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Abstract. This paper adopts a Bayesian approach to the problem of extracting the
probabilities of the FOMC’s target Fed Funds rate from option prices, extending the
framework provided by Carlson et al. (2005) in a number of directions. Likelihood-related
novelties include (i) the allowance for “slippage” between the target rate and the month-
average rate and (ii) accounting for the nonnegativity of options prices by truncating the
measurement error. In addition, we generalize the likelihood for target rates to include the
likelihood for target-rate paths. Prior-related novelties include (i) enforcing nonnegativity
constraints on the probabilities and (ii) the “informed ignorance” prior that allows for
the inclusion of a large number of possible target rates (which is especially important for
joint/path estimation).

1. Introduction

As Carlson et al. (2005) point out, the problem of extracting the probabilities of the
FOMC’s target Fed Funds rate from option prices is greatly simplified if one assumes the
target rate can take only a small number of values. They use Classical least-squares re-
gression techniques to extract the target-rate probabilities. The paper in hand adopts a
Bayesian approach to inference instead, and extends the framework provided by Carlson
et al. (2005) in a number of directions.1

The main advantage to the Bayesian approach is that one gets to specify a prior distri-
bution. The prior allows us to deal with important features of the target-rate probabilities
in a sensible way. First, the target-rate probabilities should satisfy an equality constraint
(they should sum to one) and a number of inequality constraints (they should each be non-
negative). Although both Classical and Bayesian approaches handle the equality constraint
easily, the Classical approach has difficulty handling the inequality constraints while the
Bayesian approach handles them quite naturally via the prior.2

Second, the Bayesian approach makes it easy to allow for a large number of target rates
(or target-rate paths) in the model. There is a simple prior for the unobserved probabilities
that encapsulates what might be called “partially informed ignorance.” In effect, this
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prior asserts that only a few of the target-rate probabilities are nonnegligible—without
specifying which those are. Formally, this prior is a symmetric Dirichlet distribution with
a “concentration” parameter that encourages parsimony. In addition, the concentration
parameter itself is assumed to be unknown and therefore has its own prior distribution. (A
closely-related prior is used in mixture models to allow for a potentially large number of
mixture components while at the same time encouraging parsimony. One should keep in
mind, however, the current exercise is one of functional-form fitting, rather than density
estimation per se.) This prior allows one to include a large number of target rates (greater
even than the number of observations) and still obtain a stable and well-estimated posterior
distribution. This feature has the potential to allow robust estimation of paths of interest
rate targets, where the number of paths (and the number of associated joint probabilities)
is quite large.

Third, the Bayesian approach provides a coherent treatment of the possibility of unsched-
uled FOMC meetings.

The main disadvantage to the Bayesian approach is that the computational burden is
significantly higher than for the Classical approach. (Regarding this point, however, one
should recognize there are no free lunches, even in statistics.)

Novelties. Likelihood-related novelties include (i) the allowance for “slippage” between the
target rate and the month-average rate and (ii) accounting for the nonnegativity of options
prices by truncating the measurement error. In addition, we generalize the likelihood for
target rates to include the likelihood for target-rate paths. Prior-related novelties include (i)
enforcing nonnegativity constraints on the probabilities and (ii) the “informed ignorance”
prior that allows for the inclusion of a large number of possible target rates (which is
especially important for joint estimation).

Caveats. The options are American, not European. The risk-neutral measures for different
horizons (different months) are not mutually compatible and consequently the proposed
joint estimation is not completely coherent. Similarly, futures prices are used in place of
forward prices. Liquidity is not taken into account in weighing the quotes. (This could
enter via the uncertainty of the measurement error.)

Outline of paper. Section 2 presents on overview of the model, including the likelihood,
the prior, and the posterior sampler. Section 3 introduces month-average target rates,
deals with the joint distribution of multiple target rates (target rate paths), and outlines
of how to extend the model to include unscheduled meetings. Section 4 describes some
issues related to putting the available data into a form suitable for estimation. Section 5
discusses stochastic-process dynamics of the target-rate probabilities. Appendix A includes
some additional material.

The empirical section of the paper is currently absent. Although a few “proof of
concept” tests have been run, a systematic treatment of a substantial data set is only just
beginning.
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2. The big picture

The goal is to estimate the risk-neutral probability distribution for the target fed funds
rate from put and call options data.

Let R denote the target rate as set by the Federal Open Market Committee (FOMC).3

We assume the target rate is restricted to a finite set of known values R ∈ r = {r1, . . . , rK}.
Let the risk-neutral probabilities for the values be given by

p(R = rj |β) = βj , (2.1)

where β = (β1, . . . , βK), βj ≥ 0 and
∑K

j=1 βj = 1. We can express the (risk-neutral) density
for R as a mixture of point masses:

p(R|β) :=
K∑
j=1

βj δ(R− rj), (2.2)

where δ( · ) is the Dirac delta function.4 We assume β is unknown. It is the focus of our
investigation.

We model the month-average fed funds rate S as the sum of the target rate R and the
“slippage” between S and R:

S = R+ u. (2.3)

Given (2.2) and (2.3), we can express the risk-neutral density for S as a related mixture of
point masses:

p(S|β, u) :=
K∑
j=1

βj δ(S − rj − u). (2.4)

We assume u is unknown as well.
Consider a European option written on the month-average rate S with a strike price of

K. The payoff to the option at expiration is

φ(K, γ, S) :=
(
γ (S −K)

)+
, (2.5)

where x+ := max(x, 0) and

γ =

{
1 for a call

−1 for a put
. (2.6)

Let B denote the value of a risk-free zero-coupon bond that matures on the expiration date.
The value V of the option is the present value of the expected payout computed using the

3See Section 3 for institutional details.
4The main features of δ( · ) are (i) δ(x − x0) = 0 if x ̸= x0, (ii)

∫∞
−∞ δ(x − x0) dx = 1, and (iii)∫∞

−∞ f(x) δ(x− x0) dx = f(x0).
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risk-neutral probabilities:

V = B

∫ ∞

−∞
φ(K, γ, S) p(S|β, u) dS

= B
K∑
j=1

βj

∫ ∞

−∞
φ(K, γ, S) δ(S − rj − u) dS

= B

K∑
j=1

βj φ(K, γ, rj + u).

(2.7)

Equation (2.7) suggests the task ahead: Given some options data, fit a functional form
using the basis functions φ( · , · , · ).

Assume the data are composed of n observations, {Ki, γi, Vi}ni=1, and suppose they are
generated according to

yi =

K∑
j=1

βj φ(Ki, γi, rj + u) + εi (2.8)

where yi := B−1 Vi is the deflated option value and εj is a measurement error. Let X denote
the n×K matrix where

Xij = φ(Ki, γi, rj + u) =
(
γi (rj + u−Ki)

)+
. (2.9)

(Note that X depends on the unknown u. We will write X(u) when it is convenient to make
this dependence explicit.) We can express (2.8) as

yi = Xiβ + εi, (2.10)

where Xi denotes the the i-th row of X. Stacking the n observations, we have

y = Xβ + ε, (2.11)

where y = (y1, . . . , yn) and ε = (ε1, . . . , εn). It is convenient to suppose ε ∼ N(0n, σ
2In).

5

We assume σ2 is unknown.
Let θ = (β, u, σ2) denote the vector of unknown parameters. The likelihood for θ follows

from (2.11) and the distribution for the measurement error:

p(y|θ) = N(y|X(u)β, σ2In) = (2π σ2)−n/2 exp

(
−S(β, u)

2σ2

)
, (2.12)

where6

S(β, u) := (y −X(u)β)⊤(y −X(u)β). (2.13)

Remark. The novelty in (2.12) relative to Carlson et al. (2005) is to allow for u ̸= 0.

5One drawback of this assumption is that the sampling distribution for the data p(y|θ) [see (2.12)]
implies we may observe negative option prices. This can be remedied by truncating the distribution for y.
We incorporate this below.

6A⊤ denotes the transpose of A.
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Predictive distributions. At this point it is convenient to make a few remarks about
predictive distributions, both prior and posterior, for R and S.

Let p(β) and p(β|y) denote the marginal prior and posterior distributions for β and let
E[βj ] =

∫
βj p(β) dβ and E[βj |y] =

∫
βj p(β|y) dβ denote the prior and posterior expecta-

tions of βj .
The prior and posterior predictive distributions for R are both mixtures of point masses

where the mixture weights are the applicable expectations of β:

p(R) =

∫
p(R|β) p(β) dβ =

K∑
j=1

E[βj ] δ(R− sj) (2.14)

p(R|y) =
∫

p(R|β) p(β|y) dβ =
K∑
j=1

E[βj |y] δ(R− sj). (2.15)

Note that E[β|y] is the only feature of the posterior distribution that matters if the goal of
the inferential exercise is to compute the posterior predictive distribution for R.7 Also note
that as we approach the end of the month, the posterior distribution for β should approach
a point mass at β = Ij for some j, where Ij is the j-th row the the identity matrix, so that
E[β|y] → Ij .

It is instructive to examine the predictive distributions for S as well. The prior predictive
distribution for S inherits the form of the prior distribution for the slippage parameter u.
We assume prior independence between β and u: p(β, u) = p(β) p(u). The prior predictive
distribution for S has the form of a mixture:

p(S) =

∫∫
p(S|β, u) p(β) p(u) du dβ

=
K∑
j=1

∫
βj p(β)

(∫
δ(S − sj − u) p(u) dv

)
dβ

=

K∑
j=1

E[βj ] p(S|j),

(2.16)

where

p(S|j) := p(u)|u=S−sj . (2.17)

Therefore, if p(u) is continuous, then p(S) will be a mixture of continuous distributions
with different locations.

7In a decision-making setting where one can either act now wait for new information before acting, the
posterior uncertainty regarding β may play a role.
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The posterior predictive distribution for S is more complicated owing to potential de-
pendence between β and u in the posterior distribution:

p(S|y) =
∫∫

p(S|β, u) p(β, u|y) du dβ

=

K∑
j=1

∫
βj p(β|y)

(∫
δ(S − sj − u) p(u|β, y) du

)
dβ

=

K∑
j=1

∫
βj p(β|y) p(S|j, β, y) dβ

(2.18)

where

p(S|j, β, y) = p(u|β, y)|u=S−sj . (2.19)

If p(S|j, β, y) ≈ p(S|j, y), then

p(S|y) ≈
k∑

j=1

E[βj |y] p(S|j, y). (2.20)

As we approach the end of the month, the posterior predictive distribution should collapse
to a point mass on the actual month-average funds rate.

The prior. It remains to adopt a prior distribution for the unknown parameters θ =
(β, u, σ2). We assume prior independence: p(θ) = p(β) p(u) p(σ2). For σ2 we adopt the
Jeffreys prior: p(σ2) ∝ 1/σ2.

Here we provide some introductory remarks regarding the prior for u. Typically we will
adopt a symmetric prior for u, centered on zero. They may be times, however, when we
will center it elsewhere (the beginning of the financial crisis, for example, when the month-
average rate dropped significantly with no change in the stated target rate). The form of
the prior for u should allow the scale to be chosen endogenously. One could for example
adopts a Gaussian prior for u, perhaps a mixture to allow for differing regimes.

Now we focus on the prior for β. A benefit of the Bayesian approach is the ability to
incorporate important considerations via the prior for β. In particular, the prior for β should
embody two features. First the prior should ensure the constraint β ∈ ∆K−1, where ∆K−1

is the (K − 1)-dimensional simplex. Second the prior should be capable of expressing the
idea that while many target rates are possible, only a few should have nontrivial probability.
The Dirichlet distribution embodies both of these features. Let

p(β|α, ξ) = Γ(α)∏K
j=1 Γ(α ξj)

K∏
j=1

β
α ξj−1

j , (2.21)

where α > 0 and ξ ∈ ∆K−1. Note E[β|α, ξ] = ξ. We will refer to α as the concentration
parameter. If ξj = 1/K and α = K, then the prior is flat: p(β|α, ξ) = (K − 1)!.

As K get large relative to n, the flat prior for β tends to dominate the likelihood (2.12)
and the posterior can become quite flat itself. Setting α < K encourages parsimony, pushing
the mass of the prior toward the vertices of the simplex, thereby implicitly suggesting that
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only a few of the components are nonnegligible. (This prior could be described as “partially
informed ignorance.”)

On the other hand, if ξ is well-informed (because, for example, it is based on closely-
related data) then α > K may be suitable. Below we discuss incorporating uncertainty
about α via a prior.

The posterior sampler. The main cost of the Bayesian approach is drawing from the
posterior distribution when an analytical solution is absent (as it is here). The posterior
distribution for the parameters can be expressed as

p(θ|y) ∝ p(y|θ) p(β|α, ξ) p(u)/σ2, (2.22)

where θ = (β, u, σ2). We take a Gibbs sampler approach, applying Metropolis–Hastings
where necessary within.

Drawing from the posterior for σ2 (conditional on β and u) is straightforward. Note
σ2|y, β, u ∼ Inv-χ2(ν, s2), where ν = n and s2 = S(β, u)/n.8

The posterior distribution for the slippage parameter u conditional on (β, σ2) can be
expressed as

p(u|y, β, σ2) ∝ exp

(
−S(β, u)

2σ2

)
p(u). (2.23)

We can make draws from p(u|y, β, σ2) using a Metropolis scheme.
We now turn to drawing from the posterior for β (conditional on σ2 and u). First we

show how to draw from the posterior assuming the prior for β is flat; then we show how to
draw from the posterior with the more general prior.

A technical detail. Since
∑K

j=1 βj = 1, the conditional distribution βj |β−j is degenerate:
the value of βj is fixed by β−j . By “removing” one of the components, say βk, we can
then cycle through the remaining K − 1 components via a one-at-a-time Gibbs sampler.
However, the (average) magnitude of βk will affect the efficiency of the sampler. Let βj |βk

−j

denote conditioning on β−j \ {βk}. If βk is close to zero, we will find ourselves back in the

previous trap with little or no wiggle room for βj |βk
−j . Therefore, for each sweep of the

Gibbs sampler we will remove the largest component from the previous sweep and sample
over the remaining components.

Back to the main thread. If the prior for β were flat, then the posterior for β (conditional on
σ2) would be a multivariate normal distribution truncated to the simplex. This truncated
normal distribution can be hard to draw from when only a small fraction of the mass of
the unrestricted distribution is contained in the simplex. Moreover, with K large relative
to n, X⊤X will be singular and hence not invertible. Nevertheless, a one-at-a-time Gibbs
sampler works well.

The posterior distribution for βi|βk
−i is a univariate truncated normal distribution:

p(βi|y, βk
−i, σ

2, u) = N[0,bki ]
(βi|mi, s

2
i ), (2.24)

where
bki = βi + βk (2.25)

8If the prior for σ2 were different, we could use this as a proposal for a Metropolis step.
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and (mi, s
2
i ) can be readily calculated. In particular, note S(β, u) = ci0 + ci1 βi + ci2 β

2
i

for some coefficients (ci0, ci1, ci2) that are functions of (βk
−i, X(u), y). Consequently, mi =

−ci2/(2 ci3) and s2i = σ2/ci3. Draws from the univariate truncated normal can be made
using the inverse CDF method (for example).

We can accommodate the general Dirichlet prior for β by incorporating a Metropolis–
Hastings step. We use the truncated normal distribution in (2.24) to draw the proposal
β′
i. Because the proposal is a draw from the conditional posterior given a flat prior, the

“Hastings ratio” equals the inverse of the likelihood ratio,

q(β, β′)

q(β′, β)
=

p(y|β, u, σ2)

p(y|β′, u, σ2)
. (2.26)

Consequently, the acceptance condition depends only on the prior ratio:

p(β′|α, ξ)
p(β|α, ξ)

=

(
β′
i

βi

)α ξi−1(β′
k

βk

)α ξk−1

≥ u, (2.27)

where u ∼ U(0, 1) and where β′
k = bki − β′

i. Note that if the prior for β were flat, then (of
course) the proposal would always be accepted.

Uncertainty about α. The hyperparameter α plays an important role in the prior for β.
Instead of specifying a fixed value for α, we can adopt a prior for α and incorporate an
additional Metropolis step to sample α.

The likelihood for α is given by (2.21). Let the prior for α be given by9

p(α|ζ, τ) = α
1
τ
−1 ζ

1
τ

τ
(
α

1
τ + ζ

1
τ

)2 , (2.28)

where ζ, τ > 0. The mean of the distribution does not exist. We can see how to interpret
the parameters via the quantile function where α = Q(x) for x ∈ (0, 1) and

Q(x) = ζ

(
x

1− x

)τ

. (2.29)

Thus ζ is the median and τ determines the spread. For our purpose, it is natural to choose
ζ = K.10

For making draws from the posterior, it is convenient to change variables: let z = log(α).
Given (2.28), the prior for z is given by

p(z|ζ, τ) = ζ1/τ ez/τ

(ζ1/τ + ez/τ )2 τ
, (2.30)

9This is a special case of the Singh–Maddala distribution.
10The essence of this prior is captured by the following change of variables: Let η := log(α/K) and let

ζ = K; then

p(η|τ) = eη/τ

(1 + eη/τ )2 τ
,

which is symmetric around zero with a standard deviation of (π/
√
3) τ .
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where p(z|ζ, τ) is symmetric around its the mean of log(ζ) with a standard deviation of
(π/

√
3) τ . The Metropolis step proceeds as follows: Given some average step-size s, make

random-walk proposals of z′ ∼ N(z, s2) and accept z′ if

p
(
β |α′, ξ

)
p(z′|ζ, τ)

p
(
β |α, ξ

)
p(z|ζ, τ)

≥ u, (2.31)

where u ∼ U(0, 1) and where α = ez and α′ = ez
′
.

A typical setting for the hyperparameters is be ξ = (1/K, . . . , 1/K), ζ = K, and τ = 2.

However, in going from one observation day to the next, it may make sense to use ξ
t
=

E[βt−1|yt−1]. (Limited experience indicates that the posterior distribution for α will be
quite different for these two priors.)

The nonnegativity of options prices. A problem with the likelihood (2.12) is that it
may imply Pr[yi < 0|β, u, σ2] ≫ 0. We believe one would never observe such out-of-bounds
prices. (Such an observation would be discarded as a data mistake and not interpreted as
the result of measurement error as we have construed it.) One way to fix this implication
is to truncate the sampling distribution for the data at zero; this has the effect of imbuing
the measurement error with an upward bias, where the bias gets larger as the option price
gets closer to zero.

The likelihood (for a single observation) that does not take into account the positivity of
option prices can be expressed as p(yi|θ) = N(yi|µi, σ

2) where µi := Xi(u)β. By comparison,
consider the likelihood given a truncated Gaussian distribution:

p̂(yi|θ) := 1[0,∞)(yi)H(µi, σ
2)N(yi|µi, σ

2), (2.32)

where11

H(µ, σ2) :=

{
1− Φ

(
−µ

σ

)}−1

. (2.33)

Note
∫∞
0 p̂(yi|θ) dyi = 1 and

Ê[yi|θ] =
∫ ∞

0
yi p̂(yi|θ) dyi = µi + σ2H(µi, σ

2)N(0|µi, σ
2) > µi. (2.34)

The inequality in (2.34) can be interpreted as an upward bias in the measurement error.
This upward bias is largest at µi = 0 and declines monotonically to zero as µi → ∞.

Let us now consider the likelihood of the entire data set:

p̂(y|θ) :=
n∏

i=1

p̂(yi|θ) = 1[0,∞)n(y)C(θ) p(y|θ), (2.35)

where p(y|θ) =
∏n

i=1 p(yi|θ) is given in (2.12) and

C(θ) :=

(∫
[0,∞)n

p(y|θ) dy

)−1

=
n∏

i=1

H
(
µi, σ

2
)
. (2.36)

Note, for fixed σ, H(µ, σ2) declines monotonically from H(0, σ2) = 2 to limµ→∞ H(µ, σ2) =
1. Therefore 1 ≤ C(θ) ≤ 2n.

11Φ( · ) is the standard normal cumulative distribution function (CDF).
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Let M[0,∞)n denote the model where y ∈ [0,∞)n. Assuming the data are all nonnegative,
the likelihood of this model is

p(y|M[0,∞)n) =

∫
C(θ) p(y|θ) p(θ) dθ. (2.37)

Thus, the Bayes factor in favor of this model (relative to the unrestricted model) is

BF =

∫
C(θ) p(y|θ) p(θ) dθ∫

p(y|θ) p(θ) dθ
= Ep(θ|y)[C(θ)], (2.38)

where the expectation is taken with respect to the posterior distribution of θ from the
unrestricted model.

Given draws of {θ(r)}Rr=1 from the posterior of the unrestricted model, it follows from the
right-hand side of (2.38) that we can compute the Bayes factor as

lim
R→∞

R−1
R∑

r=1

C
(
θ(r)
)
= BF. (2.39)

In addition, the weights z(r) ∝ C
(
θ(r)
)
, where

∑R
r=1 z

(r) = 1, can be used to resample
the draws. If the weights do not vary very much, then the two models will predict similar
distributions for the parameters even if the Bayes factor is large.

The upshot is that proceed by first estimating without the option-price nonnegativity
restriction and then to check afterwards to see how the restriction changes the inferences.
(Limited experience suggests the restriction does not change the inferences noticeably.)

3. Month-average target rates, target-rate paths, and unscheduled
meetings

The target fed funds rate is set by the Federal Open Market Committee (FOMC) at
its scheduled meetings. There are eight scheduled meetings per year, so there are four
months each year without a (scheduled) meeting. (Occasionally it is changed at unscheduled
meetings. We will deal with this possibility in the Appendix.) It is set in increments of 25
basis points (0.25 percent).12 [Currently, however, the target rate is a band: 0 to .25%.]

Consider a given meeting. We adopt the setup outlined in the previous section for
the target rate R where there are K possibilities, r = (r1, . . . , rK), and the risk-neutral
probability is p(R = rj |β) = βj . We say that r is contiguous if rj = r1 + 0.25% (j − 1) for
j = 1, . . . ,K.13 We will often assume the model is contiguous.

Now consider a given month. The fed funds futures contract depends on the monthly
average of fed funds rates. (For example, a Friday rate counts three days in the average,
for Friday, Saturday, and Sunday. If the funds market were closed the following Monday
due to a holiday, then the preceding Friday rate would count 4 days, assuming all four days
were in the same month.)

Up to this point, we have implicitly assumed a single target applies for a given month.
In general, however, the situation is more complicated. More often than not, there is a
scheduled meeting within a given month. Prior to the meeting the previously established

12Cite some history.
130.25% = 0.0025.
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target rate applies, while after meeting a new (possible different) applies. Assuming the
Open Market Desk keeps the daily funds rate at the appropriate target rate throughout
the month, then the month-average funds rate will be R = (1 − ω)R1 + ωR2, where ω
is the fraction of the days in the month for which R2 is the target rate. If there were no
meetings between the observation date and the meeting in the month in question, then R1

can be identified with the current rate (assuming the absence of unscheduled meetings).
More generally, both R1 and R2 will be unknown on the observation date and consequently
the joint distribution of the two target rates come into play.

In addition, the daily effective funds rate does not equal to the target rate on a daily
basis. More importantly for our purposes, the month-average funds rate S does not equal
the month-average target rate R. We account for this difference by letting S = R+u, where
v is the month-average slippage.

Notation. Let τ = (τ1, . . . , τw) denote a sequence of meeting dates and let Rτi denote the
target rate established at time τi. Let T

0
m denote the first day of month m. Let τ−m denote

the date of the last meeting prior to the beginning of month m and let τ+m denote the date
of the following meeting: τ−m < T 0

m ≤ τ+m. Let ωm denote the fraction of month m from τ+m
to the beginning of the month m+ 1:

ωm = max

{
T 0
m+1 − τ+m

T 0
m+1 − T 0

m

, 0

}
(3.1)

In particular, if τ+m = T 0
m then ωm = 1 and if τ+m ≥ T 0

m+1 then ωm = 0. The month-average
target rate for month m is

Rm = (1− ωm)Rτ−m
+ ωmRτ+m

. (3.2)

Let t denote the quote date (also known as the observation date). If t < τi then Rτi is
unknown while if t ≥ τi then Rτi is known. Note τ−m+1 is the date of the last meeting prior

to the beginning of month m + 1. If month m has a meeting then τ−m+1 occurs in month

m; otherwise τ−m+1 occurs in an earlier month. If t ≥ τ−m+1, then Rm is known. If t < τ−m+1,

then Rm is unknown. If t < τ−m and there is a meeting during month m, the Rm involves
two unknowns: Rτ−m

and Rτ+m
.

A number of special cases. Now we consider a number of special cases of (3.2). In
each case we show how the likelihood of an observation can be expressed as yi = Xiβ + εi,
thereby allowing us to adopt both the likelihood and the prior described in Section 2.

Case 1. First consider a month that involves a single target rate. This occurs if either
ωm = 0 (a month with no meeting) or ωm = 1 (a month with a meeting on the first day of
the month). In either case, the month-average target rate involves a single target rate:

Rm =

{
Rτ−m

ωm = 0

Rτ+m
ωm = 1

. (3.3)

Let us refer to this rate as R. Let R ∈ r = {r1, . . . , rK}, p(R = rj |β) = βj , S = R+ u, and
Xij = φ(Ki, γi, rj + u). We have established yi = Xiβ + εi.
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Case 2. Next suppose ωm ∈ (0, 1) but that Rτ−m
is known. (Thus the month contains a

single unknown target rate.) Let us refer to Rτ−m
and Rτ+m

as R0 and R (respectively) so

that Rm = (1−ωm)R0+ωmR. Let R ∈ r = {r1, . . . , rK}, p(R = rj |β) = βj , Sm = Rm+u,
and Xij = φ(Ki, γi, rj + u) where rj = (1 − ωm)R0 + ωm rj . Again, we have established
yi = Xiβ + εi (in which rj has taken the place of rj). In passing, note that the smaller ωm

is, the less information there will be regarding R.

Case 3. Now consider (3.2) more generally. Let us refer to Rτ−m
and Rτ+m

as R1 and R2,

respectively, so that Rm = (1 − ωm)R1 + ωmR2. Assume (R1, R2) ∈ r1 × r2 where r1 =
(r11, . . . , r

1
K1

) and r2 = (r21, . . . , r
2
K2

). Let b denote a K1 ×K2 matrix of joint probabilities
such that

p(R1 = r1k, R2 = r2ℓ |b) = bkℓ (3.4)

where bkℓ ≥ 0 and
∑K1

k=1

∑K2
ℓ=1 bkℓ = 1. Let β denote a vectorized version of b, where (using

row-major order)

βj = bkℓ for j = (k − 1)K2 + ℓ. (3.5)

Thus β ∈ ∆K∗−1 where K∗ = K1K2.
Assume Sm = Rm + u and let xikℓ = φ(Ki, γi, rkℓ + u) where

rkℓ = (1− ωm) r1k + ωm r2ℓ . (3.6)

Then

yi =

K1∑
k=1

K2∑
ℓ=1

xikℓ bkℓ + εi. (3.7)

Let Xi denote the vectorized version of xi. Then (3.7) can be expressed as yi = Xiβ + εi.
Stacking the observations produces y = Xβ + ε. The matrix X has n rows/observations
and K∗ columns/paths and the vector β has K∗ elements/joint probabilities.

There are a number of factors that militate against the ability to identify the probabilities
in this case: the (potentially) large number of unknown probabilities relative to the number
of observations, the (potentially) close spacings of the states skℓ (relative to the magnitude
of the slippage and the measurement error), the possibility that ωm is near either zero or
one. One possible way to overcome these problems is to use information from additional
contract months. We now turn to that approach.

Two contract months at once. Suppose there is no meeting in month m (ωm = 0) and
there is a meeting in month m + 1. Let t < τ−m so that both Rm = Rτ−m

and Rm+1 =

(1 − ωm+1)Rτ−m+1
+ ωm+1Rτ+m+1

are unknown. The month-average rates share a common

target rate: Rτ−m+1
= Rτ−m

. We refer to Rτ−m
and Rτ+m

as R1 and R2, respectively, and we

adopt the previous setup (including r1, r2, b, and its vectorization β). In addition, we
refer to the months m and m + 1 as months 1 and 2, respectively. Thus, R1 = R1 and
R2 = (1− α2)R1 + α2R2.
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Assume each month has its own slippage: Sm = Rm + um, for m = 1, 2. Let xmikℓ =
φ(Km

i , γmi , smkℓ + um), where

s1kℓ = r1k (3.8)

s2kℓ = (1− ω2) r
1
k + ω2 r

2
ℓ . (3.9)

(Note the matrix s1 is composed ofK2 copies of the vector r
1.) LetXm

i denote the vectorized
version of xmikℓ. Then we have

ymi = Xm
i β + εmi . (3.10)

Let

Y =

[
y1

y2

]
, X =

[
X1

X2

]
, and E =

[
ε1

ε2

]
. (3.11)

We can express the joint likelihood as Y = Xβ + E, where E ∼ N(0n∗ , σ2 In∗) and where
n∗ = n1 + n2. Consequently, we can use the posterior sampler described above.14

This approach can be generalized to include more than two months where β is a vectorized
version of the tensor of joint probabilities and β ∈ ∆K∗−1, where K∗ =

∏
uKu. (See

Appendix A for an example involving three contract months.)

Remark. Recall that α is the concentration parameter in the prior for β. Note that if
α < K∗ −max{Ku} then there is no restricted model that supports independence among
the probabilities.15 In effect, a sufficient small value of α for the joint probabilities rules
out independence.

Unscheduled meetings. In order to keep the analysis simple, consider a month with no
scheduled meeting. Let R1 denote the applicable target rate absent the unscheduled meeting
and let R2 denote the target rate set at the unscheduled meeting (if it occurs). Note that
R2 ̸= R1.

Let the month-average target rate be given by

R = (1− ω)R1 + ωR2. (3.12)

The novelty is that ω is unknown. If ω = 0, there is no unscheduled meeting, while if
0 < ω ≤ 1 there is an unscheduled meeting. The distribution for ω is discrete because there
are a finite number of days in any month. (The values of ω with positive probability are
further restricted by the fact that unscheduled meetings “occur” on business days in the
sense that the announcement of a new target rate occurs on business days.)

To treat the simplest case, suppose R1 is known, in which case rj = (1 − ω)R1 + ω r2j
(where rj = R1 if and only if ω = 0) and Xij = φ(Ki, γi, rj + u). Note the X matrix
depends on the unknown ω (as well as u). The (conditional) posterior distribution for ω is
discrete where

p(ω|β, u, σ2, y) ∝ exp

(
−S(β, u, ω)

2σ2

)
p(ω). (3.13)

We can think of (3.12) as combining two competing models: the no-unscheduled-meeting
model N characterized by ω = 0 and the unscheduled-meeting model U characterized by

14See Appendix A for an alternative formulation in terms of marginal and conditional probabilities, with
an illustration assuming ω2 = 1.

15At least no simple model that I can see.
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ω ̸= 0. The Bayes factor in favor of model N relative to model U is given by the posterior
odds ratio divided by the prior odds ratio:

BFN
U =

p(ω = 0|y)
p(ω ̸= 0|y)

÷ p(ω = 0)

p(ω ̸= 0)
. (3.14)

Let the prior distribution p(ω|q) be given by p(ω = 0|q) = q and p(ω ̸= 0|q) = 1−q, where
1 − q is distributed equally over the remaining possibilities. Suppose the hyperparameter
q has a prior distribution, p(q). Then p(ω = 0) =

∫
p(ω = 0|q) p(q) dq = E[q] and p(ω =

0|y) =
∫
p(ω|q) p(q|y) dq = E[q|y]. For example, suppose the prior for q is a beta distribution

parameterized as follows:

p(q) = B
(
q|αq ξq, αq (1− ξq)

)
, (3.15)

where ξq = E[q] and αq is the concentration parameter. The flat prior is given by ξq = 1/2

and αq = 1. If in fact we choose ξq = 1/2, then

BFN
U =

E[q|y]
1− E[q|y]

. (3.16)

However, it probably makes more sense to choose ξq to match the unconditional probability
that a month has no unscheduled meeting. If we choose αq ≪ 1, then the prior expresses
the following view: On the one hand it is probably very unlikely that there will be an
unscheduled meeting, but on the other it is possible that it is very likely.

4. Data

Here we describe the data and what is required to put it in a form suitable for estimation.
For each quote date there are quotes for puts and calls on a number of contracts.

The strike prices are expressed in terms of an index P , where P = 100 (1 − S).16 For
example, P = 97 refers to a month-average funds rate of S = 1 − .97 = .03. Note that
the payoff at expiration to a call option in terms of P translates into the payoff of a put in
terms of S. To see this, let KP = 100 (1−KS) denote the two expressions of a given strike
price and note

(P −KP )
+ =

(
100 (1− S)− 100 (1−KS)

)+
= 100 (KS − S)+. (4.1)

Similarly, put payoffs expressed in terms of P become call payoffs expressed in terms of S.
Hereafter, assume the data are expressed in terms of S.

Let t denote the quote date and m denote the contract month. The data for a given quote
date include quotes for a total of Mt contract months, and for each contract month m are in

the form of nm
t triples: {(Km

ti , γ
m
ti , V

m
ti )}

nm
t

i=1. We deflate the option values: ymti = V m
it /B

m
t for

i = 1, . . . , nm
t . The result is a data set for the quote date t of the form {(Km

ti , γ
m
ti , y

m
ti )}

nm
t

i=1
for m = 1, . . . ,Mt.

It remains to compute the appropriate X matrices from the strike prices {Km
ti }. We

proceed as follows. (We will suppress the dependence on the quote date occasionally to
reduce the notational clutter.) First, for each contract month in the data set we need to

16Because the relation between S and P is linear, there are no issues relating to Jensen’s inequality in
changing back and forth between the two representations.
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find αm, Rτ−m
and Rτ+m

in order to form Rm as given in (3.2). Next compute the union of
the unknown rates across entire collection of months. Let R0 denote the known target rate
as of time t and let {Ru}Ut

u=1 denote the set of unknown rates that appear in the month-
average rates. (At this point, some discretion on the part of the researcher comes into play.)
For each unknown rate, specify the set of possible values: Ru ∈ ru = {ru1 , . . . , ruKu

}. Let
r0 = {R0}. It would probably make sense to have r0 ⊆ r1 . . . ⊆ ru. The total number of

target-rate paths is K∗
t =

∏Ut
u=1Ku.

If all of the data were to be used in a single joint estimation, the X matrix would have
n∗
t =

∑Mt
m=1 n

m
t rows/observations and K∗

t columns/paths. It may not be possible to learn
much for such a model, given the number of observations and the number of paths. Instead
a subset of the months and a corresponding subset of the target rates may be used. Given
these subsets, let Xm

ij = φ(Km
i , γmi , smj + um), where the index j = 1 . . . ,K∗ is computed

according the vectorization of the join probability tensor for the given subset (and K∗ now
denotes the product computed from the subset). The data are now in a form suitable for
estimation.

Additional thoughts. We will want to compare futures prices (as proxies for forward prices)
with E[S|y] computed from the posterior predictive distribution [see (2.18)]. We may want
to use the futures prices to help form the prior for β. We can use put–call parity to assess
the magnitude of the measurement error.

Questions for me. What is the expiration day if the last day of the month falls on a
nonbusiness day? Does the funds rate for a given day include trades after the FOMC
announcement. What is the effective funds rate on meeting days, both with and without
target rate changes. Use this information to decide whether to include the meeting day
with the previous target rate or with the next target rate.

5. Dynamics

We can extend this approach to incorporate day-to-day dynamics. The idea here is that
β is a stochastic process that evolves through time. Since β is a vector of probabilities, it
must be a martingale, where17 Et−1[βt] = βt−1. Let p(βt|βt−1) denote the pdf for βt given
the parameter βt−1 and let Yt−1 := (y1, . . . , yt−1). Then

p(βt|yt, Yt−1) ∝ p(yt|βt) p(βt|Yt−1) = p(yt|βt) p(βt|βt−1) p(βt−1|Yt−1). (5.1)

There are a number of ways to compute the updating in (5.1). The particle filter is discussed
below (as an illustrative example).

The central idea here is that the probabilities on a given day (for a fixed set of target
rates) will be closely related to the probabilities on the preceding and succeeding days.
One consequence is that more efficient estimation could use the information in the data
from the neighboring days (yt−1, yt+1). Another consequence is that if we wish to infer
whether the probabilities have changed from one day to the next, we must compute their
joint distribution p(βt−1, βt).

17Warning: The notation in this section may conflict with that in other sections.
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Particle filter. The updating in (5.1) can be computed using a particle filter. In particular,
the draws from p(βt−1|Yt−1) constitute a particle swarm. There are a number of related
ways to implement a particle filter.

The most straightforward is the sampling–importance resampling (SIR) approach. Fol-

lowing this approach, make a random draw from p(βt|β(i)
t−1) for each β

(i)
t−1 in the swarm.

Denote these draws {β(i)
t }. These draws represent draws from p(βt|Yt−1). At this point,

importance sampling comes in to play. Compute w
(i)
t := p(yt|β(i)

t ) and resample {β(i)
t }

using these weights. A problem one encounters is when the bulk of p(yt|βt) is located in

the tail of p(βt|Yt−1) then the weights {w(i)
t } may be dominated by a few large values with

the result that the swarm provides a poor representation of the posterior.

An alternative approach is the independent particle filter (IPF). Make draws {β(j)
t }mj=1

from the likelihood p(yt|βt) assuming it is proper.18 We need to compute the weights

p(β
(j)
t |Yt−1) = p(β

(j)
t |βt−1) p(βt−1|Yt−1).

The factor p(βt−1|Yt−1) is encoded in the posterior draws from the previous day.19 For
each draw from the second day, choose L draws from the first day, where 1 ≤ L ≤ m

and m is the number of draws from the first day. Then compute z
(i,j)
t = p(β

(j)
t |β(i)

t−1).

Let z
(j)
t =

∑L
i=1 z

(i,j)
t and use these weights to resample {β(j)

t }mj=1. (By sampling from

p(βt−1|Yt−1), we incorporate its weight implicitly.) We can tweak the IPF by drawing from

p(yt|βt) p(βt) where p(βt) is the maximum entropy distribution with mean = 1
M

∑M
i=1 β

(i)
t−1.

(We could use the Dirichlet distribution as well.) This will tend to reduce the variation of
the weights computed as p(βt|βt−1)/p(βt).

In order to obtain the joint distribution p(βt−1, βt|Yt−1, yt), we can apply the so-called

smoothing step. We do this as follows. Make a draw from {β(j)
t }mj=1 and conditional on that

draw, make a draw from {β(i)
t−1}mi=1 using the weights {z(i,j)t }mi=1 (fixing the j drawn). The

pairs thus generated are from the joint distribution conditional on (Yt−1, yt). The marginal
distribution for βt−1 encoded in these draws reflects the data from both days.

The computation of {z(i,j)t } can be quite expensive. One can reduce the expense by

discretizing—by binning and computing p(β
(j)
t |β(i)

t−1) at the midpoints of the bins and using

the bin counts to adjust. Let z̃
(i,j)
t := p(β

(j)
t |β(i)

t−1)n
(i,j)
t where p(β

(j)
t |β(i)

t−1) is computed at the

midpoint of bin (i, j) and n
(i,j)
t denotes the corresponding bin count. Then z̃

(j)
t :=

∑
i z̃

(i,j)
t .

Appendix A. Addition material

Marginal and conditional target-rate probabilities. Given the joint probabilities (3.4),

we can compute marginal probabilities p(R1 = r1k|b) =
∑K2

ℓ=1 bkℓ = β1
k and p(R2 = r2ℓ |b) =

18The draws of βt are made independent of βt−1. For more on the IPF, see Lin et al. (2005).
19One way to proceed is to take a draw from p(βt|β(i)

t−1) for each i from the first day and then approximate

the density.
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k=1 bkℓ = β2

ℓ and conditional probabilities

p(R2 = r2ℓ |R1 = r1k, b) =
p(R1 = r1k, R2 = r2ℓ |b)

p(R1 = r1k|b)
=

bkℓ∑K2
ℓ=1 bkℓ

=: Bkℓ. (A.1)

Note β2 = B⊤β1. Also note p(R1 = r1k, R2 = r2ℓ |B, β1) = Bkℓ β
1
k.

As an alternative to modeling the joint probabilities, one could model marginal and
conditional probabilities. If we choose to model β1 and B (instead of modeling b), the

number of parameters remains K1K2 − 1, since
∑K1

k=1 β
1
k = 1 and

∑K2
ℓ=1Bkℓ = 1 for k =

1, . . . ,K1. (Each of the K1 rows of B sums to one.) We could adopt Dirichlet priors for β1

and for the columns of B. This approach, however, offers no advantages in general relative
to the approach of modeling the joint probabilities.

In order to illustrate this approach, let us modify the example involving two months
by setting ω2 = 1. In this case each month is associated with a single target rate and
consequently [

X1

X2

]
β =

[
X̃1 0

0 X̃2

] [
β1

β2

]
(A.2)

subject to β2 = B⊤β1, where

X̃m
ij = φ(Km

i , γmi , rmj + um) (A.3)

for rmj ∈ rm.

Carlson et al. (2005) provide an example of this approach (with um = 0 in their setup).
In the example (p. 1214), K1 = 2 and K2 = 3. Consequently there are K∗ = K1K2 = 6
possible paths and K∗ − 1 = 5 independent probabilities. Using a prior information, they
set three path probabilities to zero, leaving three paths and two independent probabilities
remaining. The restrictions produce the following matrix of conditional probabilities:20

B =

[
B11 0 0
0 B22 B23

]
, (A.4)

so that

β2 = B⊤β1 =

B11 β
1
1

B22 β
1
2

B23 β
1
2

 . (A.5)

Since each row of B must sum to one, we have B11 = 1 and B22 + B23 = 1. In addition
β1
1 + β1

2 = 1. (Together these restrictions imply β2
1 + β2

2 + β2
3 = 1.) This leaves a total of

two free parameters.

20The matrix of joint probabilities is

b = B ∗ β1 =

[
B11 β

1
1 0 0

0 B22 β
1
2 B23 β

1
2

]
,

where (row-by-row) bk = Bk β
1
k.
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An example involving three months. Here we provide an example involving three
months. Let

Rm = (1− ωm)Rτ−m
+ ωmRτ+m

(A.6a)

Rm+1 = (1− ωm+1)Rτ−m+1
+ ωm+1Rτ+m+1

(A.6b)

Rm+2 = (1− ωm+2)Rτ−m+2
+ ωm+2Rτ+m+2

. (A.6c)

If ωm+1 = 1, then there is no rate in common between Rm and Rm+1. Similarly, if ωm+2 = 1,
then there is no rate in common between Rm+1 and Rm+2. Assuming ωm+1 < 1,

Rτ−m+1
=

{
Rτ−m

ωm = 0

Rτ+m
ωm > 0

(A.7)

and assuming ωm+2 ̸= 1,

Rτ−m+2
=

{
Rτ−m+1

ωm+1 = 0

Rτ+m+1
ωm+1 > 0

. (A.8)

Suppose ωm, ωm+1 ∈ (0, 1) and ωm+2 = 0 so that

Rm = (1− ωm)R1 + ωmR2 (A.9)

Rm+1 = (1− ωm+1)R2 + ωm+1R3 (A.10)

Rm+2 = R3, (A.11)

where (R1, R2, R3) represent the three distinct rates. Let r
m = (rm1 , . . . , rmKm

) for m = 1, 2, 3

and let p(R1 = r1k, R2 = r2ℓ , R3 = r3w|B) = Bkℓw, where B is a rank-3 tensor of joint
probabilities with dimensions K1 ×K2 ×K3. Let β denote the vectorized version B:

βj = Bkℓw for j = (k − 1)K2K3 + (ℓ− 1)K3 + w. (A.12)

Note β ∈ ∆K∗−1, where K∗ = K1K2K3.
Assume Sm = Rm + um. Let xmikℓw = φ(Km

i , γmi , smkℓw + um), where

s1kℓw = (1− ωm) r1k + ωm r2ℓ (A.13)

s2kℓw = (1− ωm+1) r
2
ℓ + ωm+1 r

3
w (A.14)

s3kℓw = r3ℓ . (A.15)

Then we have
ymi = Xm

i β + εmi (A.16)

where Xi is a vectorized version of the tensor xi. Again we can express the joint likelihood
as Y = Xβ + E, where E ∼ N(0n∗ , σ2 In∗) and where n∗ = n1 + n2 + n3.
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