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Abstract

This paper proposes a new approach for the analysis of the histories of parameters in a

time varying structural VAR model of the economy. The main characteristic of this approach is

that of modeling the time evolution of the parameters directly in the covariance matrix of the

reduced form vector of innovations. Relative to the standard procedure adopted in the literature,

the framework that I propose in this study is able to capture a larger variety of time-varying

features of the data, and provides some additional insights on the intertemporal dependence

between the parameters of the VAR model. I show how this new technique can be implemented

for the analysis of the relationship between oil prices and US domestic variables, and for the

interpretation of the changes in this relationship over time.
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1 Introduction

This work proposes a new approach for the estimation of VAR models with time-varying coe¢ cients

and covariance matrix. The main departure of this approach from the previous literature resides

on the de�nition of the time variation of the parameters, and in particular on the assumptions
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about the evolution of the covariance matrix of the reduced-form innovations. These assumptions

have important consequences on the ability of the model to capture some speci�c the time-varying

features of the data, in particular the presence of temporary shifts in the elements of the reduced-

form covariance matrix. In addition, the framework developed in this paper also provides some

relevant information about the intertemporal relationships between the variances and covariances

of the residuals in the reduced-form VAR model, which can be employed to expand the analysis

and improve the understanding of the historical patterns of the variables of interest.

In recent years, a number of contributions in the macroeconometric literature have investigated

the development and implementation of techniques that can account for the possibility of struc-

tural changes in the true data generating process of the economy. Among these contributions, an

important role is covered by the studies that have focused on the de�nition and estimation of VAR

frameworks that incorporate time variation in the relationships between the variables of the model.

Signi�cant progresses have been made in this area, di¤erent methods for the implementation of this

type of analysis have been introduced, and time-varying VAR models have been adopted, and are

increasingly employed, to investigate economic relationships in a number of di¤erent environments.

This paper o¤ers a contribution to the literature on time-varying VARs. In particular, this work

follows the branch that originates from the seminal work of Cogley and Sargent (2001, 2005) and

Primiceri (2005). The approach initially proposed by Cogley and Sargent (2001) modeled the time

changes in the relationships between the endogenous variables in the VAR in terms of variations in

the coe¢ cients of the model. Subsequently, Cogley and Sargent (2005) introduced time variation

in the variances of the innovations, and �nally Primiceri (2005) extended this framework to include

changes in the covariances between the innovations of the model. As in the works of Cogley and

Sargent (2001, 2005) and Primiceri (2005), this paper assumes time variation both in the coe¢ cients

and in the covariance matrix of the innovations of the VAR framework, and uses Bayesian methods

for estimation purposes. The approach that I proposed in this study, however, departs from these

previous contributions in terms of the way in which the covariance matrix is assumed to change

over time. The Cogley-Sargent-Primiceri method is developed on the assumption of a random walk

time variation of the covariances and log standard deviations of the innovations in a structural VAR

obtained imposing a speci�c ordering to the variables in the model. The approach employed in

this work, on the other hand, models the evolution of the parameters directly in the reduced-form
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covariance matrix. In particular, the speci�c law of motion that I adopt is taken from the �nance

literature on multivariate stochastic volatility models, in particular from Philipov and Glickman

(2006) and Rinnergschwentner et al. (2011), and it assumes that the inverse of this covariance

matrix is a Wishart distributed random variable with time-varying scale matrix.

The framework that I use in this paper exhibit a number of relevant features that have im-

portant implications for the underlying properties of the time variation of the parameters, and for

the interpretation of the intertemporal relationships between them. First, the approach presented

in this study departs from the random walk assumption in the time variation of the elements of

the reduced-form covariance matrix, and introduces a persistence coe¢ cient which is estimated

together with the other parameters. This feature allows the VAR model to capture some charac-

teristics of the data that are not well represented by a random walk process, as for instance the

presence of temporary shifts in the variances and covariances of the reduced-form residuals. Sec-

ond, the way in which the time variation is modeled in this work implies some clear intertemporal

dependence between the parameters of the VAR, which can be used to obtain additional insights on

the relationships between the variables of interest. I believe that it is also important to emphasize

that the approach proposed in this work does not preclude the type of investigation that is usually

developed based on the Cogley-Sargent-Primiceri method. Thus, impulse-response analysis, vari-

ance decomposition, and many other commonly performed exercises can still be implemented in

the framework introduced in this paper. However, for the reasons that I just explained, I believe

that the procedure employed in this study can provide a better representation of the data and

o¤er additional information that can be used in the interpretation of the results of the analysis.

These advantages, however, come at the cost of a slightly more complex estimation procedure, and

a longer computational time.

The contributions of this paper to the existing literature are both methodological and empirical.

From the methodological point of view, this work introduces a new approach for modeling parameter

changes in a time-varying VAR model, and details the Bayesian techniques that can be employed

for the empirical implementation of this method. In addition, this study proposes an application of

this approach to the analysis of the time-changing impact of oil prices on the US economy. A recent

branch of the literature studying the e¤ects of oil price shocks on a number of economic variables has

opted for the use of time-varying VAR models to investigate the causes of the postulated changes of
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these e¤ects over time (most notably, Baumeister and Peersman, 2009, and Clark and Terry, 2010).

I present an extension of these previous works, which focuses on the study of the changes in the

impact of oil prices shocks on these variables over time, and on the analysis of the intertemporal

and contemporaneous correlations implied by the model. Preliminary results support the evidence

of a more moderate response of core in�ation to oil price shocks since the mid 1980s but, even

before this date, the framework employed in this paper generally attributes a smaller role to oil

price shocks that are exogenous to the US economy compared to previous works using time-varying

VARs estimated using ordering restrictions. Consistently with the conclusions in Kilian and Lewis

(2009), I �nd no evidence of a systematic response of the Federal funds rate to either oil price

shocks or domestic shocks increasing oil in�ation after the mid 1980s. In addition, the analysis

of the intertemporal relationships in the impact of shocks on the variables of interest seems to

suggest that the policy reaction to the e¤ects of oil price shocks on oil in�ation was mostly related

to speci�c events in the oil market, while the response to the pass-through to core in�ation appears

to be more persistent over time.

The remainder of the paper is organized as follows. Section 2 describes the class of models under

analysis, speci�es the assumptions about the time variation of their parameters and delineates the

di¤erences between the approach proposed in this work and the standard procedure adopted in the

literature. Section 3 provides the details for the empirical implementation of this approach, and

section 4 describes its application to the study of the time varying impact of oil prices on the US

economy. Section 5 concludes.

2 The model

I am interested in studying the characteristics of a class of structural VARs with time-varying

coe¢ cients, covariances and variances of the vector of innovations. Using the same notation as in

Primiceri (2005), I start by considering the following reduced-form model:

yt = ct +B1;tyt�1 + :::+Bp;tyt�p + ut t = 1; :::; T:
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where yt is a n � 1 vector of endogenous variables, ct is a n � 1 vector of intercepts, B1;t; :::; Bp;t

are n � p matrices of coe¢ cients, and ut is a vector of innovations with time-varying covariance

matrix: E (utu0t) = 
t: This model can be rewritten equivalently as:

yt = X
0
tBt + ut (1)

where X 0
t = In 


�
1; y0t�1; :::; y

0
t�p
�
and Bt is a n (1 + np) � 1 vector that incorporates all the

coe¢ cients in ct; and B1;t; :::; Bp;t: Let BT and 
T denote histories of the parameters up to time T .

The model described by (1) can be interpreted as the reduced-form representation of the struc-

tural VAR:

yt = X
0
tBt +At"t (2)

where "t is a vector of structural shocks of the economy, with E ("t"0t) = I; and the matrix At

satis�es: AtA0t = 
t, t = 1; :::; T: In this framework, A
�1
t de�nes the time t contemporaneous rela-

tionships between the endogenous variables, and the time t structural coe¢ cients can be obtained

as A�1t ct and A
�1
t Bi;t; i = 1; :::; p. Thus, the histories B

T and AT can be used to characterize the

time-varying structural relations between variables implied by model (2).

The empirical literature on time-varying VARs is typically interested in studying the informa-

tion arising from the patterns of the structural parameters of the model in the speci�c environments

under analysis. The techniques that have been developed for this purpose are based on Bayesian

estimation of the joint posterior probability of the parameters of interest, given the available data.

The standard procedure, originating from the work of Cogley and Sargent (2001, 2005) and Prim-

iceri (2005), is based on modeling the time-variation of the parameters in the vector Bt; and in the

elements of the matrices Ct and �t; which are obtained from the Cholesky decomposition of 
t :


t = C
�1
t �t�

0
tC

0�1
t : The matrix Ct is lower triangular, with ones in the main diagonal, while �t is

a diagonal matrix. The standard assumption is that the elements of Bt; the non-zero and non-one

elements of Ct; and the log of the diagonal elements of �t, evolve according to a driftless random

walk process in which the innovations are Gaussian random variables. Given this assumption, it is

possible to derive the conditional posteriors of the parameters of interest, and a MCMC algorithm,

more speci�cally a Gibbs sampling procedure, can be used to obtain draws from the joint posterior
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of
�
BT ; CT ;�T ; eV �, where eV is a matrix of hyperparameters of the model (see Primiceri, 2005, for

more details).

For reasons that I will explain in more detail in the next section, I depart from the previous

literature and model the time-variation directly in the reduced-form vector of coe¢ cients Bt and

covariance matrix 
t: More speci�cally, while for Bt I adopt the same approach as in Cogley

and Sargent (2001, 2005) and Primiceri (2005), for the covariance matrix 
t I borrow from the

�nance literature, and in particular from the contributions of Philipov and Glickman (2006) and

Rinnergschwentner et al. (2011), and assume that 
�1t has a Wishart distribution with time-

varying scale matrix. Thus, the dynamics of the model�s parameters are described by the following

expressions:

Bt = Bt�1 + vt (3)


�1t j k; St�1 �Wish (k; St�1) (4)

St = 1=k
�
G1=2

� �

�1t

�d �
G1=2

�0
(5)

where vt is a vector of innovations with N(0; Q) distribution, G is a positive de�nite symmetric

matrix (and G1=2 denotes the lower triangular matrix obtained from its Cholesky decomposition),

k are the degrees of freedom in the Wishart distribution, and d is a scalar. The quadratic form of

St ensures that the covariance matrices are symmetric positive de�nite. As remarked in Philipov

and Glickman (2006), the matrix G and the parameter d play an important role in the dynamic

behavior of the covariance matrix 
t: Notice that in this setup the conditional expectation of 
�1t

can be written as:

E
�

�1t j G;
t�1

�
=
�
G1=2

� �

�1t�1

�d �
G1=2

�0
(6)

This expression highlights how the matrix G (or more precisely the inverse of the matrix G) provides

information on the intertemporal dependence between the elements of 
t; and on the relative

importance of the other variances and covariances on the pattern of each of these elements. The

next section will discuss how this feature can be used for inference. The parameter d, on the other

hand, is a measure of persistence in the intertemporal relationship between the elements of 
t:

Values of jdj > 1 imply nonstationary dynamics of 
t; while values in the interval [�1; 0) generate
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dynamics in which 
t alternates between powers of inverses.1 For this reason, as in Philipov and

Glickman (2006) and Rinnergschwentner et al. (2011), I will restrict my analysis to values of d in

the interval [0; 1] : Notice that the extremes of this interval represent some interesting special cases.

If d = 0; the covariance matrix 
t exhibit no time-variation:

E
�

�1t j G;
t�1

�
= G

while if d = 1; the value of the covariance matrix at time t � 1 is fully re�ected in its current

value, with relationships between elements dictated by the matrix G. One �nal remark needs to

be made with respect to k; the degrees of freedom of the Wishart distribution of 
�1t : In order

for 
�1t to be invertible with probability one, we need k to be larger than the dimension of 
�1t ;

For this reason, k will be restricted to assume only values larger than n. When the matrix G is

symmetric positive de�nite, the parameter d is included between 0 and 1, and k is greater than n,

then the autoregressive stochastic matrix process for the covariances is well de�ned (see Philipov

and Glickman, 2006, and Rinnergschwentner et al., 2011).

As in the previous literature, I will estimate the time-varying VAR model described by (1)

and (3)-(5) using Bayesian techniques. Given some assumptions on the prior distributions of the

parameters of interest, the conditional posteriors can be analytically derived, and a Metropolis-

Hasting algorithm can be implemented to obtain draws from the joint posterior of
�
BT ;
T ; Q; V

�
(where for simplicity of notation, V encloses the parameters of the Wishart distribution for 
�1t ;

i.e. G, k and d).

2.1 Main properties of the model

This section provides a more detailed description of the main characteristics of the model used in

this paper, and discusses the additional information that the assumptions on the time-variation of


t adopted here might convey. This information can provide a better understanding of the patterns

of the parameters of interest in the period under analysis, and can be employed to improve inference

in the context of the class of structural VAR models described by (2).

First, I think that it is important to remark that the method proposed in this work still pro-

1See Philipov and Glickman (2006) for a more detailed discussion.
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vides all the information that can be obtained from the standard approach adopted in the liter-

ature, so that all the common exercises and counterfactuals that have been developed based on

the Cogley-Sargent-Primiceri technique can still be performed here. As previously mentioned, the

standard procedure employed to estimate time varying VARs delivers draws from the posterior:

p
�
BT ; CT ;�T ; eV j yT� ; where yT is the history of the endogenous variables of the model up to

time T . The vector Bt is the vector of reduced-form coe¢ cients of the model, and the matrices

Ct and �t are obtained from the Cholesky decomposition of the covariance matrix 
t: Notice that

while this speci�c decomposition is chosen mainly because it considerably simpli�es the analysis of

the time variation and the estimation of the model, its adoption has some important implications.

In particular, this setup implies that the order of the variables in the VAR matters (see Primiceri,

2005, for a discussion). Indeed, this decomposition can be interpreted as corresponding to the

particular structural VAR:

yt = X
0
tBt + C

�1
t �t"t (7)

where C�1t �t is a lower triangular matrix. Because of this lower triangular structure, the model

in (7) denotes a speci�c way in which the structural shocks in the vector "t a¤ect the variables in

yt; and this implies a speci�c order in which these variables are determined. In some applications,

researchers might be interested in the analysis of time-varying structural VAR models that are not

necessarily the one described by (7). The approach that is commonly adopted in this case makes

use of orthogonal matrices to de�ne At at every point in time starting from Ct and �t :

At = C
�1
t �tPt (8)

Because of the properties of orthogonal matrices, we have that:

AtA
0
t = C

�1
t �tPtP

0
t�

0
tC

0�1
t = C�1t �t�

0
tC

0�1
t = 
t

so that any matrix At obtained from (8) will give the same 
t; which means that all structural

VAR models corresponding to di¤erent matrices At will share the same reduced-form covariance

matrix. Usually, sign restrictions are subsequently employed to select a subset of structural VARs

that exhibit some required characteristics, and to identify the shocks of interest (see, for instance,
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Canova and Gambetti, 2009, which is the �rst contribution that applied this approach in a time-

varying environment).

The model that I employ in this work, and the estimation procedure that I will describe

in the next section, deliver draws from the joint posterior: p
�
BT ;
T ; Q; V j yT

�
rather than

p
�
BT ; CT ;�T ; eV j yT� : However, the histories �CT ;�T � can easily be obtained from the Cholesky

decomposition of the draws of 
T generated using this technique, and patterns of the structural

matrix At can subsequently be obtained using the procedure described by (8). It follows that the

analysis that is usually carried on using the standard approach, for instance identi�cation and infer-

ence performed using sign restrictions on the elements of At in each period t, can still be performed

using the method proposed in this paper.

While, the approach adopted in this paper can be used to obtain the same information as the

procedure based on the estimation of the histories of Ct and �t; I believe that there are some

characteristics that would make it preferable in a number of environments. In particular, some of

the parameters in (4) and (5) de�ne important properties of the time variation of 
t, and might

convey relevant information which can be used in the study and interpretation of the patterns of

the variables of interest in the period under analysis.

The main feature in which the stochastic multivariate volatility model described by (3)-(5)

departs from the time-varying volatility frameworks studied by Cogley and Sargent (2005) and

Primiceri (2005) is in the introduction of the parameter d, which measure the intertemporal per-

sistence in the process for 
t: Because of the random walk assumption on the time variation of the

non-zero and non-one elements of Ct; and the log of the diagonal elements of �t, the standard model

employed in the literature implies a value of d equal to one.2 Although it is true that Primiceri

(2005) discusses an extension of the baseline framework that allows the coe¢ cients to follow a more

general AR process, in practice the vast majority of the empirical work employing time-varying

VARs adopts the assumptions of a random walk. In the approach proposed in this paper, the val-

ued of d is estimated together with the other parameters of the model, and can therefore take values

2This statement can be veri�ed by using the Taylor expansion of the expression for 
t implied by the laws of
motion of the relevant elements of Ct and �t: In addition, I checked that this result holds numerically by generating
an history 
T using the laws of motion adopted in Primiceri (2005), and then estimating the model described by (4)
and (5). The draws of d that I obtained from this procedure were all included between 0.99 and 1. I repeated the
exercise using di¤erent histories 
T generated under alternative assumptions on the parameters of the laws of motion
for the relevant elements of Ct and the log of the diagonal elements of �t; and I obtained the same result.
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that are lower than one. I believe that this is an important feature of the framework used here,

because it allows the stochastic covariance matrix 
t to re�ect temporary shifts in the reduced-form

variances and covariances. This property might be very important in VAR models that incorporate

one or more variables exhibiting periods of higher volatility followed by others of relative more

stability, because in this case the framework proposed in this paper would be able to capture and

describe the patterns of interest in a better way. The empirical application described in section 4

is an example of such an environment. Indeed, the history of oil prices is clearly characterized by

alternation of periods of higher and lower volatility. For this reason, I think that the possibility

to account for temporary �uctuations in the elements of 
t makes the approach proposed in this

paper more adapt to the analysis of the impact of oil price changes on the US economy than the

standard procedure used in the literature.

A second merit of the model described by (4) and (5) lies in the information provided by the

matrix G. As previously discussed, the inverse of the matrix G gives a measure of the intertemporal

dependence between the elements of 
t: In addition to being useful for the analysis and interpreta-

tion of the results, the information delivered by G can also be very important for the choice of the

identi�cation assumptions that need to be implemented in order to obtain the histories AT from the

estimated histories 
T : A large fraction of the studies employing time-varying VAR models make

use of ordering restrictions to identify the structural framework of interest for the analysis. As an

example, in the environment examined in the empirical section of the paper, the vast majority of

previous works adopt this type of restrictions, and the common procedure is to assume that oil

prices are determined before all the domestic variables included in the VAR model.3 I believe that

the matrix G can o¤er relevant information on whether a given restriction on the order in which the

variables are determined is supported or opposed by the data. For instance, it would be di¢ cult

to argue that a given variable is exogenous relative to the others if the elements of G�1 suggest

that the variance of its reduced-form innovations is highly related to the covariances with the other

innovations. On the other hand, near zero values of the o¤-diagonal elements of G�1 imply that

the variance of the reduced-form innovations to a given variable depends only on its past values,

which would support the assumption that this variable is determined before the others. This same

type of reasoning can also be employed to decide whether ordering assumptions are suitable to

3See section 4 for a more detailed discussion.
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identify the model of interest in the environment under study, or whether alternative approaches

(sign restrictions, long run restrictions,...) are necessary.

Another interesting property of the stochastic volatility framework proposed in this paper is

that it de�nes a clear and intertemporal relationship between the elements of At and, for this reason,

it promotes the study of the intertemporal changes in the parameters of the model and of their

impact on the relationships between the variables of interest. For instance, a natural measure that

could be examined is the distribution of the changes in the response of the variables of interest to

some selected shock(s), and the correlations of these changes over time. In addition, this framework

also emphasizes the determinants of the time relationships between the elements of At, and the

reasons why these might have changed over time. Given the orthogonal matrices Pt and Pt�1; the

intertemporal dependence between the elements of 
t de�nes a relationship between the elements

of At and At�1; which can be used in the analysis. The matrix G can also be interpreted as

determining mean reversion properties of the covariance matrix 
t; which will also be re�ected on

the matrices At: Notice that since both G and d are constant over time, this framework implies that

the causal relationships between elements of 
t do not change across periods. This will generally

not be the case for the intertemporal dependence between the elements of At, because this will also

be determined by the rotation matrices used to de�ne At at each t, and by the restrictions imposed

to identify the histories AT . I believe that in a number of economic environments it might be very

interesting to investigate how the relationships between elements of At and At�1 have evolved over

time, and the role that the di¤erent parameters of the model played in these changes.

3 Empirical Implementation

In this section, I provide further information about the implementation of the approach proposed

in this paper. The procedure is developed in two di¤erent stages. In the �rst one, I employ a

MCMC algorithm to estimate the model described by (1) and (3)-(5) and obtain draws from the

posterior distribution of interest: p
�
BT ;
T ; Q; V j Y T

�
: In the second, I use these draws to de�ne

possible histories AT by employing (8) given rotation matrices Pt for each draw and each time t.

The second stage of the analysis is quite standard in the literature, and therefore it will be discussed

only brie�y here. The �rst stage, on the other hand, includes the main methodological innovations
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of this work, and for this reason it will be illustrated in more detail. A more technical description

of the procedure is given in Appendix 1; in this section I will explain the assumptions on the prior

distributions for the parameters of interest and the derivation of the relevant posteriors.

The set of parameters of interest can be separated into two blocks, one including the history of

the vector of reduced form coe¢ cients Bt and its hyperparameter Q, and the second incorporating

the history of the covariance matrix 
t and the parameters in V . The prior distributions are

assumed to be such that:

p
�
BT ;
T ; Q; V

�
= p

�
BT
�
p (Q) p

�

T j V

�
p (V )

The choice of these distributions follows the literature. For the �rst block, the assumptions are

as in Cogley and Sargent (2001, 2005) and Primiceri (2005). In more detail, a normal prior is

chosen for B0, and an inverse-Wishart for Q.4 The conditional posteriors p
�
BT j 
T ; Q; V; Y T

�
and p

�
Q j BT ;
T ; V; Y T

�
can be derived using these prior distributions and the assumptions on

the time-variation of Bt: The conditional posterior of BT is a product of Gaussian densities, and a

draw from it can be obtained using a simulation smoother as the one described in Carter and Khon

(1994). The matrix Q has an inverse-Wishart conditional posterior, and its value can be drawn

directly from this distribution.

For the second block of parameters, I follow Rinnergschwentner et al. (2011). The prior for

the inverse covariance matrices is de�ned as a Wishart distribution, given the parameters in V

and consistently with (4). The elements of V are assumed to have independent prior distributions.

For G, the prior is de�ned on G�1, and it is assumed to be a Wishart distribution. For k and d,

uniform distributions are chosen. Given these assumptions on the prior distributions and the time

variation of 
t described by (4)-(5), the analytical formulas for the conditional posteriors can be

obtained, although they are complicated expressions and do not correspond to known distributions

(see Rinnergschwentner et al., 2011, for the complete derivation).

The MCMC algorithm works by sampling values from the conditional posterior distributions

of the parameters of interest. After an initial burn in period, subsequent draws will correspond

to draws from the joint posterior p
�
BT ;
T ; Q; V j Y T

�
: In the speci�c setup used in this paper,

4The "virtual" prior for BT can then be obtained using the prior for B0 and the assumption on the time variation
of Bt; see Cogley and Sargent (2001).
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the approach that needs to be employed to sample from the conditional posteriors is di¤erent for

the �rst and second block of parameters. For BT and Q; the conditional posteriors are well known

distributions. This implies that we can draw directly from them, using a Gibbs sampler type of

algorithm. On the other hand, the form of the conditional posteriors for 
T and the parameters

in V is non-standard. For this reason, a Metropolis-Hasting algorithm is necessary to obtain

draws from these posteriors. This algorithm works by obtaining proposed draws of the variables of

interest from a known distribution, and by accepting or rejecting these proposed draws based on an

acceptance rate computed using the expressions for the conditional posteriors. This procedure is

more involved than the Gibbs sampler, and typically requires longer burn-in periods for the draws

to converge to the joint posterior of interest.5 However, in the exercise that I will present in the

next section, I found that the e¢ ciency of the MCMC procedure is greatly improved if J iterations

of the Metropolis-Hasting step are performed for each draw of BT and Q obtained from the Gibbs

sampler step.6

The draws of
�
BT ;
T ; Q; V

�
obtained from the MCMC algorithm, can �nally be used to gen-

erate a set of possible histories AT : The approach that I employ is the following. First, I ran-

domly draw one history 
T (i) from the set obtained from the MCMC algorithm. Then, I compute

the Cholesky decomposition of these covariance matrices at each point in time: eC(i)t eC(i)0
t = 


(i)
t ;

i = 1; :::; I. Finally, for each t I draw an orthogonal matrix Pt, and set: A
(i)
t = eC(i)t P (i)t :7 The value

A
(i)
t can be kept or discarded based on the speci�c assumptions relative to the structural model of

interest to the researcher. The algorithm can be stopped once the desired number of histories AT

is reached.

4 The time-varying impact of oil prices on the US economy

In this section, I use the time-varying model proposed in this work to study the time changes in

the impact of oil prices on the US economy. The economic literature has long been interested in

5Actually, the Gibbs sampler is a special case of the Metropolis-Hasting algorithm, in which the draws are generated
directly from the known conditional distributions.

6This approach is justi�ed by the fact that the Metropolis-Hasting algorithm can be performed one block or one
variable at the time. See Chib and Greenberg (1995) and Hasting (1970) for a discussion.

7The orthogonal matrix Pt can be obtained by drawing an arbitrary n � n independent standard normal matrix
X, computing the QR decomposition of X, and setting Pt = Q: See Rubio-Ramirez et al. (2010) for a discussion of
this approach.
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the analysis of the e¤ects of oil price shocks on a number of economic variables. Many previous

contributions in this area have made use of VAR models to study the relationships between oil

prices and a set of variables of interest, and to investigate possible changes in these relationships

over time. For instance, Bernanke, Gertler and Watson (1997, 2004), Blanchard and Gali (2007),

Hamilton and Herrera (2004), Herrera and Pesavento (2009) and Kilian and Lewis (2009) use VAR

frameworks to discuss the role of monetary policy in the downturns following the large oil price

shocks of the postwar period, and to investigate the extent to which the Fed�s response to changes in

oil prices contributed to their allegedly reduced impact on several economic variables since the mid

1980s. Lippi and Nobili (2008) use a structural VAR with constant parameters to study the e¤ects

of oil supply and demand, as well as shocks in the world economy, on US real activity and in�ation,

while Baumeister and Peersman (2008) employ a time-varying VAR approach to perform a similar

analysis. Finally, Clark and Terry (2010) implement the Cogley-Sargent-Primiceri approach to

examine the pass-through of energy price in�ation to US core in�ation.

Because an extensive analysis of the time-varying impact of oil prices of a number of economic

variables has already been provided in the mentioned literature, this section will mainly investigate

the additional information that can be obtained using the approach proposed in this paper. More

speci�cally, I will focus on the study the estimated values of the parameter d and matrix G, and

I will discuss the intertemporal relationships between the parameters of a structural VAR model

identi�ed using restrictions on the sign of the impact of selected shocks on the endogenous variables

of the model.

The VAR model includes 4 variables: oil price changes, core in�ation, a measure of US real

activity, and the nominal interest rate.8 The data is quarterly, and the estimation period goes from

1970 � I to 2010 � IV (data from 1957 � II to 1969 � IV is used to compute the parameters of

the prior distribution required for the Bayesian estimation procedure). The VAR model is speci�ed

with 3 lags of the variables of interest. This is a longer number of lags compared to those used in

most of the previous literature (for instance, Lippi and Nobili, 2008 and Clark and Terry, 2010),

and it was chosen to account for the fact that, as pointed out by Hamilton and Herrera (2004),

8The data used in this empirical application is as follows. Oil price changes (or oil price in�ation) are measured as
the changes in the nominal price of oil, expressed in log terms. The nominal price of oil is the West Texas Intermediate
spot oil price. Core in�ation is the annualized di¤erence in log core CPI, where core CPI is the �CPI for all urban
consumers: all items less energy products�. The measure of real activity is the growth rate, computed as the log
di¤erence in real GDP. Finally, the last variable included in the VAR is the annualized Federal funds rate.
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important e¤ects of oil prices on the US economy might happen at longer lags.

The prior distributions were speci�ed as described in the previous section. The parameters of

these distributions were chosen as follows. In the normal prior for B0, the mean was set as the

OLS estimate of a model with constant parameters obtained using a training sample that includes

the available data up to 1969 � IV . The variance was set as the variance of this OLS estimate,

multiplied by 4 in order to increase the dispersion of the prior and make it less informative. The

inverse Wishart prior distribution for Q was assumed to have kQ0 � (nB + 1) degrees of freedom,

and scale parameter equal to the variance of the OLS estimate for B0 multiplied by kQ0�(nB + 1) :

The value of kQ0 was set equal to (0:005)
2, and nB is the length of the vector Bt, i.e. n (1 + np)�1:

For 
T , the initial value 
0 was obtained from the same OLS estimates of a constant model used

for B0: For the other parameters in the Wishart distribution of 
�1t , the initial values were set

as: G0 = I; k0 = n + 1; d0 = 0:5: Finally, the parameters of the proposal distributions in the

Metropolis-Hasting procedure were assumed to be: �2G�1 = 0:005
2; �2k = 2:5

2; �2d = 0:01
2 (see the

Appendix for more details about the Metropolis-Hasting procedure).

I performed 350; 000 iterations of the algorithm, discarding the �rst 50; 000 as burn-in period. I

saved one every 300 of the remaining iterations in order to break the autocorrelation of the draws.

The total number of draws of
�
BT ;
T ; Q;G; k; d

�
that I kept was thus of 1; 000. I selected a value

of J = 10, meaning that 10 iterations of the Metropolis-Hasting procedure for
�

T ; G; k; d

�
were

made for each draw of
�
BT ; Q

�
obtained from the Gibbs sampler. The acceptance rates in the

Metropolis-Hasting procedure were all between 30% and 50%, with the exception of the covariance

matrices 
t for which the rates were lower. However, the autocorrelations between draws of 
t

were also very small, signaling that the lower acceptance rates were not an issue for the convergence

of the algorithm. I checked the 20th order autocorrelations across draws for most of the estimated

parameters and, with some few exceptions, the values were all very small. In general, the algorithm

seems to perform well and to converged quickly (after about 8; 000 iterations).

Table 1 reports the medians, together with the 16th and 84th percentile values, of k; d; and the

diagonal elements of G�1 in the retained 1; 000 draws. The table also shows the acceptance rates

of the Metropolis-Hasting algorithm for these parameters. It can be noticed that the value of d

implies some relevant persistence in the intertemporal relationships between the elements of 
t:

The diagonal elements of G�1, on the other hand, provide information about the relationship of
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each reduced-form variance at time t with its own value at t� 1. The variables in the VAR are in

the order: oil price changes, core in�ation, growth rate, Federal funds rate. Thus, table 1 shows

that the volatility of the reduced-form innovations to oil price changes is much more dependent on

its own past values than the volatilities of the other reduced-form innovations. Table 2 provides

an even better picture of the intertemporal relationships between the variances and covariances

in 
t by reporting the median values of the elements of G�1: This table suggests that, apart for

oil price changes, the o¤ diagonal dependence between the innovations to the VAR variables is

actually quite small. Two important observations can be made from these results. First, even if

it is true that the value of d is high, it is still very far from one, the value implied by the Cogley-

Sargent-Primiceri approach. This implies that in the environment under study the time-variation

of 
t is better described by shifts that are quite persistent, but not permanent. This result was

somehow expected since, as mentioned above, the histories of some of the endogenous variables in

the VAR model, in particular oil prices, are characterized by periods of higher volatility followed

by more stable times, and these patterns cannot be captured by a random walk process. The

second observation refers to the data reported in table 2. This table clearly shows that there is

some intertemporal dependence between the volatilities and covariances of the innovations to oil

in�ation and US core in�ation and growth rate. These relationships suggests that at least some

component of oil price changes might actually be endogenous to the US economy and that, for this

reason, the ordering restrictions used in most of the previous studies cited above, might actually

be inappropriate in this environment.

The previous work by Clark and Terry (2010) is useful to compare the patterns of the elements

of the reduced form covariance matrix emerging from the approach proposed in this paper to those

obtained using the Cogley-Sargent-Primiceri procedure. The data employed in this work is similar

to the data used by Clark and Terry (2010), except for the measure of real activity for which I

use the growth rate while they adopt alternative variables but report their results only for the

unemployment gap. Figure 1 reproduces the time-varying standard deviations of the reduced-form

residuals. It can be veri�ed that the patterns in these �gures are similar those reported by Clark

and Terry (2010) (see �gure 4 in this work), except for the fact that the standard deviations of the

innovations to oil in�ation and core in�ation seem to be more volatile under the approach adopted

here. This di¤erence is most probably a consequence of the presence of the persistence parameter
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d, and it was somehow expected given that the estimated value of this parameters is lower than

one.

Because of the previously discussed results about the endogeneity of oil in�ation, which emerged

from the estimated posterior distribution of the matrix G; I decided to perform the rest of the

analysis on a structural VAR model identi�ed using sign restrictions. I considered three types of

shocks. The �rst two types of shocks are US domestic shocks. More speci�cally US demand shocks

are assumed to have a positive impact on the growth rate and both oil in�ation and core in�ation,

while US supply shocks are assumed to have a positive e¤ect on the growth rate and oil in�ation,

but a negative one on core in�ation. These shocks will be denoted as "d;t and "s;t respectively. The

third type of shocks are oil shocks, which are assumed to have a positive impact on oil in�ation,

and a negative one on the growth rate. These shocks will be denoted as "o;t: Following Lippi and

Nobili (2008), the sign restrictions that I impose are applied at impact only. From the 1; 000 draws

of
�
BT ;
T ; Q;G; k; d

�
that I retained from the MCMC procedure, I originated 5; 000 di¤erent

histories AT satisfying the restrictions that I just described.

The oil price shocks that I identify here can be interpreted as oil supply shocks, but in fact

they are all type of disturbances that increase oil in�ation and have a negative impact on US real

activity. Thus, an increase in the world demand of oil which increases oil prices in a context in

which the US are experiencing a downfall in the growth rate of real GDP, would be interpreted as

an oil price shock in this framework. Notice that no assumptions are made on the response of core

in�ation to oil price shocks, and on the impact of all types of shocks on the Federal funds rate. The

patterns of these elements of At will be the focus of the empirical study, and for this reason their

behavior must be left unrestricted in order to prevent the conclusions of the analysis from being

dictated by the chosen assumptions.

Using the set of 5; 000 selected histories AT , I exploit the features of the model employed in

this paper and I focus on the analysis of the intertemporal relationships between the responses of

the VAR variables to the di¤erent shocks. In addition, I investigate three questions that have been

previously examined in the literature. The �rst one refers to the decrease in pass-through of oil

in�ation to US core in�ation, which has been studied by Clark and Terry (2010). Can the approach

of this paper con�rm this decrease in pass-through? The second and third questions are related

to the �ndings of Kilian and Lewis (2009). Does the approach adopted here corroborate the lack
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of evidence of a systematic response of monetary policy after 1987, and the �nding of a di¤erent

policy response to di¤erent sources of oil price increases prior to this date? In studying these three

questions, I will focus in particular on the measures and exercises that are more exemplary of the

estimation procedure adopted in this paper.

The preliminary results of the analysis are reported in �gures 2 � 8. The �rst exercise that I

performed was in the direction of looking at the response of the endogenous variables to the shocks

of interest. Figure 2 reports the impact of "o;t on core in�ation (panel 1) as well as the fraction

of histories in which this impact is positive, i.e. the fraction of histories in which oil price shocks

induce an increase in core in�ation (panel 2). This �gure shows that the number of histories in

which the response of core in�ation to "o;t is positive changes signi�cantly over the period under

study. This number is very high for the large oil price increases of the early 1970s, and even if it

decreases for the later years, it still remains quite high for the entire sample period. The magnitude

of the response of core in�ation to oil price shocks is reported in panel 1, and exhibits a similar

pattern. Figure 3 compares the results emerging from the sign restrictions approach adopted in

this study with those obtained using a Cholesky decomposition of the draws of 
T obtained from

the MCMC algorithm. In particular, the �gure reports the changes in the impact of oil price shocks

on oil in�ation and core in�ation, and their correlation over time. The model identi�ed using sign

restrictions implies a smaller role of oil price shocks in the changes in oil in�ation, and smaller

variations in the pass-through to core in�ation. In all, �gures 2 and 3 suggest that, even if the

impact of oil price shocks on core in�ation became more moderate after the mid 1980s, under the

assumptions adopted in this paper the in�uence of these shocks is more limited during the entire

period under analysis relative to the results of previous works using the Cholesky identi�cation

assumption (as for instance Clark and Terry, 2010).

Figure 4 shows the response of oil in�ation and the Federal funds rate to "o;t, "d;t and "s;t. Figure

5 reports the same information for all the shocks together, so that the timing of the response to

the di¤erent shocks can be compared. These �gures clearly show how the di¤erent types of shocks

contributed to oil in�ation over time. In particular, the model suggests that US domestic shocks,

in particular demand shocks, had an important impact on oil in�ation not only in recent years, but

also in the 1970s and 1980s. In addition, the bottom panels show that the contemporaneous impact

of di¤erent types of shocks on the Fed funds rate is very di¤erent. Most notably, in the early 1980s
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the overall response of the Federal funds rate is a composite of positive and negative reactions

to the domestic and oil price shocks. Figures 6 and 7 are similar to �gures 4 and 5 but report

information about the changes in the contemporaneous response to the di¤erent shocks instead of

the levels. Two more observations can be made from these �gures. The �rst one is that changes

the impact of shocks on oil in�ation seem to revert back quickly after they happen. Indeed, most of

the changes in the top panels of �gures 6 and 7 exhibit subsequent changes of the same magnitude

and opposite direction shortly afterwards. The second observation refers to the impact of shocks

on the Federal funds rate in the early 1980s. This model suggests that the timing of the response

to di¤erent shocks was not contemporaneous, and that an initial reaction to a demand shock was

followed by a positive response to an oil price shock.

Finally, �gures 8 focuses on the intertemporal and contemporaneous correlations between the

response of the variables to the di¤erent types of shocks. The correlations between the response

of oil in�ation and the Fed funds rate to all types of shocks is high and positive in periods that

correspond to speci�c events in the oil market, namely large increases in the price of oil. The

correlations between the response of core in�ation and the Fed funds rate, on the other hand,

appear to be less linked to individual events and, with the exception of the recent years, seem to

be related to the pattern of the business cycle. In all cases, the contemporaneous relationships

between the responses of oil or core in�ation and the Fed funds rate are similar for all types of

shocks, which can be interpreted as implying that the monetary authorities do not react to the

shocks themselves, but rather to their e¤ects on the variables of interest. Finally, it is interesting to

compare the right-hand panels of �gure 8 with the left-hand panels. The intertemporal correlations

between the response of oil or core in�ation and the Fed funds rate to shocks are clearly much

weaker than the contemporaneous ones. However, while for core in�ation there seems to be a

pattern in these correlations, which exhibits a similar behavior compared to the contemporaneous

ones, this in not the case for oil in�ation. Thus, this result shows a more persistent response of

the Fed funds to the impact of shocks on core in�ation rather than to their e¤ects on oil in�ation.

This statement is con�rmed in �gure 9 which reports the intertemporal correlations in the response

of the endogenous variables to the di¤erent shocks. For core in�ation, this correlation is lower for

oil shocks relative to the domestic shocks, and the same happens for the Federal funds rate. This

implies that these two variables seem to react to oil shocks in a similar way, and in a way that is
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di¤erent from the response to the other types of shocks identi�ed in this exercise. This conclusion

could be interpreted as supporting the idea that in the sample period under analysis the policy

variable reacted to the e¤ects of oil shocks on core in�ation rather than to their direct impact on

oil in�ation.

5 Conclusions

In this paper, I proposed a new approach for the estimation of time-varying VAR frameworks. This

technique is developed on assumptions about the time variation of the parameters which refer to the

coe¢ cients and covariance matrix of the reduced-form VAR corresponding to the set of structural

VARs of interest. I provided a description of the MCMC procedure that can be implemented to

generate draws from the joint posterior distribution of the parameters of the reduced-form model,

and I suggested how possible histories of the structural VAR parameters can subsequently be

obtained from these draws.

I applied this approach to the analysis of the impact of oil prices on the US economy focusing,

in particular, on the information that can be obtained from the parameters of the model and the

assumptions on their time variation. From an empirical point of view, the approach proposed in

this paper can certainly be implemented in a number of other environments. As discussed in the

main text, in frameworks that include variables characterized by periods of high and low volatility

the time variation of the parameters of the model would be better described and characterized

using the approach developed in this paper, rather than the standard procedure adopted in the

literature. In all, I think that this paper o¤ers a framework that can be employed to obtain relevant

information and insights in many time-varying VAR models, and that we could bene�t from its

further development and application in the future.
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Appendix 1

MCMC algorithm to obtain draws from p
�
BT ;
T ; V j yT

�
The Markov Chain Monte Carlo Algorithm used in this work is a combination of the technique

developed in Cogley and Sargent (2001) for VAR models with time-varying coe¢ cients, and the

technique described in Rinnergschwentner et al. (2011) for multivariate models with stochastic

volatility. More speci�cally, steps 1�2 are taken from Cogley and Sargent (2001), while steps 3�6

follow Rinnergschwentner et al. (2011). This appendix provides a schematic descriptions of the

di¤erent steps of the algorithm; for a more detailed discussion see the mentioned works.

Step 1 - Drawing the history of coe¢ cients BT

Conditional on 
T and V , the VAR is linear and has Gaussian innovations with known variance.

The density p
�
BT j yT ;
T ; V

�
can be factored as:

p
�
BT j yT ;
T ; V

�
= p

�
BT j yT ;
T ; V

� T�1Y
t=1

p
�
Bt j Bt+1; yt;
T ; V

�
where

Bt j Bt+1; Y t;
T ; V � N
�
Btjt+1; Rtjt+1

�
Btjt+1 = E

�
Bt j Bt+1; yt;
T ; V

�
R
tjt+1 = V ar

�
Bt j Bt+1; yt;
T ; V

�
For each t, Btjt+1 and Rtjt+1 can be drawn using the forward Kalman �lter and the backward

recursion explained next. Given an initial value for the vector of coe¢ cients and for the variance

matrix, the Kalman �lter develops a recursion giving values of Btjt�1 and Rtjt�1 , and when new

information is obtained, Btjt and Rtjt : The last elements of this recursion are BT jT and RT jT : At

this point, the draw of BT jT and the output of the �lter are used for the �rst step of the backward

algorithm, which provides values of Bt�tjt and Rt�1jt for any value of t until 0.
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More speci�cally, our model is:

yt = X
0
tBt + ut

Bt = Bt�1 + vt

where the assumption on the measurement error and transition shock is:

264ut
vt

375 � i:i:d: N
0B@
2640
0

375 ;
264
t 0

0 Q

375
1CA (9)

Let:

Btjs = E
�
Bt j yS ; XS ;
S ; Q

�
Rtjs = V ar

�
Bt j yS ; XS ;
S ; Q

�
Then, given B0j0 and R0j0, a standard Kalman �lter delivers:

Btjt�1 = Bt�1jt�1

Rtjt�1 = Rt�1jt�1 +Q

Kt = Rtjt�1X
0
t

�
XtRtjt�1X

0
t +
t

��1
Btjt = Btjt�1 +Kt

�
yt �XtBtjt�1

�
Rtjt = Rtjt�1 �KtXtRtjt�1

From this recursion, we can obtain the values of BT jT and RT jT , which are the mean and variance

of the normal distribution used to make a draw for BT : The draw of BT and the output of the �lter

can then be used for the �rst step of the backward recursion. This recursion will provide BT�1jT

and RT�1jT , which can then be used to make a draw of BT�1: The backward recursion continues

until time zero. For a generic time t, the updating formulas for the backward recursion are:

Btjt+1 = Btjt +RtjtR
�1
t+1jt

�
Bt+1 �Btjt

�
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Rtjt+1 = Rtjt �RtjtR�1t+1jtRtjt

Step 2 - Drawing the hyperparameter Q

Given that the vector of innovations to the reduced form vector of coe¢ cients Bt is assumed to

be uncorrelated with the reduced form innovations ut; the distribution for Q is independent of the

distribution for 
t: In addition, given a draw of the history BT ; the innovations vt are observable

and they can be used to de�ne the parameters of the posterior inverse Wishart distribution for Q.

A value of Q can then be drawn from this distribution. In more detail, if the prior for Q is an

inverse Wishart distribution with scale parameter Q0 and kQ0 � (nB + 1) degrees of freedom, then

the posterior will be:

Q j BT ; yT � IWish
�
k eQ; eQ�

where:

k eQ = kQ0 � (nB + 1) + TeQ = Q0 + TX
t=1

vtv
0
t

Step 3 - Drawing the history of reduced form variance-covariance matrix 
T

Given the draw of BT obtained in the previous step, we have:

�
yt �X 0

tBt
�
= ut

where E (ut j 
t) = N (0;
t) :

The value of 
�1t can be sampled using an independence chain Metropolis Hasting (MH) step, in

which the proposal density is Wish
�
k; eSt�1� with eSt�1 = �S�1t�1 + utu0t��1 : The acceptance ratio

is:

AR =

���(
�t )�1���(1�kd)=2�����
[m�1]t

��1����(1�kd)=2
�

exp
�
�1
2 tr

�
S�1t (
�t ) 


�1
t+1

��
exp

�
�1
2 tr

�
S�1t

�


[m�1]
t

�

�1t+1

��
where:

S�1t (
�t ) = k
�
G1=20

��1
(
�t )

d
�
G1=2

��1
S�1t

�


[m�1]
t

�
= k

�
G1=2

0
��1 �



[m�1]
t

�d �
G1=2

��1
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Here, 
[m�1]t denotes the current state of the Markov chain, while 
�t is the new proposed value.

The last element of the history, 
�1T ; can be drawn directly from the Wishart distribution:

Wish
�
k + 1;

�
S�1T�1 + uTu

0
T

��1�

Step 4 - Drawing hyperparameters: G�1

A random walk proposal is used:

�
G�1

��
=
�
G�1

�[m�1]
+W (10)

where:

W =

0BBBB@
w11 � � � w1p
...

. . .
...

wp1 � � � wpp

1CCCCA
�
w11 w12 � � � wpp

�0
� N

�
0; �2G�1I

�
The matrix G�1 is assumed to follow a symmetric matrix variate normal distribution, and each of its

p (p+ 1) =2 di¤erent elements can be drawn from a p (p+ 1) =2�dimensional normal distribution.

The acceptance ratio can be written as:

AR =
jG�j�(k0+kT�p�1)=2��G[m�1]���(k0+kT�p�1)=2 �

exp
�
�1
2 tr

�
S�10 (G�)�1

��
exp

�
�1
2 tr

�
S�10

�
G[m�1]

��1�� �
exp

�
�1
2 tr

�
TP
t=1
S�1t�1 (G

�) 
�1t

��
exp

�
�1
2 tr

�
TP
t=1
S�1t�1

�
G[m�1]

�

�1t

��

where:

S�1t�1 (G
�) = k

�
(G�)1=2

0
��1


dt�1

�
(G�)1=2

��1
S�1t�1

�
G[m�1]

�
= k

�
(G�)1=2

0
��1


dt�1

�
(G�)1=2

��1
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Step 5 - Drawing hyperparameters: k

Again, a random walk proposal is used for k :

k� = k[m�1] + �k (11)

�k � N
�
0; �2k

�
and the acceptance ratio can be written as:

AR =

0BB@
��k�G�1���k�=2

2pk�=2
pQ
i=1
�
�
k�+1�i

2

�
1CCA
T

�

0BB@
��k[m�1]G�1���k[m�1]=2

2pk
[m�1]=2

pQ
i=1
�
�
k[m�1]+1�i

2

�
1CCA
�T

�

TQ
t=1

��
�1t�1���dk�=2 ��
�1t ��k�=2
TQ
t=1

��
�1t�1���dk[m�1]=2 ��
�1t ��k[m�1]=2 �
TQ
t=1
exp

�
�1
2 tr

�
S�1t�1 (k

�) 
�1t
��

TQ
t=1
exp

�
�1
2 tr

�
S�1t�1

�
k[m�1]

�

�1t

��
with

S�1t�1 (v
�) = v�

�
G1=2

0
��1


dt�1

�
G1=2

��1
S�1t�1 (v

�) = v�
�
G1=2

0
��1


dt�1

�
G1=2

��1

Step 6 - Drawing hyperparameters: d

Finally, a random walk proposal is adopted for d as well:

d� = d[m�1] + �d (12)

�d � N
�
0; �2d

�
the acceptance ratio is:

AR =

TQ
t=1
j
t�1jkd

�=2

TQ
t=1
j
t�1jkd

[m�1]=2

�

TQ
t=1
exp

�
�1
2 tr

�
S�1t�1 (d

�) 
�1t
��

TQ
t=1
exp

�
�1
2 tr

�
S�1t�1

�
d[m�1]

�

�1t

��
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and

S�1t�1 (d
�) = v

�
G1=2

0
��1


d
�
t�1

�
G1=2

��1
S�1t�1

�
d[m�1]

�
= v

�
G1=2

0
��1


d
[m�1]
t�1

�
G1=2

��1

In practice, I found that the algorithm is much more e¢ cient in terms of convergence if J steps of

theMH procedure are performed for each draw of BT and Q. Thus, the sampler can be summarized

as follows:

1. Initialize 
T and Q.

2. Sample BT from p
�
BT j yT ;
T ; Q;G; k; d

�
= p

�
BT j yT ;
T ; Q

�
:

3. Sample Q from p(Q j yT ; BT ;
T ; G; k; d) = p(Q j yT ; BT ):

4. Sample 
�1T fromWish
�
k + 1;

�
S�1T�1 + uTu

0
T

��1�
: Then, sample each proposed value (
�t )

�1

fromWish
�
k; eSt�1� : If the proposed value is not accepted, set the draw of 
t equal to 
[m�1]t :

5. Sample the proposed value G� from the random walk distribution (10); if G� is not accepted,

set the draw of G equal to G[m�1]; i.e. the previous value of the algorithm.

6. Sample the proposed value k� from the random walk distribution (11); if k� is not accepted,

set the draw of k equal to k[m�1]:

7. Sample the proposed value d� from the random walk distribution (12); if d� is not accepted,

set the draw of d equal to d[m�1]:

8. Repeat 4� 7 for J times;

9. Go back to #2
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Figures

Figure 1 - Standard deviations of the reduced-form innovations

Note: Median value and 16th and 84th percentile bands of the standard deviations of the reduced-form innovations

computed from the draws of 
T obtained from the MCMC procedure described in the text.

Figure 2 - Response of core in�ation to oil price shocks

Note: Median response of core in�ation to oil price shocks, together with the 16th and 84th percentile bands (panel

1) and number of histories AT in which this response is positive (panel 2).
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Figure 3 - Change response of oil in�ation and core in�ation to oil price shocks

Note: Median response of oil in�ation and core in�ation to oil price shocks, together with the 16th and 84th percentile

bands, and correlations between these responses. The left panel reports the results for the model identi�ed using sign

restrictions, while the right panel reports the results for the model identi�ed using the Cholesky decomposition.

Figure 4 - Response of oil in�ation and Fed funds to shocks

Note: The top panel reports the median response of oil in�ation to oil price shocks, US demand shocks, and US

supply shocks, together with the 16th and 84th percentile bands. The bottom panel reports the median response

of the Fed funds to oil price shocks, US demand shocks, and US supply shocks, together with the 16th and 84th

percentile bands.
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Figure 5 - Response of oil in�ation and Fed funds to shocks

Note: The top panel reports the median response of oil in�ation to oil price shocks (continuous line), US demand

shocks (dashed line), and US supply shocks (dotted line). The bottom panel reports the median response of the Fed

funds to oil price shocks (continuous line), US demand shocks (dashed line), and US supply shocks (dotted line). For

clarity of exposition, the 16th and 84th percentile bands are not reported.

Figure 6 - Changes in the response of oil in�ation and Fed funds to shocks

Note: The top panel reports the median change in the response of oil in�ation to oil price shocks, US demand shocks,

and US supply shocks, together with the 16th and 84th percentile bands. The bottom panel reports the median

change in the response of the Fed funds to oil price shocks, US demand shocks, and US supply shocks, together with

the 16th and 84th percentile bands.
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Figure 7 - Changes in the response of oil in�ation and Fed funds to shocks

Note: The top panel reports the median change in the response of oil in�ation to oil price shocks (continuous line),

US demand shocks (dashed line), and US supply shocks (dotted line). The bottom panel reports the median change

in the response of the Fed funds to oil price shocks (continuous line), US demand shocks (dashed line), and US supply

shocks (dotted line). For clarity of exposition, the 16th and 84th percentile bands are not reported.

Figure 8 - Intertemporal correlations selected responses to oil price shocks

Note: The left-hand panel reports the intertemporal correlations between the impact of oil price shocks (continuous

line), US demand shocks (dashed line), and US supply shocks (dotted line) on oil in�ation and core in�ation at time

t� 1 and the Federal funds rate at time t. The right-hand panel reports the contemporaneous correlations between
the same variables.
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Figure 9 - Intertemporal correlations responses to shocks

Note: Intertemporal correlations in the response of the endogenous variables (oil in�ation, core in�ation, growth

rate, and Federal funds rate) to the di¤erent shocks (oil, continuous line; US demand, dashed line; US supply, dotted

line).
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Tables

Table 1 - Distribution of selected parameters in the retained draws

16th perc. median 84th perc. accept. rate

g11 2.881 3.340 3.865 0.368

g22 0.508 0.574 0.655 0.368

g33 0.425 0.499 0.574 0.368

g44 0.446 0.511 0.587 0.368

k 6.766 7.709 9.108 0.330

d 0.771 0.810 0.845 0.467

Table 2 - Median values of G�1

oil in�. core in�. growth rate Fed funds

oil in�. 3.340 0.475 0.251 -0.001

core in�. 0.475 0.574 0.004 -0.007

growth rate 0.251 0.004 0.499 0.010

Fed funds -0.001 -0.007 0.010 0.511
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