the Geographic Concentration of Industries Using 
Distance-Based Methods,” Journal of Economic Geography, Vol. 3 (2003) pp. 409-428. 

Mori, T. and T.E. Smith. “A Probabilistic Modeling Approach to the Detection of 
Industrial Agglomerations,” Discussion Paper 682, Kyoto Institute of Economic  
Research, Kyoto University, Kyoto, Japan (2009). 
 

National Science Foundation. Science and Engineering State Profiles: 1998-99. 

Ripley, B.D. “The Second-Order Analysis of Stationary Point Patterns,” Journal of Applied 
Probability Vol. 13 (1976), pp. 255–266. 

Rosenthal, Stuart, and William C. Strange. “The Determinants of Agglomeration,” Journal of 
Urban Economics, 50 (2001), pp. 191-229. 

http://joeg.oupjournals.org/cgi/content/abstract/3/4/409�
http://joeg.oupjournals.org/cgi/content/abstract/3/4/409�
http://jeg.oupjournals.org/�


26 
 

Rosenthal, Stuart, and William C. Strange. “The Attenuation of Human Capital Spillovers,” 
Journal of Urban Economics, Vol. 64 (2008), pp. 373-389. 

Shapiro, S. S., and Wilk, M. B. “An Analysis of Variance Test for Normality (Complete 
Samples),” Biometrika, Vol. 52 (1965), pp. 591–611. 

Webb, Colin, Hélène Dernis, Dietmar Harhoff, and Karin Hoisl. “Analyzing European and 
International Patent Citations: A Set of EPO Patent Database Building Blocks,” OECD 
STI Working Paper No. 2005/9. 

 
 
 
 

 

http://en.wikipedia.org/wiki/Martin_Wilk�
http://en.wikipedia.org/wiki/Biometrika�


27 
 

INDUSTRY SIC LABS 0.25 0.5 0.75 1 5 20 50
Metal Mining 10 4 0.5021 0.5029 0.5044 0.5052 0.5227 0.1674 0.4149

Oil and Gas Extraction 13 3 0.5011 0.5019 0.5026 0.5034 0.5137 0.0906 0.2286
Food 20 25 0.5825 0.6278 0.6750 0.7081 0.0984 0.2097 0.0480

Textile Mill 22 14 0.0267 0.0465 0.0690 0.0859 0.3468 0.7839 0.6446
Apparel 23 5 0.5036 0.5063 0.5082 0.5101 0.5399 0.7230 0.9088
Paper 26 28 0.6029 0.6596 0.7103 0.7460 0.4685 0.2833 0.3058

Printing & Publishing 27 3 0.5009 0.5012 0.5019 0.5024 0.5111 0.5837 0.7040
Chemicals 28 420 0.0001 0.0001 0.0001 0.0001 0.0001 0.0020 0.0001

Petroleum Refining 29 24 0.0844 0.1380 0.1980 0.2425 0.3012 0.0079 0.0358
Rubber Products 30 38 0.6728 0.7493 0.8135 0.8544 0.5710 0.7974 0.9965

Stone, Clay, Glass, And Concrete Products 32 36 0.0002 0.0008 0.0032 0.0011 0.1041 0.7385 0.6886
Primary Metal Industries 33 36 0.6555 0.7284 0.7921 0.8327 0.7848 0.2592 0.4881

Fabricated Metal Products 34 44 0.0004 0.0026 0.0101 0.0200 0.0911 0.6985 0.8571
Industrial And Commercial Machinery 35 140 0.6024 0.7659 0.4192 0.4052 0.9910 0.9898 0.9867

Electronics 36 242 0.1958 0.5789 0.5825 0.7329 0.7058 0.8030 0.7423
Transportation Equipment 37 40 0.2277 0.3575 0.4867 0.5711 0.9594 0.9989 0.9744

Measuring, Analyzing, And Controlling Instruments 38 243 0.0334 0.1509 0.3838 0.3983 0.8171 0.8937 0.8778
Miscellaneous Manufacturing Industries 39 18 0.0468 0.0789 0.1126 0.1380 0.0378 0.1672 0.1093

Business Services 73 137 0.0004 0.0052 0.0166 0.0055 0.0004 0.0001 0.0022
† Concentration is conditional on the location of overall R&D labs. Bold indicates significantly more concentrated than overall labs at the 5% level of significance. Light grey indicates 
significantly  more dispersed than overall labs at the 5% level of significance.

Miles
Table 1: Concentration of Labs by Industry (P -values)†
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Table 2: Descriptive Statistics 347 labs—excludes large labs in Rochester, NY   

VARIABLE MEAN SD MIN. MAX 
Patents  

(Counts) 74.0 156.9 1 1072 

Citations (Counts) 95.7 202.2 0 1695 
PhDs  

(Number) 28.7 77.0 0 535 

Distance to 
Nearest 

Engineering 
School (Miles) 

11.6 9.2 0.1677 48.5 

Half-mile Dummy 0.0928 0.2905 0 1 
One-mile Dummy 0.1043 0.3062 0 1 

Five-miles 
Dummy 0.1913 0.3939 0 1 

Ten-Miles Dummy 0.1768 0.3821 0 1 
 
 

Table 3: Determinants of Patent Productivity 

 
Distance 

to Nearest 
School 

PhD Half-Mile One-Mile 5-Miles 10-Miles Obs. 2R  

Patents 
Zero-

Truncated 
Poisson 

0.0246 
(1.77)* 

0.0030 
(2.97)*** 

1.003 
(2.38)** 

-0.4539 
(1.13) 

0.0249 
(0.08) 

0.2343 
(0.70) 345 0.4862 

Zero 
Truncated 

Neg. 
Binomial 

0.0079 
(0.66) 

0.0082 
(3.68)*** 

1.085 
(2.50)** 

-0.0752 
(0.19) 

0.4169 
(1.36) 

0.9614 
(2.89)*** 345 N/A 

Incidence ratios for the negative binomial specification 

 1.0008 1.0082 2.9607 0.9275 1.5173 2.6153  

Patent Citations 

Poisson 0.0278 
(2.17)** 

0.0029 
(2.98)*** 

1.2309 
(2.67)*** 

-0.5410 
(1.50) 

-0.0713 
(0.24) 

0.8802 
(2.78)*** 345 0.4240 

Neg. 
Binomial 

0.0126 
(1.09) 

0.0070 
(3.48)*** 

1.055 
(2.57)*** 

0.1747 
(0.44) 

0.4643 
(1.54) 

1.0034 
(2.88)*** 345 N/A 

Incidence ratios for the negative binomial specification 

 1.0113 1.0070 2.8871 1.1909 1.5909 2.7276  
†Robust standard errors in parentheses.  All regressions include MSA fixed effects. 
*, **, *** indicates p- values <.1, < .05, and <.01, respectively.   
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Figure 1. Location of R&D Labs 
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Figure 2. R&D Locations 
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Figure 5.  Industry Z-Scores 
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Figure 6. Local K-Function P-values at d = 5 Miles 
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Figure 7. Union of the Top 10 SATSCAN Clusters 
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  Figure 8.  Boston Cluster in SATSCAN 
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Figure 9.  Largest New York Cluster in SATSCAN 
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Figure 10.  Boston Core Clusters 
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Figure 11.  Central Park Core Clusters 
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Figure 12.  Multiscale Core Clusters (d = 1,5,10) 

Figure 13.  New York Core Clusters 
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Figure 14.  Philadelphia Core Clusters 
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Figure 15.  Washington, DC, Core Clusters 
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Figure 16. Pittsburgh Core Clusters 
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Figure 17. Boston Core Points and Major Routes 
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Figure 18. New York City Core Points plus Major Routes 
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  Figure 19. Philadelphia –Wilmington Core Points plus Major Routes 
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Figure 20. Washington, DC – Northern Virginia Core Points plus Major Routes 
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Figure 21. Pittsburgh Core Points plus Major Routes 

 

42 
 


	edited no.2 Working Paper 9_21_11.pdf
	Figures_PAPER3-1

