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Abstract

Bayesian model averaging and model selection is based on the marginal
likelihoods of the competing models. This can, however, not be used directly
in VAR models when one of the issues is which - and how many - variables
to include in the model since the likelihoods will be for different groups of
variables and not directly comparable. One possible solution is to consider
the marginal likelihood for a core subset of variables that are always included
in the model. This is similar in spirit to a recent proposal for forecast combi-
nation based on the predictive likelihood. The two approaches are contrasted
and their performance is evaluated in a simulation study and a forecasting
exercise.
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1 Introduction

VAR models, in particular in their Bayesian flavor, have become a work horse model
for macroeconomic forecasting and are also extensively used for policy analysis. In
both cases the results can be highly dependent on the model specification. In a
typical forecasting application the focus is on forecasting a few variables, for example
GDP growth and inflation, and any additional variables are included because they
are deemed to be important predictors for the variables of interest.

These are not clear cut choices and there is a multitude of models to choose from.
Bayesian model averaging (BMA) or forecast combination where forecasts from in-
dividual models are averaged using the posterior model probabilities as weights is
a natural solution to this dilemma. BMA will however run into fundamental diffi-
culties as soon as one of the model specification issues is which variables should be
modeled. The problem is that the (multivariate) likelihoods are no longer compa-
rable when a variable is added, removed or variables are swapped in and out of the
model. This in turn directly affects the marginal likelihoods which are the basis for
calculating posterior model probabilities. There can thus be substantial differences
in the marginal likelihoods and weights assigned to models with similar forecast-
ing performance or similar marginal likelihoods and weights for models with quite
different forecasting performance.

On possible solution, suggested by Andersson and Karlsson (2009), is to replace
the marginal likelihood with the predictive likelihood for the variables of interest,
that is after marginalizing out the other variables, in the calculation of posterior
”probabilities” or model weights. This creates a focused measure and is attractive
in a forecasting context since it directly addresses the forecasting performance of
the different models. In this paper we propose an alternative approach – to base
the model averaging on the marginalized marginal likelihood. The marginalization
leads to a meaningful measure of the fit for the variables of interest that can be
used to compare models while, by virtue of being based on the marginal likelihood
and the full sample, it offers the promise of being able to distinguish more sharply
between models than the marginalized predictive likelihood.

Our focus on the choice of variables to model differ from most of the (Bayesian)
VAR literature which takes the set of variables as given when considering the model
specification. The focus in the literature has largely been on devices for reducing
the effective model size, e.g. by applying shrinkage as in the Minnesota prior of
Litterman (1979, 1986), selecting lags of variables to include with the SSVS ap-
proach of George, Sun and Ni (2001) or summarizing a large number of variables
by extracting the common factors as in the FAVAR of Bernanke, Boivin and Eliasz
(2005). Notable exceptions are Andersson and Karlsson (2009), which we extend,
and Jarociński and Maćkowiak (2011) who also base their approach on the marginal
likelihood but in the context of a ”super-model” containing all variables that are po-
tentially useful in the forecasting or modeling exercise. Noting that block exogeneity
restrictions on the super-model implies that a subset of the variables can be modeled
separately Jarociński and Maćkowiak (2011) suggests basing the variable choice on
the marginal likelihood for models imposing different block exogeneity restrictions.
While interesting the procedure of Jarociński and Maćkowiak (2011) suffers from
the potential drawback that it measures the overall fit of the super-model rather
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than focusing on the variables of interest.
The plan of the paper is as follows. Section two introduces the marginalized

marginal and predictive likelihood and shows how they can be used in model aver-
aging and model selection. Section three specializes the discussion to VAR models
and gives details, including MCMC algorithms, on the calculation of the marginal-
ized marginal likelihood for common prior distributions. In section four we conduct
a small simulation exercise to evaluate and contrast the performance of the marginal-
ized marginal and predictive likelihoods as basis for forecast combination and model
selection. Section five contains an application to forecasting US GDP growth and
inflation and section 6 concludes.

2 Bayesian model averaging and marginalized like-

lihoods

The standard Bayesian approach to model averaging obtains the posterior model
probabilities for model Mi, i = 1, . . . ,M, by straightforward application of Bayes
rule,

p (Mi|Y) =
m (Y|Mi) p (Mi)∑M
j=1m (Y|Mj) p (Mj)

where m (Y|Mi) is the marginal likelihood for model i,

m (Y|Mi) =

∫
L (Y| θi,Mi) p (θi|Mi) dθi.

p (Mi) the prior model probability, p (θi|Mi) the prior on the parameters in model
i and L (Y| θi,Mi) the model likelihood. This is straightforward and unproblematic
when the same set of dependent variables Y enters into all the model likelihoods. If,
as in our case, one of the fundamental model specification issues is which variables to
include in the VAR models the use of the marginal likelihood becomes problematic
as it no longer is comparable between models.

In forecasting and many other applications there is usually a core set of variables
of primary interest that are retained in all the considered models. We can thus par-
tition the matrix of dependent variables in model i, Yi, into the variables of primary
interest Y1 and the ”other” variables Y2i, Yi = (Y1,Y2i) . Our basic proposal is
to focus on the variables of interest by marginalizing out Y2i. Building on the work
of Eklund and Karlsson (2007), Andersson and Karlsson (2009) proposed marginal-
izing the predictive likelihood and base forecast combination and model selection
on the predictive likelihood. This has the advantage for forecast combination that
the measure is directly related to the out of sample predictive performance of the
model but leads to several complications when applied to dynamic models where the
marginalized predictive likelihood typically is not available in closed form. In this
paper we propose to work with the marginalized marginal likelihood instead. This
is basically an in-sample measure of fit and can make more efficient use of the data
as the whole sample is used for model evaluation. The marginalized marginal like-
lihood is also more computationally convenient as it typically is available in closed
form when conjugate priors are used.
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2.1 Marginalized Predictive Likelihood

The predictive likelihood approach of Eklund and Karlsson (2007) is based on a
split of the data, Y = (y′1,y

′
2, . . . ,y

′
T )′ where we drop the model specific subscript

for notational simplicity, into two parts, the training sample, Y∗n = (y′1,y
′
2, . . . ,y

′
n)′

of size n, and an evaluation or hold out sample, Ỹn =
(
y′n+1,y

′
n+2, . . . ,y

′
T

)′
of size

T − n, where yt is the vector of modeled variables. The training sample is used
to convert the prior into a posterior and the predictive likelihood for the hold out
sample is obtained by marginalizing out the parameters from the joint distribution
of data and parameters,

p
(

Ỹn

∣∣∣Y∗n,Mi

)
=

∫
L
(

Ỹn

∣∣∣ θi,Y∗n,Mi

)
p (θi|Y∗n,Mi) dθi.

Partitioning the hold out sample data into the variables of interest and the remaining

variables, Ỹn =
(
Ỹ1,n, Ỹ2,n

)
, the marginalized predictive likelihood is obtained by

marginalizing out Ỹ2,n,

MPL
(

Ỹ1,n

∣∣∣Y∗n,Mi

)
=

∫
p
(

Ỹn

∣∣∣Y∗n,Mi

)
dỸ2,n.

Predictive weights that can be used for model averaging or model selection are then
calculated as

w
(
Mi| Ỹ1,n,Y

∗
n

)
=

MPL
(

Ỹ1,n

∣∣∣Y∗n,Mi

)
p (Mi)∑M

j=1MPL
(

Ỹ1,n

∣∣∣Y∗n,Mj

)
p (Mj)

(1)

where MPL
(

Ỹ1,n

∣∣∣Y∗n,Mi

)
is evaluated at the observed values of the variables of

interest in the hold out sample.
While the predictive weights (1) strictly speaking can not be interpreted as pos-

terior probabilities they have the advantage that proper prior distributions are not
required for the parameters. The predictive likelihood is, in contrast to the marginal
likelihood, well defined as long as the posterior distribution of the parameters con-
ditioned on the training sample is proper.

The use of the predictive likelihood is complicated by the dynamic nature of
VAR models. As noted by Andersson and Karlsson (2009) the predictive likelihood
is the joint predictive distribution over lead times h = 1 to T − n. This will become
increasingly uninformative for larger lead times and unrepresentative of lead times
such as h = 4 or 8 usually considered in macroeconomic forecasting. At the same
time the hold out sample needs to be relatively large in order to provide a sound basis
for assessing the forecast performance of the models. To overcome this Andersson
and Karlsson suggested focusing the measure to specific lead times h1, . . . , hk and
using a series of predictive likelihoods,

g
(
Ỹ1,n|Mi

)
=

T−hk∏
t=n

MPL (y1,t+h1 , . . . , y1,t+hk |Y∗t ,Mi) , (2)

in the calculation of the predictive weights.
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A final complication is that the predictive likelihood is not available in closed
form for lead times h > 1 and must be estimated using simulation methods. With a
normal likelihood the predictive likelihood for a VAR model and many other multi-
variate models will be normal conditional on the parameters and easy to evaluate.
Andersson and Karlsson suggested estimating the multiple horizon marginalized
predictive likelihood using a Rao-Blackwellization technique as

M̂PL (y1,t+h1 , . . . , y1,t+hk |Y∗t ,Mi) =
1

R

R∑
i=1

p
(
y1,t+h1 , . . . , y1,t+hk |Y∗t ,Mi, θ

(i)
)

by averaging the conditional predictive likelihood p
(
y1,t+h1 , . . . , y1,t+hk |Y∗t ,Mi, θ

(i)
)

over draws of the parameters from the posterior distribution based on Y∗t . This leads
to estimated predictive weights

ŵ
(
Mi| Ỹ1,n,Y

∗
n

)
=

ĝ
(
Ỹ1,n|Mi

)
p (Mi)∑M

j=1 ĝ
(
Ỹ1,n|Mj

)
p (Mj)

with

ĝ
(
Ỹ1,n|Mi

)
=

T−hk∏
t=n

M̂PL (y1,t+h1 , . . . , y1,t+hk |Y∗t ,Mi) .

2.2 Marginalized Marginal Likelihood

With the marginalized marginal likelihood we start with the standard full sample
marginal likelihood,

m (Y|Mi) =

∫
L (Y| θi,Mi) p (θi|Mi) dθi,

and marginalize out Y2 to obtain a measure focused on the variables of interest.
With a slight abuse of notation1 we write

MML (Y1|Mi) =

∫
m (Y|Mi) dY2

for the marginalized marginal likelihood. Posterior weights are then simply calcu-
lated as

w (Mi|Y) =
MML (Y1|Mi) p (Mi)∑M
j=1MML (Y1|Mj) p (Mj)

.

With a conjugate prior the marginalized marginal likelihood will frequently be
available in closed form whereas it must be estimated using simulation methods with
non-conjugate priors. We give details of these calculations in the following section.

1The notation MML (Y1|Mi) =
∫
m (Y|Mi) dY2 is not entirely accurate in dynamic mod-

els where the marginal likelihood can be decomposed into a series of conditional distributions.
To exemplify, with two time periods and yt depending on yt−1 only we can write m (Y|Mi) =
p (y2|y1) p (y1) = p (y1,2,y2,2|y1,1,y2,1) p (y1,1,y2,1) . Our notation

∫
m (Y|Mi) dY2 is shorthand

for the operation p (y1,2|y1,1,y2,1) p (y1,1) =
∫
p (y1,2,y2,2|y1,1,y2,1) dy2,2

∫
p (y1,1,y2,1) dy2,1 and

not p (y1,2|y1,1) p (y1,1) =
∫ ∫

p (y1,2,y2,2|y1,1,y2,1) p (y1,1,y2,1) dy2,2dy2,1. Our marginalized
marginal likelihood is in fact the product of a series of one step-ahead marginalized predictive
likelihoods and a special case of (2) with the size of the training sample set to zero and a single
horizon, h = 1.
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3 Marginalized marginal likelihoods for VAR mod-

els

We consider the m variable VAR model

y′t =

p∑
i=1

y′t−iAi + x′tC + u′t (3)

= z′tΓ + u′t

for zt =
(
y′t−1, . . . ,y

′
t−p,x

′
t

)′
a k × 1 vector or in matrix form

Y = ZΓ + U

with a normal likelihood, ut ∼ N (0,Ψ) , and two common priors, the conjugate
normal-Wishart prior and the non-conjugate independent normal Wishart prior.

3.1 Normal-Wishart prior

With the normal-Wishart prior,

Γ|Ψ ∼MNkm (Γ,Ψ,Ω)

Ψ ∼ iW (S, v) ,

the full sample marginal likelihood is readily available as a matricvariate t-distribution
by noting that Y conditional on Ψ is matricvariate normal,

Y|Ψ= (ZΓ + U) |Ψ ∼MNTm (ZΓ,Ψ, IT + ZΩZ′)

and then integrating out Ψ from the joint distribution of Y and Ψ to obtain the
marginal likelihood as2

Y ∼MtTm

(
ZΓ, (IT + ZΩZ′)

−1
,S, v

)
.

To derive the marginalized marginal likelihood for the q variables in Y1, let P
be the m × q selection matrix that yields Y1 = YP, e.g. P =

(
Iq,0q×(m−q)

)′
. We

then have
Y1|Ψ ∼MNTq (ZΓ1,Ψ1, IT + ZΩZ′)

for Γ1 = ΓP and Ψ1 = P′ΨP. Theorem A.17 of Bauwens et al. (1999) implies that
Ψ1 ∼ iW (S1, v −m+ q) for S1 = P′SP. We can thus marginalize out Ψ1 from the
joint distribution of Y1 and Ψ1 to obtain the marginalized marginal likelihood as a
matricvariate t-distribution,

Y1 ∼MtTn

(
ZΓ1, (IT + ZΩZ′)

−1
,S1, v −m+ q

)
.

2We follow the notation of Bauwens, Lubrano and Richard (1999) for the matricvariate t and
other distributions.
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3.2 Independent normal Wishart prior

With the independent normal Wishart prior

vec (Γ) = γ ∼ N
(
γ,Σγ

)
Ψ ∼ iW (S, v)

the marginal likelihood,

m (Y) =

∫ ∫
L (Y|γ,Ψ)π (γ) π (Ψ) dγdΨ,

and the marginalized marginal likelihood

MML (Y1) =

∫ ∫ ∫
L (Y|γ,Ψ) π (γ) π (Ψ) dγdΨdY2 (4)

are not available in closed form.
Matters are simplified if the order of integration is changed. First integrate

out Y2 to obtain the (conditional) marginalized likelihood for Y1 as the normal
distribution

vec Y1|γ,Ψ ∼ N [(P′ ⊗ Z)γ,P′ΨP⊗ IT ] .

The marginalized marginal likelihood can then be obtained by integrating over the
prior distributions for γ and Ψ,

MML (Y1) =

∫ ∫
L (Y1|γ,Ψ) π (γ) π (Ψ) dγdΨ. (5)

Additional simplifications can be achieved by integrating γ analytically to obtain

vec Y1|Ψ ∼ N
[
(P′ ⊗ Z)γ,P′ΨP⊗ IT + (P′ ⊗ Z) Σγ (P⊗ Z′)

]
(6)

and the marginalized marginal likelihood requires only integration over the prior
distribution for Ψ,

MML (Y1) =

∫
p (Y1|Ψ) π (Ψ) dΨ. (7)

3.2.1 Numerical evaluation of MML (Y1)

Common methods for estimating the marginal likelihood such as the modified har-
monic mean of Gelfand and Dey (1994) and Geweke (1999) or the methods of Chib
(2008) and Chib and Jeliazkov (2001) relies on the identity

p (θ|Y) =
L (Y|θ) π (θ)

m (Y)
.

In terms of the marginalized marginal likelihood this corresponds to

p (θ|Y1) =
L (Y1|θ) π (θ)∫
L (Y1|θ)π (θ) dθ

=
L (Y1|θ) π (θ)

MML (Y1)
.
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Algorithm 1 Sampling from p(γ,Ψ|Y1) using Gibbs within Metropolis-Hastings

For j = 1, . . . , B +R

1. Generate γ(j) from the normal distribution p
(
γ|Y1,Ψ

(j−1)
)

in (8)

2. Generate a proposal Ψ′ for Ψ from the full data posterior p
(
Ψ|Y,γ(j)

)
or

the prior π (Ψ) which both are inverse Wishart distributions and accept the
proposal with probability

α
(
Ψ(j−1),Ψ′

)
= min

(
L
(
Y1|γ(j),Ψ′

)
π (Ψ′)

L (Y1|γ(j),Ψ(j−1)) π (Ψ(j−1))

p
(
Ψ(j−1)|Y,γ(j)

)
p (Ψ′|Y,γ(j))

, 1

)
or

α
(
Ψ(j−1),Ψ′

)
= min

(
L
(
Y1|γ(j),Ψ′

)
L (Y1|γ(j),Ψ(j−1))

, 1

)

Discard the first B draws as burn-in.

Analogous to the modified harmonic mean method for the marginal likelihood we
then have, for a suitable function f that integrates to 1 over a subset of the domain
of θ and is zero outside of that subset, that

1

MML (Y1)
=

∫
Θ

f (θ)

MML (Y1)
dθ =

∫
Θ

f (θ)

L (Y1|θ) π (θ)
p (θ|Y1) dθ

= Eθ|Y1

(
f (θ)

L (Y1|θ) π (θ)

)
.

We can thus use the harmonic mean method to estimate the marginalized marginal
likelihood by sampling from the ”posterior” distribution of γ and Ψ conditional on
Y1 only. A Gibbs within Metropolis-Hastings sampler can be developed by noting
that the partial data likelihood L (Y1|θ) only identifies the parameters Γ1 relating
to Y1. For the simple case where Σγ is block diagonal this yields

γ1 |Y1,Ψ∼ N(γ1,Σ1) (8)

γ2 |Y1,Ψ∼ N(γ
2
,Σ2)

with

Σ1 = (Σ−1
1 + Ψ−1

1 ⊗ Z′Z)−1

γ1 = Σ1

(
Σ−1

1 γ1
+ vec(Z′Y1Ψ

−1
1 )
)

where Ψ1 = P′ΨP, Σ1 = (P ⊗ Ik)
′Σγ(P ⊗ Ik) , γ

1
= vec(Γ1), γ

2
= vec(ΓPc),

and Σ2 = (Pc⊗ Ik)
′Σγ(P

c⊗ Ik) and Pc is the selection matrix for Y2. The MCMC
algorithm is summarized in Algorithm 1.

An algorithm similar to the Chib and Jeliazkov (2001) method can be imple-
mented by noting that

MML (Y1) =
L (Y1|θ∗)π (θ∗)

p (θ∗|Y1)
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for an arbitrary value of θ∗. By taking logarithms one obtains the expression

logMML(Y1) = logL(Y1 |γ∗,Ψ∗ ) + log π(γ∗) + log π(Ψ∗)− log p(γ∗,Ψ∗ |Y1 )

from which the marginalized marginal likelihood can be estimated by finding an esti-
mate of the posterior ordinate p (γ∗,Ψ∗|Y1) = p (γ∗|Y1,Ψ

∗) p (Ψ∗|Y1), this requires
the estimation of p (Ψ∗|Y1) . Following Chib and Jeliazkov (2001) the estimate can
be based on the identity

p(Ψ∗ |Y1 ) =
E1[α(Ψ,Ψ∗ |γ,Y )p(Ψ∗ |γ,Y )]

E2[α(Ψ∗,Ψ |γ,Y )]

where the numerator expectation E1 is with respect to the distribution p(γ,Ψ |Y1 )
and the denominator expectation E2 is with respect to the distribution p(γ |Ψ∗,Y1 )×
q(Ψ |γ,Y ) with q (·) and α (·) the proposal density and acceptance probability from
Algorithm 1. The expectation E1 and E2 requires running two Markov chains,
one for p (γ,Ψ|Y1) using Algorithm 1 and one for the distribution p(γ |Ψ∗,Y1 ) ×
q(Ψ |γ,Y ) where p(γ |Ψ∗,Y1 ) is given by (8) and q(Ψ |γ,Y ) is standard.

The simplest method for estimating the marginalized marginal likelihood follows
from (7) where we can sample from the prior for Ψ. If m is small this is a relatively
low dimensional integral and direct Monte Carlo integration is straightforward but
possibly inefficient if the prior is uninformative. As an alternative that can be more
efficient we also consider importance sampling,

MML(Y1) =

∫
p(Y1 |Ψ)

π(Ψ)

i(Ψ)
i(Ψ)dΨ

with a mixture between the prior and the full data conditional posterior, i(Ψ) =
τπ(Ψ) + (1− τ)p(Ψ |Y, γ∗), 0 ≤ τ ≤ 1, as importance function.

A similar simplification is also possible with the modified harmonic mean ap-
proach by writing

1

MML (Y1)
=

p (Ψ|Y1)

p (Y1|Ψ) π (Ψ)
=

∫
f (Ψ)

p (Y1|Ψ) π (Ψ)
p (Ψ|Y1) dΨ (9)

= EΨ|Y1

(
f (Ψ)

p (Y1|Ψ) π (Ψ)

)
(10)

where p (Y1|Ψ) is given by (6). By performing part of the integration analytically
the simulation noise is reduced and it should be easier to construct a good f function.

3.2.2 Performance of estimates of MML (Y1)

We conduct a small experiment to evaluate the performance of the different methods
for estimating MML (Y1) outlined above. Using two data sets of length 100 and
300 generated from DGP1 in the simulation study (see section 4 for more details)
we study the stability of the estimated lnMML (Y1) and the required CPU time.
The true DGP is a bivariate VAR consisting of y1, the variable of interest, and y2.
In addition there are six extraneous variables that are considered for inclusion in the
VAR in addition to y2. We estimate lnMML (Y1) for the 64 possible VAR-models
of dimension 1-4 with y1 always included in the model.
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Figure 1 Log-MML(Y1) and the corresponding posterior weights using different
methods, DGP1, T = 100, δk = 0.2, Dimension: 1-4
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The prior specification is the same as in the simulation study (see section 4.1).
The estimates are based on 5000 MCMC draws after discarding 1000 draws as burn-
in and Algorithm 1 is implemented with the prior for Ψ as the proposal density. In
the Chib-Jeliazkov method (CHIB), γ∗ and Ψ∗ are set to the mean of the draws
from Algorithm 1.

The modified harmonic mean (GEWEKE ) estimate is based on (10) working
with the Cholesky factor U of Ψ and the logarithm of the diagonal elements of U
and f (·) a truncated multivariate normal distribution. Note that this requires an
adjustment for the variable transformation with the Jacobian term,

J (ψ → Ψ) = J (ψ → U)× J (U→ Ψ)

=

(
m∏
i=1

uii

)−1

× 2m
m∏
i=1

um−i+1
ii

where ψ contains the non-zero elements of U after taking logarithms and uii are
the diagonal elements before taking the logarithm. After trying several values of the
truncation factor ρ as suggested in Geweke (1999), we choose ρ = 0.5.

In the method of importance sampling (IS ), the probability of drawing from the
prior is set to τ = 0.2. The method of direct integration using samples from prior
is denoted as PRIOR in our study.

Figure 1 presents the log-MML(Y1) and the corresponding posterior model
weights of the 64 unique models of dimension from one to four. The true model
is the second model consisting of {y1, y2} and is marked by the first gray dashed
line. The other gray dashed lines indicate larger models containing y1 and y2. Not
surprisingly, the MMLs for a given model dimension are largest when the variable
y2 is in the model. Furthermore, the global maximum is obtained for the correct
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Table 1 CPU time for estimating lnMML (Y1), DGP1

Method T = 100 T = 300
CHIB 16.675 20.439
GEWEKE 18.600 21.038
PRIOR 72.731 1569.483
IS 95.658 1610.684

model and the posterior weights clearly indicate the correct model. All the methods
give similar estimates of the MMLs with the IS method deviating slightly.

Based on the results in Figure 1 there is little reason to prefer one method
over another and we turn to the CPU times reported in Table 1. The CHIB and
GEWEKE methods are the fastest and thus preferred while the PRIOR and IS
methods show a dramatic increase in CPU time as the number of observations
increase. The increase in CPU time for the latter methods can be explained by the
need to invert the qT × qT covariance matrix in (6).

4 Simulation study

To evaluate the performance of the marginalized marginal likelihood and predictive
likelihood methods we conduct a small simulation study with three different DGPs

DGP1:

yt =

(
0.5 −0.2
0.3 0.7

)
yt−1 + ut

DGP2:

yt =

(
0.5 −0.2
0.3 0.7

)
yt−1 +

(
0.2 0.2
0.1 −0.3

)
yt−2 + ut

DGP3:

yt =

 0.5 −0.2 0.2
0.3 0.7 0.1
0.4 0.3 0.2

yt−1 + ut

In each case we have one variable of interest, y1, which is always retained in the
model and we consider models with up to four variables selected from the remaining
variables in y and 6 extraneous variables

x1,t = 0.3y1,t−1 + 0.5x1,t−1 + e1,t

x2,t = 0.5y2,t−1 + 0.5x2,t−1 + e2,t

x3,t = 0.2x3,t−1 + e3,t

x4,t = 0.7x4,t−1 + e4,t

x5,t = e5,t

x6,t = e6,t.
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4.1 Preliminary setup

The prior specification is based on a Litterman type prior with prior mean zero for
γ except for the own first lag where the prior mean is set to 0.9. The prior standard
deviations are given by

π1

kπ3
, own lags, k = 1, . . . , p

siπ1π2

sjkπ3
, lags of variable j in equation i, k = 1, . . . , p

π4, deterministic variables

where si is the residual standard deviation for equation i from the OLS fit of the
VAR-model. For the independent normal Wishart we use π1 = 0.5, π2 = 0.5,
π3 = 0.5, π4 = 1, v = 9 and for the normal-Wishart π1 = 0.5, π2 = 1, π3 = 0.5,
π4 = 1, v = 9 with Ω and S set as in Kadiyala and Karlsson (1997).

The model prior is given by

π (Mj) ∝
K∏
k=1

δdkk (1− δk)dk

dk = 1 if variable k is included

δk = prior variable inclusion probability

and we consider two settings for δk = 0.2 or 0.5.
For each DGP we generate 100 data sets of length 112 and 312 where the last 12

observations set aside for forecast evaluation with forecast horizons h = 1 to 12. We
use two settings for the lag length of the VAR-models, the true lag length and the
true lag length + 1. A constant term is always included as a deterministic variable
in all model specifications.

For the marginalized predictive likelihood we use a hold out sample of 70 ob-
servations with the small data sets and 90 observations for the large data sets and
estimate the predictive weights for the single horizon h = 1 with 5000 draws from
the training sample posterior. The marginalized marginal likelihood is estimated
using 5000 draws from the prior with the independent normal Wishart prior. The
final forecasts arise as the mean forecast from 5000 sample draws.

4.2 Results

4.2.1 Variable and model selection

Following Andersson and Karlsson (2009) we calculate the average variable inclusion
probabilities to check the variable selection performance and the proportion of data
sets where the true model is selected to investigate the model selection performance
of the marginalized predictive likelihood and the marginalized marginal likelihood.
The variable inclusion probability for variable k is given by

p(xk |y ) =
M∑
j=1

1(xk ∈Mj)p(Mj |y )

12



Table 2 Posterior variable inclusion probabilities, DGP 1, T = 100

Normal-Wishart prior
Predictive likelihood Marginal likelihood

p δk p(y2) max[p(xi)]
p(y2)

max[p(xi)]
p(y2) max[p(xi)]

p(y2)
max[p(xi)]

1 0.2 0.69 0.15 4.58 0.86 0.07 11.51
0.5 0.77 0.28 2.78 0.92 0.18 5.21

2 0.2 0.55 0.15 3.72 0.75 0.04 17.03
0.5 0.67 0.27 2.50 0.86 0.12 7.22

Independent normal Wishart prior
Predictive likelihood Marginal likelihood

p δk p(y2) max[p(xi)]
p(y2)

max[p(xi)]
p(y2) max[p(xi)]

p(y2)
max[p(xi)]

1 0.2 0.72 0.16 4.41 0.78 0.02 39.84
0.5 0.82 0.30 2.74 0.86 0.04 21.17

2 0.2 0.63 0.16 4.01 0.70 0.04 16.83
0.5 0.73 0.28 2.60 0.81 0.10 8.16

Table 3 Posterior variable inclusion probabilities, DGP 1, T = 300

Normal-Wishart prior
Predictive likelihood Marginal likelihood

p δk p(y2) max[p(xi)]
p(y2)

max[p(xi)]
p(y2) max[p(xi)]

p(y2)
max[p(xi)]

1 0.2 0.90 0.19 4.69 1.00 0.05 18.63
0.5 0.93 0.31 2.97 1.00 0.14 7.35

2 0.2 0.87 0.17 5.04 1.00 0.03 39.73
0.5 0.91 0.29 3.14 1.00 0.07 14.92

Independent normal Wishart prior
Predictive likelihood Marginal likelihood

p δk p(y2) max[p(xi)]
p(y2)

max[p(xi)]
p(y2) max[p(xi)]

p(y2)
max[p(xi)]

1 0.2 0.90 0.19 4.79 1.00 0.09 10.84
0.5 0.93 0.31 3.03 1.00 0.21 4.69

2 0.2 0.88 0.17 5.15 1.00 0.07 15.04
0.5 0.92 0.29 3.19 1.00 0.16 6.26

13



where 1(xk ∈Mj) is 1 if variable k is included in model j.
Table 2 - 3 reports on the variable inclusion probabilities for the simulated small

and large data set under DGP1 respectively. Instead of reporting the variable in-
clusion probabilities of all 6 extraneous variables we only report the largest vari-
able inclusion probability. All the results show that the procedure using either
the marginalized marginal likelihood or predictive likelihood is able to make a clear
choice between the ”true” variable y2 and the remaining variables. The performance
is slightly better when the true lag length (p = 1) and smaller prior variable inclu-
sion probability (δk = 0.2) is used. This is consistent with the findings of Andersson
and Karlsson (2009) that too large a lag length or a model prior favoring too large
models has a negative impact on the discriminatory power. We also find that the
marginalized marginal likelihood provides a sharper discrimination between models
and variables as it is based on the full sample and makes more efficient use of the
data.

Table 4 provides the model selection results for the small data set under DGP1
with T = 100. Overall, the marginalized marginal likelihood selects the correct
model well (between 69% and 94% of the 100 replicates), and the posterior weights
for the true model are quite large (mostly over 0.5). In contrast, the marginalized
predictive likelihood in general selects the true model poorly and especially when
the model prior favors larger models (δk = 0.5) with the correct model select in less
than 18% of the cases. Turning to the results for T = 300 in Table 5 we find that
the results are similar in terms of the posterior weights but that the proportion of
correct model selection increases substantially for both the marginalized marginal
and predictive likelihoods. The results for DGP2 and DGP3 are qualitatively similar
and are given in Appendix B.

4.2.2 Forecasting performance

For the forecasting performance, we will focus on the simulation results for the
normal-Wishart prior presented in Figure 2 - 7. The qualitative results are quite
similar for the independent normal Wishart prior, which can be found in Figure 15
- 20 in Appendix B. For all DGPs, we compute the mean square error (MSE) for
the Bayesian forecast combination (BMA) and compare it to the model with the
highest model weights (TOP). Furthermore, the performance is reported in terms of
MSE relative to the MSE for a univariate AR(3) with a ratio less than 1 indicating
superior performance.

The results for DGP1 and DGP3 follow the same pattern. For the shorter lead
times, the forecast combination and the forecast using best model outperforms the
forecasts from the AR(3) by a substantial margin and is quite similar for the longer
lead times. The difference in performance is smaller for the larger sample size with
a clear edge for the forecast combinations and the ”top model” only for very short
lead times. The results for DGP2 are qualitatively similar but with less pronounced
gains for the small sample size.

The differences between the marginalized marginal and predictive likelihoods or
forecasts based on model averaging or selecting a best model are very small. This can
be explained by the model selection results in Tables 4 and 5. Both the marginalized
marginal and predictive likelihoods almost always select the correct model and the
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Table 4 Model Selection, DGP1, Average posterior weight and proportion selected
for true model, T = 100.

Normal-Wishart prior

Predictive likelihood Marginal likelihood
p δk Weight Selected Weight Selected
1 0.2 0.27 0.57 0.59 0.89

0.5 0.08 0.17 0.29 0.83
2 0.2 0.23 0.33 0.60 0.78

0.5 0.10 0.18 0.44 0.79

Independent normal Wishart prior
Predictive likelihood Marginal likelihood

p δk Weight Selected Weight Selected
1 0.2 0.26 0.65 0.76 0.85

0.5 0.07 0.11 0.76 0.94
2 0.2 0.23 0.45 0.64 0.72

0.5 0.08 0.12 0.61 0.69

Table 5 Model Selection, DGP1, Average posterior probability and proportion se-
lected for true model, T = 300.

Normal-Wishart prior

Predictive likelihood Marginal likelihood
p δk Weight Selected Weight Selected
1 0.2 0.28 0.90 0.77 0.96

0.5 0.05 0.04 0.44 0.86
2 0.2 0.30 0.81 0.90 0.99

0.5 0.07 0.13 0.72 0.90

Indedependent normal Wishart prior
Predictive likelihood Marginal likelihood

p δk Weight Selected Weight Selected
1 0.2 0.29 0.91 0.60 0.96

0.5 0.05 0.07 0.22 0.68
2 0.2 0.30 0.86 0.72 0.93

0.5 0.06 0.11 0.39 0.78
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Figure 2 Forecast performance, DGP1, MSE relative to univariate AR(3), normal-
Wishart prior, T = 100
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Figure 3 Forecast performance, DGP1, MSE relative to univariate AR(3), normal-
Wishart prior, T = 300
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Figure 4 Forecast performance, DGP2, MSE relative to univariate AR(3), normal-
Wishart prior, T = 100
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Figure 5 Forecast performance, DGP2, MSE relative to univariate AR(3), normal-
Wishart prior, T = 300
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Figure 6 Forecast performance, DGP3, MSE relative to univariate AR(3), normal-
Wishart prior, T = 100
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Figure 7 Forecast performance, DGP3, MSE relative to univariate AR(3), normal-
Wishart prior, T = 300
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Figure 8 US GDP growth and inflation, in percent, 1972Q1-2011Q4
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high average weight means that the correct model will dominate the combination
forecasts, making them all very similar in the simulation exercise.

5 Forecasting US GDP growth and inflation

In this section we evaluate the forecast performance empirically by forecasting the
U.S. real GDP growth and CPI inflation. The two variables of primary interest
are displayed in Figure 8. In addition to GDP growth and inflation we consider an
additional 15 variables for inclusion in the forecasting model. The set of variables is
similar to Andersson and Karlsson (2009) and consists of aggregate real and nominal
quarterly data from 1972Q1 to 2011Q4. The full list of variables can be found in
Appendix A.

In addition to the two variables of interest we consider VAR models with up
to four additional variables selected from the list in Appendix A for a total of
1941 distinct models. The forecasts are then produced by selecting a single model
according to the marginalized predictive and marginal likelihoods and by forecast
combinations based on the marginalized likelihoods.

The simulation study showed little or no gains from using the more complicated
independent normal Wishart prior and we will only consider forecasts based on the
normal-Wishart prior. The prior hyperparameters are set as in the simulation study,
i.e. the overall tightness is set to π1 = 0.5, the cross-equation tightness to π2 = 1,
the lag decay to π3 = 0.5, the deterministic tightness to π4 = 5 and the prior degrees
of freedom to v = 9. For the marginalized predictive likelihood a hold out sample
of 50 observations is used and the predictive weights are estimated for the single
horizon h = 1 using 5000 draws from the training sample posterior. For each model
the forecast is the expected value of the predictive distribution which is simulated
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Table 6 Forecast accuracy for US GDP growth, relative RMSE to AR(4), absolute
RMSE for AR(4), 30 origins, 1997Q1-2004Q2

Predictive likelihood Marginal likelihood
h BMA TOP BMA TOP AR(4)
1 0.940 0.942 0.950 0.942 0.871
2 0.918 0.919 0.935 0.934 0.900
3 0.902 0.912 0.891 0.906 1.300
4 0.951 0.953 0.968 0.977 1.275
5 1.132 1.118 1.071 1.082 1.347
6 1.193 1.175 1.119 1.149 1.305
7 1.128 1.098 1.089 1.124 1.452
8 1.213 1.186 1.106 1.135 1.406

Stdev(GDP) = 1.441.

Table 7 Forecast accuracy for US GDP growth, relative RMSE to AR(4), absolute
RMSE for AR(4), 30 origins, 2004Q3-2011Q4

Predictive likelihood Marginal likelihood
h BMA TOP BMA TOP AR(4)
1 0.991 1.021 0.982 0.984 1.740
2 1.065 1.074 1.097 1.104 1.824
3 0.994 0.994 1.006 1.015 3.060
4 1.084 1.103 1.106 1.114 3.082
5 1.115 1.129 1.133 1.142 3.414
6 1.093 1.098 1.089 1.103 3.402
7 1.123 1.126 1.115 1.127 3.295
8 1.077 1.070 1.034 1.057 3.320

Stdev(GDP) = 2.440.

using 5000 draws from the full sample posterior.

5.1 Forecast performance

The period 1997Q1 to 2011Q4 is set aside for evaluating the forecast performance
and forecasts for 1 to 8 quarters ahead are generated using a recursive updating
scheme. That is, the first set of forecasts covering 1997Q1 to 1998Q4 are based on
data up to 1996Q4, the second set of forecasts for 1997Q2 to 1999Q1 are based on
data up to 1997Q1 and so on.

Tables 6 and 7 report on the performance of the forecasts of GDP growth and
Figures 9 and 10 shows the one quarter ahead forecast combination forecasts. We
report separately on the two periods 1997Q1 to 2004Q2 and 2004Q3 to 2011Q4 in
order to highlight the effect of the recent financial on the forecast performance. The
tables report the root mean square error (RMSE) for a baseline univariate AR(4)
forecasting model and the RMSE relative to the AR(4) for the forecast combinations
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Figure 9 BMA forecast performance, US GDP growth, one quarter ahead forecast
and forecast errors, 1997Q1-2004Q2
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Figure 10 BMA forecast performance, US GDP growth, one quarter ahead forecast
and forecast errors, 2004Q3-2011Q4
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Table 8 Forecast accuracy for US Inflation, relative RMSE to AR(4), absolute
RMSE for AR(4), 30 origins, 1997Q1-2004Q2

Predictive likelihood Marginal likelihood
h BMA TOP BMA TOP AR(4)
1 0.795 0.931 0.816 0.837 0.295
2 0.879 1.129 0.912 0.939 0.301
3 0.693 0.920 0.683 0.702 0.614
4 0.871 1.169 0.788 0.806 0.564
5 0.725 0.927 0.647 0.683 0.860
6 1.030 1.314 0.722 0.737 0.736
7 0.805 0.940 0.644 0.681 1.063
8 1.160 1.378 0.833 0.865 0.868

Stdev(CPI) = 0.409.

Table 9 Forecast accuracy for US Inflation, relative RMSE to AR(4), absolute
RMSE for AR(4), 30 origins, 2004Q3-2009Q2

Predictive likelihood Marginal likelihood
h BMA TOP BMA TOP AR(4)
1 0.998 0.957 1.016 1.042 0.397
2 1.094 1.014 1.070 1.100 0.404
3 0.882 0.811 0.921 0.935 0.721
4 0.944 0.901 0.996 1.049 0.709
5 0.773 0.786 0.777 0.898 0.805
6 0.761 0.790 0.785 0.848 0.801
7 0.765 0.747 0.743 0.767 1.015
8 0.973 0.949 0.946 0.938 0.948

Stdev(CPI) = 0.537.

(BMA in the tables) and the forecasts from the model with the highest marginalized
likelihood at each point in time (TOP in the tables).

For the period 1997Q1 to 2004Q2 (Table 6) the predictive likelihood performs
slightly better than the marginal likelihood, and both procedures show some im-
provement on the common benchmark of AR(4) for short lead times. The forecast
combination (BMA) performs slightly better than selecting a single model (TOP)
with the predictive likelihood, while we observe the opposite result with the marginal
likelihood. In Table 7, covering the financial crisis period, the forecast performance
for all procedures are worse than the results for the ”normal” period. The range
of RMSE for the AR(4) is (1.740, 3.414) in the crisis period, much higher than
(0.871, 1.452) for the normal period. The forecast combinations do better than se-
lecting a single model but both procedures fail to improve on the AR(4) benchmark
for the 2004Q3 to 2011Q4 period.

As can be expected, the forecast performance for the inflation rate reported in
Tables 8 and 9 and Figures 11 and 12 is much better than for GDP growth. The
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Figure 11 BMA forecast performance, US Inflation change, one quarter ahead
forecast and forecast errors, 1997Q1-2004Q2

1998 2000 2002 2004

1.5
2.0

2.5

1997

True value
MPL forecast
MML forecast

1998 2000 2002 2004

−0
.6

−0
.4

−0
.2

0.0
0.2

0.4
0.6

1997

MPL fcast.err
MML fcast.err

Figure 12 BMA forecast performance, US Inflation change, one quarter ahead
forecast and forecast errors, 2004Q3-2011Q4
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Figure 13 Forecasts of US GDP growth (first) and inflation (second) as of 2011Q4,
MPL weights and MML weights
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effect of the financial crisis on the forecastability is much smaller for inflation with
small differences in absolute RMSEs between the two periods. Overall the forecast
combination based on the marginalized marginal likelihood performs best, some-
times improving on the AR(4) benchmark by as much as 35% while only producing
worse forecasts in two cases.

5.2 Out of sample forecasts

To provide further insight into the properties of the model averaging procedures we
provide out of sample forecasts 1 to 8 quarters ahead based on both the predictive
and marginal likelihoods in Figure 13. The 50% prediction intervals are based on
the model averaged predictive distribution and accounts for both parameter and
model uncertainty. While the forecasts are quite similar for the inflation rate the
predictive likelihood forecast is more pessimistic about GDP growth.

To see why this is the case we turn to Figure 14 showing the variable inclu-
sion ”probabilities” and Tables 10 and 11 which show the top 10 models using
the marginalized predictive and marginal likelihoods. The two measures clearly fa-
vors different sets of variables. The marginal likelihood focuses on fewer variables
with the interest rate (FEDFUNDS), personal outlays (A068RC1) and employment
(PAYEMS) being the most important followed by personal consumption expendi-
ture (PCEPILFE) and imports (IMPGSC1). The predictive likelihood gives lower
weights to the three variables most favored by the marginal likelihood and instead
gives more weight to consumption expenditure (which is largely exchangeable with
personal outlays) and gives substantial weights to exports (EXPGSC1) and unem-
ployment (UNRATE). The difference in the forecasts can thus be attributed to the
larger role for exports and unemployment in the models favored by the predictive
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Figure 14 Variable selection, US GDP growth and inflation, MPL weights and
MML weights
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6 Summary

Standard Bayesian model averaging and model selection does not work with mul-
tivariate models subject to dimension changes. This paper proposes the use of
the marginalized marginal likelihood as a solution to this problem. Similar to the
marginalized predictive likelihood proposed by Andersson and Karlsson (2009) it
has the additional advantage of being a focused indicator that measures the model
fit for the variables of interest.

We show how to use the marginalized marginal likelihood in VAR models and two
commonly used families of prior distributions, the normal-Wishart and independent
normal Wishart priors. With the normal-Wishart prior the marginalized marginal
likelihood is available in closed form while numerical methods are required with
the independent normal Wishart prior. For the latter we propose and evaluate
several different simulation based methods for estimating the marginalized marginal
likelihood.

In a small simulation study and an application to forecasting US GDP growth and
inflation we illustrate the variable and model selection properties and demonstrate
that forecasting combinations based on the marginalized marginal likelihood can
improve on forecasts based on single models.
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Table 10 Top 10 models, US GDP growth and inflation, predictive weights

Top model
Variable 1 2 3 4 5 6 7 8 9 10

INDPRO # # # # # # # #  #
A068RC1  # # # #  #  #  
UNRATE #   # # # # # # #
PAYEMS # # #   #  # # #
CEV # # # #  # # # # #
COE # # # # # # # # # #
PSAVERT # # # # # # # # # #
CPROFIT # # # # # # # # # #
PCEPILFE    # # # #   #
M2SL # # # # # # # # # #
FEDFUNDS   # # #  #  #  
OILPRICE # # # # # # # # # #
IMPGSC1 #     #   #  
EXPGSC1 # # #   #  #  #
SP500 # # # # # #  # # #
Weight 0.511 0.069 0.068 0.067 0.044 0.028 0.026 0.019 0.012 0.011

Table 11 Top 10 models, US GDP growth and inflation, marginal weights

Top model
Variable 1 2 3 4 5 6 7 8 9 10

INDPRO # # # # # # # # # #
A068RC1       # #   
UNRATE # # # # # # # # #  
PAYEMS  # # #   #  # #
CEV # # # # # # # # # #
COE # # # # # # # # # #
PSAVERT # # # # # # # # # #
CPROFIT # # # # # # # # # #
PCEPILFE #  # # #     #
M2SL # # # # # # # # # #
FEDFUNDS           
OILPRICE # # # # # # # # # #
IMPGSC1 # #  #  #  #   
EXPGSC1 # # # # # # # # # #
SP500 # # # # # # # # # #
Weight 0.426 0.169 0.112 0.097 0.074 0.034 0.026 0.018 0.011 0.009
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A Data

The time series used for the US GDP forecasts are from Federal Reserve Economic
Data (FRED), and the variables are chosen similarly as in Andersson and Karlsson
(2009). The transformation codes for the time series are

T.code Transformation
1 level (yt)
2 log difference (ln yt − ln yt−1)
3 4 quarter difference (yt − yt−4)
4 4 quarter log difference (ln yt − ln yt−4)

Table 12 Variables used for forecasting US GDP

No Variable Description T.code
1 GDPC1* Real Gross Domestic Product, 1 Decimal 4
2 CPILFESL* Consumer Price Index for All Urban Consumers: 4

All Items Less Food & Energy
3 INDPRO Industrial Production Index 4
4 A068RC1 Personal outlays 2
5 UNRATE Civilian Unemployment Rate 3
6 PAYEMS All Employees: Total nonfarm 2
7 CE16OV Civilian Employment 2
8 COE National Income: Compensation of Employees, Paid 2
9 PSAVERT Personal Saving Rate 1
10 CPROFIT Corporate Profits with Inventory Valuation Adjustment 2

(IVA) and Capital Consumption Adjustment (CCAdj)
11 PCEPILFE Personal Consumption Expenditures Excluding Food 2

and Energy (Chain-Type Price Index)
12 M2SL M2 Money Stock 2
13 FEDFUNDS Effective Federal Funds Rate 3
14 OILPRICE Spot Oil Price: West Texas Intermediate 4
15 IMPGSC1 Real Imports of Goods & Services, 1 Decimal 4
16 EXPGSC1 Real Exports of Goods & Services, 1 Decimal 4
17 SP500 S&P 500 Index 4

* - The variable of interest.
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B Simulation Results

Table 13 Posterior variable inclusion probabilities, DGP 2, T = 100

Normal-Wishart prior
Predictive likelihood Marginal likelihood

p δk p(y2) max[p(xi)]
p(y2)

max[p(xi)]
p(y2) max[p(xi)]

p(y2)
max[p(xi)]

2 0.2 0.73 0.16 4.72 0.89 0.05 18.61
0.5 0.79 0.24 3.27 0.95 0.12 7.77

3 0.2 0.64 0.15 4.42 0.82 0.04 21.98
0.5 0.73 0.24 3.02 0.90 0.09 10.01

Independent normal Wishart prior
Predictive likelihood Marginal likelihood

p δk p(y2) max[p(xi)]
p(y2)

max[p(xi)]
p(y2) max[p(xi)]

p(y2)
max[p(xi)]

2 0.2 0.78 0.18 4.23 0.86 0.06 15.28
0.5 0.83 0.29 2.88 0.91 0.11 8.14

3 0.2 0.74 0.19 3.92 0.80 0.12 6.43
0.5 0.81 0.30 2.65 0.85 0.22 3.88

Table 14 Posterior variable inclusion probabilities, DGP 2, T = 300

Normal-Wishart prior
Predictive likelihood Marginal likelihood

p δk p(y2) max[p(xi)]
p(y2)

max[p(xi)]
p(y2) max[p(xi)]

p(y2)
max[p(xi)]

2 0.2 0.93 0.18 5.11 1.00 0.02 45.31
0.5 0.95 0.31 3.06 1.00 0.06 16.95

3 0.2 0.91 0.18 5.14 1.00 0.01 72.75
0.5 0.94 0.30 3.15 1.00 0.04 27.55

Independent normal Wishart prior
Predictive likelihood Marginal likelihood

p δk p(y2) max[p(xi)]
p(y2)

max[p(xi)]
p(y2) max[p(xi)]

p(y2)
max[p(xi)]

2 0.2 0.93 0.18 5.03 1.00 0.06 17.84
0.5 0.94 0.29 3.26 1.00 0.11 8.96

3 0.2 0.91 0.19 4.79 1.00 0.05 20.83
0.5 0.91 0.30 2.98 1.00 0.10 9.79
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Table 15 Model Selection, DGP2, Average posterior weight and proportion selected
for true model, T = 100.

Normal-Wishart prior

Predictive likelihood Marginal likelihood
p δk Weight Selected Weight Selected
2 0.2 0.32 0.52 0.71 0.90

0.5 0.13 0.19 0.47 0.82
3 0.2 0.30 0.39 0.68 0.82

0.5 0.16 0.19 0.54 0.84

Independent normal Wishart prior
Predictive likelihood Marginal likelihood

p δk Weight Selected Weight Selected
2 0.2 0.27 0.56 0.77 0.85

0.5 0.08 0.17 0.68 0.80
3 0.2 0.24 0.40 0.52 0.62

0.5 0.07 0.12 0.39 0.46

Table 16 Model Selection, DGP2, Average posterior weight and proportion selected
for true model, T = 300.

Normal-Wishart prior

Predictive likelihood Marginal likelihood
p δk Weight Selected Weight Selected
2 0.2 0.32 0.88 0.90 0.99

0.5 0.07 0.12 0.72 0.93
3 0.2 0.33 0.80 0.96 0.99

0.5 0.08 0.09 0.86 0.99

Independent normal Wishart prior
Predictive likelihood Marginal likelihood

p δk Weight Selected Weight Selected
2 0.2 0.33 0.92 0.77 0.96

0.5 0.08 0.17 0.62 0.84
3 0.2 0.32 0.81 0.78 0.97

0.5 0.07 0.12 0.69 0.88
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Table 17 Posterior variable inclusion probabilities, DGP 3, T = 100, Normal-
Wishart prior

p δk p(y2) p(y3) max[p(xi)]
p(y2)

max[p(xi)]
p(y3)

max[p(xi)]

Predictive likelihood
1 0.2 0.67 0.83 0.12 5.49 6.77

0.5 0.75 0.88 0.21 3.52 4.18
2 0.2 0.54 0.76 0.12 4.58 6.43

0.5 0.61 0.82 0.21 2.93 3.93
Marginal likelihood

1 0.2 0.85 0.90 0.06 15.34 16.15
0.5 0.92 0.94 0.12 7.44 7.64

2 0.2 0.76 0.82 0.04 20.44 22.02
0.5 0.86 0.89 0.09 9.29 9.69

Table 18 Posterior variable inclusion probabilities, DGP 3, T = 100, Independent
normal Wishart prior

p δk p(y2) p(y3) max[p(xi)]
p(y2)

max[p(xi)]
p(y3)

max[p(xi)]

Predictive likelihood
1 0.2 0.70 0.84 0.13 5.21 6.28

0.5 0.78 0.90 0.22 3.59 4.13
2 0.2 0.60 0.78 0.14 4.31 5.58

0.5 0.69 0.84 0.24 2.81 3.45
Marginal likelihood

1 0.2 0.61 0.68 0.04 16.27 18.05
0.5 0.72 0.76 0.08 9.45 10.07

2 0.2 0.84 0.84 0.14 6.02 6.13
0.5 0.70 0.79 0.20 3.51 3.95

Table 19 Posterior variable inclusion probabilities, DGP 3, T = 300, Normal-
Wishart prior

p δk p(y2) p(y3) max[p(xi)]
p(y2)

max[p(xi)]
p(y3)

max[p(xi)]

Predictive likelihood
1 0.2 0.90 0.91 0.13 6.69 6.82

0.5 0.92 0.94 0.20 4.62 4.70
2 0.2 0.85 0.91 0.13 6.61 7.02

0.5 0.88 0.93 0.20 4.47 4.73
Marginal likelihood

1 0.2 1.00 1.00 0.04 23.24 23.24
0.5 1.00 1.00 0.10 10.48 10.48

2 0.2 1.00 1.00 0.02 43.10 43.11
0.5 1.00 1.00 0.06 17.47 17.47
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Table 20 Posterior variable inclusion probabilities, DGP 3, T = 300, Independent
normal Wishart prior

p δk p(y2) p(y3) max[p(xi)]
p(y2)

max[p(xi)]
p(y3)

max[p(xi)]

Predictive likelihood
1 0.2 0.91 0.92 0.13 6.83 6.96

0.5 0.93 0.95 0.20 4.72 4.81
2 0.2 0.87 0.92 0.13 6.83 7.22

0.5 0.90 0.94 0.19 4.60 4.85
Marginal likelihood

1 0.2 1.00 1.00 0.08 13.27 13.27
0.5 1.00 1.00 0.14 7.14 7.14

2 0.2 1.00 1.00 0.06 16.53 16.53
0.5 1.00 1.00 0.13 7.98 7.98

Table 21 Model Selection, DGP3, Average posterior weights and proportion se-
lected for true model, T = 100.

Normal-Wishart prior

Predictive likelihood Marginal likelihood
p δk Weight Selected Weight Selected
1 0.2 0.28 0.53 0.58 0.78

0.5 0.15 0.20 0.40 0.88
2 0.2 0.22 0.37 0.53 0.67

0.5 0.14 0.14 0.48 0.74

Independent normal Wishart prior
Predictive likelihood Marginal likelihood

p δk Weight Selected Weight Selected
1 0.2 0.29 0.64 0.35 0.68

0.5 0.14 0.15 0.44 0.85
2 0.2 0.24 0.40 0.31 0.59

0.5 0.14 0.20 0.36 0.64
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Table 22 Model Selection, DGP3, Average posterior weights and proportion se-
lected for true model, T = 300.

Normal-Wishart prior

Predictive likelihood Marginal likelihood
p δk Weight Selected Weight Selected
1 0.2 0.38 0.84 0.82 0.97

0.5 0.15 0.10 0.56 0.88
2 0.2 0.36 0.74 0.92 0.97

0.5 0.16 0.11 0.78 0.93

Independent normal Wishart prior
Predictive likelihood Marginal likelihood

p δk Weight Selected Weight Selected
1 0.2 0.38 0.86 0.66 0.92

0.5 0.16 0.09 0.35 0.71
2 0.2 0.38 0.76 0.76 0.93

0.5 0.16 0.12 0.50 0.81

Figure 15 Forecast performance, DGP1, MSE relative to univariate AR(3), Inde-
pendent normal-Wishart prior, T = 100
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Figure 16 Forecast performance, DGP1, MSE relative to univariate AR(3), Inde-
pendent normal Wishart prior, T = 300
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Figure 17 Forecast performance, DGP2, MSE relative to univariate AR(3), Inde-
pendent normal Wishart prior, T = 100
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Figure 18 Forecast performance, DGP2, MSE relative to univariate AR(3), Inde-
pendent normal Wishart prior, T = 300
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Figure 19 Forecast performance, DGP3, MSE relative to univariate AR(3), Inde-
pendent normal Wishart prior, T = 100
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Figure 20 Forecast performance, DGP3, MSE relative to univariate AR(3), Inde-
pendent normal Wishart prior, T = 300
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