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Abstract

Inflation targeting has become a popular monetary policy strategy during the

last two decades. This has given rise to a lively debate about the empirical effects of

the adoption of inflation targeting. Some influential empirical studies have argued

that the apparent improved performance of inflation targeters is merely regression

to the mean, and controlling for the initial condition they conclude that inflation

targeting does not matter. This paper challenges these findings that the apparent

benefits of inflation targeting have basically been a mean-reverting mirage. It finds

that these tests of the effect of inflation targeting have low power. It is shown

analytically how they could fail to find any effect even if inflation targeting has in

fact been highly effective. The low power of the tests is further illustrated using

simulation results. As a result, prominent empirical findings that inflation targeting

does not matter due to regression to the mean are misleading as the tests lack power

to distinguish an oasis from a mirage.
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1 Introduction

Inflation targeting has become a popular monetary policy strategy during the last two

decades. This has given rise to a lively debate about the empirical effects of the adoption

of inflation targeting. In a highly influential paper, Ball and Sheridan (2003) argue

that the apparent improved performance of inflation targeters is merely ‘regression to

the mean’. They use a difference-in-differences specification that includes the initial

condition to control for this, and conclude that inflation targeting does not matter. Ball

(2010) uses a similar specification in the Handbook of Monetary Economics and also

finds little evidence that inflation targeting has been beneficial.

This paper challenges these findings that the apparent benefits of inflation target-

ing have basically been a mean-reverting mirage. It finds that tests of the effects of

inflation targeting using the Ball-Sheridan specification have low power. It shows an-

alytically how this specification could fail to find any effect of inflation targeting even

if it has been highly effective. It explores how the interpretation of the coefficients

depends on the data generating process. In particular, the coefficient estimate of the

inflation-targeting indicator variable in the Ball-Sheridan specification may not capture

the difference due to inflation targeting, but rather the difference in performance post-

inflation targeting. So, if inflation targeting is actually effective at reducing inflation,

but to an average level similar to others, then the Ball-Sheridan specification could give

the incorrect impression that inflation targeting has been ineffective.

In addition to showing analytically that estimates of the effect of inflation targeting

using the Ball-Sheridan specification tend to be biased, the low power of tests based on

it is illustrated using Monte Carlo simulations. For instance, for plausible parameter

values the paper finds that there would be no evidence of a significant effect of inflation

targeting in 63% of replications even if there has in fact been a statistically and econom-

ically significant reduction in inflation of 2 percent point. Thus, tests of the effect of

inflation targeting based on the Ball-Sheridan specification tend to be unreliable.

The remainder of this paper is organized as follows. Section 2 sets up the framework

for the analysis and provides a simple illustrative example that shows how the Ball-

Sheridan specification could yield misleading results. This example is generalized to

allow for persistence in section 3. The issue of sample selection and regression to the

mean is considered in section 4 and section ?? concludes.
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2 Analysis

The effect of inflation targeting could be estimated using a differences-in-differences

approach by comparing the change in a variable Xi (e.g. inflation in country i) before

and after the adoption of inflation targeting (the ‘treatment’) to the change in Xi for

others (the ‘control group’). This leads to the specification

∆Xi = a+ bIi + εi (1)

where ∆Xi ≡ Xi2 −Xi1 denotes the change in Xi from period 1 to 2, Ii is an indicator

variable for inflation targeting in country i in period 2, εi is i.i.d. white noise. The

coefficient a captures the average change in X in the control group, and b the effect of

the treatment of inflation targeting on X .

However, suppose that countries with higher initial inflation are more likely to adopt

inflation targeting (as is observed empirically), so that Xi1 and Ii are positively corre-

lated. In particular, Ball and Sheridan (2003) argue that Xi1 may be high because of

temporary shocks. If countries with high Xi1 decide to adopt inflation targeting, then

Xi2 would be expected to be lower because of ‘regression to the mean’, even if inflation

targeting were completely ineffective. So, estimation of (1) using ordinary least squares

(OLS) would lead to a downward bias in b because of a negative correlation between Ii

and εi, and thereby overestimate the reduction in X due to the treatment effect.

To overcome this problem, Ball and Sheridan (2003) suggest to include the initial

condition Xi1, so

∆Xi = a+ bIi + cXi1 + εi (2)

If there is regression to the mean for X , the coefficient c for the initial condition Xi1

would be expected to be negative, so a higher initial value Xi1 reduces ∆Xi, leading

to a relatively lower level of Xi2. The coefficient b is meant to capture the effect of the

treatment of inflation targeting on X , corrected for regression to the mean.

To better understand the properties of the Ball-Sheridan (BS) specification (2), we

first consider a simple illustrative example.
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2.1 Illustrative Example

Assume that Xit is described by

Xit =

{

µOt + εit for Ii = 0

µIt + εit for Ii = 1
(3)

where µIt and µOt denote the average level of X in period t with inflation targeting and

without inflation targeting, respectively, and εit is i.i.d. white noise with E [εit] = 0

and Var [εit] = σ2
it ≥ 0 for all i and t, so Xi1 and Xi2 are independent. Suppose that

inflation targeting is effective at achieving the inflation target X∗ on average in period 2

so that µI2 = X∗, while other countries have an average of µO2 = µO. So,

Xi2 =

{

µO + εit for Ii = 0

X∗ + εit for Ii = 1
(4)

Note that the BS specification (2) can also be written as

Xi2 = a+ bIi + (1 + c)Xi1 + εi (5)

This means that

Xi2 =

{

a+ (1 + c)Xi1 + εi for Ii = 0

a+ b+ (1 + c)Xi1 + εi for Ii = 1

Matching coefficients with (4) yields c = −1 and εi = εit, as the result should hold for

any realization of Xi1 and εit. Focusing on Ii = 0 and Ii = 1 then gives a = µO and

a+ b = X∗, respectively, which implies b = X∗− µO. As a result, the BS specification

(2) yields a = µO, b = X∗ − µO and c = −1.

This result also follows from the estimation of (5) by ordinary least squares (OLS).

Let N be the number of observations in the sample, including NI ∈ N inflation targeters

and NO ∈ N without inflation targeting in period 2, where N = NO + NI . The obser-

vations Xit are described by (3). For analytical convenience, assume that
∑

i∈R εit = 0

where R denotes the monetary policy regime (with Ii = 0 or Ii = 1), so the sample av-

erage X̄Rt of Xit equals X̄Ot = µOt and X̄It = µIt for Ii = 0 and Ii = 1, respectively.

Assume also that
∑

i∈R εi1εi2 = 0, so the OLS estimate β̂ of β ≡ (a, b, 1 + c)′ satisfies

β̂ = β exactly.1 Then the appendix shows that the OLS estimate for (5) equals

β̂ =
(

µO2, µI2 − µO2, 0
)

′

(6)

1This presumes that N ≥ 3 and ∃εi1 6= 0 to ensure the three parameters in β can be estimated.
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So, again a = µO2 = µO, b = µI2 − µO2 = X∗ − µO and 1 + c = 0, so c = −1. The

same outcome is obtained for OLS estimation of (2).

This result has important implications for the interpretation of the coefficients in the

BS specification. When the data are described by (3), the intercept a equals the average

period 2 level of X for countries in the control group without inflation targeting, rather

than the average change in X in the control group. Furthermore, the coefficient b does

not capture the average change in X due to the treatment of inflation targeting, but the

difference in the average level of X between the treatment and control group in period

2. Finally, the variable Xi1 capturing the initial condition has a negative coefficient with

a magnitude of one, or a zero coefficient in the specification (5) in levels. The latter

result is intuitive since Xi1 and Xi2 are assumed to be independent according to (3).

This illustrative example shows how the coefficients in the BS specification could be

completely misinterpreted. In particular, consider the plausible case in which countries

that adopted inflation targeting initially had a structurally higher level of inflation than

others (µI1 > µO1) and after the adoption of inflation targeting successfully reduced

it to their inflation target which is set at X∗ = µO, whereas those without inflation

targeting experienced no change in inflation (µO1 = µO2 = µO). Then a regression

using specification (2) would give a treatment coefficient b = 0, giving the incorrect

impression that inflation targeting has been ineffective!

The same result holds if there was also a (smaller) decline in average inflation for

those without inflation targeting, such that µO1 > µO2 = µO. No matter how high

inflation (µI1) initially was before inflation targeting, whenever the inflation target is set

close to the average level of inflation of others (X∗ ≈ µO), the estimated treatment effect

is close to zero (b ≈ 0), despite the fact that inflation targeting has successfully reduced

inflation. Clearly, b cannot be interpreted as the average effect of inflation targeting in

this case.

3 Persistence

The example above is based on the strong assumption that Xit is independent over time,

which is not realistic when focusing on inflation or many other macroeconomic vari-

ables. In particular, although inflation targeters tend to show little inflation persistence,

for other countries inflation tends to be quite persistent (Benati 2008). So it is important

to allow for persistence in X , in particular XOt.
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Before analyzing a more general case below, suppose now that X follows a ran-

dom walk for countries without inflation targeting, so Xi2 = Xi1 + εi2 for Ii = 0. In

particular, assume that Xi1 is still given by (3) in period 1, but that now for period 2

Xi2 =

{

µO1 + εi1 + εi2 for Ii = 0

µI2 + εi2 for Ii = 1
(7)

where εi2 is i.i.d. white noise. So, the effect of εi1 is persistent for countries without

inflation targeting, whereas inflation targeters manage to break with the past and are

no longer affected by εi1. Assume again that
∑

i∈R εit = 0 and
∑

i∈R εi1εi2 = 0, and

denote
∑

i∈R ε2it = SRt and St = SOt + SIt, where R denotes the regime (with Ii = 0

or Ii = 1). Then the appendix shows that the OLS estimate for (5) equals

β̂ =
(

SI1

S1

µO1, µI2 − µI1 +
SI1

S1

[µI1 − µO1] ,
SO1

S1

)

′

(8)

The interpretation of the estimated coefficients is again quite different from what

may be expected for the BS specification. The intercept a does not capture the average

change in X in the control group (which equals zero here), but a fraction SI1/S1 of µO1,

where SI1 captures the volatility of the shocks in period 1 for countries that subsequently

adopt inflation targeting, with 0 < SI1/S1 < 1.2 Furthermore, the coefficient b does

not equal the average change in X due to the inflation targeting treatment, which is

equal to µI2 − µI1 in this case. Instead, if inflation targeting is effective at breaking

with the past and reducing average inflation from µI1 > µO1 to µI2 < µI1, then the

estimated ‘treatment’ coefficient is smaller in magnitude than the actual effect. Thus,

the estimated treatment effect is biased again. Note that this bias is increasing in SI1.

So, if inflation targeters experienced relatively high initial volatility (which is plausible

since they tend to be small open economies), the bias in the estimated treatment effect

would be exacerbated. Finally, the estimate for the ‘mean-reversion’ coefficient c is

equal to SO1/S1 − 1 = −SI1/S1 < 0, so its magnitude is also increasing in the initial

volatility for inflation targeters.

The bias in the treatment effect makes it likely that OLS estimation of the BS spec-

ification would fail to find that inflation targeting has been effective. This can be illus-

trated by a Monte Carlo simulation. Suppose that Xit is inflation described by (7), where

µO1 = 2 and µI1 = 4 > µI2 = 2, and εit is normally distributed, εit ∼ N (0, σ2
Rt), with

2The strict inequalities presume that ∃εi1 6= 0 for each regime R.
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σ2
Ot = σ2

It = 1 and NO = NI = 10, so N = 20.3 Then the OLS estimates for (2) are

â = 1.00 (0.64), b̂ = −1.00 (0.73) and ĉ = −0.50 (0.27), based on 100,000 replications

(with standard errors in parentheses). It is straightforward to check that these coefficient

estimates are consistent with the analytical result in (8). The null hypothesis that infla-

tion targeting is ineffective H0 : b = 0 cannot be rejected in 73% of replications, despite

the fact that inflation targeting successfully reduced average inflation by 2 compared to

the control group. Clearly, the BS specification has low power to detect the effect of

inflation targeting.

It is useful to check to what extent this is driven by the relatively large variance of the

shocks, which gives a 95% confidence interval under inflation targeting of Xi1 ∈ [2, 6]

and Xi2 ∈ [0, 4] for Ii = 1, making a reduction from 4 to 2 look insignificant. Now

suppose instead that σ2
Ot = σ2

It = 1/4, so that the 95% confidence intervals under

inflation targeting, Xi1 ∈ [3, 5] and Xi2 ∈ [1, 3] for Ii = 1, are much tighter and no

longer overlap. Then the simulations yield â = 1.00 (0.57), b̂ = −1.00 (0.59) and

ĉ = −0.50 (0.27), so the coefficient estimates remain the same (in line with (8)) while

the standard errors are reduced, but H0 : b = 0 can still not be rejected in 63% of

replications using the BS specification.

In sharp contrast, using the specification in differences (1) without the initial con-

dition Xi0 (i.e. restricting c = 0), OLS estimation yields the unbiased result â = 0.00

(0.19) and b̂ = −2.00 (0.27), and rejects H0 : b = 0 in all replications, using the same

simulation. This is despite the fact that Xi1 and Ii are highly correlated with a coeffi-

cient of 0.90. Clearly, a strong correlation between Xi1 and Ii need not imply that OLS

estimation of (1) is biased.

So far, the results in this section have been based on the assumption that Xit is inde-

pendent over time for inflation targeters. However, it is probably optimistic to presume

that inflation targeting allows for a complete break with the past, so it is important to

also allow for some persistence for inflation targeters. Nevertheless, assuming a random

walk for inflation is problematic under inflation targeting. First of all, from a theoret-

ical perspective, an effective inflation targeter is able to achieve an inflation target X∗

on average regardless of past shocks, so εi1 should not have a permanent effect. Fur-

thermore, empirical evidence (Benati 2008) shows that inflation persistence is very low

for inflation targeters, which is inconsistent with a random walk. So, a more general

specification is used to model persistence.

3Ball and Sheridan (2003) and Ball (2010) also use a sample size of 20 for their regressions.
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Assume that Xit is still given by (3), except that now the assumption of indepen-

dence between εi1 and εi2 is relaxed. Instead, let εi2 = ρRεi1 + ηi2, where ρR denotes

the persistence parameter for regime R, with 0 ≤ ρR ≤ 1, and ηi2 is i.i.d. white noise.

This means that

Xi2 =

{

µO2 + ρOεi1 + ηi2 for Ii = 0

µI2 + ρIεi1 + ηi2 for Ii = 1
(9)

This convenient hybrid specification nests the previous two data generation processes.

In particular, ρO = ρI = 0 gives (3), while µO2 = µO1, ρO = 1 and ρI = 0 yields

(7). Assume again that
∑

i∈R εi1 = 0,
∑

i∈R ε2i1 = SR1 and S1 = SO1 + SI1, as well

as
∑

i∈R ηi2 = 0 and
∑

i∈R εi1ηi2 = 0, where R denotes the regime (Ii = 0 or Ii = 1).

Then the appendix shows that the OLS estimate for (5) equals

β̂ =







µO2 − ρ̄µO1

µI2 − µO2 − ρ̄ [µI1 − µO1]

ρ̄






(10)

where ρ̄ ≡ 1

S1

(ρOSO1 + ρISI1) is a weighted average of ρR, with the weight SR1/S1

reflecting the relative initial volatility in regime R.

For the special case in which ρO = ρI = 0, ρ̄ = 0 so (10) reduces to (6), while for

µO2 = µO1, ρO = 1 and ρI = 0, it follows that ρ̄ = SO1/S1 and (10) is equal to (8). It is

clear from (10) that the bias in the estimated intercept and treatment effect is not specific

to these two cases but holds more generally. In particular, the intercept and treatment

effect would be the average change in the control group (µO2 − µO1) and the average

change in the treatment group compared to the control group (µI2 − µI1)−(µO2 − µO1),

respectively. So, in general there is a bias of (1− ρ̄)µO1 for the intercept, which is

positive for µO1 > 0, and a bias of (1− ρ̄) (µI1 − µO1) for the treatment effect, which

is also positive for µI1 > µO1. So, when inflation targeters initially had higher inflation

on average than others, as has been the case in practice, but then managed to reduce it,

the magnitude of the estimated treatment effect is biased downward. As a result, the BS

specification underestimates the reduction in inflation under inflation targeting, making

it likely to incorrectly conclude that inflation targeting has been ineffective.

There is only one special case in which the estimates for the intercept and treatment

effect are unbiased in the BS specification: ρ̄ = 1, which requires ρO = ρI = 1, so X

follows a random walk for both inflation targeters and others. But, as mentioned before,

a random walk in inflation is incompatible with a successful inflation targeter who man-
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ages to break with the past and achieve an inflation target X∗ on average. Therefore,

if inflation targeting is indeed effective, then ρ̄ 6= 1 and the estimated treatment effect

of inflation targeting using the BS specification is biased, making it less likely to find a

reduction in inflation.

Note that this bias in the estimated treatment effect is due to the BS specification

that includes the initial condition Xi1 as explanatory variable in an attempt to control

for regression to the mean. In the specification in differences (1) without the initial

condition (i.e. restricting c = 0), there is no bias and the OLS estimates for a and b

are
(

X̄O2 − X̄O1

)

= (µO2 − µO1) and
(

X̄I2 − X̄I1

)

−
(

X̄O2 − X̄O1

)

= (µI2 − µI1) −

(µO2 − µO1), respectively.4

4 Selection

The analysis so far has allowed for initial differences between inflation targeters and

others, such as µI1 > µO1 and SI1 > SO1, but it has not considered sample selection

effects. Suppose now that X is still described by (??), but that inflation targeting is

not effective and that there is no fundamental difference between inflation targeters and

others, so µOt = µIt = µt and σ2
Ot = σ2

It = σ2
t . Instead, countries that happen to have

high inflation in period 1 with Xi1 > µ1 decide to adopt inflation targeting, whereas

others do not. This selection into inflation targeting means that X̄I1 > µ1 > X̄O1. In

period 2, however, X̄I2 = X̄O2 = µ2. Then OLS regression of the plain specification in

differences (1) yields an estimate for b of
(

X̄I2 − X̄I1

)

−
(

X̄O2 − X̄O1

)

= X̄O1−X̄I1 <

0, suggesting that inflation targeting has reduced X , although the true treatment effect

is zero since inflation targeting has been assumed to be ineffective with µOt = µIt.

Clearly, the estimated treatment effect is biased; the reduction in X is simply regression

to the mean. The bias is caused by the violation of the assumption that
∑

i∈R εi1 = 0 as
∑

i∈I εi1 > 0 >
∑

i∈O εi1 due to sample selection, so that X̄I1 > µI1 = µO1 > X̄O1.

The BS specification includes the initial condition Xi1 in an attempt to control for such

a selection effect.

Note that the presence of regression to the mean presumes that the effect of εi1 is

temporary, so it does not apply if X follows a random walk so that the shock εi1 has a

4This is also derived in the appendix.
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permanent effect. Similarly, there cannot be regression to the mean if the higher level

of Xi1 for Ii = 1 is a structural feature due to a higher mean µI1. In the latter case, the

plain regression in differences (1) yields an unbiased estimate of the treatment effect b,

whereas the magnitude of b is generally biased downwards in the BS specification (2),

as shown in section 3.

The crucial question is whether Xi1 and Ii are correlated because of temporary

shocks εi1 or fundamental factors µR1. This may be hard to distinguish and it is likely to

depend on the context. For instance, if Xit is the rate of inflation in one year, then a high

level of Xit could plausibly be due to a temporary positive shock εit. But, if Xit is the

(average) rate of inflation over a period of half a decade, then it is more likely to reflect

a high structural factor µt. In the latter case, one would not expect Xit to go down due

to regression to the mean.5 In particular, some countries may have structural features

(e.g. small open economy, weak institutions) that make it more difficult to control infla-

tion. They may suffer from structurally high inflation that is unlikely to subside unless

measures are taken to mitigate the problem in some way (e.g. inflation targeting).

In Ball and Sheridan (2003), the pre-targeting sample period is at least 5 years and

even up to 30 years. So, Xi1 is a longer run average that is unlikely to exhibit regression

to the mean. This means that X̄I1 > X̄O1 is mostly due to µI1 > µO1. If countries with

high µ1 decide to adopt inflation targeting, Xi1 and Ii are correlated, but OLS estimation

of (1) is unbiased, whereas the BS specification (2) is biased, unless ρI = ρO = 1 (as

shown in section 3). But in the latter case, Xit follows a random walk and the effect of

εi1 is permanent, so there cannot be regression to the mean, which was the motivation

for the BS specification.

Nevertheless, that leaves the question to what extent the BS specification (2) out-

performs (1) when sample selection based on εi1 is an issue. This is considered in the

following Monte Carlo simulation. Suppose that Xit follows a random walk during

the pre-targeting period, which lasts 5 years, starting from an identical initial condition

Xi0 = X̄0 = 2 for all i. Let X̄1 be the sample mean during the pre-targeting period

across all observations. Assume that country i decides to adopt inflation targeting if

X̄i1 > X̄1, and that inflation targeting is successful in breaking with the past and re-

5Following Ball and Sheridan’s (2003) baseball analogy, if I have a low batting average in a few

games, one may think it is just temporary (perhaps due to an injury). But if my low batting average

persists over time, the problem is more likely to be structural (e.g. reflecting my lack of skill), so one

would not expect my batting average to go up.
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ducing Xit to an average level of X̄I2 = X̄0, where Xit is described by (3) during the

post-targeting period, which also lasts 5 years. All other countries with X̄i1 ≤ X̄1 con-

tinue to follow a random walk during the post-targeting period. The volatility of shocks

is given by σ2
it = 1 for all i and t, and the sample size N = 20. Then OLS estimation

of (2) gives â = −0.167 (0.548), b̂ = −0.001 (1.052) and ĉ = −0.316 (0.374), based on

100,000 replications (with standard errors in parentheses). The null hypothesis that in-

flation targeting is ineffective, H0 : b = 0, cannot be rejected in 93% of replications. So,

it would be extremely unlikely that the BS specification would find inflation targeting

to be effective, despite reducing average inflation from X̄I1 > X̄1 to X̄I2 = X̄0 = 2 by

an average amount of -1.2, and making inflation more stable and less persistent, moving

from ρ = 1 to ρI = 0.

Interestingly, the plain specification in differences (1), which is known to biased

due to the sample selection based on εi1, actually performs noticeably better than (2),

although it still cannot reject H0 : b = 0 in 75% of replications. So, its power is quite

low in this case, but the BS specification is even worse. Clearly, the presence of sample

selection based on εit does not mean that the BS specification will be more suitable.

5 Conclusion

In influential contributions to the literature on the empirical effects of inflation targeting,

Ball and Sheridan (2003) and Ball (2010) suggest that apparent improvements such as

a reduction in inflation simply reflect regression to the mean after countries with tem-

porarily high inflation decide to adopt inflation targeting. Using a modified difference-

in-differences specification that aims to control for this by including the initial condition,

they find little evidence that inflation targeting has been beneficial.

This paper exposes the shortcomings of their empirical approach by showing that

tests of the effect of inflation targeting based on their specification have low power.

It finds that the interpretation of the coefficients of their specification depends on the

data generating process. In particular, if the persistence in Xit is sufficiently small,

the coefficient estimate of the inflation-targeting indicator variable in their regression

does not capture the ‘treatment effect’ of inflation targeting, but rather the difference

in performance post-inflation targeting. So, when inflation targeting has succeeded in

reducing inflation to the level of others, the Ball-Sheridan specification suggests it has

been ineffective. Furthermore, it is shown analytically that the estimated ‘treatment
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effect’ tends to be biased in their specification.

Some Monte Carlo simulations are used to illustrate the low power of tests based

on the Ball-Sheridan specification. For instance, if inflation targeters manage to sig-

nificantly reduce average inflation by two percent points, while inflation of others fol-

lows a random walk, there is no evidence of a significant effect of inflation targeting

in 63% of replications. In addition, even in the presence of sample selection, the Ball-

Sheridan specification may perform considerably worse than the traditional difference-

in-differences regression.

To conclude, influential empirical findings that inflation targeting does not matter

due to regression to the mean are misleading as their tests lack power to distinguish an

oasis from a mirage.
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6 Appendix

This appendix shows that estimation of β = (a, b, 1 + c)′ in (5) using OLS yields

β̂ =
(

µO2, µI2 − µO2, 0
)

′

when the sample satisfies (3) with
∑

i∈R εit = 0 and
∑

i∈R εi1εi2 = 0, where R denotes the regime (with Ii = 0 or Ii = 1).

Without loss of generality, order the observations i such that Ii = 0 for i = 1, ..., NO

and Ii = 1 for i = NO +1, ..., N . Then the N × 3 matrix of observations and the N × 1

vector of the dependent variable are given by

X =

[

1NO
0NO

µO11NO
+ εO1

1NI
1NI

µI11NI
+ εI1

]

and y =

(

µO21NO
+ εO2

µI21NI
+ εI2

)

where 1N ≡ (1, ..., 1)′ and 0N ≡ (0, ..., 0)′ are N × 1 vectors of ones and zeros,

respectively; and εOt ≡ (ε1t, ..., εNOt)
′

and εIt ≡ (εNO+1,t, ..., εNt)
′

are NO × 1 and

NI×1 vectors of εit for Ii = 0 and Ii = 1, respectively. Note that 1′NO
εOt =

∑NO

i=1
εit =

0 and 1′NI
εIt =

∑N

i=NO+1
εit = 0. In addition, ε′R1εR2 = 0 for R ∈ {O, I}. For ease

of notation, let ε′OtεOt =
∑NO

i=1
ε2it = SOt and ε′ItεIt =

∑N

i=NO+1
ε2it = SIt, and denote

St = SOt + SIt for t ∈ {1, 2}.

The OLS estimate equals β̂ = (X′X)−1X′y. To compute β̂, start with straightfor-

ward matrix multiplication to get

X′X =







NO +NI NI NOµO1 +NIµI1

NI NI NIµI1

NOµO1 +NIµI1 NIµI1 NOµ
2
O1 +NIµ

2
I1 + S1







using the fact that 1′NR
1NR

= NR, 1′NR
εR1 = 0 and ε′R1εR1 = SR1 for R ∈ {O, I}.

Note that det (X′X) = NONIS1 > 0, so X′X is nonsingular. Its inverse equals

(X′X)
−1

=
1

NONIS1

∗







NI (NOµ
2
O1 + S1) −NI (NOµ

2
O1 + S1 −NOµO1µI1) −NONIµO1

−NI (NOµ
2
O1 + S1 −NOµO1µI1) NONI (µO1 − µI1)

2 +NS1 −NONI (µI1 − µO1)

−NONIµO1 −NONI (µI1 − µO1) NONI






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Postmultiplying this expression by X′ and simplifying gives

(X′X)
−1

X′ =
1

NONIS1

∗







NIS11
′

NO
−NONIµO1ε

′

O1 −NONIµO1ε
′

I1

−NIS11
′

NO
−NONI (µI1 − µO1) ε

′

O1 NOS11
′

NI
−NONI (µI1 − µO1) ε

′

I1

NONIε
′

O1 NONIε
′

I1







Using the fact that 1′NR
εR2 = 0 and ε′R1εR2 = 0, postmultiplying by y yields

(X′X)
−1

X′y =
1

NONIS1







NIS1NOµO2

−NIS1NOµO2 +NOS1NIµI2

0







Therefore,

β̂ =







µO2

µI2 − µO2

0







Now assume instead that Xi2 is given by (7), so that

y =

(

µO11NO
+ εO1 + εO2

µI21NI

)

Then premultiplying (??) gives

(X′X)
−1

X′y =
1

NONIS1







NIS1NOµO1 −NONIµO1SO1

−NIS1NOµO1 −NONI (µI1 − µO1)SO1 +NOS1NIµI2

NONISO1







Hence,

β̂ =









SI1

S1

µO1

µI2 −
[

SO1

S1

µI1 +
SI1

S1

µO1

]

SO1

S1









=







SI1

S1

µO1

µI2 − µI1 +
SI1

S1

[µI1 − µO1]
SO1

S1







Now assume instead that Xi2 is given by (9), so that

y =

(

µO21NO
+ ρOεO1 + ηO2

µI21NI
+ ρIεI1 + ηI2

)
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where ηOt ≡
(

η1t, ..., ηNOt

)

′

and ηIt ≡
(

ηNO+1,t, ..., ηNt

)

′

are NO×1 and NI×1 vectors

of ηit for Ii = 0 and Ii = 1, respectively. Note that 1′NR
ηR2 = 0 and ε′R1ηR2 = 0 for

R ∈ {O, I}. Then premultiplying (??) gives

(X′X)
−1

X′y =
1

NONIS1

∗







NIS1NOµO2 −NONIµO1ρOSO1 −NONIµO1ρISI1

−NIS1NOµO2 −NONI (µI1 − µO1) ρOSO1 +NOS1NIµI2 −NONI (µI1 − µO1) ρISI1

NONIρOSO1 +NONIρISI1







Hence,

β̂ =







µO2 −
1

S1

(ρOSO1 + ρISI1)µO1

−µO2 + µI2 −
1

S1

(ρOSO1 + ρISI1) (µI1 − µO1)
1

S1

(ρOSO1 + ρISI1)






=







µO2 − ρ̄µO1

µI2 − µO2 − ρ̄ (µI1 − µO1)

ρ̄







where ρ̄ ≡ 1

S1

(ρOSO1 + ρISI1).

Consider now the plain regression in differences (1) without the initial condition Xi1

(i.e. restricting c = 0). So

XD =

(

1NO
0NO

1NI
1NI

)

and yD=

(

(µO2 − µO1)1NO
+ (ρO − 1) εO1 + ηO2

(µI2 − µO1)1NI
+ (ρI − 1) εI1 + ηI2

)

Then

X′

DXD =

(

NO +NI NI

NI NI

)

and (X′

DXD)
−1

=

(

1

NO

− 1

NO

− 1

NO

NO+NI

NINO

)

while using 1′NR
εR1 = 0 and 1′NR

ηR2 = 0 gives

µ′DyD=

(

NO (µO2 − µO1)+NI (µI2 − µI1)

NI (µI2 − µI1)

)

So, the OLS estimate of βD ≡ (a, b)′ in (1) is equal to

β̂D =

(

µO2 − µO1

− (µO2 − µO1) + (µI2 − µI1)

)
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