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Abstract. We propose a new method for simulation smoothing in state space
models with univariate states and leverage-like effects. Given a vector θ of pa-
rameters, the state sequence α = (α1, . . . , αn)> is Gaussian and the sequence
y = (y>1 , . . . , y

>
n )> of observed vectors may be conditionally non-Gaussian. By

leverage-like effect, we mean conditional dependence between the observation yt
and the contemporaneous innovation of the state equation, not just the contem-
poraneous state αt. We use this term since stochastic volatility models with the
leverage effect are a leading example.

Our method is an extension of the HESSIAN method described in McCausland
[2012], which only works for models without leverage-like effects, models in which
the density f(yt|θ, α) depends only on θ and αt. Like that method, ours is based
on a close approximation g(α|θ, y) of the conditional density f(α|θ, y). One can use
g(α|θ, y) for importance sampling or Markov chain Monte Carlo (MCMC). With a
suitable approximation g(θ|y) of f(θ|y), we can use g(θ, α|y) = g(θ|y)g(α|θ, y) as
an importance or proposal density for the joint posterior distribution of parameters
and states. Applications include the approximation of likelihood function values
and the marginal likelihood, and Bayesian posterior simulation. We construct the
approximation g(α|θ, y) for Gaussian and Student’s t stochastic volatility models
with leverage. For both models, we make a joint proposal of the state and pa-
rameter vectors. Unlike Omori et al. [2007] and Nakajima and Omori [2009], we
do not augment the data by adding mixture indicators or heavy tail scaling fac-
tors. Our generic procedure is more numerically efficient than the model specific
procedures of those papers — using randomised pseudo-Monte Carlo importance
sampling, we obtain relative numerical efficiencies close to 100%, at least 4 times
higher than those obtained using the method of Omori et al. [2007]. The Highest
value of numerical efficiency reported by Nakajima and Omori [2009] is 29.1% for
the ASV-Student model. The lowest efficiency factor reported using the Hessian
with randomised pseudo-Monte Carlo importance sampling is 82.61%. Comparing
these two figures suggest that the Hessian procedure is numerically efficient than
the one described in Nakajima and Omori [2009].
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1. Introduction

State space models govern the interaction of observable data y = (y>1 , . . . , y
>
t , . . . , y

>
n )>

and latent states α = (α1, . . . , αt, . . . , αn)>, given a vector θ of parameters. They are
very useful in capturing dynamic relationships, especially where there are changing,
but latent, economic conditions: the states may be unobserved state variables in
macroeconomic models, log volatility in asset markets or time varying model param-
eters.

Simulation smoothing methods have proven useful for approximating likelihood
function values and Bayesian posterior simulation. They involve simulating the con-
ditional distribution of states given data and parameters. We will call this distri-
bution the target distribution. Simulation typically entails importance sampling or
Markov chain Monte Carlo (MCMC). We show examples of both in Section 4.

State space models with conditional dependence between the observed value yt and
the contemporaneous innovation of the state equation, not just the contemporaneous
state αt, are of particular interest. The best known examples are stochastic volatility
models with an asymmetric volatility effect known as the leverage effect. In the model
introduced by Harvey and Shephard [1996], the latent states αt are log volatilities,
given by

(1) α1 = ᾱ +
σ√

1− φ2
u0, αt+1 = (1− φ)ᾱ + φαt + σut,

and observed returns yt are given by

(2) yt = exp(αt/2)vt,

where the (ut, vt) are serially independent with

(3) u0 ∼ N(0, 1),

[
ut
vt

]
∼ i.i.d. N

(
0,

[
1 ρ
ρ 1

])
,

and (σ, φ, ρ, ᾱ) is a vector of parameters. If ρ = 0, yt and the contemporaneous
innovation σut are conditionally independent given αt. When ρ 6= 0, they are condi-
tionally dependent and we call this conditional independence a leverage effect.

Others have extended this model. Jacquier et al. [2004] and Omori et al. [2007]
consider inference in stochastic volatility models with leverage and heavy-tailed con-
ditional return distributions. This and other empirical work has shown convincingly
that stochastic volatility models with leverage are more realistic descriptions of stock
returns than models without.

Leverage-like effects may be useful in other models as well. There is little reason
beyond computational convenience to rule them out. Feng et al. [2004] show that
conditional dependence is more realistic in stochastic conditional duration models.
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Designing inferential methods for such models has proven difficult, however, and
methods with high numerical efficiency have been model specific. Nine years passed
between Kim et al. [1998], introducing the auxiliary mixture model approach for
stochastic volatility models without leverage, and Omori et al. [2007], extending it
to models with leverage.

We extend the HESSIAN method of McCausland [2012], which does simulation
smoothing for models without leverage-like effects. That method used multiple
derivatives of log f(yt|θ, αt) with respect to αt to construct a close approximation
to the target distribution. In models with leverage-like effects, the conditional dis-
tribution of yt given α depends not only on αt but also αt+1. To obtain a similar
standard of approximation that McCausland [2012] does, we need multiple partial
derivatives of log f(yt|θ, αt, αt+1) with respect to αt and αt+1. Using these deriva-
tives to construct an approximation of the target density requires more effort, largely
because when there are leverage-like effects, all non-zero elements of the Hessian of
the log target density depend on α, not just the diagonal elements.

Our method inherits the following features of the original method:

(1) It involves direct simulation of states from their posterior distribution us-
ing a proposal or importance distribution approximating the target distribu-
tion. This is unlike auxiliary mixture model approaches, in which a model is
first transformed into a linear Gaussian model, and then any non-Gaussian
distributions in the transformed model are approximated by finite Gauss-
ian mixtures. Kim et al. [1998], Chib et al. [2002], Omori et al. [2007]
use this auxiliary mixture model approach for stochastic volatility models;
Stroud et al. [2003], Frühwirth-Schnatter and Wagner [2006] and Frühwirth-
Schnatter et al. [2009] use it for other non-linear non-Gaussian state space
models. Using the direct approach, we avoid model-specific transformations,
data augmentation, and the need to re-weight or apply additional accept-
reject steps to correct for approximation error.

(2) It involves drawing the entire state sequence as a single MCMC block. This
leads to efficiency improvements when there is posterior serial dependence.
While drawing the entire state sequence using a multivariate Gaussian pro-
posal distribution is impractical, we make it possible by constructing a much
closer approximation of the target distribution. Many articles have used
multivariate Gaussian proposal distributions to update the state vector, but
usually only for about 10–50 observations at a time, not the entire sample.
These include Shephard and Pitt [1997], Watanabe and Omori [2004], Strick-
land et al. [2006], Jungbacker and Koopman [2008] and Omori and Watan-
abe [2008]. The Efficient Importance Sampling (EIS) method of Richard and
Zhang [2007] features draws of the entire state sequence as a block, but since
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their approximate target distribution is constructed using the random num-
bers used to draw from it, EIS estimators of likelihood function values do not
have the simulation consistency or lack of simulation bias that true impor-
tance sampling estimators do. See the discussion in McCausland [2012] for
more details.

(3) Since the approximation is so close, we can draw parameters and states to-
gether as a single block. We do this using a joint proposal distribution combin-
ing our approximation of the conditional posterior distribution of states given
parameters with an approximation of the marginal posterior distribution of
parameters. Drawing states and parameters in a single block leads to fur-
ther efficiency improvements because of posterior dependence between states
and parameters. In this way, we achieve numerical efficiencies comparable to
model-specific auxiliary mixture model approaches, which also often feature
joint draws of parameter and states. The examples of Section 4 suggest that
our method is even more efficient than these approaches, partly because we
avoid data augmentation and the need to correct for approximation error.
Being able to draw all parameters and states jointly in an untransformed
model also opens up new opportunities — it allows for importance sampling,
variance reduction using randomised pseudo Monte Carlo, and very efficient
approximations of the marginal likelihood, as we see in Section 4.

(4) We construct our approximation of the target distribution in a generic way.
The only model-specific computation is the evaluation of derivatives of the
log measurement density. Existing, well tested, and publicly available generic
code uses the routines for computing model-specific derivatives in order to do
simulation smoothing for that model. Exact evaluation of derivatives does
not require finding analytic expressions — we can use generic routines to
combine derivative values according to Leibniz’ rule for multiple derivatives
of products and Faà di Bruno’s rule for multiple derivatives of composite
functions. Although we do not do so here, we could also resort to numeri-
cal derivatives — there would a cost in numerical efficiency, but simulation
consistency would not be compromised. The Student’s t distribution and
other scale mixtures of normals are often used in stochastic volatility models,
partly because they work well in auxiliary mixture model approaches using
data augmentation for the mixing random variables. A generic approach
allows for other, possibly skewed, measurement distributions.

(5) It is based on operations using the sparse Hessian matrix of the log target
density, rather than on the Kalman filter. Articles using the former approach
include Rue [2001], for linear Gaussian Markov random fields, Chan and Jeli-
azkov [2009] and McCausland et al. [2011], for linear Gaussian state space
models, and Rue et al. [2009] for non-linear non-Gaussian Markov random
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fields. The Integrated Nested Laplace Approximation (INLA) method de-
scribed in the last article has spawned a large applied literature. Articles
using the Kalman filter include Carter and Kohn [1994], Frühwirth-Schnatter
[1994], de Jong and Shephard [1995] and Durbin and Koopman [2002] for
linear Gaussian state space models. Auxiliary mixture model methods for
non-linear or non-Gaussian models tend to use the Kalman filter, but this is
not an essential feature of auxiliary mixture model methods.

We will now be more precise about the class of state space models we consider.
The state and measurement equations are

(4)

α1 = d0 + u0, αt+1 = dt + φtαt + ut,

f(y|α) =

[
n−1∏
t=1

f(yt|αt, αt+1)

]
f(yn|αn),

where α ≡ (α1, . . . , αn) is a vector of univariate latent states αt, the ut are indepen-
dent Gaussian random variables with mean 0 and precision (inverse of variance) ωt,
the yt are observable random vectors, and the f(yt|αt, αt+1) are measurement den-
sity or mass functions. We do not require them to be Gaussian, linear or univariate.
We say that models of this form exhibit a leverage-like effect whenever f(yt|αt, αt+1)
depends on αt+1. This will the case when the observable vector yt and the contem-
poraneous state innovation ut = αt+1 − dt − φtαt are conditionally dependent given
the contemporaneous state αt.

Throughout most of the paper, we condition on dt, φt, ωt and any other parameters
on which the f(yt|αt, αt+1) might depend, and suppress notation for this conditioning.
In Section 4, where we consider joint inference for parameters and states, we are
explicit about this conditioning.

It is easy to see that the model in equations (1), (2) and (3) is of the form given
by (4). We use (1) to write

ut = [αt+1 − (1− φ)ᾱ− φαt]/σ,

then use the standard formula for conditional Gaussian distributions to obtain

(5) yt|α ∼ N
(
(ρ/σ) exp(αt/2)(αt+1 − (1− φ)ᾱ− φαt), (1− ρ2) exp(αt)

)
.

In Section 2 we describe our approximation g(α|y) of the target density f(α|y).
We show how to evaluate it and how to draw from the distribution with density
g(α|y). In Section 3 we apply tests of program correctness to the code we use to
compute g(α|y) and draw from the approximate distribution. These tests are similar
to those described in Geweke [2004]. Section 4 illustrates our methods using sto-
chastic volatility models with leverage, with Gaussian and Student’s t measurement
innovations. Section 5 concludes.
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2. An approximation of the target density

In this section we define our approximation g(α|y) of the target density f(α|y). We
do not provide a closed form expression for g(α|y), but instead show how to evaluate
and sample from g(α|y) using O(n) operations. The density g(α|y) is proper and
fully normalized.

Our approximation is not model specific. We construct g(α|y) for a particular state
space model using a suitable description of the model, consisting of the following
quantities and computational routines.

We specify the state dynamics by providing Ω̄ and c̄, the precision and covector
of the marginal distribution of α, the state sequence. This gives the distribution of
α as α ∼ N(Ω̄−1c̄, Ω̄−1). The precision, unlike the variance, is a tri-diagonal matrix,
with O(n) elements. Appendix A describes how to compute Ω̄ and c̄ in terms of the
dt, φt and ωt.

We specify the measurement distributions by supplying routines to compute, for
t = 1, . . . , n− 1, the functions

(6) ψt(αt, αt+1)
.
= log f(yt|αt, αt+1), ψn(αn) = log f(yn|αn),

and the partial derivatives

(7) ψ
(p,q)
t (αt, αt+1)

.
=
∂p+qψt(αt, αt+1)

∂αpt∂α
q
t+1

, ψ(p)
n (αn) =

∂pψ(αn)

∂αpn
,

for orders p and q up to certain values P and Q. For convenience, Table 1 summarizes
this and other important notation.

The routines to compute the ψt(αt, αt+1) and ψn(αn) must give exact results, as
they are used to evaluate f(α|y) up to a normalization factor. The partial derivatives,
however, may be numerical derivatives or other approximations. Approximation
error may make g(α|y) a cruder approximation of f(α|y) and thus diminish the
numerical precision of IS or MCMC. But we will still be able to evaluate and simulate
g(α|y) without error, and so it does not compromise simulation consistency.

Like the target density, the approximation g(α|y) has the Markov property, allow-
ing us to decompose it as

(8) g(α|y) = g(αn|y)
1∏

t=n−1

g(αt|αt+1, y).

Each factor is a proper fully normalized density function closely approximating the
corresponding factor of f(α|y). Whether we need to evaluate g(α|y), simulate it or
both, the decomposition allows us to do so sequentially, for t descending from n to
1.



THE HESSIAN METHOD FOR MODELS WITH LEVERAGE-LIKE EFFECTS 7

Approximations rely on Taylor series expansions, some exact and some approx-
imate, of various functions, including bt|t+1(αt+1) and µt|t+1(αt+1), the mode and
mean of the conditional distribution of αt given αt+1 and y. Some expansions are
computed during a forward pass, around the mode (a1, . . . , an) of the target distri-
bution, a static point of expansion. So for example, we compute Bt|t+1(αt+1) and
Mt|t+1(αt+1) as approximate Taylor series expansions of bt|t+1(αt+1) and µt|t+1(αt+1)
around at+1.

During the backward pass, we compute approximate Taylor series expansions of
hn(αn)

.
= log f(αn|y) and ht(αt;αt+1)

.
= log f(αt|αt+1, y), t = n − 1, . . . , 1, which

we will treat as univariate functions of αt with parameter αt+1. Here, the point
of expansion is a moving target, depending on αt+1. The expansion is fifth order,
allowing a much better than Gaussian (second order) approximation.

The densities g(αt|αt+1, y) are members of the class of perturbed Gaussian distri-
butions described in Appendix G of McCausland [2012]. Parameters of the perturbed
Gaussian distribution give a mode of the distribution and the second through fifth
derivatives of log g(αt|αt+1, y) at that mode. Choosing parameters amounts to ap-
proximating bt|t+1(αt+1), the mode of f(αt|αt+1, y), and the second through fifth
derivatives of log f(αt|αt+1, y) there.

In Appendix C.1, we derive this exact result for the first derivative of ht:

(9)
h
(1)
t (αt;αt+1) = c̄t − Ω̄t−1,tµt−1|t(αt)− Ω̄t,tαt − Ω̄t,t+1αt+1

+ xt−1|t(αt) + ψ
(1,0)
t (αt, αt+1), t = 2, . . . , n− 1,

where µt−1|t(αt)
.
= E[αt−1|αt, y] and xt−1|t(αt)

.
= E[ψ

(0,1)
t−1 (αt−1, αt)|αt, y]. We also

give analogous results for the cases t = 1 and t = n.
We cannot evaluate µt−1|t(αt), xt−1|t(αt) or their derivatives exactly. Nor can

we evaluate the mode bt|t+1(αt+1) exactly. Instead, we provide polynomial ap-
proximations Mt−1|t(αt), Bt|t+1(αt+1) and Xt−1|t(αt) of µt−1|t(αt), bt|t+1(αt+1) and
xt−1|t(αt). We use these to approximate the value bt|t+1(αt+1) and the derivatives

h
(r)
t (αt;αt+1), r = 1, . . . , 5. Mt−1|t(αt) and Xt−1|t(αt) are approximate Taylor expan-

sions of µt−1|t(αt) and xt−1|t(αt) around at. Bt|t+1(αt+1) is an approximate Taylor
expansion of bt|t+1(αt+1) around at+1.

We draw α, evaluate g(α|y), or both using the following steps. We first compute
the mode a = (a1, . . . , an) of the target distribution using the method described in
Appendix B of McCausland [2012]. In a forward pass we compute the coefficients of
the polynomials Bt|t+1(αt+1), Mt−1|t(αt), and Xt−1|t(αt), for t = 1, . . . , n−1. Finally,

we compute, for t = n, . . . , 1, Bt|t+1(αt+1) and H
(r)
t (Bt|t+1(αt+1);αt+1), using these

values as the parameters of the perturbed Gaussian distribution. With these values
sets, we can draw αt, evaluate g(αt|αt+1, y) or both. In the rest of this section, we
describe these steps in more detail. Full detail is left to various appendices.
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2.1. Precomputation. We first compute the precision Ω̄ and covector c̄ of the
Gaussian prior distribution of states as a function of dt, φt and ωt in (4). We then
compute the mode a of the target distribution. This gives, as bi-products, several
quantities used later. This includes the precision ¯̄Ω and covector ¯̄c of a Gaussian
approximation N(¯̄Ω−1¯̄c, ¯̄Ω−1) of the target density. It also gives the conditional vari-
ances Σt

.
= Var[αt|αt+1], t = 1, . . . , n−1, and Σn

.
= Var[αn] implied by this Gaussian

approximation.
This precomputation is similar to that described in Appendix B of McCausland

[2012]. Little modification is required, and we give details in Appendix A.

2.2. A Forward Pass. In order to describe the forward pass, it will be helpful
to introduce a sequence of multivariate Gaussian conditional distributions. We de-
fine, for t = 1, . . . , n − 1, (a1|t+1(αt+1), . . . , at|t+1(αt+1)) as the conditional mode

of (α1, . . . , αt) given αt+1 and y, and ¯̄Ω1:t|t+1 as the negative Hessian matrix of
log f(α1, . . . , αt|αt+1, y) with respect to (α1, . . . , αt), evaluated at (a1|t+1, . . . , at|t+1).

Thus we can view the distribution N((a1|t+1, . . . , at|t+1),
¯̄Ω−11:t|t+1) as an approxima-

tion of the conditional distribution of (α1, . . . , αt) given αt+1 and y. Result 2.1 of

McCausland et al. [2011] implies that if α̃ ∼ N((a1|t+1, . . . , at|t+1),
¯̄Ω−11:t|t+1), then

α̃t|α̃t+1 ∼ N(at|t+1,Σt|t+1), where Σt|t+1 is the final value in the following forward
recursion:

(10) Σ1|t+1
.
= ¯̄Ω−111 , Στ |t+1

.
= (¯̄Ωττ − ¯̄Ω2

τ,τ−1Στ−1|t+1)
−1, τ = 2, . . . , t.

We also define, for t = 1, . . . , n− 1, st|t+1(αt+1)
.
= log Σt|t+1(αt+1).

The forward pass consists of performing the following steps, for t = 1, . . . , n− 1:

(1) Compute

(11)

a
(r)
t

.
=
∂rat|t+1(αt+1)

∂αrt+1

∣∣∣∣
αt+1=at+1

, r = 1, . . . , R,

s
(r)
t

.
=
∂rst|t+1(αt+1)

∂αrt+1

∣∣∣∣
αt+1=at+1

, r = 1, . . . , R− 1.

The choice of R determines how closely we can approximate the functions
at|t+1(αt+1) and st|t+1(αt+1) using Taylor expansions. For our empirical illus-
tration, we use R = 5.

Appendix B gives details. Equation (28) gives a
(r)
1 and for t > 1, (38) gives

a
(r)
t as a function of a

(i)
t−1, i = 1, . . . , r, and a

(i)
t , i = 1, . . . , r − 1. Equations

(35), (40), (43), (46) and (48) give simplified expressions for r = 1, . . . , 5 and
t > 1.
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Equation (30) gives s
(r)
1 and equations (38) and (39) give s

(r)
t . Equations

(42), (45), (47) and (49) give simplified expressions for s
(r)
t , r = 1, . . . , 4 and

t = 2, . . . , n− 1.
Appendix B includes a proof that these computations are exact. The

proof uses a first order necessary condition for (a1|t+1, . . . , at|t+1) to maximize
f(α1, . . . , αt|αt+1, y), the identity at−1|t+1(αt+1) = at−1|t(αt+1(αt+1)) and the
difference equation (10) defining Σt|t+1(αt+1).

(2) Compute approximations Bt, B
(1)
t , B

(2)
t , B

(3)
t and B

(4)
t of the value and first

four derivatives of bt|t+1(αt+1) at at+1. Recall that bt|t+1(αt+1) is the condi-
tional mode of αt given αt+1 and y. For t = n, we only compute an approxi-
mation Bn of the value bn, the conditional mode of αn given y. Appendix C.3
defines these approximations and shows how to compute them. Specifically,

equation (62) defines B
(r)
t as a function of the a

(i)
t and s

(i)
t . The approxima-

tions are based on an approximation of bt|t+1(αt+1)−at|t+1(αt+1) using a first
order necessary condition for bt|t+1(αt+1) to maximize f(αt|αt+1, y).

(3) Compute approximations Mt, M
(1)
t , M

(2)
t , M

(3)
t and M

(4)
t of the value and

first four derivatives of µt|t+1(αt+1) at at+1. Recall that µt|t+1(αt+1) is the
conditional mean of αt given αt+1 and y. Appendix (C.4) defines these ap-

proximations. We compute M
(r)
t , from equation (70), as a function of the

B
(i)
t , a

(i)
t and s

(i)
t .

2.3. A Backward Pass. We use the backward pass to draw a random variate α∗

from the distribution with density g(α|y) and evaluate g(α∗|y). One can also evaluate
g(α|y) at an arbitrary value α∗ without drawing.

To implement the backward pass, we use the following approximation of the deriva-
tive of log f(αt|αt+1, y), based on (9) and the approximations Mt−1|t(αt) of µt−1|t(αt),

Xt−1|t(αt) of xt−1|t(αt) and Ψ
(1,0)
t (αt, αt+1) of ψ

(1,0)
t (αt, αt+1).

(12)
H

(1)
t (αt;αt+1)

.
= c̄t − Ω̄t−1,tMt−1|t(αt)− Ω̄t,tαt − Ω̄t,t+1αt+1

+Xt−1|t(αt) + Ψ
(1,0)
t (αt, αt+1).

We define the approximation Xt−1|t(αt) and show how to compute it in Appendix
E. Mt−1|t(αt) is the polynomial

(13) Mt−1|t(αt) =
4∑
r=0

M
(r)
t−1

r!
(αt − at)r,
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We require routines to evaluate ψ
(p,q)
t (αt, αt+1) for several orders p, q, so in principle

it is not necessary to approximate ψ
(p,q)
t (αt, αt+1). However, we find the computa-

tional costs high relative to the benefits. We already have ψ
(p,q)
t = ψ

(p,q)
t (at, at+1)

from the forward pass, and we choose to approximate ψ
(p,q)
t (αt, αt+1) by

(14) Ψ
(p,q)
t (αt, αt+1)

.
=

P−p∑
r=0

Q−q∑
s=0

ψ
(p+r,q+s)
t

(αt − at)r

r!

(αt+1 − at+1)
s

s!
.

The backward pass consists of performing the following steps, for t = n, . . . , 1.

(1) Evaluate Bt|t+1(α
∗
t+1), where Bt|t+1(αt+1) is the polynomial given by

(15) Bt|t+1(αt+1) =
5∑
r=0

B
(r)
t

r!
(αt+1 − at+1)

r

(2) Compute H
(r)
t (Bt|t+1(α

∗
t+1);α

∗
t+1), r = 2, . . . , 5, using (12).

(3) Draw α∗t and evaluate g(αt|αt+1, y) at α∗t and α∗t+1. The density g(αt|αt+1, y)
is a member of the five-parameter perturbed Gaussian distribution described
in Appendix G of McCausland [2012]. The mode parameter is given by b =

Bt|t+1(α
∗
t+1), and the derivative parameters are given by hr = H

(r)
t (Bt|t+1(α

∗
t+1);α

∗
t+1),

r = 2, . . . , 5. These give the desired mode Bt|t+1(α
∗
t+1) and desired derivatives

of log g(αt|αt+1, y) at this mode.

3. Getting it right

In posterior simulation, analytical or coding errors can lead to reasonable but
inaccurate results. Geweke [2004] develops tests for the correctness of posterior
simulations, based on two different methods for simulating the joint distribution of
a model’s observable and unobservable variables. Correctness tests take the form of
tests of the hypothesis that the two samples come from the same distribution. Since
the two methods have little in common, the tests have power against a wide array of
conceptual and coding errors. We apply these ideas to build tests for the correctness
of the independence Metropolis-Hastings update of the target distribution using the
HESSIAN approximation g(α|y, θ) as a proposal distribution.

We do this for the the ASV-Student model described in the next section. We
choose a fixed value of θ of the parameter vector. Then we generate a large sample
from the conditional distribution of α and y given θ. We initialize with a draw α(0)

from the conditional distribution of α given θ, then draw {α(m), y(m)}Mm=1 as follows.
For m = 1, . . . ,M ,

(1) Draw y(m) from the conditional distribution of y given θ and α, with α set to
α(m−1).
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(2) Update from α(m−1) to α(m) using an independence Metropolis-Hastings step,
with g(α|y, θ) as a proposal distribution and y = y(m).

This is a Gibbs sampler for the conditional distribution of α and y given θ. The
initial and stationary distributions of this chain are both equal to this distribution.
By induction, so are the distributions of all the (α(m), y(m)). In particular, α(m) ∼
N(ᾱı, Ω̄−1) for all m, where ı is the n-vector with all elements equal to one. This
implies that for all m = 1, . . . ,M and q ∈ (0, 1), the following indicators are Bernoulli
with probability parameter q:

(16) I
(m)
t,q

.
= 1

(
α
(m)
t − ᾱ

σ/
√

1− φ2
≤ Φ−1(q)

)
, t = 1, . . . , n,

(17) I
(m)
t|t−1,q

.
= 1

(
α
(m)
t − (1− φ)ᾱ− φα(m)

t−1

σ
≤ Φ−1(q)

)
, t = 1, . . . , n,

where Φ(x) is the cumulative distribution function of the univariate standard Gauss-
ian distribution.

We use sample means of the I
(m)
t,q and I

(m)
t|t−1,q to test the hypotheses that the

corresponding population means are equal to q. We report results for the ASV-
Student model. The parameter values are fixed to ᾱ = −9.0, φ = 0.97, σ = 0.15,
ρ = −0.3 and ν = 10.0. We use a vector of length n = 20 and a sample size of
M = 107. We use the R package coda to compute time series numerical standard
errors and use Gaussian asymptotic approximations to construct symmetric 95% and
99% intervals. The 95% confidence interval does not include q in 7 cases out of 360
(1.94%). The 99% confidence interval does not include q in a single case (0.28%).
The sample mean always lies well within the interval [q − 0.001, q + 0.001]. These
results fail to cast doubt on the correctness of the implementation.

4. Empirical example

4.1. Models. We consider two different stochastic volatility models with asymmetric
volatility. The first model, which we will call ASV-Gaussian, is the basic asymmetric
volatility model given in equations (1), (2) and (3).

The second model, which we will call ASV-Student, replaces the observation equa-
tion in (2) with

(18) yt = exp(αt/2)
vt√
λt/ν

,

where λt ∼ χ2(ν) and the λt and (ut, vt) are mutually independent.
In order to allow us to draw parameters and states together in a single block,

we will now integrate out λt to obtain the conditional distribution of yt given αt
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and αt+1. This distribution is a scaled non-central Student’s t. To see this, write
yt = exp(αt/2)

√
1− ρ2X, where

X
.
=
ut/
√

1− ρ2√
λt/ν

.

Now condition on αt and αt+1. The numerator and denominator are independent;
the numerator is Gaussian with mean

µ
.
= ρ

√
ω

1− ρ2
[αt+1 − dt − φtαt]

and unit variance; and λt is chi-squared with ν degrees of freedom. Therefore X is
non-central Student’s t with non-centrality parameter µ and ν degrees of freedom.
The density of X is given by

fX(x; ν, µ) =
νν/2

2ν
Γ(ν + 1)

Γ(ν/2)
exp(−µ2/2)(ν + x2)−ν/2

×

√2µx

ν + x2

M
(
ν
2

+ 1; 3
2
; µ2x2

2(ν+x2)

)
Γ(ν+1

2
)

+
1√

ν + x2

M
(
ν+1
2

; 1
2
; µ2x2

2(ν+x2)

)
Γ(ν/2 + 1)

 ,(19)

where Γ(ν) is the gamma function and M(a; b; z) is Kummer’s function of the first
kind, a confluent hypergeometric function given by

(20) M(a; b; z) =
+∞∑
k=0

(a)k
(b)k

zk

k!
,

where (a)k = a(a + 1) . . . (a + k − 1). See Scharf (1991). We obtain the conditional

density f(yt|αt, αt+1) using the change of variables yt = exp(αt/2)
√

1− ρ2X. The
log conditional density ψt(αt, αt+1) ≡ log f(yt|αt, αt+1) and its derivatives are given
in Appendix D.

For both models, the state equation parameters are ωt = ω, φt = φ and dt =
(1 − φ)ᾱ for all t > 1. The marginal distribution of the initial state α1 is the
stationary distribution, so that ω0 = (1− φ2)ω and d0 = ᾱ.

We express our prior uncertainty about the parameters in terms of a multivariate
Gaussian distribution over the transformed parameter vector

θ = (log σ, tanh−1 φ, ᾱ, tanh−1 ρ, log ν).

The marginal distribution of (log σ, tanh−1 φ, ᾱ, log ν) is the same as the prior in
McCausland [2012] for a Student’s t stochastic volatility model without leverage,
and is based on a prior predictive analysis. The parameter tanh−1 ρ is Gaussian and
a priori independent, with mean -0.4 and standard deviation 0.5. This implies prior
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quantiles 0.1, 0.5 and 0.9 for ρ approximately equal to -0.78, -0.38 and 0.23. The
result is the following prior:

θ ∼ N



−1.8
2.1
−11.0
−0.4
2.5

 ,


0.125 −0.05 0 0 0
−0.05 0.1 0 0 0

0 0 4 0 0
0 0 0 0.25 0
0 0 0 0 0.25


 .

4.2. MCMC and IS methods for posterior simulation. To illustrate the perfor-
mance of the HESSIAN approximation, we use Markov chain Monte Carlo (MCMC)
and importance sampling posterior simulations and compare with Omori et al. [2007].
For both posterior simulations, we draw jointly θ and α. We use as proposal den-
sity (resp. importance density) g(α, θ|y) = g(α|θ, y)g(θ|y), based on an approxima-
tion g(θ|y) of f(θ|y), described below, and the HESSIAN approximation g(α|θ, y) of
f(α|θ, y).

We construct g(θ|y) as follows. Just as g(α|θ, y) is a close approximation of
f(α|θ, y), g̃(θ|y)

.
= f(α, θ, y)/g(α|θ, y) is a good unnormalised approximation of

f(θ|y). Let θ◦ be the maximiser of g̃(θ|y) and Σ◦ be the inverse of the negative
Hessian of log g̃(θ|y) at θ◦. Also let nθ be the dimension of θ, equal to 4 for the
Gaussian model and 5 for the Student’s t model.

We choose g(θ|y) to be a nθ-variate Student’s t density with location parameter
θ◦, scale matrix Σ◦, and degrees of freedom equal to 30.

In the MCMC posterior simulation, we use an independence Metropolis-Hastings
chain. The joint proposal (α?, θ?) from density g(θ|y)g(α|θ, y) is accepted with prob-
ability

π(θ?, α?, θ, α) = min

[
1,
f(θ?)f(α?|θ?)f(y|θ?, α?)
f(θ)f(α|θ)f(y|θ, α)

g(θ|y)g(α|θ, y)

g(θ?|y)g(α?|θ?, y)

]
.

The fact that we can approximate the entire posterior distribution opens up the
possibility of doing importance sampling. Unlike proposals in MCMC, importance
draws do not need to be independent and this presents opportunities for variance
reduction. We exploit this fact to do importance sampling using a combination of
quasi-random and pseudo-random sequences for draws of θ. We construct M blocks
of length S each, for a total of MS draws. S should be a power of two, which is
convenient for Sobol quasi-random sequences.

We draw U (m), m = 1, . . . ,M , independently from the uniform distribution on the
hypercube (0, 1)nθ . For s = 1, . . . , S, V (s) is the s′th element of the nθ-dimensional
Sobol sequence. For m = 1, . . . ,M and s = 1, . . . , S, we compute U (m,s), defined
as the modulo 1 sum of U (m) and V (s). Thus U (m,s) is uniformly distributed on
(0, 1)nθ and the M blocks of length S are independent. We use U (m,s) to draw θ(m,s)
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from g(θ|y): use U (m,s) to construct a 6-vector of independent standard Gaussian
variates using the inverse cdf method then construct θ(m,s) by pre-multiplying by the
Cholesky decomposition of the scale matrix times

√
ν/ω2, where ω2 ∼ χ2(ν).

Let h(θ, α) be any function of interest. The importance sampling estimator for
E[h(θ, α)|y] is N/D, where

N
.
=

M∑
m=1

S∑
s=1

w(m,s)h(θ(m,s), α(m,s)), D
.
=

M∑
m=1

S∑
s=1

w(m,s),

and

w(m,s) =
f(θ(m,s), α(m,s), y)

g(θ(m,s), α(m,s)|y)
.

If the posterior mean of h(θ, α) exists, then the ratio R = N/D is a simulation
convergent estimator of E[h(θ, α)|y].

Following Geweke [1989], we approximate the posterior variance of h(θ, α) by

σ̂2
h
.
=

∑M
m=1

∑S
s=1[w

(m,s)(h(θ(m,s), α(m,s))−R)]2

D2
.

We compute a numerical standard error for R using the delta method. This gives
the following approximation of the numerical variance of the ratio R:

σ̂2
R
.
= (σ̂2

N − 2Rσ̂ND +R2σ̂2
D)(MS/D)2,

where σ̂2
N and σ̂2

D are estimates of the variances of N and D and σ̂ND is an estimate
of the covariance. Specifically, σ̂2

N is (1/M) times the sample variance of the M
independent terms

Nm =
1

S

S∑
s=1

w(m,s)h(θ(m,s), α(m,s)), m = 1, . . . ,M,

and analogously for σ̂2
D and σ̂ND. Then σ̂2

h/MSσ̂2
R is an estimate of the relative

numerical efficiency.

4.3. Results. For the ASV-Gaussian model, we report results of the HESSIAN in-
dependence Metropolis-Hastings and importance sampling posterior simulations. We
implement the procedure of Omori et al. [2007], denoted OCSN, and compare results.
We apply the three methods to two real data sets. The first consists of daily returns
of the S&P 500 index from January 1980 to December 1987, for a total of 2022 ob-
servations. This matches a sample used by Yu [2005]. The second data set consists
of 1232 daily returns of the TOPIX index. This data set, used by Omori et al. [2007],
is available at Nakajima’s website http://sites.google.com/site/jnakajimaweb/sv.

In the MCMC posterior simulation, the initial 10 draws are discarded and the in-
dependence Metropolis-Hastings chain is of length 12,800. We choose this chain size
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to match the total draws of the importance sampling chain where we use M = 100
and S = 128. In our replication of the OCSN chain, the initial 500 values are dis-
carded and we retain the 12,800 subsequent values. Table 2 gives the computational
time by dataset and estimation procedure. For all three methods, the code is written
in C++. We used a Windows PC with an Intel Core i5 2.90GHz processor.

Table 3 summarizes estimation results of the ASV-Gaussian model. The labels
HIS, HIM and OCSN indicate the HESSIAN importance sample, the HESSIAN
independence Metropolis-Hastings chain, and the chain obtained using the Omori
et al. [2007] procedure. The first two columns show numerical estimates of the
posterior mean and standard deviation, for the various parameters.

The third and fourth columns give the numerical standard error (NSE) and the
relative numerical efficiency (RNE) of the numerical approximations of the posterior
mean. The RNE measures numerical efficiency relative to that of the mean of a
random sample from the posterior. We use the results of Section 4.2 to compute
the NSE and RNE of the importance sampling chain and the OCSN chain. We use
the contributed coda library of the R software to compute those of the HESSIAN
independence Metropolis-Hastings method. This uses a time series method based on
the estimated spectral density at frequency zero.

The HIS and HIM methods produce numerical estimates of the same posterior
mean. We implement the procedure of Omori et al. [2007] using the prior described
in their article, which is different from our own. As a result, reported values are
different not only because of numerical sample variance but also because the posterior
mean is slightly different.

The HESSIAN importance sampler outperforms the OCSN method in all cases. Its
numerical efficiency is higher compared to OCSN, and apart from the unconditional
mean ᾱ of log volatility, at least four times higher. The efficiency of the importance
sample means are sometimes greater than 1. This is possible because of the variance
reduction achieved by using quasi-random numbers. In addition, the HIS procedure
has a lower execution time and thus higher numerical precision per unit time, mea-
sured by (1/(Time× NSE2)). Except for the unconditional mean of the log volatility,
the HESSIAN independence Metropolis Hastings methods outperforms the OCSN
procedure, with regard to the relative numerical efficiency and precision per unit
time.

The reported posterior means of the parameters φ, σ and ρ are similar to the values
reported by Omori et al. [2007] for the TOPIX index. The difference in the posterior
means ᾱ is due to the fact that these authors measure daily returns in percentages.
The same is true for Yu [2005] in the case of the S&P500.

For the ASV-Student model, we only report results for the HESSIAN procedures.
Table 4 summarizes the results of both datasets. The estimates of the parameters
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ᾱ, φ, σ and ρ, for the real data, are close to those obtained with the ASV-Gaussian.
The numerical efficiency is also substantially higher.

Nakajima and Omori [2009] proposed a procedure to estimate the ASV-Student
models. It is an extension of Omori et al. [2007]. This procedure is illustrated using
S&P500(January 1, 1970 to December 31, 2003) and Topix (from Janury 6, 1992
to December 30, 2004). Table 4 and Table 5 in Nakajima and Omori [2009] report
respectively results for S&P500 dataset and Topix dataset. Their reported results
for the ASV-Student model (SVLt in their paper) are similar to ours, except the
leverage coefficient of S&P500 dataset. The inefficiency factor is the inverse of the
numerical efficiency factor. The inverse of the reported values of their inefficiency
factors spanned from 0.006 (ν) to 0.291 (µ) for the S&P500 dataset. For the Topix
data, the highest value of efficiency reported is 0.0893. Although we do not used the
same length of data, comparing these figures to those reported in Table 4 suggests
that our procedure is more numerically efficient than the procedure of Nakajima and
Omori [2009].

5. Conclusion

We have derived an approximation g(α|θ, y) of the target density f(α|θ, y) that can
be used as a proposal density for MCMC or as an importance density for importance
sampling. We have tested the correctness of the HESSIAN posterior simulators.

Simulations on artificial and real data suggest that the HESSIAN method, which
is not model specific, is more numerically efficient than the model specific method
of Omori et al. [2007], which is in turn more efficient than the methods of Jacquier
et al. [2004] and Omori and Watanabe [2008]. The high numerical efficiency relies on
g(α|θ, y) being extremely close to the target density f(α|θ, y). Constructing a joint
proposal of θ and α not only solves the problem of numerical inefficiencies due to
posterior autocorrelation of α but also those due to posterior dependence between θ
and α.

The scope of applications goes beyond the ASV-Gaussian and ASV-Student mod-
els. Application to a new model of the form (4) only requires routines to compute
partial derivatives of the log conditional densities log f(yt|αt, αt+1) with respect to
αt and αt+1. This requirement is not as demanding as it might first appear, for two
reasons. First, we can use numerical derivatives or other approximations. Second,
we do not require analytic expressions of these derivatives. If log f(yt|αt, αt+1) is
a composition of primitive functions, we can combine evaluations of the derivatives
of the primitive functions using routines applying Fàa Di Bruno’s rule for multiple
derivatives of compound functions. We have already coded these routines, which do
not depend on the particular functions involved.
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We now require the state vector, α, to be Gaussian. We are currently trying to
extend the HESSIAN method to models where the state vector is Markov, but not
necessary Gaussian. We are also working on approximations to filtering densities,
useful for sequential learning.

Appendix A. Precomputation

Here we compute the precision Ω̄ and covector c̄ of the marginal distribution
of α, and the mode a = (a1, . . . , an) of the target distribution. Bi-products of

the computation of a include several quantities used elsewhere, including ¯̄Ω and ¯̄c,
the precision and covector of a Gaussian approximation N(¯̄Ω−1¯̄c, ¯̄Ω−1) of the target
distribution, and the conditional variances Σ1, . . . ,Σt, . . . ,Σn.

As the state dynamics are no different, we compute Ω̄ and c̄ exactly as in McCaus-
land (2010):

Ω̄t,t = ωt−1 + ωtφ
2
t , Ω̄t,t+1 = −ωtφt, t = 1, . . . , n− 1,

Ω̄n,n = ωn−1,

(21) c̄t =

{
ωt−1dt−1 − ωtφtdt t = 1, . . . , n− 1,

ωn−1dn−1 t = n.

As in McCausland (2010), we use a Newton-Raphson method to find the mode of

the target distribution. At each iteration, we compute a precision ¯̄Ω(α) and covector
¯̄c(α) of a Gaussian approximation to the target distribution based on a second order
Taylor series expansion of the log target density around the current value of α.
Specifically, ¯̄Ω(α) is the negative Hessian matrix of log f(α|y) with respect to α at
the current value of α. It is a symmetric tri-diagonal matrix, with non-zero upper
triangular elements given by

¯̄Ωt,t(α) = Ω̄t,t −
(
ψ

(2,0)
t (αt, αt+1) + ψ

(0,2)
t−1 (αt−1, αt)

)
, t = 2, . . . , n− 1,

¯̄Ω1,1(α) = Ω̄1,1 − ψ(2,0)
t (αt, αt+1),

¯̄Ωnn(α) = Ω̄n,n −
(
ψ(2)
n (αn) + ψ

(0,2)
n−1 (αn−1, αn)

)
,

¯̄Ωt,t+1(α) = Ω̄t,t+1 − ψ(1,1)
t (αt, αt+1), t = 1, . . . , n− 1.

The covector ¯̄c(α) is

¯̄c(α)
.
= ¯̄Ω(α)α +

∂ log f(y|α)

∂α>
,
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and its elements are
(22)

¯̄ct(α) =


c̄t + ¯̄Ωt,tαt + ¯̄Ωt,t+1αt+1 + ψ

(1,0)
t (αt, αt+1) t = 1

c̄t + ¯̄Ωt,t−1αt−1 + ¯̄Ωt,tαt + ¯̄Ωt,t+1αt+1 + ψ
(1,0)
t (αt, αt+1) + ψ

(0,1)
t−1 (αt−1, αt) t = 2, . . . , n− 1

c̄n + ¯̄Ωn,n−1αn−1 + ¯̄Ωnnαn + ψ
(1)
n (αn) + ψ

(0,1)
n−1 (αn−1, αn)(αn−1, αn) t = n.

Let ¯̄Ω
.
= ¯̄Ω(a) and ¯̄c

.
= ¯̄c(a). Then the mean (and mode) of the Gaussian approx-

imation N(¯̄Ω−1¯̄c, ¯̄Ω−1) is a, the mode of the target distribution, and its log density
has the same Hessian matrix as the log target density at a.

While these expressions for ¯̄Ω and ¯̄c are more complicated than those in McCaus-
land (2010), once we have them, we compute the mode a in the same way. Roughly

speaking, we iterate the computation α′ = ¯̄Ω(α)−1¯̄c(α) until numerical convergence.
We use two modifications to this procedure, one to accelerate convergence using
higher order derivatives and the other to resort to line searches in the rare cases of
non-convergence.

Appendix B. Polynomial approximations of at|t+1 and st|t+1

Here we compute coefficients of polynomial approximations of at|t+1(αt+1) and
st|t+1(αt+1). Recall that these are the conditional mean and log variance of αt
given αt+1 according to a Gaussian approximation of the conditional distribution of
α1, . . . , αt given αt+1 and y. The approximations are exact Taylor series expansions
around at+1 and so the coefficients are based on the derivatives of these functions at
at+1.

We derive recursive expressions for these derivatives that are correct for any order
r. In practice, the computational cost rises quickly and the benefits diminish quickly

in r. We provide simplified expressions for a
(r)
t

.
= a

(r)
t|t+1(at+1) up to order r = 5 and

s
(r)
t

.
= s

(r)
t|t+1(at+1) up to order r = 4.

The basic strategy involves taking derivatives of two identities. The first is a first
order necessary condition on at−1|t+1(αt+1) and at|t+1(αt+1) for (a1|t+1(αt+1), . . . , at|t+1(αt+1))
to be the conditional mode of (α1, . . . , αt) given αt+1 and y. The second is the identity
at−1|t+1(αt+1) = at−1|t(at|t+1(αt+1)).

B.1. General Formula. We begin with the case t = 1. Since f(α1|α2, y) ∝ f(α1, α2)f(y1|α1, α2),
we can write

(23) log f(α1|α2, y) = −1

2
Ω̄1,1α

2
1 − Ω̄1,2α1α2 + c̄1α1 + log f(y1|α1, α2) + k.
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where k does not depend on α1. The conditional mode a1|2(α2) maximizes log f(α1|α2, y)
and must therefore satisfy

(24) −Ω̄1,1a1|2(α2)− Ω̄1,1α2 + c̄1 + ψ
(1,0)
1 (a1|2(α2), α2) = 0.

Taking the derivative of (24) with respect to α2, and using the definitions ¯̄Ω1,1|2(α2) =

(Ω̄1,1 − ψ(2,0)
1 (a1|2(α2), α2)) and ¯̄Ω1,2|2(α2) = Ω̄1,2 − ψ(1,1)

1 (a1|2(α2), α2) gives

(25) ¯̄Ω1,1|2(α2)a
(1)
1|2(α2) = − ¯̄Ω1,2|2(α2).

Solving for a
(1)
1|2(α2), we obtain

(26) a
(1)
1|2(α2) = −Σ1|2(α2)

¯̄Ω1,2|2(α2),

where Σ1|2(α2) = ¯̄Ω−11,1|2(α2) from equation (10). Setting α2 = a2 gives a
(1)
1 = −Σ1

¯̄Ω1,2.

We now derive an expression allowing us to compute a
(r)
1 in terms of a

(i)
1 , i < r.

First, differentiate (25) (r − 1) times with respect to α2. Using Leibniz’s rule, we
obtain

r−1∑
i=0

(
r − 1

i

)
¯̄Ω
(r−1−i)
1,1|2 (α2)a

(i+1)
1|2 (α2) = − ¯̄Ω

(r−1)
1,2|2 (α2).

Then solving for a
(r)
1|2(α2) gives

(27) a
(r)
1|2(α2) = −Σ1|2(α2)

[
r−2∑
i=0

(
r − 1

i

)
¯̄Ω
(r−1−i)
1,1|2 (α2)a

(i+1)
1|2 (α2) + ¯̄Ω

(r−1)
1,2|2 (α2)

]
.

Finally, we evaluate (27) at α2 = a2 to obtain

(28) a
(r)
1 = −Σ1

[
r−2∑
i=0

(
r − 1

i

)
¯̄Ω
(r−1−i)
1,1 a

(i+1)
1 + ¯̄Ω

(r−1)
1,2

]
.

We now derive an expression relating the a
(r)
1 and the s

(r)
1 , which we will use to

obtain the latter from the former. First recall the definition Σ1|2(α2) = exp(s1|2(α2)).
Using Faà Di Bruno’s formula for derivatives of compound functions, we obtain, for
i ≥ 1,

Σ
(i)
1|2(α2) =

i∑
j=1

exp(s1|2(α2))Bi,j(s
(1)
1|2(α2), . . . , s

(i−j+1)
1|2 (α2))

= Σ1|2(α2)Bi(s
(1)
1|2(α2), . . . , s

(i)
1|2(α2)),(29)
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where the Bi,j are Bell polynomials and Bi is the i’th complete Bell polynomial.
Appendix E shows how to compute these polynomials. We now differentiate (26)
(r − 1) times with respect to α2, to obtain

a
(r)
1|2(α2) =−

r−1∑
i=0

(
r − 1

i

)
Σ

(i)
1|2(α2)

¯̄Ω
(r−1−i)
1,2|2 (α2)

=− Σ1|2(α2)
r−1∑
i=0

(
r − 1

i

)
Bi(s

(1)
1|2(α2), . . . , s

(i)
1|2(α2))

¯̄Ω
(r−1−i)
1,2|2 (α2).

Evaluating at α2 = a2 gives us the desired expression:

(30) a
(r)
1 = −Σ1

r−1∑
i=0

(
r − 1

i

)
Bi(s

(1)
1 , . . . , s

(i)
1 ) ¯̄Ω

(r−1−i)
1,2 .

We now move on to the case 1 < t < n. The conditional mode a1:t|t+1(αt+1) =
(a1|t+1(αt+1), . . . , at|t+1(αt+1)) must satisfy the first order necessary condition

(31)
0 =c̄t − Ω̄t−1,tat−1|t+1(αt+1)− Ω̄t,tat|t+1(αt+1)− Ω̄t,t+1αt+1

+ ψ
(0,1)
t−1 (at−1|t(at|t+1), at|t+1) + ψ

(1,0)
t (at|t+1, αt+1).

Taking the derivative of (31) with respect to αt+1 gives

(32) ¯̄Ωt,t−1(αt+1)a
(1)
t−1|t+1(αt+1) + ¯̄Ωt,t(αt+1)a

(1)
t|t+1(αt+1) + ¯̄Ωt,t+1(αt+1) = 0.

Using the identity at−1|t+1(αt+1) = at−1|t
(
at|t+1(αt+1)

)
and the chain rule gives

(33) a
(1)
t−1|t+1(αt+1) = a

(1)
t−1|t(at|t+1(αt+1))a

(1)
t|t+1(αt+1).

Substituting (33) in (32), we obtain(
¯̄Ωt,t−1(αt+1)a

(1)
t−1|t(at|t+1(αt+1)) + ¯̄Ωt,t(αt+1)

)
a
(1)
t|t+1(αt+1) = − ¯̄Ωt,t+1(αt+1).

Then, following an analogous development in McCausland [2012], we can show by
induction that

(34) a
(1)
t|t+1(αt+1) = −Σt|t+1(αt+1)

¯̄Ωt,t+1(αt+1), t = 2, . . . , n− 1,

where
[
Σt|t+1(αt+1)

]−1
= ¯̄Ωt,t−1(αt+1)a

(1)
t−1|t(at|t+1(αt+1)) + ¯̄Ωt,t(αt+1). Taking αt+1 =

at+1 in (34) gives

(35) a
(1)
t = −Σt

¯̄Ωt,t+1.
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For r ≥ 2, we use Leibniz’s rule to differentiate (32) (r − 1) times with respect to
αt+1 and obtain
(36)
r−1∑
i=0

(
r − 1

i

)(
¯̄Ω
(i)
t,t−1(αt+1)a

(r−i)
t−1|t+1(αt+1) + ¯̄Ω

(i)
t,t (αt+1)a

(r−i)
t|t+1(αt+1)

)
= − ¯̄Ω

(r−1)
t,t+1 (αt+1).

Using Faà di Bruno’s formula for arbitrary order derivatives of compound functions,
we compute the i’th derivative of at−1|t+1(αt+1) with respect to αt+1 as

(37) a
(i)
t−1|t+1(αt+1) =

i∑
j=1

a
(j)
t−1|t(at|t+1)Bi,j(a

(1)
t|t+1(αt+1), . . . , a

(i−j+1)
t|t+1 (αt+1)).

If we substitute a
(i)
t−1|t+1(αt+1) of (37) in (36) and set αt+1 = at+1, we obtain

(38)
r−1∑
i=0

(
r − 1

i

){
¯̄Ω
(i)
t,t−1

[
r−i∑
j=1

a
(j)
t−1Br−i,j(a

(1)
t , . . . , a

(r−i−j+1)
t )

]
+ ¯̄Ω

(i)
t,ta

(r−i)
t

}
= − ¯̄Ω

(r−1)
t,t+1 .

This gives an expression for a
(r)
t in terms of a

(i)
t , i = 0, . . . , r − 1; a

(i)
t−1, i = 0, . . . , r;

¯̄Ω
(i)
t,t−1 and ¯̄Ω

(i)
t,t , i = 1, . . . , r − 1; and ¯̄Ω

(r−1)
t,t+1 .

We now derive a result that will give us s
(r)
t in terms of a

(i)
t and s

(i)
t , i = 1, . . . , r−1

and a
(i)
t−1, i = 1, . . . , r + 1. Analogously with equation (29), we have

Σ
(r)
t|t+1(αt+1) = Σt|t+1(αt+1)Br(s

(1)
t|t+1(αt+1), . . . , s

(r)
t|t+1(αt+1)).

Using Leibniz’s rule to take derivatives of (34) with respect to αt+1, and evaluating
at αt+1 = at+1, we obtain

(39) a
(r)
t =

r−1∑
i=0

(
r − 1

i

)
Bi(s

(1)
t , . . . , s

(i)
t )Σt

¯̄Ω
(r−1−i)
t,t+1 .

The quantities ¯̄Ω
(r)
t,s involved in the computation of a

(r)
t and s

(r)
t are functions of

derivatives of ψ
(p,q)
t (at|t+1, αt+1) with respect to αt+1, evaluated at at+1. Equations

(83) and (84) of Appendix E show how to compute these derivatives as functions of

derivatives of ψ
(p,q)
t (αt, αt+1), supplied as part of the model specification.

B.2. Explicit Formula for R = 5. We now derive simplified expressions for a
(r)
t ,

r = 1, . . . , 5 and s
(r)
t , r = 1, . . . , 4, for t = 1, . . . , n − 1. We give details of the

computation for t = 2, . . . , n−1. For the special case t = 1, we can obtain analogous
results simply by setting any terms with a time index of zero to zero.
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We have already have an expression for a
(1)
t , t = 1, . . . , n−1, in (35). Taking r = 2

in (38) gives

¯̄Ωt,t−1

(
a
(1)
t−1a

(2)
t + a

(2)
t−1

(
a
(1)
t

)2)
+ ¯̄Ωt,ta

(2)
t + ¯̄Ω

(1)
t,t−1a

(1)
t−1a

(1)
t + ¯̄Ω

(1)
t,t a

(1)
t = ¯̄Ω

(1)
t,t+1,

which simplifies to

(40) a
(2)
t =

(
γta

(1)
t a

(2)
t−1 − Σt

¯̄Ω
(1)

t

)
a
(1)
t − Σt

¯̄Ω
(1)
t,t+1,

where γt = −Σt
¯̄Ωt,t−1 and ¯̄Ω

(i)

t = ¯̄Ω
(i)
t,t−1a

(1)
t + ¯̄Ω

(i)
t,t . Setting r = 2 in (39) gives

(41) a
(2)
t = s

(1)
t a

(1)
t − Σt

¯̄Ω
(1)
t,t+1.

Equating the right hand sides of (40) and (41) and solving for s
(1)
t gives

(42) s
(1)
t = γta

(1)
t a

(2)
t−1 − Σt

¯̄Ω
(1)

t .

Setting r = 3 in (38) gives

− ¯̄Ω
(2)
t,t+1 =¯̄Ωt,t−1

(
a
(1)
t−1a

(3)
t + 3a

(2)
t−1a

(1)
t a

(2)
t + a

(3)
t−1

(
a
(1)
t

)3)
+ ¯̄Ωt,ta

(3)
t

+ 2

(
¯̄Ω
(1)
t,t−1

(
a
(1)
t−1a

(2)
t + a

(2)
t−1

(
a
(1)
t

)2)
+ ¯̄Ω

(1)
t,t a

(1)
t

)
+ ¯̄Ω

(2)
t,t−1a

(1)
t−1a

(1)
t + ¯̄Ω

(2)
t,t a

(1)
t .

Solving for a
(3)
t , we obtain

a
(3)
t =γt

(
3a

(1)
t a

(2)
t a

(2)
t−1 +

(
a
(1)
t

)3
a
(3)
t−1

)
− 2Σt

(
¯̄Ω
(1)
t,t−1

(
a
(1)
t

)2
a
(2)
t−1 + ¯̄Ω

(1)

t a
(2)
t

)
− Σt

¯̄Ω
(2)

t a
(1)
t − Σt

¯̄Ω
(2)
t,t+1

=2
(
γta

(1)
t a

(2)
t−1 − Σt

¯̄Ω
(1)

t

)
a
(2)
t +

(
γta

(1)
t a

(3)
t−1 − 2Σt

¯̄Ω
(1)
t,t−1a

(2)
t−1

)(
a
(1)
t

)2
+
(
γta

(2)
t a

(2)
t−1 − Σt

¯̄Ω
(2)

t

)
a
(1)
t − Σt

¯̄Ω
(2)
t,t+1.

We use (42) to simplify this to

(43)
a
(3)
t =2s

(1)
t a

(2)
t +

(
γta

(1)
t a

(3)
t−1 − 2Σt

¯̄Ω
(1)
t,t−1a

(2)
t−1

)(
a
(1)
t

)2
+
(
γta

(2)
t a

(2)
t−1 − Σt

¯̄Ω
(2)

t

)
a
(1)
t − Σt

¯̄Ω
(2)
t,t+1.
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Setting r = 3 in (39) gives an alternative expression for a
(3)
t :

(44)

a
(3)
t =

(
s
(2)
t +

(
s
(1)
t

)2)
a
(1)
t − Σt

¯̄Ω
(2)
t,t+1 − 2s

(1)
t Σt

¯̄Ω
(1)
t,t+1

=

(
s
(2)
t +

(
s
(1)
t

)2)
a
(1)
t − Σt

¯̄Ω
(2)
t,t+1 + 2s

(1)
t

(
a
(2)
t − s

(1)
t a

(1)
t

)
=

(
s
(2)
t −

(
s
(1)
t

)2)
a
(1)
t + 2s

(1)
t a

(2)
t − Σt

¯̄Ω
(2)
t,t+1.

Equating the right hand sides of (43) and (44) and solving for s
(2)
t gives

(45) s
(2)
t =

(
s
(1)
t

)2
+
(
γta

(1)
t a

(3)
t−1 − 2Σt

¯̄Ω
(1)
t,t−1a

(2)
t−1

)
a
(1)
t +

(
γta

(2)
t a

(2)
t−1 − Σt

¯̄Ω
(2)

t

)
.

We follow a similar procedure to compute the following formulas for a
(4)
t , s

(3)
t , and

a
(5)
t , s

(4)
t :

(46)

a
(4)
t =

(
γta

(1)
t a

(4)
t−1 − 3Σt

¯̄Ω
(1)
t,t−1a

(3)
t−1

)(
a
(1)
t

)3
+ 3

(
γta

(2)
t a

(3)
t−1 − Σt

¯̄Ω
(2)
t,t−1a

(2)
t−1

)(
a
(1)
t

)2
+
(
γta

(3)
t a

(2)
t−1 − 3Σt

¯̄Ω
(1)
t,t−1a

(2)
t a

(2)
t−1 − Σt

¯̄Ω
(3)

t

)
a
(1)
t − Σt

¯̄Ω
(3)
t,t+1

+ 3

(
s
(2)
t −

(
s
(1)
t

)2)
a
(2)
t + 3s

(1)
t a

(3)
t ,

(47)

s
(3)
t =−

(
s
(1)
t

)3
+ 3s

(1)
t s

(2)
t +

(
γta

(1)
t a

(4)
t−1 − 3Σt

¯̄Ω
(1)
t,t−1a

(3)
t−1

)(
a
(1)
t

)2
+ 3

(
γta

(2)
t a

(3)
t−1 − Σt

¯̄Ω
(2)
t,t−1a

(2)
t−1

)
a
(1)
t +

(
γta

(3)
t − 3Σt

¯̄Ω
(1)
t,t−1a

(2)
t

)
a
(2)
t−1 − Σt

¯̄Ω
(3)

t

(48)

a
(5)
t =− Σt

¯̄Ω
(4)
t,t+1 +

(
γta

(5)
t−1a

(1)
t − 4Σt

¯̄Ω
(1)
t,t−1a

(4)
t−1

)(
a
(1)
t

)4
+ 6

(
γta

(4)
t−1a

(2)
t − Σt

¯̄Ω
(2)
t,t−1a

(3)
t−1

)(
a
(1)
t

)3
+ 4

(
γta

(3)
t−1a

(3)
t − Σt

¯̄Ω
(3)
t,t−1a

(2)
t−1 − 2Σt

¯̄Ω
(1)
t,t−1a

(3)
t−1a

(2)
t

)(
a
(1)
t

)2
+

(
γt

(
a
(2)
t−1a

(4)
t + 3a

(3)
t−1

(
a
(2)
t

)2)
− Σt

¯̄Ω
(4)

t − 6Σt
¯̄Ω
(2)
t,t−1a

(2)
t−1a

(2)
t − 4Σt

¯̄Ω
(1)
t,t−1a

(2)
t−1a

(3)
t

)
a
(1)
t

+ 4s
(1)
t a

(4)
t + 6

(
s
(2)
t −

(
s
(1)
t

)2)
a
(3)
t + 4

(
s
(3)
t +

(
s
(1)
t

)3
− 3s

(1)
t s

(2)
t

)
a
(2)
t ,
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(49)

s
(4)
t =

(
γta

(5)
t−1a

(1)
t − 4Σt

¯̄Ω
(1)
t,t−1a

(4)
t−1

)(
a
(1)
t

)3
+ 6

(
γta

(4)
t−1a

(2)
t − Σt

¯̄Ω
(2)
t,t−1a

(3)
t−1

)(
a
(1)
t

)2
+ 4

(
γta

(3)
t−1a

(3)
t − Σt

¯̄Ω
(3)
t,t−1a

(2)
t−1 − 2Σt

¯̄Ω
(1)
t,t−1a

(3)
t−1a

(2)
t

)
a
(1)
t

+

(
γt

(
a
(2)
t−1a

(4)
t + 3a

(3)
t−1

(
a
(2)
t

)2)
− Σt

¯̄Ω
(4)

t − 6Σt
¯̄Ω
(2)
t,t−1a

(2)
t−1a

(2)
t − 4Σt

¯̄Ω
(1)
t,t−1a

(2)
t−1a

(3)
t

)
+
(
s
(1)
t

)4
+ 4s

(1)
t s

(3)
t + 3

(
s
(2)
t − 2

(
s
(1)
t

)2)
s
(2)
t .

Appendix C. Polynomial approximations of b
(r)
t and µ

(r)
t

C.1. First derivative of log f(αt|αt+1, y). In this subsection, we derive an exact

expression for h
(1)
t (αt;αt+1), the first derivative of log f(αt|αt+1, y) with respect to

αt.
The case t = 1 is straightforward using Bayes’ rule. We have

∂ log f(α1|α2, y)

∂α1

=
∂ log f(y1|α1, α2)

∂α1

+
∂ log f(α2, α1)

∂α1

Recalling the definition of ψ
(p,q)
t (αt, αt+1) in (7), the first derivative of h1(α1;α2) =

log f(y1|α1, α2) is written

(50) h
(1)
1 (α1;α2) = ψ

(1,0)
1 (α1, α2) + c̄1 − Ω̄1,2α2 − Ω̄1,1α1.

For t = 2, . . . , n−1, we compute f(αt|αt+1, y) as a marginal density of f(α1:t|αt+1, y).
Thus, we have

f(αt|αt+1, y) =

∫
f(α1:t−1, αt|αt+1, y) dα1:t−1

∝ f(αt+1|αt)f(yt|αt, αt+1)c(αt),
(51)

where

c(αt) =

∫
f(αt|αt−1)f(yt−1|αt−1, αt)f(y1:t−2, α1:t−1) dα1:t−1.

Taking the logarithm of (51) and differentiating with respect to αt gives

(52) h
(1)
t (αt;αt+1) =

∂ log c(αt)

∂αt
+
∂ log f(αt+1|αt)

∂αt
+
∂ log f(yt|αt, αt+1)

∂αt
.
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We use a development similar to Appendix C of McCausland [2012] to show that

∂ log c(αt)

∂αt
= E

[
∂ log f(αt|αt−1)

∂αt
+
∂ log f(yt−1|αt−1, αt)

∂αt

∣∣∣∣αt, y] .
The first derivatives ht(αt;αt+1) then becomes

h
(1)
t (αt;αt+1) =E

[
log f(αt|αt−1)

∂αt
+

log f(yt−1|αt−1, αt)
∂αt

∣∣∣∣αt, αt+1, y

]
+
∂ log f(αt+1|αt)

∂αt
+
∂ log f(yt|αt, αt+1)

∂αt

=E

[
log f(αt|αt−1)

∂αt
+

log f(αt+1|αt)
∂αt

∣∣∣∣αt, αt+1, y

]
+ E

[
log f(yt−1|αt−1, αt)

∂αt

∣∣∣∣αt, αt+1, y

]
+
∂ log f(yt|αt, αt+1)

∂αt
.

The first term above simplifies as in Appendix C of McCausland (2010). We use (7)
to finally derive

h
(1)
t (αt;αt+1) =c̄t − Ω̄t,tαt − Ω̄t,t+1αt+1 + ψ

(1,0)
t (αt, αt+1)

− Ω̄t−1,tµt−1|t(αt) + xt−1|t(αt),
(53)

where µt−1|t(αt) = E[αt−1|αt, y] and xt−1(αt) = E
[
ψ

(0,1)
t−1 (αt−1, αt) |αt, y

]
. The case

t = n is similar, and we obtain

(54) h(1)n (αn) = c̄n − Ω̄n,nαn + ψ(1)
n (αn)− Ω̄n−1,nµn−1|n(αn) + xn−1|n(αn).

C.2. Approximation of h
(1)
t (αt;αt+1). Since we do not know the conditional expec-

tations µt−1|t(αt) and xt−1|t(αt), we cannot compute ht(αt;αt+1) exactly. We propose

an approximation H
(1)
t (αt;αt+1) of h

(1)
t (αt;αt+1). For t = 2, . . . , n− 1, we have

(55)

H
(1)
t (αt;αt+1)

.
= c̄t−Ω̄t,tαt−Ω̄t,t+1αt+1+Ψ

(1,0)
t (αt, αt+1)−Ω̄t−1,tMt−1|t(αt)+Xt−1|t(αt)

where Mt−1|t(αt) is an approximation of µt−1|t(αt), Xt−1|t(αt) is an approximation of

xt−1|t(αt) and Ψ
(1,0)
t (αt, αt+1) is an approximation of ψ

(1,0)
t (αt, αt+1).

1 The polynomi-

als Mt−1|t(αt) and Ψ
(p,q)
t (αt, αt+1) are defined in (13) and (14).

1For t = n, we need just to replace Ψ
(1,0)
t (αt, αt+1) by Ψ

(1)
n (αn) in (55) to obtain H

(1)
n (αn), the

approximation of h
(1)
n (αn).
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We construct Xt−1|t(αt) in two steps. First, we approximate ψ
(0,1)
t−1 (αt−1, αt), as a

function of αt−1, by its second order Taylor series expansion around at−1|t(αt):

(56)
ψ

(0,1)
t−1 (αt−1, αt) ≈ ψ

(0,1)
t−1 (at−1|t(αt), αt) + ψ

(1,1)
t−1 (at−1|t(αt), αt)(αt−1 − at−1|t(αt))

+ 1
2
ψ

(2,1)
t−1 (at−1|t(αt), αt)(αt−1 − at−1|t(αt))2.

Taking the conditional expectation of both sides of (56), given αt and y, and using
Σt−1|t(αt) as an approximation of E

[
(αt−1 − at−1|t(αt))2|αt, y

]
gives the approxima-

tion

(57)
xt−1|t(αt) ≈ψ(0,1)

t−1 (at−1|t(αt), αt) + ψ
(1,1)
t−1 (at−1|t(αt), αt)(µt−1|t(αt)− at−1|t(αt))

+
1

2
ψ

(2,1)
t−1 (at−1|t(αt), αt)Σt−1|t(αt).

Now we define the polynomial Xt−1|t(αt) as the R’th order Taylor series expansion
of the right hand side of (57):

(58) Xt−1|t(αt)
.
=

R∑
r=0

X
(r)
t−1

r!
(αt − at)r,

where X
(r)
t−1 is the r’th derivative of the RHS of (57) with respect to αt, evaluated at

at. We evaluate these derivatives bottom up using Faà Di Bruno’s formula, equations
(81) and (82), and Leibniz’s rule, equation (77).

C.3. Approximation of the conditional mode bt|t+1(αt+1). Recall that bt|t+1(αt+1)
is the conditional mode of αt given αt+1 and y. We provide an approximation
Bt|t+1(αt+1) of the Taylor expansion of bt|t+1(αt+1) around αt+1 = at+1. We show
in this subsection how to compute the coefficients of the resulting polynomial. The
degree of this polynomial is R− 1 = 4.

By definition, bt|t+1(αt+1) is the root of h
(1)
t (αt;αt+1) = 0. We can approximate

this root, as a function of αt+1, using one iteration of the Newton-Raphson algorithm
for root finding, from the starting point at|t+1(αt+1):

(59) bt|t+1(αt+1) ≈ at|t+1(αt+1)−
h
(1)
t (at|t+1(αt+1);αt+1)

h
(2)
t (at|t+1(αt+1);αt+1)

.

We want to approximate the function bt|t+1(αt+1), not just perform the Newton-
Raphson step for a particular value of at|t+1. Our strategy will be to find an approxi-
mate Taylor expansion of the second term of the right hand side around αt+1 = at+1.
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Our approximations of numerator and denominator are, using (55) and its deriv-
ative, both evaluated at αt = at|t+1(αt+1), are

H
(1)
t (at|t+1;αt+1) = c̄t − Ω̄t,tat|t+1 − Ω̄t,t+1αt+1 + Ψ

(1,0)
t (at|t+1, αt+1)

− Ω̄t−1,tMt−1|t(at|t+1) +Xt−1|t(at|t+1)(60)

H
(2)
t (at|t+1;αt+1) = −Ω̄t,t + Ψ

(2,0)
t (at|t+1, αt+1)

− Ω̄t−1,tM
(1)
t−1|t(at|t+1) +X

(1)
t−1|t(at|t+1),(61)

where we suppress the argument of at|t+1(αt+1) to write at|t+1.

We compute total derivatives of H
(1)
t (at|t+1(αt+1);αt+1) and H

(2)
t (at|t+1(αt+1);αt+1)

at αt+1 = at+1 using Faà di Bruno’s formula to compute the derivatives ofMt−1|t(at|t+1(αt+1)),
at−1|t(at|t+1(αt+1)) and Xt−1|t(at|t+1(αt+1)) with respect to αt+1, at αt+1 = at+1.

Based on equation (59), we define the following approximations B
(r)
t of b

(r)
t , r =

0, 1, 2, 3:

(62) B
(r)
t

.
= a

(r)
t −

∂r

∂αrt+1

(
H

(1)
t (at|t+1(αt+1);αt+1)

H
(2)
t (at|t+1(αt+1);αt+1)

)∣∣∣∣∣
αt+1=at+1

.

The second term on the right hand side of (62) is the r’th order derivative of a
quotient, which we compute using the quotient rule for derivatives, equation (78) in
Appendix E.

In practice, we find that going beyond a third order approximation of bt|t+1(αt+1)−
at|t+1(αt+1) does not justify the computational cost and so we set B

(4)
t = a

(4)
t .

For t = n, we approximate a value bn, not a function. We define, analogously, the
following approximation of bn:

(63) Bn
.
= an −

H
(1)
n (an)

H
(2)
n (an)

.

C.4. Coefficients of the polynomial approximation of µt|t+1(αt+1). Recall that
µt|t+1(αt+1) = E[αt|αt+1, y]. We provide an approximation Mt|t+1(αt+1) of a Taylor
expansion of µt|t+1(αt+1) around αt+1 = at+1. We show in this subsection how to
compute the coefficients of the resulting fourth order polynomial.

McCausland(2011) suggests the following approximation for µt|t+1 − bt|t+1:

(64) µt|t+1 − bt|t+1 ≈
1

2
h
(3)
t (bt|t+1;αt+1)

[
h
(2)
t (bt|t+1;αt+1)

]−2
As the mode bt|t+1 is the root of h

(1)
t (αt;αt+1), we have

(65) h
(1)
t (bt|t+1;αt+1) = 0
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Taking the derivative of (65) two times with respect to αt+1 gives

(66) h
(2)
t (bt|t+1;αt+1)b

(1)
t|t+1 = Ω̄t,t+1 − ψ(1,1)

t (bt|t+1, αt+1)

and

(67)
h
(3)
t (bt|t+1;αt+1)

(
b
(1)
t|t+1

)2
+ h

(2)
t (bt|t+1;αt+1)b

(2)
t|t+1 =− 2

dψ
(1,1)
t (bt|t+1, αt+1)

dαt+1

+ ψ
(1,1)
t (bt|t+1, αt+1)

Solve for h
(3)
t (bt|t+1;αt+1) in equation (67) and divide by the square of h

(2)
t (bt|t+1;αt+1)

to obtain

(68)

h
(3)
t (bt|t+1;αt+1)(

h
(2)
t (bt|t+1;αt+1)

)2 =−
b
(2)
t|t+1/b

(1)
t|t+1

h
(2)
t (bt|t+1;αt+1)b

(1)
t|t+1

−
2dψ

(1,1)
t (bt|t+1, αt+1)/dαt+1 − ψ(1,1)

t (bt|t+1, αt+1)(
h
(2)
t (bt|t+1;αt+1)b

(1)
t|t+1

)2
Substitute the right hand side of equation (66) in (68) to obtain

(69)

µt|t+1 − bt|t+1 ≈−
1

2

b
(2)
t|t+1/b

(1)
t|t+1

Ω̄t,t+1 − ψ(1,1)
t (bt|t+1, αt+1)

− 1

2

2dψ
(1,1)
t (bt|t+1, αt+1)/dαt+1 − ψ(1,1)

t (bt|t+1, αt+1)(
Ω̄t,t+1 − ψ(1,1)

t (bt|t+1, αt+1)
)2

Based on equation (69), we define our approximation Mt|t+1 of µt|t+1 as the Taylor
series expansion of:
(70)

−1

2

B
(2)
t|t+1/B

(1)
t|t+1

Ω̄t,t+1 −Ψ
(1,1)
t (Bt|t+1, αt+1)

− 1

2

2dΨ
(1,1)
t (Bt|t+1, αt+1)/dαt+1 −Ψ

(1,1)
t (Bt|t+1, αt+1)(

Ω̄t,t+1 −Ψ
(1,1)
t (Bt|t+1, αt+1)

)2
The derivatives of B

(2)
t|t+1/B

(1)
t|t+1 with respect to αt+1 are computed using the quo-

tient rule for derivatives, equation (78). Those of Ψ
(1,1)
t (Bt|t+1, αt+1) and dΨ

(1,1)
t (Bt|t+1, αt+1)/dαt+1

are computed using the Faà-Di-Bruno formula, equations (81) and (82). Derivatives
of the two main ratios in (70) are computed using the quotient rule in equation (78).

We compute M
(r)
t = M

(r)
t|t+1(at+1), r = 0, 1, 2 using (70).
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In practice, we find that going beyond a second order approximation of µt|t+1(αt+1)−
bt|t+1(αt+1) does not justify the computational cost and so we set M

(3)
t = B

(3)
t and

M
(4)
t = a

(4)
t .

Appendix D. Model derivatives

Here we show how to compute partial derivatives of ψt(αt, αt+1) and derivatives
ψn(αn), for the ASV-Gaussian and ASV-Student models. In our empirical applica-

tions, we compute ψ
(p,q)
t (αt, αt+1) up to orders P = 7 and Q = 7 and ψ

(p)
n (αn) up to

order P = 7.

D.1. ASV-Gaussian. Using (5), we can write

(71) ψt(αt, αt+1) = −1

2

[
log(2π/β) + αt + β(ϕt − θut)2

]
, t = 1, . . . , n− 1,

(72) ψn(αn) = −1

2

[
log(2π) + αn + ϕ2

n

]
,

where β
.
= (1− ρ2)−1, θ .

= ρ/σ, ut
.
= αt+1 − dt − φαt and ϕt

.
= yt exp(−αt/2).

For t = 1, . . . , n− 1 and (p, q) 6= (0, 0) we have

(73) ψ
(p,q)
t (αt, αt+1) =



−1
2
− β

2
(ϕ̃t,p − 2θ2φut) q = 0, p = 1

−β
2

(ϕ̃t,p + 2θ2φ2) q = 0, p = 2

−β
2
ϕ̃t,p q = 0, p ≥ 3

βθ (ϕt − θut) q = 1, p = 0

βθ
(
−1

2
ϕt + θφ

)
q = 1, p = 1

βθ
(
−1

2

)p
ϕt q = 1, p ≥ 2

−βθ2 q = 2, p = 0

0 otherwise,

where

(74) ϕ̃t,p
.
= (−1)pϕ2

t −
(
−1

2

)p−2
θϕt

(
pφ+

1

2
ut

)
, t = 1, . . . , n− 1.

For t = n,

(75) ψ(p)
n (αn)(αn) =

{
−1

2
− 1

2
ϕ̃n,p p = 1

−1
2
ϕ̃n,p p ≥ 2,

where

ϕ̃n,p = (−1)pϕ2
n.
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D.2. ASV-Student. We use the definitions of β, θ, ut and ϕt from D.1. Using (19)
we can write ψt(αt, αt+1), for t = 1, . . . , n− 1, as

(76) ψt(αt, αt+1) = k + ψ1,t(αt, αt+1) + ψ2,t(αt) + ψ3,t(αt, αt+1),

where k does not depend on αt or αt+1,

ψ1,t(αt, αt+1)
.
= −1

2
(θ2βu2t + αt), ψ2,t(αt)

.
= −(ν + 1) log d(αt),

ψ3,t(αt, αt+1)
.
= logm(z(αt, αt+1)), m(z) = 2

Γ
(
ν
2

+ 1
)

Γ
(
ν+1
2

) zm1(z) +m2(z),

m1(z) = M

(
ν

2
+ 1;

3

2
; z2
)
, m2(z) = M

(
ν + 1

2
;
1

2
; z2
)
,

z(αt, αt+1) =
n(αt, αt+1)

d(αt)
, n(αt, αt+1) =

θβ√
2ν
utϕt, d(αt) =

√
1 +

β

ν
ϕ2
t .

Computing analytical expressions for high order partial derivatives of ψt(αt, αt+1)
is daunting, but fortunately we can avoid it. All we need to do is evaluate the
derivatives at a given point (αt, αt+1), and for this, we can use general purpose
routines to combine derivatives of products, quotients and composite functions.

We first compute the derivatives of the third component ψ3,t(αt, αt+1) of the log-
density of the ASV-Student model. We do it bottom up using the following steps:

(1) Evaluate n(αt, αt+1) and its derivatives with respect to αt and αt+1 up to
orders P and Q:

n(p,q)(αt, αt+1) =


βθ√
2ν

(
−1

2

)p
(2pφ+ ut)ϕt p ≥ 0, q = 0

βθ√
2ν

(
−1

2

)p
ϕt p ≥ 0, q = 1

0 p ≥ 0, q ≥ 2.

(2) Evaluate derivatives of (1 + β/νϕ2
t (αt)) with respect to αt up to order P :

dp

dαt

(
1 +

β

ν
ϕ2
t (αt)

)
= (−1)p

β

ν
ϕ2
t (αt), p = 0, . . . , P.

(3) Evaluate d(αt) and its derivatives with respect to αt, up to order P . Use
derivatives of the square root function, evaluated at (1 + β/νϕ2

t (αt)) and
the derivatives evaluated in step 2, combining them using Faà Di Bruno’s
formula, equations (81) and (82).

(4) Evaluate z = n/d and partial derivatives z(p,q)(αt, αt+1) up to order P and Q.
Use the value n and partial derivatives n(p,q)(αt, αt+1) computed at step (1),
as well as the value d and derivatives d(p)(αt) computed at step (3). For each
p = 1, . . . , P , compute z(p,q)(αt, αt+1) using the quotient rule, equation (78).
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(5) Evaluate M(ν/2+1, 3/2, x) and partial derivatives M (0,0,p)(ν/2, 3/2, x) up to
order P . We use the property M (0,0,p)(a, b, x) = (a)k/(b)kM(a + k, b + k, x)
and compute values of M(a, b, x) using the routine gsl sf hyperg 1F1 in the
GNU scientific library. Similarly, compute M((ν + 1)/2, 1/2, x) and partial
derivatives M (0,0,p)((ν + 1)/2; 1/2;x) up to order P .

(6) Set m1(z) = M(ν/2 + 1, 3/2, z2) and compute P derivatives of m1(z) with
respect to z. Use P derivatives of M(ν/2 + 1, 3/2, x) with respect to x,
computed in step 5 and P derivatives (only 2 are non-zero) of x = z2 with
respect to z, evaluated at z, combining them using the Faà Di Bruno’s rule,
equations (81) and (82). Similarly, set m2(z) = M((ν + 1)/2, 1/2, z2) and
evaluate P derivatives of m2(z) with respect to z.

(7) Evaluate P derivatives of m(z) with respect to z using the derivatives evalu-
ated at step 6, combining them according to

m(p)(z) = 2
Γ
(
ν
2

+ 1
)

Γ
(
ν+1
2

) (zm(p)
1 (z) + rm

(p−1)
1 (z)

)
+m

(p)
2 (z), p = 1, . . . , P.

(8) Evaluate P derivatives of logm(z) with respect to z using the derivatives
evaluated at step 7, and the logarithm rule, equations (79) and (80).

(9) Evaluate partial derivatives of ψ3,t(αt, αt+1) up to orders P and Q. Use
derivatives of logm(z) with respect to z computed in step 8 and partial
derivatives of z(αt, αt+1) computed in step 4, combining them according to
the multivariate Faa-Di-Bruno rule defined in equations (85) and (86).

The first component, ψ1,t(αt, αt+1), is a quadratic function of αt and αt+1. Its
derivatives, for (p, q) 6= (0, 0) are

ψ
(p,q)
1,t (αt, αt+1) =



−1
2
θ2βut p = 0, q = 1,

−1
2
θ2β p = 0, q = 2,

−1
2
(−φθ2βut + 1) p = 1, q = 0,

1
2
φθ2β p = 1, q = 1,

−1
2
φ2θ2β p = 2, q = 1,

0 otherwise.

Recall that ψ2,t(αt) = −(ν+1) log d(αt). We compute derivatives of log d(αt) using
the log rule in equations (79) and (80). Derivatives of ψ2,t(αt) are simply −(ν + 1)
times the derivatives of log d(αt).

The special case of t = n is easily handled. We have

ψn(αn) = log
Γ
(
ν+1
2

)
Γ(ν

2
)
√
νπ
− 1

2

[
αn + (ν + 1) log

(
1 +

ϕ2
n

ν

)]
,

whose derivatives are the same as those of ψ2,t except for β replaced by 1.
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Appendix E. Rules for derivatives of compound functions

In this paper, we make extensive use of automatic rules for evaluating multiple
derivatives of compound functions at a point. These rules combine multiple deriva-
tives of component functions, also evaluated at points. This Appendix gathers these
rules in one place.

For univariate functions f and g, we give well known rules for multiple derivatives
of the product fg, the quotient f/g, and the composition f ◦ g. We give a rule
for multiple derivatives of log g, a special case where we exploit the properties of
the logarithmic function to simplify computations. We also give derivatives of f ◦ g
for f : R → R and g : R2 → R and partial derivatives of f ◦ g for f : R2 → R and
g : R→ R2.

We have coded all of these rules as computer routines. Values passed to these
routines are vectors (or matrices) giving multiple derivatives (or partial derivatives)
of f and g, evaluated at particular points. The routines return a vector (or a matrix)
giving multiple derivatives (or partial derivatives) of a compound function, evaluated
at a point. For example, the routine computing P derivatives of the product function
fg at a point x takes as input the integer P , a P -vector with the first P derivatives
of f at x and a P -vector with the first P derivatives of g at x. It returns a P -vector
with the first P derivatives of fg at x.

E.1. Univariate functions. For the first three rules, let x be a point in R and let
f and g be two univariate functions, continuously differentiable at x up to order P .

Leibniz rule for products. The product fg is differentiable up to order P at x and

(77) (fg)(p)(x) =

p∑
r=0

(
p

r

)
f (r)(x)g(p−r)(x), p = 1, . . . , P.

We have a routine taking the first P derivatives of f at x and the first P derivatives
of g at x and returning the first P derivatives of fg at x.

Quotient rule. Applying Leibniz’ rule to the product of f/g and g gives the recursive
rule

(78) (f/g)(p)(x) =
1

g(x)

[
f (p)(x)−

p−1∑
r=0

(
p

r

)
(f/g)(r)(x)g(p−r)(x)

]
, p = 1, . . . , P.

We have a routine taking the first P derivatives of f at x and the first P derivatives
of g at x and returning the first P derivatives of f/g at x.
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Log rule. We consider the compound function h = log f and suppose that f(x) > 0.
Then the function h is differentiable up to order P . Applying the quotient rule to

(79) h(1)(x) =
f (1)(x)

f(x)

gives

(80) h(p)(x) =
1

f(x)

[
f (p)(x)−

p−1∑
r=1

(
p− 1

r − 1

)
h(p)(x)f (p−r)(x)

]
, p = 2, . . . , P.

Together, equations (79) and (80) give the first P derivatives of log(f(x)). We have
a routine taking the first P derivatives of f at x and returning the first P derivatives
of log f at x.

Faà di Bruno’s rule for composite functions. Now suppose that x is a point in R, g
is a univariate function, P times differentiable at x, and f is a univariate function,
P times differentiable at g(x). Faà di Bruno’s rule gives the p’th derivative of f ◦ g
at x as

(81) (f ◦ g)(p)(x) =

p∑
r=1

f (r)(g(x))Bp,r(g
(1)(x), . . . , g(p−r+1)(x)),

where the Bp,r(z1, . . . , zp−r+1) are Bell polynomials. The Bell polynomials are a
triangular array of polynomials that can be computed using the boundary conditions
B0,0(z1) = 1 and Bp,0(z1, . . . , zp+1) = 0, p > 0, and the recursion

(82) Bp,r(z1, . . . , zp−r+1) =

p−1∑
i=r−1

(
p− 1

i

)
zp−iBi,r−1(z1, . . . , zi−r), r = 1, . . . , p.

For example, we have B1,1(z1) = z1B0,0(z1) = z1, which gives (f ◦ g)(1)(x) =
f (1)(g(x))g(1)(x), the chain rule. For the second derivative, we compute B2,1(z1, z2) =
z2B0,0(z1) + z1B1,0(z1, z2) = z2 and B2,2(z1) = z1B1,1(z1) = z21 , which gives

(f ◦ g)(2)(x) = f (1)(g(x))g(2)(x) + f (2)(g(x))
(
g(1)(x)

)2
.

We have a routine taking the first P derivatives of g at x and the first P derivatives
of f at g(x), returning the first P derivatives of f ◦ g at x.

E.2. Multivariate functions. Savits [2006] generalizes Faà di Bruno’s rule to mul-
tivariate functions. Equations (3.1) and (3.5) in that paper give multiple partial
derivatives of f ◦g, where f : Rm → R and g : Rd → Rm. We are only concerned with
two special cases here, and we describe below how to compute partial derivatives for
these cases.
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Case d = 1 and m = 2. Here (f ◦ g)(x) = f(g1(x), g2(x)), where f is a scalar valued
function with continuous partial derivatives up to orders P and P , and g1 and g2 are
scalar-valued functions, continuously differentiable up to order P . The value of the
p’th derivative of f ◦ g at is

(83) (f ◦ g)(p)(x) =

p∑
r=0

p−r∑
s=max{0,1−r}

f (r,s)(g1(x), g2(x))vp,(r,s),

where the values vp,(r,s) are defined by the boundary conditions v0,(0,0) = 1 and
vp,(0,0) = 0 for p > 0, and the recursion

(84) vp,(r,s) =

p−1∑
i=r+s−1

(
p− 1

i

)[
g
(p−i)
1 (x)vi,(r−1,s) + g

(p−i)
2 (x)vi,(r,s−1)

]
.

We have a routine taking as input the first P derivatives of g1 at x, the first P
derivatives of g2 at x, and the partial derivatives f (p,q) at (g1(x), g2(x)) up to orders
P and P , returning the first P derivatives of f(g1(x), g2(x)) at x.

Case d = 2, m = 1. Here (f ◦ g)(x) = f(g(x1, x2)), where x1 and x2 are scalars, f is
continuously differentiable up to order P +Q, and g is a scalar-valued function with
continuous partial derivatives up to orders P and Q. The values of the derivatives
of f ◦ g at (x1, x2) are computed using

(85) (f ◦ g)(p,q)(x1, x2) =

p+q∑
r=1

f (r)(g(x1, x2))v(p,q),r,

where the values v(p,q),r are defined by the conditions v(0,0),0 = 1 and v(p,q),0(x1, x2) = 0
for (p, q) 6= (0, 0), v(p,q),r = 0 for r < 0 or p+ q < r and the recursion

(86) v(p,q),r =

{∑p−1
i=r−1

(
p−1
i

)
g(p−i,0)(x1, x2)v(i,0),r−1 q = 0, p ≥ 1∑p

i=0

∑q−1
j=0

(
p
i

)(
q−1
j

)
g(p−i,q−j)(x1, x2)v(i,j),r−1 q ≥ 1, p ≥ 0.

We have a routine taking as input the partial derivatives g(p,q) at (x1, x2), up to
orders P and Q and the first P +Q derivatives of f at g(x1, x2), returning the partial
derivatives (f ◦ g)(p,q) at (x1, x2), up to orders P and Q.
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Notation Description
ψt(αt, αt+1) log f(yt|αt, αt+1)
ψp,qt (αt, αt+1) derivative of ψp,qt (αt, αt+1) with respect to αt and αt+1

of orders p and q.
ψn(αn) log f(yn|αn)
ψpn(αn) p’th derivative of ψn(αn) with respect to αn

a = (a1, . . . , an) mode of log f(α|y)
Σt Var(αt|αt+1, y) for the 1st reference distribution

(a1|t+1(αt+1), . . . , at|t+1(αt+1)) mode of the conditional density f(α1, . . . , αt|αt+1, y)
Σt|t+1(αt+1) Var(αt|αt+1, y) for the 2nd reference distribution
At|t+1(αt+1) polynomial approximation of at|t+1(αt+1)
st|t+1(αt+1) log Σt|t+1(αt+1)

a
(r)
t , r = 1, . . . , R r’th derivative of at|t+1(αt+1) at αt+1 = at+1

s
(r)
t , r = 1, . . . , R− 1 r’th derivatives of st|t+1(αt+1) at αt+1 = at+1.

bt|t+1(αt+1) mode of the conditional density f(αt|αt+1, y)

bt, b
(r)
t , r = 1, . . . , R value and derivatives of bt|t+1(αt+1) at αt+1 = at+1

bn mode of the conditional density f(αn|y)
Bt|t+1(αt+1) polynomial approximation of bt|t+1(αt+1)

Bt, B
(r)
t , r = 1, . . . , R value and derivatives of Bt|t+1(αt+1) at αt+1 = at+1

µt|t+1(αt+1) E[αt|αt+1, y]

µt, µ
(r)
t , r = 1, 2 value and two derivatives of µt|t+1(αt+1) at αt+1 = at+1

Mt|t+1(αt+1) polynomial approximation of µt|t+1(αt+1)

Mt,M
(r)
t , r = 1, 2 value and two derivatives Mt|t+1(αt+1) at αt+1 = at+1

ht(αt;αt+1) first derivative of log f(αt|αt+1, y) with respect to αt
H

(p)
t (αt;αt+1), p ≥ 1 approximation of h

(p)
t (αt;αt+1), p’th derivatives of

ht(αt;αt+1) with respect to αt
ht(αn) first derivative of log f(αn|y) with respect to αn

H
(p)
n (αn), p ≥ 1 approximation of the p’th derivatives of ht(αn) with re-

spect to αn
Table 1. Main notations used in the paper
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SP500 TOPIX
HIS 70 43
HIM 85 45
OCSN 108 67

Table 2. Computational time in seconds by dataset and estimation
procedure for the ASV-Gaussian model. For all procedures, we draw a
chain of size 12800. The S&P500 dataset is of size 2022 and the Topix
dataset is of size 1232.

Parameters Mean Std NSE RNE
S& P500

ᾱ:his -9.5167 0.1573 2.0113e-3 0.9082
ᾱ:him -9.5181 0.1583 3.1266e-3 0.2002
ᾱ:ocsn -9.5029 0.3378 3.4767e-3 0.7428
φ:his 0.9751 0.0080 8.9356e-5 0.9000
φ:him 0.9752 0.0081 1.3592e-4 0.2765
φ:ocsn 0.9776 0.0083 1.8947e-4 0.1506
σ:his 0.1524 0.0200 1.9681e-4 0.9871
σ:him 0.1521 0.0201 3.2814e-4 0.2919
σ:ocsn 0.1394 0.0203 5.8443e-4 0.0945
ρ:his -0.2032 0.0957 9.2493e-4 1.0647
ρ:him -0.2044 0.0950 1.3265e-3 0.4005
ρ:ocsn -0.2007 0.1005 1.8453e-3 0.2374

TOPIX
ᾱ:his -8.8545 0.1080 1.1533e-3 1.2014
ᾱ:him -8.8545 0.1083 1.5951e-3 0.4609
ᾱ:ocsn -8.8426 0.2172 2.0867e-3 0.8574
φ:his 0.9574 0.0156 1.5893e-4 0.9537
φ:him 0.9576 0.0160 2.0428e-4 0.4769
φ:ocsn 0.9520 0.0185 3.9992e-4 0.1664
σ:his 0.1408 0.0254 2.5871e-4 0.8657
σ:him 0.1414 0.0258 2.8818e-4 0.6277
σ:ocsn 0.1387 0.0266 5.9850e-4 0.1556
ρ:his -0.3833 0.1188 1.2561e-3 0.8503
ρ:him -0.3833 0.1195 1.7136e-3 0.3801
ρ:ocsn -0.3715 0.1231 2.6536e-3 0.1792

Table 3. ASV-Gaussian parameters estimation using the HESSIAN
method and the OCSN’s procedure on S&P500 and TOPIX.
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Parameters Mean Std NSE RNE
S& P 500

ᾱ:his -9.7230 0.1865 2.8719e-3 1.0496
ᾱ:him -9.7224 0.1806 3.1769e-3 0.2525
φ:his 0.9851 0.0054 6.8752e-5 0.9663
φ:him 0.9850 0.0053 7.9290e-5 0.3513
σ:his 0.1061 0.0164 1.7719e-4 1.1002
σ:him 0.1065 0.0164 3.0925e-4 0.2204
ρ:his -0.2440 0.1224 1.6006e-4 0.8261
ρ:him -0.2493 0.1222 2.2437e-3 0.2318
ν:his 9.8647 2.1622 2.4734e-2 0.9722
ν:him 9.9128 2.1828 3.6789e-2 0.2750

TOPIX
ᾱ:his -8.9488 0.1156 1.5983e-3 0.9672
ᾱ:him -8.9506 0.1115 1.9474e-3 0.2560
φ:his 0.9624 0.0142 1.7252e-4 0.8727
φ:him 0.9621 0.0144 2.2029e-4 0.3336
σ:his 0.1261 0.0242 2.6775e-4 0.9570
σ:him 0.1266 0.0240 3.7636e-4 0.3188
ρ:his -0.4194 0.1285 1.3790e-4 1.1266
ρ:him -0.4191 0.1236 2.2023e-3 0.2461
ν:his 20.6041 7.6904 8.6997e-2 0.9573
ν:him 20.4777 7.7394 1.4048e-1 0.2371

Table 4. ASV-Student model parameters estimation using the HES-
SIAN with Independent Metropolis-Hastings and Importance Sam-
pling on artificial data, S&P500 and TOPIX.


