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Abstract

We consider a small scale DSGE with trend in�ation, where the price disper-

sion is a non-observable state variable. Hence, the model lacks of a �nite VAR

representation and the VAR analysis based on this model may su¤er of the trun-

cation bias problem. First, we use the DSGE model as data-generation process

to create arti�cial pseudo-data. Second, using these pseudo-data, we employ a

sign restrictions VAR to evaluate the e¤ects of a monetary policy shock. The true

generation process implies a strong response of output after a monetary shock,

instead the VAR shows monetary neutrality. We conjecture that this discrepancy

is due to a truncation bias which a¤ects the statistical representation of our true

data generation process.
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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models are the main tool of macroeco-

nomic policy analysis (Smets andWouters (2003, 2004, 2007), Del Negro and Schorfheide

(2004), Adolfson et al. (2008) and Christiano et al. (2005)).

In recent years there have been major advances in estimation methodology provided

with various speci�cations of these models that are able to compete, in terms of data

�t and predictability with more standard time-series models, such as vector autoregres-

sions. For example, in the empirical macroeconomics literature, the DSGE models are

used to explain the impact of an economic shock on macroeconomic variables (such as a

monetary policy shock on output and in�ation, or a technology shock on labor hours).

On one side, this empirical evidence is obtained from estimating a structural Vector

Autoregressive model (VAR) as in Sims (1980, 1986). On the other side, the struc-

tural parameters of a DSGE model are estimated by minimizing the distance between

the model�s and the estimated VAR impulse response functions, as in Rotemberg and

Woodford (1998) and Christiano, Eichenbaum and Evans (2005).

To test the performance of a DSGE model using a VAR, we need that the data-

generating process which is consistent with the theoretical model, has a �nite-order

VAR representation. Indeed, this has been discussed in several papers (Canova and

Pina , 2005, Chari, Kehoe, and McGrattan, 2005, Galì and Rabanal, 2005, Christiano,

Eichenbaum and Vigfusson, 2006, Fernandez-Villaverde, Rubio-Ramirez, Sargent and

Watson, 2006, and Ravenna, 2007).

Fernandez-Villaverde et al. (2006) show that a VAR representation mapping eco-

nomic shocks to a vector of observable variables is admitted if and only if the vector

moving representation (VMA) is invertible. On the contrary, if the VMA is not in-

vertible, the VAR representation of a DSGE model may require an in�nite number of

lags. Hence whenever a researches uses a �nite order VAR to approximate a DSGE
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that requires an in�nite VAR, incurs in a truncation bias problem.

Ravenna (2007) studies the truncation bias problem in a DSGE model that lacks of

a �nite VAR representation. He shows that the truncated VAR(p) may return incorrect

estimates of the impulse response function (IRF). In particular, IRF is a¤ected by trun-

cation bias through two di¤erent channels. First, the VAR(p) erroneously constraints

to zero some coe¢ cients in the true VAR representation. Second, the VAR(p) coe¢ -

cients can lead to mistaken identi�cation of the structural shocks. Moreover, he shows

that the truncation bias can cause identi�cation problems even when the identi�cation

strategy is consistent with the theoretical model. Similarly, Chari et al. (2008) �nd

that the impulse response of labor hours to a technology shock, which are identi�ed

using long run restrictions, in a �nite-order VAR is poor approximation to the true

magnitude unless nontechnology shocks play a minor role.

In this paper, we build on Ravenna (2007) and Chari et al. (2008) by studying

the truncation bias problem (TBP) in models that lack of a �nite VAR representation.

In particular, we address how TBP a¤ects the IRF�s of a monetary policy shock in a

DSGE model with trend in�ation (Ascari et al. (2011)). We choose this model for

two main reasons. First, we consider this model as a good standard NK model by

assuming a small level of trend in�ation along the line of Ascari (2004) and Ascari and

Ropele (2009). With this assumption, price dispersion becomes a relevant endogenous

state variable even in the log-linear equilibrium. Second, the price dispersion is a non-

observable state variable, consequently, the model lacks of a �nite VAR representation

and the VAR analysis based on this model may su¤er of TBP.

The exercise consists in the following steps. First, we use the DSGE model with

trend in�ation as data-generation process (DGP) in order to create arti�cial pseudo-

data. Second, using these pseudo-data, we employ di¤erent estimation strategies (es-

sentially the Cholesky identi�cation and the sign restrictions) to evaluate the e¤ects of
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a monetary policy shock.

In further steps, we will produce a theoretical generalization of our result and we

will implement di¤erent identi�cation strategies (such the DSGE-VAR à la Del Negro

and Schorfheide (2004)).

2 Small-scale DSGE model with trend in�ation

The simple DSGE model with forward-looking features is usually referred to as a bench-

mark in the literature. For instance, Del Negro and Schorfheide (2004) used this model

to introduce the DSGE-VAR, and investigate its predictive ability. In a DSGE setup,

the economy is made up of three components. The �rst component is the representa-

tive household that maximizes a usual preference over leisure and consumption. The

second component is a monopolistic competitive sector a¤ected by nominal rigidities

à la Calvo (1983). We depart from the standard NK model by assuming a small level

of trend in�ation along the line of Ascari (2004) and Ascari and Ropele (2009). With

this assumption, price dispersion becomes a relevant endogenous state variable even in

the log-linear equilibrium. For the sake of our exercise, we assume that this state is

unobservable. Finally we close the model by characterizing the monetary policy as an

automatic Taylor rule: it changes the nominal rate along with in�ation and output.

There are three economic shocks: an exogenous monetary policy shock (in the mon-

etary policy rule), and two autoregressive processes, AR(1), which model government

spending and technology shocks.

To solve the model, optimality conditions are derived for the maximization problems.

After linearization around the steady-state, the economy is described, as in Ascari et

al. (2012) by the following system of equations:

A New Keynesian Phillips Curve augmented with trend in�ation. Note that price

4



dispersion has a positive impact on current in�ation

�̂t = [��� + � ("� 1)]Et�̂t+1 + �ŷt � �'ât + �'ŝt + �̂t+1 (1)

The forward looking variable �̂t does not have a precise economic interpretation. It can

be considered as auxiliary �ow variable

�̂t = (1� �)
�
1� ����"�1

�
ŷt + ����"�1

h
("� 1) �̂t+1 + �̂t+1

i
(2)

The price dispersion is positively related to current in�ation, i.e. the higher the in�ation,

the higher the price dispersion

ŝt = ��̂t + ��"ŝt�1 (3)

The dynamic IS curve simply states that the ex-ante interest rate is the opportunity

cost of equating marginal utilities across time

ŷt = ŷt+1 � ��1
�
R̂t � Et�̂t+1

�
+ ĝt

the Taylor rule links the current interest rate in�ation, output and past interest rate.

R̂t = �RR̂t�1 + (1� �R)( 1�̂t +  2ŷt) + r̂t (4)

ĝt = �gĝt�1 + �g;t (5)

ât = �zât�1 + �z;t; (6)
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r̂t = �rr̂t�1 + �r;t (7)

Hatted variables indicate percentage deviations with respect to steady state values. �̂t

is the in�ation rate, �� is the steady state in�ation rate, and R̂t is the gross nominal

interest rate, ŷt stands for output, ât is the technological shock, ĝt is the demand shock

and r̂t stands for the monetary shock. Price dispersion is identi�ed by ŝt; while �̂t is an

auxiliary variable. � is the usual CRRA parameter, " is the Dixit-Stiglitz aggregator

parameter and � is the Calvo parameter while

� =
(1� ���"�1) (1� ����")

���"�1
(8)

� = � (�� � 1)
�
1� ���"�1

�
(9)

� = (� (� + ')� � (1� �)) (10)

� =
"���"�1 (�� � 1)
1� ���"�1

(11)

or, in the case of output, from a trend path (King 2000; Woodford 2003). The model

can be solved by applying the algorithm proposed by Sims (2002). De�ne the vector

of variables ~Zt =
�
ŷt; �̂t; R̂t; ĝt; ât; Etŷt+1; Et�̂t+1; Et�̂t+1

�
and the vector of shocks as

�t = (�r;t; �g;t; �a;t). Therefore the previous set of equations, (1) - (7), can be recasted

into a set of matrices (�0;�1;C;	;�) accordingly to the de�nition of the vectors ~Zt

and �t

�0~Zt = C+ �1~Zt�1 +	�t +��t (12)

where C is a vector of constants, �t is an exogenously evolving random disturbance and

�t is a vector of expectations errors,
�
Et
�
�t+1

�
= 0

�
; not given exogenously but to be

treated as part of the model solution. In order to provide the mapping between the
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observable data and those computed as deviations from the steady state of the model

we set the following measurement equations as in Del Negro and Schorfheide (2004)

� lnxt = ln 
 +�~xt + ~zt

� lnPt = ln �
� + ~�t

lnRat = 4
h
(ln r� + ln��) + ~Rt

i (13)

which can be also casted into matrices as

Yt = �0 (�) +�1 (�) ~Zt + vt (14)

where Yt = (� lnxt;� lnPt; lnRt)
0, vt = 0 and �0 and �1 are de�ned accordingly. For

completeness, we write the matrices T, R, �0 and �1 as a function of the structural

parameters in the model, �. Such a formulation derives from the rational expectations

solution. The evolution of the variables of interest, Yt, is therefore determined by

(12) and (14) which impose a set of restrictions across the parameters on the moving

average (MA) representation. Given that the MA representation can be very closely

approximated by a �nite order VAR representation, Del Negro and Schorfheide (2004)

propose to evaluate the DSGEmodel by assessing the validity of the restrictions imposed

by such a model with respect to an unrestricted VAR representation. The choice of

the variables to be included in the VAR is however completely driven by those entering

in the DSGE model regardless of the statistical goodness of the unrestricted VAR.

Policy variables set by optimization - typically included st - are naturally endogenous

as optimal policy requires some response to current and expected developments of the

economy. Expectations at time t for some of the variables of the systems at time t+1 are

also included in the vector st;whenever the model is forward-looking. Models like (12)

can be solved using standard numerical techniques as in Sims (2002) and the solution
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can be expressed as follows

st = A0 + Ast�1 +B�t (15)

where the matrices A0;A;and B contain convolutions of the underlying model struc-

tural parameters. Consider the simple case in which all variables in the DSGE are

observable and the number of structural shocks in �t is exactly equal to the number of

variables in eZt: In this case VAR are natural speci�cations for the data, therefore the
estimated reduced form is

st = A0 + Ast�1 + ut (16)

3 TheMapping Between a DSGEModel and a VAR

representation

Recent model evaluation of DSGE models exploits the fact that a solved RBC model

is a statistical model. In fact, a solved DSGE model often generates a restricted MA

representation for the vector of observable variables of interest, that can be approxi-

mated by a VAR of �nite order (Fernandez-Villaverde et al., 2007; Ravenna, 2007).

Interestingly, this recent approach to model evaluation does not require identi�cation

of structural shocks but it is still potentially a¤ected by lack of statistical identi�cation.

To make it clear, consider the general case of system (15) in which only a subset n of

them variables included in st is observable and de�ne such a subset as xt: Now, xt has a

VAR(1) representation. This is usually approximated by a �nite VAR representation

at the cost of a truncation that can be relevant for purposes such as the identi�cation

of structural shocks (Ravenna 2007). Note that if the RBC model features a number

of shocks smaller than the number of variables included in the VAR, some of the VAR
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shocks are interpreted as measurement error.

A log-linearized DSGE model yield a state-space representation of the following

form:

st = Ast�1 +B�t (17)

xt = C st�1 +D�t (18)

where st is a k�1 vector of state variables, xt is an n�1 vector of observed variables,

and �t is an m� 1 vector of structural shocks. The variance-covariance matrix of these

shocks is diagonal and given by ��. A; B; C; and D are matrices of comformable size

whose elements are functions of the deep parameters of the model. We consider the

same number of observed variables as shocks, n = m, consequently D is square and

invertible.

We can solve for �t from eq. (18) as:

�t = D�1(xt � Cst�1)

Plugging this into (17) yields:

st = (A�BD�1C)st�1 +BD�1xt

Solving backwards, one obtains:

st = (A�BD�1C)t�1s0 +

t�1X
j=0

(A�BD�1C)j�1BD�1xt�j (19)

If limt!1(A � BD�1C)t�1 = 0, the history of observables perfectly reveals the

current state. This requires that the eigenvalues of (A � BD�1C) all be strictly less
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than one in modulus. If this condition is satis�ed, eq. (19) can be plugged into (18) to

yield a VAR in observables in which the VAR innovations correspond to the structural

shocks:

xt = C

t�1X
j=0

(A�BD�1C)j�1BD�1xt�1�j +D�t (20)

The condition that the eigenvalues of (A�BD�1C) all be strictly less than unity is

the "poor man�s invertibility" condition given in Fernandez-Villaverde, Rubio-Ramirez,

Sargent, andWatson (2007). It is a su¢ cient condition for a VAR on observables to have

innovations that map directly back into structural shocks population. When satis�ed, a

�nite order VAR(p) on st will yield a good approximation to eq. (20), and conventional

estimation and identi�cation strategies will allow one to uncover the model�s impulse

responses to structural shocks. When this condition for invertibility is not satis�ed the

state space system nevertheless yields a VAR representation in the observables, though

the VAR innovations no longer correspond to the structural shocks.

The main issue when the invertibility condition is not met is that the observables

do not perfectly reveal the state vector. To this aspect, use the Kalman �lter to form

a forecast of the current state, bst given observables and a lagged forecast:
bst = (A�KC)bst�1 +Kxt: (21)

Here K is the Kalman gain. It is the matrix that minimizes the forecast error

variance of the �lter, i.e. �s = E(st � bst)(st � bst)0: K and �s are the joint solutions to

the Riccati equations:
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�s = (A�KC)�s(A�KC)0 +B�sB
0 +KD��D

0K 0 �B��D
0K 0 �KD��B

0

K = (A�sC
0 +B��D

0)(C�sC
0 +D��D

0)�1

Given values of K and �s;add and subtract Cbst�1 from the right hand side of eq.

(18) to obtain:

xt = Cbst�1 + ut (22)

ut = c(st�1 � bst�1) +D�t (23)

Lagging (21) one period and recursively substituting into (22), one obtains an in�nite

order VAR representation in the observables:

xt = (A�KC)t�1bs0 + C
t�1X
j=0

(A�KC)jKxt�1�j + ut (24)

Under weak conditions, Hansen and Sargent (2007) show that (A�KC) is a stable

matrix, so that the (A � KC)t�1bs0 term disappears in the limit and the in�nite sum

on the lagged observables converges in mean square. The innovations in this VAR

representation are comprised of two orthogonal components: the true structural shocks

and the error in forecasting the state. The innovation variance is given by:

�u = C�sC
0 +D��D

0 (25)

Fernandez-Villaverde, Rubio-Ramirez, Sargent, and Watson (2007) show that the

eigenvalues of (A � BD�1C) being less than unity in modulus implies that �s = 0:
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When �s = 0; then �u = D��D
0, and it is straightforward to show that (24) reduces

to (20). If the "poor man�s invertibility" condition is not satis�ed, then �s 6= 0, and

the innovation variance from the VAR is strictly larger than the innovation variance in

the structural model. The failure of invertibility is part and parcel of the observables

to reveal the state vector. Non-invertibility is fundamentally an issue of missing infor-

mation. Sims (2012) evidences (25) makes clear that the extent to which a failure of

invertibility might "matter" quantitatively is how large �s, i.e. how hidden the state is.

We can �nd a lot of implications. First of all, even if the condition for invertibility fails,

�s may nevertheless be "small", meaning that �u � D��D
0. Put di¤erently, the VAR

innovations may very closely map into structural shocks even if a given system is tech-

nically non-invertible. Second, what observable variables are included in a VAR might

matter - some observables may do a better job of forecasting the missing states, hence

leading to smaller �s and a closer mapping between VAR innovations and structural

shocks. Finally, adding more observable variables should always work to lower �s, and

thus ameliorate problems due to non-invertibility. This means that estimating larger

dimensional VARs may generally be advantageous relative to the small systems that are

frequently estimated in the literature. Sims (2012) evidences the bene�ts of estimating

factor augmented models, which can e¢ ciently condition on large information sets.

4 Sign Restrictions

One main aspect of the impulse responses analysis is the identi�cation of the restric-

tions. In the tradition of the macroeconometrics, there are essentially two important

sets of restrictions. In the �rst set of restrictions (the linear restrictions on the struc-

tural parameters), we include the triangular identi�cation (Christiano, Eichenbaum,

and Evans (1996)) and the non-triangular identi�cation (Sims (1986), King, Plosser,
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Stock, and Watson (1991), Gordon and Leeper (1994), Bernanke and Mihov (1998),

Zha (1999), and Sims and Zha (2006)). In the second set of restrictions (the nonlin-

ear restrictions on the structural parameters), we include ones directly imposed on the

impulse responses, such as short-run and long-run restrictions (Blanchard and Quah

(1993) and Galì (1992)). Rubio-Ramirez, Waggoner, and Zha (2007) �nd a way to

transform nonlinear restrictions on the original parameter space to linear restrictions

on the transformed parameter space, since working on the linear restrictions on the

transformed parameter space is easier.

Employing both sets of restrictions, the main objective is to identify structural

shocks.

For example, according to many DSGE models (and essentially to the "conventional

wisdom"), after a monetary policy contraction the short term interest rate should in-

crease, the prices and the output should not increase, and the nonborrowed reserves

should decrease. Hence, a successful identi�cation strategy should produce impulse

responses coherent to the theory. Unfortunately, it happens that some restrictions,

such as the triangular identi�cation, may not generate impulse responses that have

the desired signs, generating a "puzzle". Considering these identi�cation issues, Faust

(1998), Canova and De Nicolò (2002), Peersman (2005) and Uhlig (2005) propose an

alternative approach: sign restrictions. The idea is to impose ex post sign restrictions

on a set of moments generated with the VAR, e.g. a set of impulse responses to a given

shock. Considering, for example, the case of a contractionary monetary shock, we can

impose a restriction such that the interest rate rises while money, output, and prices

fall in response to the shock. In other words, the usual identi�cation scheme based

on the Cholesky decomposition of the variance-covariance matrix imposes and inertial

restriction only on the quarter in which the shock occurs. Instead, sign restrictions as-

sume something about the future of the system and, thus, the future should be modeled
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appropriately.

Considering the VAR representation:

yt = A(L)yt�1 + "t

yt is a (T � n) matrix with rows y0t: "t is a (T � n) matrix with rows "0t

We estimate the reduced-form VAR coe¢ cients A(L) and covariance matrix (�)

from the data via OLS. After, we orthogonalize the VAR residuals considering the

eigenvalue-eigenvector decomposition such that:

� = PDP
0

where P is the matrix of eigenvectors and D is the diagonal matrix of eigenvalues.

The non-uniqueness of the MA representation of the VAR is exploited to provide a set

of alternative proposals for the shocks of interest using three Givens rotation matrices.

In the context of a three variable VAR, a 3 � 3 Givens matrix (called a Givens

rotation matrix) Q12 has the form:

Q12 =

266664
cos � � sin � 0

sin � cos � 0

0 0 1

377775
i.e., the matrix is the identity matrix in which the block consisting of the �rst and the

second columns and rows has been replaced by cosine and sine terms and � are drawn

randomly from a uniform distribution U [0; �] for each �k: as in Peersman (2005). Then

Q
0
12Q12 = I3 (considering that cos2 � + sin2 � = 1). Essentially, there are three possible

Givens rotations for a three variable system; the others being Q13 and Q23. Each Qij

depends on a di¤erent parameter �k:
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More speci�cally, Q =
Y
m;n

Qm;n (�) = Q12(�1) � Q13(�2)� Q23(�3). Q is orthogonal

and eB(�) = PD
1
2Q(�) is the impulse matrix, where Q depends upon three di¤erent

�k. For each vector � = [�1; �2; �3]; we obtain a set of impulse responses. To compute

an impulse response, we take the estimated parameters of a reduced-form model from

the relevant quarter. More speci�cally, for the computation of the impulse response for

quarter t, we use the estimated standard deviations and the matrix of contemporaneous

e¤ects from quarter t and the coe¢ cients at lags of variables from quarters t + 1; t +

2; :::; t + THOR; where THOR denotes the number of quarters for which the impulse

responses are computed.

Under a computational point of view, if the impulse responses to the "candidate"

shock satisfy all the required restrictions, then the draw of the orthonormal vector �

and the corresponding responses are retained. Otherwise, the responses are discarded.

As speci�ed in Castelnuovo (2012), an equal and strictly positive weight is assigned to

the draws which meet the restrictions (retained draws). Instead, a zero prior weight

is assigned to responses violating the constrains. In Uhlig (2005), there is a discussion

about the possibility to set up a penalty function to penalize violations and reward large

and correct responses. In Canova and De Nicolò (2002), a grid of M values for each of

the values of �k is suggested between 0 and �, and then compute all the possible Q. All

these models which are distinguished by di¤erent numerical values for �k are able to

produce an exact �t to the variance of the data. Only those Q producing shocks that

agree with maintained sign restrictions would be retained. Rubio-Ramirez, Waggoner,

and Zha (2010) propose an algorithm to compute the rotation matrix Q e¢ ciently,

called in Fry and Pagan (2011), Householder Transformation.

This alternative method of forming an orthogonal matrixQ implies to generate some

3� 3 random variables W from an N(0; I3) density (in case of a three variable VAR).

Then we decomposeW = QRR, where QR is an orthogonal matrix and R is a triangular
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matrix. The algorithm implemented to produce QR is the QR decomposition. Since

many draws of W can be made, one can �nd many QR. According to Rubio-Ramirez,

Waggoner, and Zha (2010), as the size of the VAR grows, this is a computationally

e¢ cient strategy relative to the Givens approach. Fry and Pagan (2007) show that

the methods (Givens matrices and Householder method) are equivalent, except for

the computational speed in favor to the second method. Canova and Paustian (2012)

propose an algorithm which derives a set of robust restrictions from a class of structural

DSGE models that one may exploit to identify the shock(s) of interest with VAR.

5 Empirical Analysis

In this paper, we use the model with trend in�ation described in Section 2 as Data

Generating Process. We generate 100000 observations and we take the last 1000 obser-

vations, avoiding the in�uence of the initial conditions1.

We aim at comparing the true (DSGE-consistent) impulse responses with those

produced with a VAR with the Cholesky identi�cation and with a VAR whose monetary

policy shock is identi�ed with sign restrictions. We identify the monetary policy shock

by imposing constraints on the impulse responses of in�ation and the policy rate to

a monetary policy shock, as reported in Table 1. The constrains are imposed for the

�rst K=2 pseudo-quarters, i.e., the one in which the shock occurs and the following

quarter as proposed in Castelnuovo (2012). This choice is in line with Uhlig�s (2005),

which sets K=5 but deals with monthly data, instead in our paper we consider quarterly

frequency. The VAR coe¢ cients ad the variance-covariance matrix � have been �xed

at the Maximum Likelihood Estimation (MLE) point estimate. We implement the

Rubio-Ramirez, Waggoner, and Zha (2010) algorithm.

1We use Hodrick-Prescott �lter to detrended our pseudo-data: in�ation, output, and short-term
interest rate.
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Table 1 Sign restrictions for our DSGE model Shocks

V ariable=Shock y � R

Monetary Policy Shock � �

The VAR is implemented considering di¤erent number of lags. According to Schwarz

criterion, we should implement a VAR with 2 lags. We compare the true impulse

responses of the DSGE model with the Cholesky and sign restrictions identi�cations,

considering as number of lags: 1,2, and 4.

5.1 Results

Many authors, e.g. Uhlig, 2005, have argued that an agnostic approach to sign restric-

tions can lead to a mute response (called as monetary neutrality) of output when the

economy faces a contractionary monetary policy shock. In our exercise, we show that

this result may well be driven by the fact that some endogenous state variables are

unobservable. Our experiment shows that even if the true generation process implies

a strong response of output after a monetary shock, the corresponding VAR analysis,

characterized by an unobservable state variable shows a mute response of output to

monetary policy shock. We conjecture that this discrepancy is due to a truncation bias

which a¤ects the statistical representation of our true data generation process as in

Ravenna (2007) Chari et al. (2008).

From Figure 1 to 6, we report the comparison between the impulse responses of the

DSGE (called true IRF) and the impulse responses with sign-restrictions, considering

1, 2, and 4 lags in the VAR representation. Speci�cally, in Figure 2, 4 and 6, we report

the con�dence interval (considering the 5th and the 95th percentiles of the distribution)
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of the VAR with sign-restrictions.

The in�ation have been restricted not to be positive for two quarters, and plots

show that the response is negative up the second quarter, after it becomes close to zero.

We notice that the response from the DSGE model is included in the intervals.

Focusing on the impact of a monetary policy shock on the output, we can notice

that the response is close to zero across lags (from 1 to 4). Considering the con�dence

intervals, we evidence that the response of the model is not included in the intervals in

the �rst periods (around 6 quarters) for VAR(1) and VAR(4). Instead in case of the

VAR(2), the response of the model is included in the con�dence interval after the �rst

quarter, and the intervals show that the response can be signi�cantly di¤erent from

zero.

The responses of the short-term interest rate given by the VAR with sign restrictions

is close to the response produced by the DSGE and con�dence intervals show that the

responses are signi�cantly di¤erent from zero.

6 A Theoretical Generalization

[TBA]
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7 Calibration

Parameter Description Value

� Discount factor 0:99025

� Trend In�ation 1:021=4

� Calvo Parameter 0:75

' Inverse Frisch 1

� CRRA 2

" Market Power 6

� Indexation Parameter 0.8

� Indexation Parameter 0

! Backward Looking Euler 0.7

� Backward Looking Mon.Rule 0.6

�� In�ation policy parameter 2

�y Output Policy Parameter 0.05

�� Persistence Cost Push shock 0.8

�y Persistence Demand shock 0.7

�r Persistence Monetary Shock 0.6

� Convolution of Parameters

� Convolution of Parameters

 Convolution of Parameters
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8 Figures
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8.1 Figures: Robustness with Cholesky Decomposition
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9 Appendix

9.1 DSGE-VAR

The basic idea of the Del Negro-Schorfheide (2004) approach is to use the DSGE model

to build prior distributions for the VAR.

The starting point for the estimation is an unrestricted VAR of order p

Yt = �0 +�1Yt�1 + :::+�pYt�p + ut (26)

In compact format:

Y = X�+U (27)

Y is a (T � n) matrix with rows Y 0
t ; X is a (T � k) matrix (k = 1 + np; p =number

of lags) with rows X 0
t = [1; Y 0

t�1; :::; Y
0
t�p], U is a (T � n) matrix with rows u0t and �

is a (k � n) = [�0;�1;:::;�p]
0:The one-step-ahead forecast errors ut have a multivariate

normal distribution N(0;�u) conditional on past observations of Y:The log-likelihood

function of the data is a function of � and �u

L(Yj�;�u) / j�uj�
T
2 exp

�
�1
2
tr
�
��1u (Y0Y ��0X0Y �Y0X�+�0X0X�)

��
(28)

The prior distribution for the VAR parameters proposed by Del Negro and Schorfheide

(2004) is based on the statistical representation of the DSGE model given by a VAR

approximation. Let ��xx; �
�
yy; �

�
xy and �

�
yx be the theoretical second-order moments of

the variables Y and X implied by the DSGE model, where
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�� (�)= ���1xx (�)��xy (�)

�� (�)= ��yy (�)���yx (�)���1xx (�)��xy (�)
(29)

The moments are the dummy observation priors used in the mixture model. These

vectors can be interpreted as the probability limits of the coe¢ cients in a VAR estimated

on the arti�cial observations generated by the DSGE model. Conditional on the vector

of structural parameters in the DSGE model �, the prior distributions for the VAR

parameters p(�;�uj�) are of the Inverted-Wishart (IW) and Normal forms

�u j� � IW ((�T��
u (�) ; �T � k; n)

� j�u; � � N (�� (�) ;�u 
 (�T�XX (�))�1)
(30)

where the parameter � controls the degree of model misspeci�cation with respect to

the VAR; for small values of � the discrepancy between the VAR and the DSGE-

VAR is large and a sizeable distance is generated between the unrestricted VAR and

DSGE estimators. Large values of � correspond to small model misspeci�cation and

for � = 1 beliefs about DSGE misspeci�cation degenerate to a point mass at zero.

Bayesian estimation could be interpreted as estimation based on a sample in which

data are augmented by a hypothetical sample where observations are generated by

the DSGE model, the so-called dummy prior observations (Theil and Goldberg 1961;

Ingram and Whiteman 1994). Within this framework � determines the length of the

hypothetical sample.

The posterior distributions of the VAR parameters are also of the Inverted-Wishart

and Normal forms. Given the prior distribution, posterior distributions are derived by

the Bayes theorem

�u j�;Y � IW
�
(�+ 1)T �̂u;b (�) ; (�+ 1)T � k; n

�
(31)
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� j�u; �;Y � N
�
�̂b (�) ;�u 
 [�T�XX (�) +X0X]

�1
�

(32)

�̂b (�) = (�T�XX (�) +X
0X)

�1
(�T�XY (�) +X

0Y) (33)

�̂u;b (�) =
1

(�+ 1)T

h
(�T�Y Y (�) +Y

0Y)� (�T�XY (�) +X0Y) �̂b (�)
i

(34)

where the matrices �̂b (�) and �̂u;b (�) have the interpretation of maximum likelihood

estimates of the VAR parameters based on the combined sample of actual observations

and arti�cial observations generated by the DSGE. Equations (31) and (32) show that

the smaller � is; the closer the estimates are to the OLS estimates of an unrestricted

VAR. Instead, the higher � is, the closer the VAR estimates will be tilted towards the

parameters in the VAR approximation of the DSGE model (�̂b (�) and �̂u;b (�)). In or-

der to obtain a non-degenerate prior density (30), which is a necessary condition for the

existence of a well-de�ned Inverse-Wishart distribution, and for computing meaningful

marginal likelihoods � has to be greater than �MIN

�MIN � n+ k

T
; k = 1 + p� n

p = lags

n = endogenous variables.

Hence, the optimal lambda must be greater than or equal to the minimum lambda�
�̂ � �MIN

�
.

Essentially, the DSGE-VAR tool allows the econometrician to draw posterior infer-

ences about the DSGE model parameters �: Del Negro and Schorfheide (2004) explain
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that the posterior estimate of � has the interpretation of a minimum-distance estimator,

where the discrepancy between the OLS estimates of the unrestricted VAR parameters

and the VAR representation of the DSGE model is a sort of distance function. The esti-

mated posterior of parameter vector � depends on the hyperparameter �. When �! 0,

in the posterior the parameters are not informative, so the DSGE model is of no use in

explaining the data. Unfortunately, the posteriors (32) and (31) do not have a closed

form and we need a numerical method to solve the problem. The posterior simulator

used by Del Negro and Schorfheide (2004) is the Markov Chain Monte Carlo Method

and the algorithm used is the Metropolis-Hastings acceptance method. This procedure

generates a Markov Chain from the posterior distribution of � and this Markov Chain

is used for Monte Carlo simulations. The optimal � is given by maximizing the log of

the marginal data density

�̂ = argmax
�>�MIN

ln p(Yj�)

According to the optimal lambda
�
�̂
�
, a corresponding optimal mixture model is cho-

sen. This hybrid model is called DSGE-VAR
�
�̂
�
and �̂ is the weight of the priors. It

can also be interpreted as the restriction of the theoretical model on the actual data.
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