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Abstract

In this paper we use a time varying parameter vector autoregression (TVP-VAR)

to assess the importance of the learning component in the US postwar economy.

The random coe¢ cients are assumed to follow a mean reverting process around an

unconditional mean that can be interpreted as the estimates of the coe¢ cients from

the reduced form of a rational expectation equilibrium model. The deviations from

the unconditional mean are attributed to learning of the agents about the value of

the coe¢ cients which regulate the economy. We estimate a monetary model for the

post WWII U.S. economy including in�ation, output growth and the federal funds

rate. We document the presence of learning dynamics and �nd that the importance

of the learning mechanism is somewhat limited for real activity but it is substantial

in explaining the dynamics of in�ation and interest rate.
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1 Introduction

The time varying nature of the business cycle and the change in dynamics of key

macro variables for the U.S. over the last sixty years have been extensively docu-

mented. In particular, many studies report a decrease in the mean and variance

of in�ation (e.g. Stock and Watson, 2007) and output growth (e.g. Blanchard and

Simon 2000, Stock and Watson 2003) starting from the early 1980s. A growing

literature adopts time varying parameter vector autoregressions as empirical spec-

i�cation to identify the determinants of these changes. Starting with Cogley and

Sargent (2001), which suggest it as estimation methodology, vector autoregressions

with time varying coe¢ cients have been used in studying the change in the persis-

tence of in�ation and unemployment (Cogley and Sargent, 2005) and of in�ation gap

(Cogley, Primiceri and Sargent, 2008), in spreading light over the bad luck versus

bad policy debate (Primiceri, 2005, Canova and Gambetti, 2004) and in analyzing

the causes of persistence of in�ation (Cogley and Sbordone, 2008). The rationale

underlying their speci�cation is provided by learning of the policymaker and pri-

vate agents about the economy. For example, the central bank might adjust its

target in�ation rate in view of changes in beliefs about the e¤ectiveness of the mon-

etary policy and the agents might slowly learn about the policy change. Learning

mechanisms have been introduced also in dynamic stochastic general equilibrium

models (DSGE) to generate endogenous persistence in macro series (Milani 2008).

To account for learning in these models, the assumption of rational expectations is

replaced by adaptive expectations, that is, agents form their expectations on future

values of the variables based on past data. To date a clear link between the empirical

and the theoretical literature on learning is missing.

The aim of this paper is twofold: �rst, to illustrate the link between DSGE mod-

els with learning and time varying parameter VAR; second to assess the importance

of the learning mechanism in explaining the dynamics of the U.S. postwar data.

The existing literature on time varying parameter VAR characterizes the evolu-

tion of the time varying coe¢ cients as a driftless random walk. This parsimonious

speci�cation is suited to capture sharp changes in the coe¢ cients. However, de-
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spite the emphasys on the learning mechanism as engine for time variation in the

coe¢ cients, the random walk speci�cation does not allow to distinguish between

variations due to structural changes in the underlying economy from variations due

to learning dynamics. Being unable to disentangle these two sources of variations

in the coe¢ cients, this speci�cation does not provide with a measure of the impact

of the learning component on the dynamics of the macro variables under analysis.

We suggest a way to assess the importance of the learning mechanism by as-

suming that parameters change over time in a continuous fashion but di¤erently

from previous studies we assume that the coe¢ cients evolve according to stationary

process rather than as random walks. We interpret the unconditional mean as the

value of the coe¢ cients that would result from the solution of a rational expecta-

tion model, and the deviation of the coe¢ cients from the mean as consequence of

learning dynamics.

The proposed speci�cation allows to decompose our vector autoregression model

separating the learning component (the deviation of the coe¢ cients from their un-

conditional mean) from the rational expectation component, i.e. the term related to

the unconditional mean of the coe¢ cients. The empirical model is then consistent

with the reduced form from a DSGE model with adaptive expectations in which

agents know the correct speci�cation but not the �true� value of the parameters.

Agents recognize that the actual law of motion of the model is characterized by

time varying parameters and they obtain estimates of these time varying parame-

ters through Kalman Filtering of the data1. Instead, in a model solved under the

assumption of rational expectations the agents are endowed with knowledge about

the law of motion of the economy which would be characterized by constant co-

e¢ cients. Because we do not map the parameters from the empirical model with

1The literature on learning surveyed by Evans and Honkaphoja (2008) choose recursive least

square as updating rule for the estimates of the coe¢ cients by the agents. This updating rule

implicitly assumes that agents do not take into account that they will learn also in the future

or equivalently agents believe that the actual law of motion of the model exhibits time invariant

coe¢ cients. Criticisms to this assumption can be found in McGough (2003) and Bullard and Sutra

(2009) among others.
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structural parameters from a theoretical macro model of learning, we cannot impose

restrictions on the values of the parameters in the empirical model in order to guar-

antee determinacy and learnability. However, by modeling the law of motion of the

parameters as a mean reverting process we guarantee that the coe¢ cients do not

depart for too long from their unconditional mean, i.e. from their rational expecta-

tion equilibrium value. At the same time the drifting coe¢ cients will not converge

to the unconditional mean, and so agents are engaged in a perpetual learning2. In

our model we neglet the possibility of structural changes in the parameters and we

focus our attention exclusively on learning dynamics as possible explanation of the

changes in dynamics of the macro series.

A primary objective of the paper is then to quantify the learning component in

the US post war data and the extent to which learning might explain the changes

in dynamics of in�ation, output growth and interest rate. In order to do so, we

proceed in two ways: �rst, we suggest to measure the proportion of the variance of

each equation that is accounted for by the learning component. Second, we run a

counterfactual example in which we simulate the data in the absence of learning.

The empirical analysis delivers the following results: through the �rst exercise, we

�nd that the importance of the learning mechanism is somewhat limited for in�ation

and output growth but it is substantial in explaining the dynamics of the federal

funds rate, as the learning component accounts for about two thirds of the variance

of the interest rate. From the counterfactual example it emerges that in the absence

of learning, the in�ation series would have been consistently higher than the actual

one, while the interest rate series would have lied below the actual series. The

magnitude of the discrepancies between actual and simulated series varies over time

with peaks occurring during the Volker chairmanships: the value of the simulated

interest rate for 1982:Q2 is 5.5%, about 3.5 percentage points lower than the actual

value, and for in�ation the simulated series is 2 percentage points higher than the

2 In the theoretical macro literature on learning, perpetual learning is assumed by imposing a

constant gain parameter in the updating rule for the estimated coe¢ cients. This implies that past

data is discounted and so agents �forget�about older data. Perpetual learning has been shown to

improve the �t of DSGE models with learning (see Milani 2005).
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actual series from 1977:Q3 to 1980:Q1. For output growth, the chosen measure of

real acivity, the actual and simulated series overlap for virtually every date. The

results from this empirical analysis suggest that learning behaviour of the monetary

authority might explain the change in dynamics of the nominal variables, while the

learning mechanism is unable to characterize the changes in the real activity.

The outline of the paper is as follows: section 1 presents a New-Keynesian model

with learning that serves as example to clarify the interpretation of learning provided

in this paper; in section 2 the econometric methodology is illustrated. Section 3

describes our small empirical monetary model. Section 4 applies the methodology

discussed in section 2 to assess the importance of the learning mechanism in the US

Post WWII economy and discusses the results; section 5 concludes.

2 Motivating Example: a Small Model with Learning

Although this paper does not map the parameters from the empirical model with

the structural parameters derived from a theoretical macro model, we present in

this section a simple New-Keynesian model to illustrate our de�nition of learning

and to facilitate the interpretation of the learning dynamics in the empirical model.

Consider a New-Keynesian model summarized by the following log-linearized

equations:

�t = �xt + � ~Et�t+1 + ut (1)

xt = ~Etxt+1 � �
�
it � ~Et�t+1

�
+ gt (2)

it = �it�1 + (1� �)
h
��t +  �

�
~Et�t+1 � ��t

�
+  x ~Etxt+1

i
+ �t (3)

where �t is in�ation, xt is output gap and it is the nominal interest rate, ut, gt, �t are

exogenous processes. ~Et denotes subjective expectations. Equations (1) through (3)

represent a forward looking Phillips curve, a log-linearized Euler equation and a Tay-

lor rule for the monetary authority respectively. Variations of this small monetary

model are used for example in Milani (2006, 2008) and Del Negro and Schorfheide

(2004). The solution of the model and the notion of equilibrium depend on the
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formation of the expectations: a rational expectation equilibrium is achieved when

the agents take expectations on the distribution of the actual stochastic processes

that generate the data. Agents are then endowed with knowledge about the correct

structure of the model including the values of the structural parameters. A growing

literature, surveyed by Evans and Honkapohja (2008) criticizes the assumption of

rational expectations as too restrictive and suggests to substitute it by bounded

rationality. This implies that agents know the structure of the rational expectation

equilibrium (that is the solution under bounded rationality includes the same vari-

ables as the Minimum State Variable solution under rational expectations) but they

lack the knowledge of the value of the parameters that govern the economy, and, like

econometricians, they learn about these parameters by forming estimates based on

past data. The implication of this assumption for the New-Keynesian model above

is that agents form their expectations using the following �Perceived Law of Motion�:

Zt = �0;t +�1;tZt�1 + �t (4)

where Zt � f�t; xt; itg collects the variables included in the Minimum State Variable
Solution, �t � fut; gt; �tg contains the exogenous processes and the matrices �0;t and
�1;t are time varying coe¢ cients, whose estimates, �̂0;t and �̂1;t; are updated every

period. After having estimated the parameters, the agents use (4) to form their

expectations:
~EtZt+1 = �̂0;t + �̂1;tZt:

Substituting back the agents�expectations into the log-linearized model described

by equations (1) to (3), yields the Actual Law of Motion of the model, which is

therefore characterized by time varying parameters. This result motivates our choice

of a time varying coe¢ cient vector autoregression as empirical model. Many papers

discuss restrictions on the structural parameters under which the equilibrium under

learning converges to the rational expectation equilibrium. In this paper we do not

map our reduced form parameters with the parameters from a theoretical model,

therefore instead of imposing the learnability or determinacy conditions discussed

in Bray and Savin (1986), Evans and Honkapohja (2001) or Bullard and Mitra
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(2002)3, we impose stability by modeling the law of motion of the coe¢ cients as

a mean reverting process. Hence, we let the coe¢ cients �uctuate around their

unconditional mean, which we interpret as the value taken by the coe¢ cients under

rational expectations, but not to depart too much from it. Also, we assume that

the variance-covariance matrix of the estimated coe¢ cients is constant over time;

this speci�cation is then consistent with perpetual learning, as it implies that the

coe¢ cients will never converge to the value they take under rational expectations.

3 Econometric Model

Given the motivation example discussed in section (2), consider the following vector

autoregression model with time varying parameters:

yt = �0;t +�1;tyt�1 + ::+�p;tyt�p + "t (5)

where yt is an N � 1 vector of endogenous variables, �0;t is a vector of intercepts,
�i;t, i = 1; ::; p are matrices of time varying autoregressive coe¢ cients, "t is a vector

of normally distributed errors.

Rewrite the model in the following form:

yt = X 0
tBt + "t (6)

where X 0
t is an N �K matrix collecting a constant and lagged values of the endoge-

nous variable and Bt is a K � 1 vector of time varying coe¢ cients:

X 0
t = IN 


h
1; y0t�1; y

0
t�2; :::,y

0
t�p

i
Bt =

h
'01;t;'

1
1;t; ::;'

p
1;t; ::;'

0
n;t;'

1
n;t; ::;'

p
n;t

i0
3Note that Bray and Savin (1986), Evans and Honkapohja (2001) and Bullard and Mitra (2002)

derive learnability and determinacy conditions under the assumption that the estimates of the

parameters are obtained through recursive least square. Our setting is instead consistent with a

model in which agents understand that the actual law of motion involves time varying parameters

and get estimates of the parameters through the Kalman Filter, as in Bullard (1992) and McGough

(2003).
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with 'ji , i = 1; ::; n, j = 1; ::p; being the i-th raw of the matrix of coe¢ cients

�j;t and K = N(Np + 1). Di¤erently from the previous literature on time varying

parameter VAR, which assume that the coe¢ cients of the VAR evolve as driftless

random walks, we specify the following law of motion for the vector of coe¢ cients:

Bt = (I ��) �B +�Bt�1 + vt (7)

with � a K �K matrix of coe¢ cients, I an identity matrix of suitable dimention

and vt a vector of errors. Bt is a mean reverting process with unconditional mean
�B; provided that the roots of � lie outside the unit circle. Note that (7) nests the

driftess random walk speci�cation if � equals the identity matrix. The errors from

the state and measurement equations are distributed according to: ["t; vt]
0 � i:i:d

N (0; V ) and

V =

"
R 0

0 Q

#
so that R is the N �N covariance matrix for the innovations in equation (6) and Q

is the K�K covariance matrix for the innovations in equation (7). Note that in this

speci�cation the errors are assumed to be time invariant and there is no correlation

between the errors from the two equations. While the second assumption is standard

in the time varying parameter VAR literature, a time variant representation for R is

more widely used (Primiceri 2005, Cogley and Sargent 2005), although Cogley and

Sargent (2001) and Canova and Gambetti (2004) specify the variance covariance

function of the errors to be constant across time.

De�ne ~Bt � Bt � �B as the deviation of Bt from its unconditional mean and

rewrite equation (7) as:

~Bt = � ~Bt�1 + vt (8)

The persistence of these deviations is determined by the matrix of autoregressive

parameters �: Then equation (6) can be rewritten as:

yt = X 0
t
~Bt +X

0
t
�B + "t: (9)
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The system of equations (8) and (9) has a Gaussian state space representation where

equation (9) is the measurement equation and the equation describing the law of

motion for ~Bt is the state equation. In a time varying framework ~Bt and Bt are

usually called the parameters, while �B; �; Q and R are called the hyperparameters.

We estimate the state space model with Bayesian methods and make use of the

Kalman �lter to retrieve the value of the time varying coe¢ cients. Our state space

representation is non-linear as we impose a stability condition on the roots of the

coe¢ cients in the VAR. Following the previous literature, we estimate our model

using Bayesian methods.

Let BT = [B01; ::; B
0
T ]
0 denote the history of the coe¢ cients Bt up to time T ;

we are interested in characterizing the joint posterior distributions of the history of

parameters and the posterior distribution for the hyperparameters:

p
�
BT ; �B;�; V j Y T

�
:

The joint posterior for states and hyperparameters can be simulated through Gibbs-

sampling by iterating on the conditional distributions in two steps;

step 1: conditional on data and hyperparameters draw a history of states from:

p
�
BT j Y T ; �B;�; V

�
;

step2: conditional on data and states draw the hyperparameters from:

p
�
�B;�; V j BT ; Y T

�
:

3.1 Obtaining a history of states

The evolution of the states given the hyperparameters and the data is characterized

as:

p
�
Bt+1 j Bt; Y T ; �B;�; V

�
/ I (Bt+1) pU

�
Bt+1 j Bt; Y T ; �B;�; V

�
(10)

where I (Bt+1) is an indicator function that takes the value 1 if the eigenvalues of

the companion matrix associated to (6) are within the unit circle and zero other-

wise. This is to guarantee that at any date the VAR does not exhibit explosive
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roots. Allowing for unstable roots in the vector autoregression would imply an

in�nite variance for the macro series included in the model, and therefore in an

unplausible representation of the data. The second term in (10) represents the

unrestricted posterior density of Bt+1: Given the normality assumption for the er-

rors in the state equation and the law of motion (7), pU
�
Bt+1 j Bt; Y T ; �B;�; V

�
�

N
�
(I ��) �B +�Bt�1; Q

�
: The truncation is implemented in the simulation by dis-

regarding the draws that violate the stability condition: if any draw B� ; � = 1; ::; T

gives rise to unstable roots the whole history of draws for B� is rejected4.

Inference on the state space model above is implemented by conditioning on the

hyperparamets and applying the Kalman �lter to the state equation (8) after having

initialized the state vector ~B0.

3.2 Obtaining the Hyperparameters

Conditional on the history of states, one needs to sample from the posterior dis-

tribution of the hyperparameters. Note that given the stationary autoregressive

speci�cation for the law of motion of the states, it is necessary to estimate two

additional hyperparameters with respect to the existing literature on TVP VARs,

which assume a random walk law of motion for Bt: In particular, we have to obtain

the posterior distributions for the unconditional mean �B and the matrix of autore-

gressive coe¢ cients �: Again, note our speci�cation nests the random walk one and

that a posterior distribution for � centered at the identity matrix would provide

evidence toward a random walk characterization for the evolution of Bt. We assume

a hierarchical prior and posterior distribution for the hyperparameters:

p
�
�B;�; Q;R j Y T ; BT

�
= p

�
�B;� j Q;R; Y T ; BT

�
p(Q;R j Y T ; BT ) =

= p
�
�B;� j Q;R; Y T ; BT

�
p(Q j Y T ; BT )p(R j Y T ; BT )

The vectors of time varying coe¢ cients Bt and ~Bt are of dimension K � 1; where
K = N(Np + 1). In our small model for the US post WWII economy with three

4The validity of this strategy is shown in Cogley and Sargent (2001); refer to Koop and Potter

(2008) for a discussion on the merit of this and other algorithms for drawing the history of states.
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endogenous variables and two lags K = 21, so that both � and Q are matrices of

dimension K �K = 21 � 21. The high dimensionality of these matrices is then a
concern for estimation. To overcome the dimentionality issue we impose diagonality

of � and Q. This implies that the random coe¢ cients evolve independently. We

assume a normal-inverted gamma prior for each i� th element of the vector �B and

of the diagonal of � and Q:

[ �Bi; �ii] j Qii � N (�;Qii=�)

Qii j �; �;Bi;t; ::; Bi;1 � ��1 (�; �i)

A conjugate prior delivers a conjugate posterior. For each i � th equation in

(8) the relationship between the parameters of the the priors (indicated with the

superscript 0) and those of the posterior (indicated by the superscript T) are as

follows:

�0i;T =

"
�0��̂ii;0 + �T �̂ii

�0 + �T
;
�0� �Bi;0 + �T B̂i

�0 + �T

#0
�0 = �0

�T = �0 +
�T
2

�i;T = �i;0 +
1

2

TX
t=1

�
Bi;t �

�
1� �̂ii

�
B̂i � �̂iiBi;t�1

�2
+

+
�0�T
�0 + �T

h
�̂ii � ��̂ii;0; B̂i � � �Bi;0

i " �̂ii � ��̂ii;0
B̂i � � �Bi;0

#
where �0 and �T are the size of the training sample and of the estimation sample

respectively, �̂ii and B̂i are estimated from Bi;t = (1��ii) �Bi+�iiBi;t�1+�i;t; and
the parameters �i;0; � �Bi;0; ��̂ii;0 are chosen arbitrarily.

The prior and the posterior distributions for the variance covariance matrix of

the measurement equation, R, take an Inverted Wishart form:

R � IW (�RRT ; �R)
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where the posterior distribution parameters can be derived from the prior parameters

as:

�R = �0 + �T

RT =
�0
�R
R0 +

�T
�R
R̂T

R̂T =
1

�T

�TX
t=1

"̂t"̂
0
t

where R0 is an arbitraryN�N matrix and "̂t are the residuals from the measurement

equation.

4 A Small Monetary Model for the US Economy

We consider a small empirical model for the US post WWII data, which focuses on

variables relevant for monetary policy analysis: the model includes in�ation, output

growth and short term interest rate. In�ation is computed as annual percentage

change in the consumer price index; output growth is obtained as annual percentage

change in real GDP, the Federal Funds Rate is used as measure of short term interest

rate. A detailed description of the data is provided in the data appendix. Data are

collected at the quarterly frequency from 1955Q3 to 2009Q1. The VAR speci�cation

includes 2 lags and an intercept term. The coe¢ cients are estimated through a Gibbs

sampling algorithm that involves 45000 iterations with the �rst 5000 discarded to

allow for burn in.

4.1 Priors

We use a training sample of 11 years, (fourty-four observations, from 1954:Q3

to 1965:Q3) in order to obtain priors for �B; �; Q and R and to initialize the

state vector: The prior mean and the variance for �B are obtained as the MLE

estimate and its variance from a vector autoregression with constant coe¢ cients

on the pre-sample. We impose a standard prior for the diagonal elements in Q:

Qii � ��1 (� ; gQ � V B_OLSii) where V B_OLS is the long run variance of the
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coe¢ cients obtained from an OLS regression of a constant coe¢ cients VAR of order

two on the training sample, scaled by a factor gQ = 0:0001 and � is the size of

the training sample. The prior mean for R is the variance covariance matrix of the

residuals from the constant coe¢ cients VAR on the training sample.

The choice of a prior mean for � is less trivial. We arbitrarily assume that

deviations from the unconditional mean are larger for the time varying coe¢ cient

describing the e¤ect of lagged in�ation on itself, of lagged output on itself and

of lagged interest rate on itself so we allow for higher prior mean (0:7) for the

correspondent entries in �. We experimented with di¤erent values for � and we

document that choosing values for the prior mean of � larger than 0:7 results in

no draw for the history of Bt that satisfy the stability condition. The prior mean

for the autoregressive coe¢ cients which characterize the evolution of the intercepts

are set to 0:4. All the other entries in the diagonal of � equal 0:2. We initialize
~B0 to zero, i.e. we assume that Bt is equal to its unconditional mean up to the

beginning of the estimation sample; we also assume that the initial state ~B0 and the

hyperparameters are independent.

5 Importance of Learning

We investigate the importance of learning dynamics in three ways: �rst we look at

the impact of a shock to monetary policy and we ask whether this e¤ect is the same

for each period. Any heterogeneity in the impulse response functions is imputed to

deviations of the coe¢ cients from their unconditional mean and therefore, given our

interpretation, it is evidence in favor of learning dynamics. Second, we quantify the

importance of learning by computing the contribution of the learning component

to the variance of the variables in the VAR. Last, we run a counterfactual example

by simulating the data in absence of learning and we compare the actual and the

simulated data.
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5.1 Impulse Responses

We study the e¤ect of a tightening of the monetary policy on in�ation, output

growth and short term interest rate. Identi�cation of the monetary shock is achieved

through sign restrictions, rather than through exclusion restrictions, in the spirit of

Uhlig (2005). We assume that after a contractionary monetary policy the federal

funds rate increases and both in�ation and output decrease. We repeat the analysis

imposing the restrictions for up to H= 2 and H=4 horizons after the shock. In a

time varying framework, in order to assess the importance of learning dynamics,

rather than looking at a representative impulse response function over the sample,

we derive impulse response function for each date in the estimation sample. Canova

and Gambetti (2004) provide with a formal de�nition of impulse response functions

in the case of time varying coe¢ cients VAR; following their de�nition, the impulse

response functions are constructed taking into account future projections of the time

varying coe¢ cients. Figure (1) through (3) show the impulse responses of in�ation,

output growth and federal funds rate to a shock of one-standard deviation in size for

each date for horizon 1 through 20 (the bounds of the credible set are not plotted

to make the �gures legible) when the sign restriction is imposed only for the �rst 2

periods after the shock; the responses obtained by imposing the restrictions for up

to horizon 4 are analogous to the ones shown. In order to highlight di¤erences in

the uncertainty around the median impulse response over time, �gure (4) through

(6) display the median and the lower and upper bound of the 90th-percent highest

posterior density interval of the impulse response functions for each date at selected

horizons: on impact, after four quarters, after 2 years and after �ve years.

From theoretical models we expect a tightening of the monetary policy to in-

crease the short term interest rate, decrease prices and reduce real output. Because

of the sign restrictions imposed, our empirical results con�rm the predictions for the

variables up to the second horizon, but they also show an anomaly for the response

of the output growth at longer horizons. A contractionary monetary shock has a

signi�cant negative e¤ect on output growth on impact. However, starting from the

third quarter after the shock output growth increases sharply for few quarters and
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it peaks at about 1 percent after one year from the shock; it then declines rapidly.

Finally the e¤ect of the shock fades away after 10 quarters. Contrary to theoretical

predictament then, output growth is positive for one year. An increase in real ac-

tivity after a tightening of the monetary policy has been documented also in Uhlig

(2005) for a constant coe¢ cient VAR. The contractionary monetary shock decreases

the in�ation rate on impact, but this e¤ect is short lived, and from the second quar-

ter after the shock in�ation sluggishly goes back to its initial value. After 2 years

the e¤ect of the monetary shock on in�ation disappears. The federal funds rate

increases on impact by about 0.6 percentage points and rapidly goes back to its

initial value. We just described some features of the impulse response functions

common throughout the sample. The object of the analysis however is to highlight

the di¤erences in the impulse responses across time. From the tridimentional �gures

(1) to (3) as well as from �gures (4) through (6) it emerges that for all the variables

considered the median of the impulse response function exhibits little heterogeneity

across the sample. This �nding is consistent with Primiceri (2005), which derives

trivariates impulse response functions of in�ation and unemployment to a contrac-

tionary monetary policy shock. Using a time varying parameter VAR in which the

coe¢ cients follow a random walk speci�cation and the variance covariance matrix

of the errors is assumed to be time varying he constructs impulse response functions

for in�ation and unemployment rate at three dates in the estimation sample (75:Q1,

81:Q3 and 96:Q1) and �nds that the responses are very similar, particularly for un-

employment series. In �gure (7) through (9) are depicted the median as well as the

lower and upper bound of the 90th-percent highest posterior density interval of the

sampled impulse response functions of the variables for a horizon of up to 5 years

after the shock for 1981:Q3 and 2007:Q3. The �rst date coincides with the peak

in the interest rate series, and it is also a NBER business cycle peak date, while

2007:Q3 is the last observation before the beginning of the current recession. The

di¤erences across periods are limited for all the series. The medians are relatively

stable, while the con�dence bounds show more heterogeneity across periods: In par-

ticular, for all variables they are wider.for 81:Q3, suggesting that more uncertainty
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about the behavior of the variables is associated with that period.

To summarize, the impulse response functions show some heterogeneity across

the sample. Any di¤erence in the impulse response across time is due to the devia-

tions of the estimated coe¢ cients from their unconditional mean and are therefore

attributable to learning dynamics. Therefore our �ndings seems to suggest that

learning dynamics do play a role in the behavior of the U.S. postwar series under

analysis.

5.2 Marginal E¤ect

In the previous section, we documented thorugh a graphical analysis of impulse

responses that learning dynamics are limited in the data. We now consider a dif-

ferent strategy to investigate the extent of learning in the data and we quantify the

importance of learning by computing how much of the overall sample variance of

the variables under analysis is explained by the learning component. In order to

do so, we need to disentangle the contribution of the learning component from the

contribution of the rational expectation component to the variance of yt. Recall

from (9) that the equation that describes the evolution of yt can be decomposed

into two separate components: one that is interpreted as the rational expectation

component, X 0
t
�B; and the learning component, X 0

t
~Bt. Despite this break-down of

the measurement equation, the correlation between X 0
t
~Bt and X 0

t
�B does not allow

to break down the variance of yt as sharply. We propose to isolate the marginal

e¤ect of the learning component on the variance of yt by proceding in two steps.

Denote ~Zt = X 0
t
~Bt; �Zt = X 0

t
�B and denote Y; ~Z; and �Z as the matrices that stack

y0t; ~Z
0
t; and �Z

0
t; respectively.

1. The �rst step is to regress Y on �Z and regress ~Z on �Z, and obtain the

residuals: M �ZY and M �Z
~Z; where M �Z = IT � �Z( �Z 0 �Z)�1 �Z 0:

2. In the second step, we compute the sample correlation between M �ZY and

M �Z
~Z:

This is the R2 of the regression of M �ZY on M �Z
~Z; and we may interpret it as

a marginal R2 of ~Zt on yt; that is the proportion of the variation of yt explained
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marginally by ~Zt: Note that the measure we propose purges out the e¤ect of the

interaction between X 0
t
~Bt and X 0

t
�B and hence the contribution of the learning com-

ponent to the variance of yt could actually be underestimated.

Table (1) shows the marginal e¤ect of the learning component on each of the

three equations included in the vector autoregression. The learning component

contributes for slightly less than 17% of the variation of in�ation and for about

22% of the variation in output but it plays a much bigger role in the equation

for the federal funs rate, accounting for more than two-thirds of the variation in

our measure for the short term interest rate. This analysis suggests that learning

dynamics are important in explaining the evolution of the variables and that the

equation capturing the behaviour of the monetary authority is the one more subject

to learning from agents.

5.3 Counterfactual Experiment

An alternative way to evaluate the importance of learning is to run a counterfac-

tual experiment in which the data are simulated as if learning dynamics did not

take place. The experiment is implemented as follows: �rst, for each date in the

estimation sample we compute the residuals from the model yt = X 0
t
~Bt +X

0
t
�B + "t;

the simulated data, �yt are obtained by iterating on �yt = �X 0
t
�B + "̂t with "̂t be-

ing the residuals computed in the �rst step and �X 0
t including lagged values of �yt :

�X 0
t = IN 


h
1; �y0t�1; �y

0
t�2; :::,�y

0
t�p

i
. Figures (10) through (12) plot the actual and

the simulated series of in�ation, output growth and federal funds rate for the sample

1966:Q1 - 2009:Q1 in the upper panel and the di¤erence between the two series in

the lower panel. For most of the sample, the simulated in�ation series lies above

the actual series, implying that without learning, the in�ation rate would have been

higher. The discrepancy is remarkably large in the �rst part of the sample, where

the simulated series is more than 2 percentage point higher than the actual series.

Except for the subsample 68Q1-69Q1, the actual series of interest rate is higher

than the simulated one. Again, the di¤erence between the series is accentuated

in the �rst part of the sample, peaking at 3.6 percentage points in 1983Q1. This
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behavior is consistent with our �ndings for the in�ation series: learning dynamics

induce the monetary authority to set the interest rate higher than it would in ab-

sence of learning, and this in turn keeps in�ation lower than in absence of learning.

The actual and simulated series for gdp growth are almost overlapping, suggesting

that learning dynamics did not a¤ect the evolution of our measure for real activity.

However, the loose monetary policy of the late �70s would imply a drop in output

growth of up to 0.6 percentage points in the sample 1976Q1 to 1980Q1. Table (2)

reports some descriptive statistics of the simulated and of the actual data for the

whole sample and for two subsamples of equal size: 66:Q1-87:Q4 and 88Q1-09:Q1.

The table con�rms that the di¤erences between the actual and simulated series are

more marked for in�ation and federal funds rate. For the overall sample, the mean

of the actual in�ation rate is about 80% of the mean of the simulated data, while

for the interest rate the mean of the simulated data is 15% smaller than the mean

for the actual series. The actual in�ation is less volatile than the simulated series,

while the converse holds for the federal funds rate. Mean and standard deviations

are about the same for the output growth actual and simulated data. A comparison

of the statistics over sub-samples con�rms that in the second part of the sample the

mean and the standard deviations of the simulated series are closer to the mean and

standard deviations of the actual series for all the three variables considered.

6 Conclusions

In this paper we use a time varying coe¢ cient vector autoregression to assess the

importance of the learning component in the US postwar economy and its ability

to explain the changes in dynamics of key macroeconomic series. The random co-

e¢ cients are assumed to follow a mean reverting process around an unconditional

mean that can be interpreted as the estimates of the coe¢ cients from the reduced

form of a rational expectation equilibrium model. The deviations from the uncon-

ditional mean are attributed to the learning behavior of the agents about the value

of the coe¢ cients which regulate the economy. The proposed speci�cation allows
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to decompose our vector autoregression model separating the learning component

(the deviation of the coe¢ cients from their unconditional mean) from the rational

expectation component, i.e. the term related to unconditional mean of the coe¢ -

cients.

We estimate a monetary model for the post WWII U.S. economy including in-

�ation, output growth and the federal funds rate. We document the presence of

learning dynamics and we assess their importance by measuring the proportion of

the variance of each equation that is accounted for by the learning component and

by running a counterfactual example in which the data are generated in the absence

of learning. We �nd that the importance of the learning mechanism is somewhat

limited for in�ation and output growth but it is substantial in explaining the dy-

namics of the federal funds rate. Our results suggest that learning behaviour of

the monetary authority might explain the change in dynamics of the nominal vari-

ables, while the learning mechanism is unable to characterize the changes in the real

activity.
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7 Data Appendix

We consider a trivariate vector autoregression for in�ation, output growth and short

term interets rate. Data for all series are taken from the FRED database from the

Federal Reserve Bank of Saint Louis.

In�ation is constructed as annual percentage change of the price index, ob-

served at a quarterly frequency. The CPI all items seasonally adjusted series,

CUSR0000SA0, is used. Monthly data are converted into quarterly by point sampling:

Data for GDP are taken from the Bureau of Economic Analysis (Gross Domestic

Product, Seasonally Adjusted at Annual Rate, billions of 2000 chained Dollars).

Gdp growth rates are computed as �gdpt = 400 � (log gdpt� log gdpt�1) where gdpt
is the level of output at time t: For the short term interest rate series we use Federal

Funds Rate; monthly data are converted into quarterly by point-sampling the �rst

month of each quarter.

The sample runs from 1954.Q3 to 2009.Q1, for a total of 219 observations.

22



8 Appendix for Tables and Figures

Fig. 1. IRF of In�ation to Monetary Shock
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IRF of in�ation to a contractionary monetary shock from 1966Q1 to 2009Q1, for horizon 1-20.

Fig. 2. IRF of Output Growth to Monetary Shock.
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IRF of gdp growth to a contractionary monetary shock from 1966Q1 to 2009Q1, for horizon 1-20.
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Fig. 3. IRF of Interest Rate to Monetary Shock.
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IRF of ¤r to a contractionary monetary shock from 1966Q1 to 2009Q1, for horizon 1-20.
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Fig. 4. IRF of In�ation to Monetary Shock at selected horizons

IRF of in�ation to a contractionary monetary shock at selected horizons: (a) on impact, (b) after

4 quarters, (c) after 2 years, (d) after 5 years.
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Fig. 5. IRF of Output Growth to Monetary Shock at selected horizons

IRF of output to a contractionary monetary shock at selected horizons: (a) on impact, (b) after 4

quarters, (c) after 2 years, (d) after 5 years.
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Fig. 6. IRF of Interest Rate to Monetary Shock at selected horizons

IRF of the Federal Funds Rate to a contractionary monetary shock at selected horizons: (a) on

impact, (b) after 4 quarters, (c) after 2 years, (d) after 5 years.
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Fig. 7. IRF of In�ation to Monetary Shock, 1981:Q3 and 2007:Q3
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IRF of in�ation to a monetary policy shock in 1981:Q3 (blue), and 2007:Q3 (red with marker); The

solid line is the median IRF while dotted lines are the lower and upper bound of the 90% HPDI.

Fig. 8. IRF of GDP Growth to Monetary Shock, 1981:Q3 and 2007:Q3
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IRF of output growth to a monetary policy shock in 1981:Q3 (blue), and 2007:Q3 (red with marker);

The solid line is the median IRF while dotted lines are the lower and upper bound of the 90% HPDI.
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Fig. 9. IRF of Interest Rate to Monetary Shock, 1981:Q3 and 2007:Q3
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IRF of the Federal Funds Rate to a monetary policy shock in 1981:Q3 (blue), and 2007:Q3 (red

with marker); The solid line is the median IRF while dotted lines are the lower and upper bound

of the 90% HPDI.
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Fig. 10. Actual and Simulated In�ation Series.

Upper panel: Actual (solid line) and simulated (dotted line) in�ation series for the sample (1966:Q3-

2009:Q1); simulated data are generated subtracting the learning component to the actual series.

Lower panel: di¤erence between simulated and actual series.
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Fig. 11. Actual and Simulated Output Growth Series.

Upper panel: Actual (solid line) and simulated (dotted line) gdp growth series for the sample

(1966:Q3-2009:Q1); simulated data are generated subtracting the learning component to the actual

series. Lower panel: di¤erence between actual and simulated series.
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Fig. 12. Actual and Simulated Interest Rate Series.

Upper panel: Actual (solid line) and simulated (dotted line) federal funds rate series for the sample

(1966:Q3-2009:Q1); simulated data are generated subtracting the learning component to the actual

series. Lower panel: di¤erence between actual and simulated series.
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Table 1. Marginal E¤ect of Learning

Sample 66:Q1-09:Q1

Equation M.E.

In�ation 0.1687

GDP growth 0.2202

FFR 0.6850

Marginal E¤ect of Learning for each variable in the time varying VAR.

Table 2. Descriptive Statistics for Actual and Simulated Data

Simulated 66:Q1-09:Q1 Actual

INF GDP FFR INF GDP FFR

2.366 2.891 5.366 Mean 1.934 2.997 6.370

1.541 2.131 2.737 Std. Dev 1.178 2.163 3.387

Simulated 66:Q1-87:Q4 Actual

INF GDP FFR INF GDP FFR

3.290 3.015 6.615 Mean 2.545 3.210 8.109

1.667 2.602 2.792 Std. Dev. 1.307 2.650 3.399

Simulated 88:Q1-09:Q1 Actual

INF GDP FFR INF GDP FFR

1.431 2.765 4.102 Mean 1.292 2.791 4.561

0.483 1.521 2.015 Std. Dev 0.509 1.515 2.261

Summary statistics for simulated and actual data for the whole sample 66Q1-09Q1 and for the

subsamples 66:Q1-87Q4 and 88:Q1-09:Q1.
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