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Abstract

We propose a new technique for the analysis of multivariate stochastic volatility
models, based on efficient draws of volatility from its conditional posterior distribu-
tion. It applies to models with several kinds of cross-sectional dependence. Full VAR
coefficient and covariance matrices give cross-sectional volatility dependence. Mean
factor structure allows conditional correlations, given states, to vary in time. The con-
ditional return distribution features Student’s t marginals, with asset-specific degrees
of freedom, and copulas describing cross-sectional dependence. We draw volatility
as a block in the time dimension and one-at-a-time in the cross-section. Following
McCausland (2012), we use close approximations of the conditional posterior distribu-
tions of volatility blocks as Metropolis-Hastings proposal distributions. We illustrate
using daily return data for ten currencies. We report results for univariate stochastic
volatility models and two multivariate models.

1 Introduction

Multivariate volatility models are a powerful inferential tool. By featuring different kinds of
dynamic cross-sectional dependence among multiple asset returns, they can capture many
different stylized facts.

It is well known that asset return volatility varies over time, changing in response to
news and revised expectations of future performance. It tends to cluster, so that large price
changes tend to be followed by other large changes. Volatility is not independent across
markets and assets, and this cross-sectional dependence is time-varying. Cross-sectional
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correlations increase substantially in periods of high market volatility, especially in bear
markets. The distribution of returns is heavy tailed compared with the normal distribution,
even when one conditions on current market conditions. There is an asymmetric relation
between price and volatility changes known as the “leverage effect”: increases in volatility
are associated more with large decreases in price than with large increases.

Multivariate volatility models that can capture these stylized facts are in high demand
in finance given their many important applications, especially in modern portfolio man-
agement. Learning about the joint distribution of asset returns is a key element for the
construction, diversification, evaluation and hedging of portfolios. Accurate estimation of
the covariance matrix of multiple asset returns allows the investor to timely identify op-
portunities or risks associated with a particular portfolio. It is important to track changes
in correlations to assess the risk of a portfolio, especially during periods of market stress.
Financial crises usually have a strong impact on correlation. Markets tend to behave as one
during big crashes — as the risk of some assets increases, investors wish to sell other risky
investments. The result is more highly correlated returns. The pessimistic conclusion is
that diversification is least effective at reducing risk at the very times when risk is highest.
An awareness of this fact avoids false optimism.

As with univariate volatility models, there are two main types of multivariate volatility
models: observation-driven and parameter-driven. In observation-driven models, volatility
is a deterministic function of observed variables, which allows straightforward evaluation of
the likelihood function. This advantage has made the observation-driven GARCH model
and its extensions very popular for univariate problems.

In parameter-driven volatility models, known as stochastic volatility (SV) models,
volatility is a latent stochastic process. Jacquier, Polson, and Rossi (1994) and Geweke
(1994) give evidence suggesting that SV models are more realistic. They are also more
natural discrete time representations of the continuous time models upon which much of
modern finance theory is based. Unfortunately, computation of the likelihood function,
which amounts to integrating out latent states, is difficult. However, since the introduc-
tion of Bayesian Markov chain Monte Carlo (MCMC) methods by Jacquier, Polson, and
Rossi (1994) for univariate SV models, inference for these models has become much more
feasible. These methods require the evaluation of the joint density of returns, states and pa-
rameters, which is straightforward. In addition, simulation methods for Bayesian inference
make exact finite sample inference possible.

This paper focuses on multivariate stochastic volatility (MSV) models, which are parameter-
driven. For a literature review of multivariate GARCH type models, which are observation-
driven, see Bauwens, Laurent, and Rombouts (2006). We propose new MCMC methods for
Bayesian analysis of MSV models, based on efficient draws of volatility from its conditional
posterior distribution.

There are many different types of MSV models. In Section 2, we describe a MSV
model that encompasses several special cases of interest and compare it to other models.
Two difficulties arise when we extend volatility models to the multivariate case. First, the
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conditional variance of returns given states must be positive definite at every point in time.
Second, there is a severe trade-off between parsimony and flexibility. As the number of
assets increases, the number of potential parameters increases quickly, leading to a danger
of overfitting. Reining in the number of parameters forces the modeler to make choices,
and much of the difference between MSV model specifications reflects a choice about how
to do this. This has implications on which stylized facts can be captured by the model.

We show that our estimation approach is quite flexible and we do not rely much on any
special structure for the MSV model considered. It applies to models with several kinds of
cross-sectional dependence. We can specify full first order VAR coefficient and covariance
matrices for the evolution of volatilities. We can include a mean factor structure, which
allows conditional return correlations, given asset and factor volatilities, to vary over time,
and for these correlations to covary with variances. We can also model cross-sectional con-
ditional return dependence given latent asset and factor volatilities using copulas. Copulas
allow one to represent a multivariate distribution in a very flexible way by decoupling the
choice of marginal distributions — which can be different from each other — from the
choice of the dependence structure. Copulas have been used in multivariate GARCH-type
models, but to our knowledge, this is the first study to introduce copulas in MSV models.

We introduce a new prior for correlation matrices, which we use in the context of
Gaussian copulas. It is based on a geometric interpretation of correlation coefficients.
The prior is a first step towards a model for time varying correlations where assets are
exchangeable, avoiding a problem with models based on the Cholesky decomposition –
their predictions are not invariant to the arbitrary choice of how to order assets.

We allow heavy-tailed returns. In our applications, we use Student’s t marginals, but
this is not an essential choice, and we don’t rely on data augmentation to obtain conditional
Gaussianity, unlike with many models using Student’s t distributions. In general, we allow
the marginal distribution to vary by asset, which in our applications translates to asset-
specific degrees of freedom parameters. We also depart from the usual assumption of
Gaussian factors and allow Student’s t factors.

Different MCMC methods have been proposed for inference in MSV models and some-
times they are quite model specific. The estimation technique proposed by Chib, Nardari,
and Shephard (2006) (CNS) is one of the most popular, especially when analyzing a large
number of asset returns. The CNS model includes factors in mean, heavy tailed errors for
returns, and jumps. Factor volatilities and the volatilities of the idiosyncratic components
of returns are conditionally independent given parameters. Factors are Gaussian.

An important feature of the CNS procedure is sampling the factor loading matrix
and the latent factors as a single block. This is more numerically efficient than using
separate blocks to draw factor loadings and factors. The procedure exploits the conditional
independence of volatilities to draw all volatilities and some associated parameters as a
single block, using the procedure proposed by Kim, Shephard, and Chib (1998) (KSC) for
univariate SV models.

The procedure in Kim, Shephard, and Chib (1998) is an example of the auxiliary

3



mixture approach to inference in state space models, whereby non-linear or non-Gaussian
state space models are first transformed into linear models and then the distribution of the
transformed error is approximated by a mixture of Gaussian distributions. The mixture can
be dealt with using data augmentation — adding mixture component indicators yields a
linear Gaussian model when one conditions on them. The transformation is model specific,
but many other models have yielded to this approach. Some relevant articles are Chib,
Nardari, and Shephard (2002) and Omori, Chib, Shephard, and Nakajima (2007) for other
univariate SV models; Stroud, Müller, and Polson (2003) for Gaussian, but non-linear, state
space models with state dependant variances; Frühwirth-Schnatter and Wagner (2006) for
state space models with Poisson counts; and Frühwirth-Schnatter and Früwirth (2007) for
logit and multinomial logit models.

The approximation of the transformed error distribution as a mixture can be corrected
by reweighting, as in Kim, Shephard, and Chib (1998) or by an additional Metropolis
accept-reject, as in Stroud, Müller, and Polson (2003), Frühwirth-Schnatter and Wagner
(2006) and Frühwirth-Schnatter and Früwirth (2007).

CNS draw log volatilities, component indicators and some parameters based on the
approximate transformed model. These Metropolis-Hastings updates preserve an approx-
imate posterior distribution implied by the approximate model. All other updates of un-
known quantities preserve the exact posterior distribution. Thus the stationary distribu-
tion of a sweep through all the blocks is neither the exact nor the approximate posterior
distribution. We cannot expect the method to be simulation consistent.

McCausland (2012) proposed an alternative procedure to draw all latent states in uni-
variate state space models as a block, preserving their exact conditional posterior distri-
bution. This HESSIAN method is fast and numerically efficient and does not require data
augmentation. It can be used to draw joint blocks of states and parameters. It is based on
a non-Gaussian proposal distribution that captures some of the departure from Gaussianity
of the conditional posterior distribution of the states. The HESSIAN method uses routines
to compute derivatives of the log measurement density at a point, but is not otherwise
model specific.

While the HESSIAN method is only for univariate states, we can apply it to draw
volatilities as a single block in the time dimension but one-at-a-time in the cross-section
dimension. We will see that the conditional distribution of one state sequence, given
the others, parameters and data, can be seen as the conditional posterior distribution of
states in a univariate state space model. So, following McCausland (2012), we obtain very
close approximations to these conditional posterior distributions, which we use as proposal
distributions. We are also able to draw a single volatility sequence, together with some
of its associated parameters, as a single block. Because of strong dependence between
volatilities and these parameters, the result is higher numerical efficiency.

To apply the HESSIAN method in this way, we require only that the multivariate state
sequence be a Gaussian first-order vector autoregressive process and that the conditional
distribution of the observed vector depend only on the contemporaneous state vector. This
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requirement is satisfied for a wide variety of state space models, including but not limited
to multivariate stochastic volatility models.

In Section 3, we describe in detail our methods for posterior simulation. In Section 4,
we validate the correctness of our proposed algorithm using a test of program correctness
similar to that proposed by Geweke (2004). In Section 5, we present an empirical appli-
cation using a data set of daily returns of foreign exchange rates and compare the results
of different specifications of the MSV model with the results for univariate SV models.
Finally, in Section 6, we conclude and outline some possible extensions.

2 The Model

This section describes the most general discrete-time MSV model considered in this paper,
and identifies some special cases of interest. We compare it to other specifications in the
literature. We also describe prior distributions used in our empirical applications. Table
1 describes all of the model’s variables. The notation is similar to that in Chib, Nardari,
and Shephard (2006).

There are p observed return sequences, q factors and m = p + q latent log volatility
states. The conditional distribution of the factor vector ft = (f1t, . . . , fqt) and the return
vector rt = (r1t, . . . , rpt) given the contemporaneous state vector αt is given by

rt = Bft + V
1/2
t ε1t, ft = D

1/2
t ε2t,

or alternatively

yt =

[
rt
ft

]
=

[
V

1/2
t BD

1/2
t

0 D
1/2
t

]
εt, (1)

where B is a p × q factor loading matrix, Vt = diag(exp(α1t), . . . , exp(αpt)) and Dt =
diag(exp(αp+1,t), . . . , exp(αp+q,t)) are matrices of idiosyncratic and factor volatilities, and
εt = (ε>1t, ε

>
2t)
> is an vector of innovations, specified below, in terms of parameters ν and

R.
Given parameters ᾱ, A and Σ, the state is a Gaussian first order vector autoregression,

given by
α1 ∼ N(ᾱ,Σ0), αt+1|αt ∼ N((I −A)ᾱ+Aαt,Σ), (2)

where the derived parameter Σ0 is chosen to make the state sequence stationary:

vec Σ0 = (Im2 −A⊗A)−1vec Σ.

See (Hamilton, 1994, p.265) for details on computing the marginal variance Σ0.
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Symbol dimensions description
ᾱ m× 1 mean of state αt

A m×m coefficient matrix for αt

Σ m×m variance of state innovation
B p× q factor loading matrix
ν m× 1 vector of degrees of freedom parameters
R m×m Gaussian copula parameter
εt m× 1 period t return/factor innovation
αt m× 1 period t state
rt p× 1 period t return vector
ft q × 1 period t factor
yt m× 1 (r>t , f

>
t )>

Table 1: Table of symbols

We assume the conditional independence relationships implied by the following joint
density decomposition:

π(ᾱ, A,Σ, ν, B,R, α, f, r) = π(ᾱ, A,Σ, ν, B)π(R)

· π(α1|ᾱ, A,Σ)
n−1∏
t=1

π(αt+1|αt, ᾱ, A,Σ)

·
n∏
t=1

[π(ft|αt)π(rt|B,R, ft, αt)] .

We specify the distribution of εt = (ε1t, . . . , εmt) by providing marginal distributions,
which may differ, and a copula function describing dependence. See Patton (2009) for an
overview of the application of copulas in the modelling of financial time series and Kolev,
dos Anjos, and de M. Mendez (2006) for a survey and contributions to copula theory.

The marginal distribution of εit is given by the cumulative distribution function (cdf)
Fε(εit|θi). Let π(εit|θi) be its density function. Sklar (1959) provides a theorem on the
relationship between marginal distributions, joint distributions and a copula function. It
states that if F (ε1, . . . , εm) is an m-dimensional cdf with marginals F1(ε1), . . . , Fm(εm),
then there exists a unique copula function C such that F that can be written as:

F (ε1, . . . , εm) = C(F1(ε1), . . . , Fm(εm)).

A copula function is a cdf on [0, 1]m with marginal distributions that are uniform on [0, 1].
Conversely, if ε = (ε1, . . . , εm) is a random vector with cdf F and continuous marginal cdfs
Fi, i = 1, . . . ,m, then the copula of ε, denoted C, is the cdf of (u1, . . . , um), where ui is
the probability integral transform of εi: ui = Fi(εi). The distribution of the ui is uniform
on [0, 1]. Thus

C(u1, . . . , um) = F (F−1
1 (u1), . . . , F−1

m (um)).
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In this paper, we assume Student’s t marginals with asset-specific degrees of freedom. This
allows for fat tails. However, the Student-t cdf could be replaced by another one and most
of the derivations presented below would still hold. We choose a Gaussian copula with
variance matrix

R =

[
R11 0
0 Iq

]
,

where R11, and thus R, are correlation matrices. One could replace the Gaussian copula
with another, and the derivations below could be modified accordingly. However, there
would be a computational cost. We take advantage of the fact that the derivatives of a log
Gaussian density are non-zero only up to second order.

We denote the Gaussian copula with correlation matrix R as CR:

CR(u1, . . . , um) = ΦR(Φ−1(u1), . . . ,Φ−1(um)).

Here Φ denotes the standard univariate Gaussian cdf and φ, its density. ΦR and φR denote
the cdf and density of the m-variate Gaussian distribution with mean zero and covariance
R. Then the multivariate density of εt is the product of the Gaussian copula density and
the Student-t marginal density functions:

πε(εt|θ) = cR(Fε(ε1t|θ1), . . . , Fε(εmt|θm))

m∏
i=1

π(εit|θi), (3)

where

cR(u1, . . . , um) =
∂(m)CR(u1, . . . , um)

∂u1 · · · ∂um
=
φR(Φ−1(u1), . . . ,Φ−1(um))∏m

i=1 φ(Φ−1(ui))
.

Letting xi ≡ Φ−1(ui), i = 1, . . . ,m and x ≡ (x1, . . . , xm), we can write

log cR(u1, . . . , um) = −1

2
(log |R|+ log(2π) + x>(R−1 − I))x. (4)

We use the notation πε here instead of the generic π to clarify that it is the density function
of εt. We can now write the conditional density of yt given αt, B, ν and R as

π(yt|αt, B, ν,R) = πε

([
V
−1/2
t (rt −Bft)
D
−1/2
t ft

]∣∣∣∣∣ ν,R
)

m∏
i=1

exp(−αit/2). (5)

2.1 Alternative MSV models

As mentioned before, different MSV model specifications reflect, to a large extent, different
restrictions chosen by the modeller to balance flexibility and parsimony. In our model, we
can impose restrictions on the parameters governing the marginal distribution of volatility
in (2), the parameters governing the conditional distribution of returns and factors given
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volatility, equation (1), or both. These choices have different implications for the stylized
facts that a MSV model can capture.

First let us consider restrictions on the marginal distribution of volatilities. At one
extreme, giving the most flexibility for volatility dynamics, we can specify A and Σ in
equation (2) as full matrices. At another extreme, we can impose prior independence
among log volatilities by specifying diagonal matrices for A and Σ. This can be much
less computationally demanding, which makes it especially attractive when the number of
volatilities to estimate is large. Several intermediate possibilities are possible, including
the relatively parsimonious specification in Section 2.2, where A and Σ are not diagonal,
but have O(m) free elements.

We now consider cross-sectional dependence arising from the conditional distribution
of returns given parameters and volatilities, marginal of latent factors. For comparison
purposes, it will be helpful to write out the conditional variance of returns given returns
and factor volatilities:

Var[rt|αt] = V
1/2
t R11V

1/2
t +BDtB

>. (6)

In the case where we have no factors, q = 0, then the second term disappears. The
conditional variance varies in time, but the conditional correlation R11 is constant. Mod-
els with constant correlations have been studied by Harvey, Ruiz, and Shephard (1994),
Danielsson (1998), Smith and Pitts (2006) and So, Li, and Lam. (1997). Other authors,
including Yu and Meyer (2006), Philipov and Glickman (2006), Gourieroux (2006), Gourier-
oux, Jasiak, and Sufana (2004), Carvalho and West (2006) and Asai and McAleer (2009),
consider models in which the return innovation correlation is time-varying, which is more
realistic. However, as the number of assets increases, the estimation of a separate time
varying correlation matrix becomes very challenging. Furthermore, when the dynamics of
correlation and volatility are modelled separately, it is difficult to capture the empirical
regularity that correlation and volatility covary.

Introducing latent factors in mean is another way to introduce time-varying correlations.
Factors in mean models exploit the idea that co-movements of asset returns are driven by
a small number of common underlying variables, called factors. The factors are typically
modelled as univariate SV processes. Usually, factor MSV models give R11 as the identity
matrix, in which case Var(rt|αt) = Vt + BDtB

>. The main attractions of mean factor
models is that they are parsimonious, they lead to time varying conditional correlations
and they have a natural link with the arbitrage pricing theory (APT), an influential theory
of asset pricing. APT holds that the expected return of a financial asset can be modelled
as a linear function of various factors. In addition, the mean factor structure allows the
conditional correlations and conditional variances to covary. This is an important feature
for portfolio analysis, especially when there are turbulent periods. See Longin and Solnik
(2001) and Ang and Chen (2002) for empirical studies showing the positive correlation
of the conditional variances and conditional correlations. Given all these characteristics,
factor MSV models have become very popular in the literature, and different versions have
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been proposed. The basic model assumed normal returns, a constant factor loading matrix
and zero factor mean. See, for example, Jacquier, Polson, and Rossi (1995), Pitt and
Shephard (1999) and Aguilar and West (2000). Other studies proposed some extensions to
the basic structure such as jumps in the return equation and heavy-tailed returns (Chib,
Nardari, and Shephard (2006)), time varying factor loading matrices and regime-switching
factors (Lopes and Carvalho (2007)) or first-order autoregressive factors (Han (2006)).
See Chib, Omori, and Asai (2009) for a brief description and comparison of the different
types of MSV models mentioned. Allowing for heavy tails in the distributions of returns
is desirable because empirical evidence has shown that returns present higher conditional
kurtosis than a Gaussian distribution does.

If we compare these models to the one described at the beginning of this section, we
notice that the MSV model specification that we work with is fairly general and incor-
porates some other specifications as special cases. In its most general version, without
parameter restrictions, the model allows for cross-sectional volatility dependence. It allows
time-varying conditional correlations through the specification of a mean factor structure.
It also incorporates cross-sectional conditional return dependence through copulas. The
conditional variance matrix of returns in equation (6) is time-varying. The conditional
correlation matrix is also time varying, and covaries with the conditional variances.

We can impose some parameter restrictions and obtain some interesting special cases:

• Independent states in cross section: A and Σ diagonal.

• Conditionally independent returns given factors and states: R diagonal.

• No factors: q = 0. In this case, the conditional variance-covariance matrix of returns

is given by Var(rt|αt) = V
1/2
t R11V

1/2
t which is still time-varying but the conditional

correlation matrix will be R11 which is constant.

2.2 Prior Distributions

2.2.1 Prior for ᾱ, A, Σ, ν, and B

We now describe a prior for a low dimensional specification of ᾱ, A, Σ, ν, and B.
We parameterize A and Σ in the following parsimonious way:

Σ = (diag(σ))2 +

[
ββT 0

0 0

]
, A = diag(λ) +

[
(1/p)δι>p 0

0 0

]
.

where σ and λ are m × 1 vectors, β and δ are p × 1 vectors and ιp is the p × 1 vector of
ones.

We organize the parameters associated with each series i (a return for i = 1, . . . , p or a
factor for i = p+ 1, . . . ,m) as

θi =

{
(ᾱi, tanh−1(λi), tanh−1(λi + δi), log σi, βi/σi, log νi, Bi1, . . . , Biq)

>, 1 ≤ i ≤ p,
(tanh−1(λi), log σi, log νi)

>, p+ 1 ≤ i ≤ m,
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and organize the vector of all these parameters as θ = (θ>1 , . . . , θ
>
m)>.

We suppose that the θi are a priori independent, multivariate normal, and that the
parameters have the prior means and variances given in Table 2. For each i = 1, . . . ,m,

Parameter mean variance
ᾱi -11.0 22 = 4

tanh−1(λi) 2.1 (0.25)2 = 0.0625

tanh−1(λi + δi) 2.3 (0.25)2 = 0.0625
log σi -2.0 (0.5)2 = 0.25
βi/σi 0.0 (0.5)2 = 0.25
log νi 3.0 (0.5)2 = 0.25

Table 2: Parameter means and variances of prior distributions.

the correlation coefficient between σi and tanh−1(λi) is -0.8. All other correlations are zero.
The prior probability that the A matrix is such that α is not stationary is close enough to
zero that we have not seen an example in prior simulations.

2.2.2 Prior for R

We can interpret the correlations in the p× p correlation matrix R as the cosines of angles
between vectors in Rl, where l ≥ p. There are p vectors, one for each asset, and the

(
p
2

)
angles between distinct vectors give the various correlations.

We reparameterize the information in R. The new parameter is an p×l matrix V whose
rank is p and whose rows have unit Euclidean length. The rows of V give p points on the
surface of the unit l-dimensional hypersphere centred at the origin. In putting a prior on
V, we induce a prior on R = V V >. It is easy to see that V V > is a p×p symmetric positive
definite matrix with unit diagonal elements. In other words, it is a full rank correlation
matrix. Conversely, for any full correlation matrix R and any l ≥ p, there is an p× l real
matrix V with rows of unit length and rank p such that V V > = R: take the Cholesky
decomposition R = LL> and let V = [L 0p,l−p].

We choose a prior such that the rows vi of V are independent and identically distributed.
This ensures that the prior does not depend on how the assets are ordered. We could relax
this to exchangeable vi and retain this advantage. This kind of invariance is difficult to
achieve if one specifies a prior on the Cholesky decomposition of the correlation matrix. A
disadvantage of the V parameterization is that the number of non-zero elements of V is lp,
while the number of non-zero elements of the Cholesky factor is p(p+ 1)/2. Another issue
is that V is not identified. However, since V V > is identified, this is not a problem.

We will call the vector (1, 0, ..., 0) in Rl the north pole of the hypersphere. Let ζi ≡
cos−1(Vi1), the angle between vi and the north pole. We specify a marginal density π(ζi)
and let the conditional distribution vi|ζi be uniform on the set of points on the surface of
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the unit hyperphere at an angle of ζi from the north pole. This set is the surface of an
(l − 1) dimensional hypersphere of radius sin ζi.

This gives the following density for vi on the unit l-dimensional hypersphere:

π(vi) = π(ζi)2
π(l−1)/2

Γ( l−1
2 )

sinl−2 ζi.

In our applications, we use ζi/π ∼ Be(4, 4).

3 Posterior inference using MCMC

We use MCMC methods to simulate the posterior distribution, with density π(ᾱ, A,Σ, ν, B,R, α, f |r).
We use a multi-block Gibbs sampler. The result is an ergodic chain whose stationary dis-
tribution is the target distribution. The sequence of steps in a single sweep through the
blocks is

1. For i = 1, . . . ,m, update (θi, αi) as described in 3.1, preserving the conditional pos-
terior distribution θi, αi|θ−i, α−i, R,B−i, f, r, where α−i is the vector of all state se-
quences except the i’th and θ−i is the vector of all parameter values in θ except those
in θi.

2. Update (B, f) as described in 3.2, preserving the conditional distributionB, f |θ, α,R, r.

3. Update f as described in 3.3, preserving the conditional distribution f |θ, α,R,B, r.

4. Update R as described in 3.4, preserving the conditional distribution R|θ, α,B, f, r.

In the following subsections, we describe each of these steps.

3.1 Draw of θi, αi

We draw (θi, αi) as a single Metropolis-Hastings block. Drawing a volatility sequence
together with its associated parameters in one block is more efficient than drawing them
separately because of their posterior dependence.

Our proposal of (θi, αi) consists of a random walk proposal of θ∗i followed by a (condi-
tional) independence proposal of α∗i given θ∗i . This gives a joint proposal that we accept
or reject as a unit. The acceptance probability is given by

min

(
1,
π(θ∗i )π(α∗i |θ∗i , θ−i, α−i)π(yt|α∗i , α−i, θ∗i , θ−i, R)

π(θi)π(αi|θ, α−i)π(yt|α, θ,R)
· g(α∗i |θ∗i , θ−i, α−i, R)

g(αi|θ, α−i, R)

)
,

where g(α∗i |θ∗i , θ−i, R) is an independence (it does not depend on αi) conditional proposal
density for α∗i given θ∗i .
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A key issue for independence proposals is the specification of the proposal density. To
obtain high numerical efficiency for the draw of a vector with thousands of observations,
we need an extremely close approximation. We will see that the conditional posterior
distribution of αi has the form of the target distributions approximated in McCausland
(2012). These approximations are very close, and we will exploit them here.

3.1.1 Draw of θ∗i |θi, α∗−i, ω

We use a random walk Metropolis proposal for θ∗i . The random walk (θ∗i − θi) is Gaussian
with mean zero and covariance matrix Ξ. We obtain Ξ using an adaptive random walk
Metropolis algorithm, described in Vihola (2011), during a burn-in period — the random
walk proposal variance is adjusted after each draw to track a target acceptance probability.
We use the final value of Ξ at the end of the burn-in period as the proposal covariance
matrix for all future draws. Thus our posterior simulator is a true Markov chain after the
burn-in period and so standard MCMC theory applies to the retained posterior sample.

3.1.2 Draw of α∗i |θ∗i , ω

We now discuss the draw of the conditional proposal α∗i |θ∗i , θ−i, α−i, R using the HESSIAN
method in McCausland (2012).

The HESSIAN method is for simulation smoothing in state space models with univariate
Gaussian states and observable vectors that are not necessarily Gaussian. It involves a
direct independence Metropolis-Hastings update of the entire sequence of states as a single
block. The proposal is a much closer approximation of the target distribution than is any
multivariate Gaussian approximation. The result is a Metropolis-Hastings update that is
not only tractable, but very numerically efficient. One can also update states jointly with
parameters by constructing joint proposal distributions, as we do here.

Drawing states as a block is much more efficient than one-at-a-time draws in the usual
case where the posterior autocorrelation of states is high. Adding parameters to the block
leads to even higher numerical efficiency when there is strong posterior dependence between
parameters and states. The HESSIAN method does not require data augmentation or
model transformations, unlike auxiliary mixture sampling methods, where the model is
transformed and augmented so that conditioning on auxiliary variables yields a linear
Gaussian state space model. The auxiliary mixture approach has been used for univariate
state space models by Omori, Chib, Shephard, and Nakajima (2007) and Kim, Shephard,
and Chib (1998) . Approximating distributions of the transformed model by mixtures of
Gaussian random variables results in slightly incorrect posterior draws. In some cases, this
is corrected using reweighting or an additional accept/reject step. We have seen that in
Chib, Nardari, and Shephard (2006), some blocks update the true posterior and some blocks
update the approximate (mixture approximation) posterior. The stationary distribution is
neither the approximate distribution nor the true distribution, and it is not clear to us how
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one could compensate for the error. Draws from the HESSIAN approximate distribution
are exact, in the sense that draws of α∗i are consistent with the evaluation of the proposal
density used to compute the Metropolis-Hastings acceptance probability.

The HESSIAN method uses an approximation g(α|y) of π(α|y) for univariate models
in which α ∼ N(Ω̄−1c̄, Ω̄), with Ω̄ tridiagonal and π(y|α) =

∏n
t=1 π(yt|αt). One needs to

specify Ω̄, the precision, and c̄, the co-vector, and provide routines to compute the first five
derivatives of log π(yt|αt). The approximation g(α|y) is so close to π(α|y) that we can use
it as a proposal distribution to update the entire sequence α = (α1, . . . , αn) as a block.

Here states are multivariate, but we can draw state sequences one at a time in the
cross-sectional dimension, using approximations of the conditional distribution of each
state sequence αi given the rest of the states (α−i), parameters and data. The conditional
density we need to approximate is

π(αi|α−i, y) ∝ π(αi|α−i)
n∏
t=1

π(yt|αt).

In Appendix A, we show that αi|α−i ∼ N((Ω̄(i))−1c̄(i), Ω̄(i)), where the co-vector c̄(i)

is a n × 1 vector and the precision Ω̄(i) is a tridiagonal n × n matrix, as required by the
HESSIAN method. We also describe there how to compute the elements of Ω̄(i) and c̄(i) in
terms of the elements of Ω̄ and c̄.

We just need to compute five derivatives of log π(yt|αit, α−i,t) with respect to αit. We
do not need to write down the complete analytical expressions of these derivatives, we
just need to evaluate them at a point. To do this, we use automatic routines to combine
derivatives of primitive functions according to Faa di Bruno’s rule, which is a generalization
of the chain rule to higher derivatives. It allows us to take two vectors of derivative values
and call a function that returns a vector of derivatives of a composite function. Appendix
B describes the Faa di Bruno formula and how we use it to evaluate five derivatives of
log π(yt|αit, α−i,t).

3.2 Draw of (B, f)

In this block, we update B and f simultaneously in a way that preserves the posterior distri-
bution of B and f given everything else but does not change the value of the matrix-vector
products Bft. Adding this block improves the posterior mixing of the poorly identified
scale of the B matrix. At the same time, it is fairly cheap computationally, because the
Bft do not change.

We first draw a random q × q matrix Λ. The diagonal elements are iid, with nΛii ∼
χ2(n), and the non-diagonal elements are zero. With probability 1/2, we form proposals
B∗ = BΛ, f∗t = Λ−1ft, t = 1, . . . , n and with complementary probability, we form B∗ =
BΛ−1, f∗t = Λft, t = 1, . . . , n. In the first case, we accept with probability

min

(
1, |Λ|−(n−p)π(B∗)

∏n
t=1 π(f∗t |α, ν)

π(B)
∏n
t=1 π(ft|α, ν)

)
,
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and in the second case, we accept with probability

min

(
1, |Λ|(n−p)

π(B∗)
∏n
t=1 π(f∗t |α, ν)

π(B)
∏n
t=1 π(ft|α, ν)

)
.

The factors |Λ|−(n−p) and |Λ|(n−p) are products of the Jacobian matrices for the multiplica-
tive transformations of n vectors ft and p rows of B.

3.3 Draw of f

We draw each ft from its conditional posterior distribution using a random walk proposal.
Because the random walk involves only two function evaluations, it is quite cheap com-
putationally. We use a proposal variance matrix (2.38)2(B>V −1

t B +D−1
t )−1. The matrix

(B>V −1
t B +D−1

t )−1 is a crude but cheap approximation of the conditional posterior vari-
ance of ft, obtained by setting νi = ∞, i = 1, . . . ,m, and R = I. The scaling factor
(2.38)2 comes from Gelman, Roberts, and Gilks (1996), and it is optimal when the target
distribution is univariate Gaussian.

3.4 Draw of R

We draw the rows of V one-at-a-time. We use a random walk M-H proposal to update the
row vector vi. It is a random walk on the l-dimensional unit hypersphere: the direction of
the walk is uniform and the angle of the walk has some arbitrary distribution. Let d be
the direction vector, normalized so that it has unit length. To draw the proposal v∗i :

1. Draw the angle ζi between the proposal v∗i and the current state. We use ζi/π ∼
Be(1, 199).

2. Draw the direction d from the uniform distribution on the unit l-dimensional hyper-
sphere1.

3. Compute d⊥, the projection of d onto the hyperplane perpendicular to vi:

d⊥ = d− vid

||vi||2
vi

4. Compute:

v∗i = cos ζi · vi + sin ζi ·
d⊥
||d⊥||

1We can draw from a uniform distribution on a unit hypersphere by drawing a spherically symmetric
normal random vector of the same dimension, and dividing it by its length.
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5. Accept with probability

min

(
1,
π(f, r|α, θ,B,R∗, f)π(ζ∗i )

π(f, r|α, θ,B,R, f)π(ζi)

ζi
ζ∗i

)
.

4 Getting it Right

Here we perform a computational experiment with artificial data to put the implementation
of our methods to the test. We use a simulation strategy similar to that proposed by Geweke
(2004) for testing the correctness of posterior simulators and detecting any analytical and
coding errors there may be. This procedure replaces the common exercise of generating
a single artificial data set using known values of the parameters, applying a simulation
method to these data and verifying that the “true value” falls in a region of high posterior
probability.

Like the approach of Geweke (2004), our approach is based on the simulation of the
joint distribution of parameters, states, factors and data. We use a single simulator, a
Gibbs sampler that alternates between updates of the posterior distribution, described in
the previous section, and draws of returns given parameters, states and factors, described
in Appendix C. If the simulator works correctly, then the marginal distribution of the
parameters must agree with the specified prior distributions. We can test a wide range of
implications of this condition.

This formal approach is a more stringent way to verify the correctness of posterior
simulators, as not all errors lead to obviously incorrect results. Reasonable but incorrect
results are worse than obvious errors, because they can mislead. The test applied here
can discriminate much more effectively between correct code and alternatives with minor
coding errors. Also, simulation results often provide clues to the source of any errors.

Here in detail is how we generate a sample from the joint distribution of ᾱ, A, Σ, B, ν,
R, α, f and r. The first draw (ᾱ(1), A(1),Σ(1), B(1), ν(1), R(1), α(1), f (1), r(1)) comes directly
from the model. See Appendix C for a description of how to draw from π(r|ᾱ, A,Σ, B, ν,R, α, f).
Then, we draw subsequent values by iterating the following Gibbs blocks:

1. For i = 1, . . . ,m, update θi, αi as described in Section 3.1.

2. For t = 1, . . . , n, update ft as described in Section 3.3.

3. Update B and (f1, . . . , fn) as described in Section 3.2.

4. Update R as described in Section 3.4.

5. Update r as described in Appendix C.

We obtain a sample {θ(j)
i }Jj=1 of size J = 108 for i = 1, . . . ,m. We construct, for i =

1, . . . ,m and j = 1, . . . , J the vectors

z(i,j) ≡ L−1
i (θ

(j)
i − µi),
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where µi is the prior mean and Li is the lower Cholesky factor of the prior variance of

θi. If the θ
(j)
i are truly multivariate Gaussian with variance LiL

>
i , the elements of z(i,j)

are iid N(0, 1). The vectors z(i,j) have length Ki = 6 + q for i = 1, . . . , p and length
Ki = 3 for i = p + 1, . . . ,m. Since the z(i,j), i = 1, . . . ,m, are independent, we have∑m

i=1 z
>
i zi ∼ χ2((6 + q)p+ 3q).

We construct the following sample frequencies for quantiles Q = 0.1, 0.3, 0.5, 0.7, 0.9,
return and factor indices i = 1, . . . ,m, and parameter indices k = 1, . . . ,Ki

Î
(Q)
ik =

1

J

J∑
j=1

1
(
z

(i,j)
k ≤ Φ−1(Q)

)
,

as well as the sample frequencies

Î
(Q)
0k =

1

J

J∑
j=1

1

(
m∑
i=1

(z(i,j))>z(i,j) ≤ F−1(Q)

)
,

where F is the cdf of the χ2 distribution with (6 + q)p+ 3q degrees of freedom.
Standard results for laws of large numbers and central limit theorems for ergodic chains

apply, so we should observe sample frequencies close to Q. Table 3 shows the sample

frequencies Î
(Q)
ik and their estimated numerical errors s

(Q)
ik , obtained using the method of

batch means. We observe that for all cases, the sample frequencies are very similar to their
respectively Q values. This fails to cast doubt on the correctness of the implementation of
the proposed algorithm.

5 Empirical Results

In this section we apply our methods to historical exchange rate data. We describe the
data and report estimation results for various models.

5.1 Data

We analyze daily returns of 10 currencies relative to the US dollar: the Swiss Franc (CHF),
Euro (EUR), Australian Dollar (AUD), New Zealand Dollar (NZD), Mexican Peso (MXN),
Brazil Real (BRL), British Pound (GBP), Canadian Dollar (CAD), Japanese Yen (JPY)
and Singapore Dollar (SGD). The exchange rates are the noon spot rate obtained from the
Federal Reserve Bank of New York. The sample covers the period from January 5, 1999 to
December 31, 2008. We compute the log returns of the exchange rates and remove returns
for those days when one or more of the markets was closed, giving 2503 observations for
each return series.

Table 4 presents some descriptive statistics. All series present excess kurtosis, but the
magnitude varies from one currency to another, from around 2 for the Euro to about 27
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i k Î
(0.1)
i,k s

(0.1)
i,k Î

(0.3)
i,k s

(0.3)
i,k Î

(0.5)
i,k s

(0.5)
i,k Î

(0.7)
i,k s

(0.7
i,k Î

(0.9)
i,k s

(0.9)
i,k

1 1 0.1004 0.00068 0.3003 0.00084 0.5001 0.00077 0.6997 0.00063 0.8997 0.00036
1 2 0.0997 0.00018 0.2994 0.00030 0.4994 0.00034 0.6996 0.00029 0.8998 0.00018
1 3 0.1000 0.00015 0.3000 0.00025 0.4998 0.00026 0.6997 0.00024 0.8996 0.00017
1 4 0.0997 0.00016 0.2996 0.00027 0.4998 0.00028 0.6998 0.00026 0.8998 0.00016
1 5 0.1001 0.00016 0.3002 0.00027 0.5001 0.00027 0.7000 0.00027 0.9001 0.00018
1 6 0.1002 0.00015 0.3001 0.00024 0.5001 0.00027 0.7003 0.00028 0.9005 0.00017
1 7 0.0993 0.00052 0.2993 0.00098 0.4998 0.00110 0.7000 0.00090 0.9002 0.00043
1 8 0.1002 0.00050 0.3008 0.00096 0.5010 0.00110 0.7003 0.00092 0.9004 0.00048
2 1 0.1008 0.00089 0.3005 0.00100 0.5007 0.00098 0.7004 0.00078 0.9002 0.00041
2 2 0.0999 0.00018 0.3003 0.00034 0.5001 0.00033 0.7001 0.00031 0.9003 0.00016
2 3 0.0999 0.00016 0.2996 0.00032 0.4995 0.00037 0.6999 0.00033 0.9000 0.00020
2 4 0.1000 0.00019 0.3001 0.00034 0.5005 0.00029 0.7004 0.00025 0.9003 0.00014
2 5 0.0999 0.00016 0.2996 0.00033 0.4999 0.00038 0.7002 0.00029 0.8999 0.00017
2 6 0.1001 0.00017 0.3002 0.00033 0.5001 0.00033 0.7002 0.00024 0.9002 0.00015
2 7 0.1001 0.00043 0.3001 0.00085 0.4997 0.00106 0.6997 0.00084 0.9001 0.00045
2 8 0.0990 0.00043 0.2980 0.00088 0.4974 0.00116 0.6983 0.00091 0.8994 0.00050
3 1 0.0999 0.00009 0.3000 0.00015 0.4999 0.00016 0.6999 0.00013 0.8999 0.00009
3 2 0.1000 0.00010 0.3000 0.00015 0.4999 0.00017 0.7000 0.00015 0.9001 0.00011
3 3 0.1000 0.00009 0.3000 0.00016 0.5000 0.00018 0.6999 0.00016 0.8999 0.00009
4 1 0.1000 0.00008 0.2999 0.00015 0.4998 0.00015 0.6998 0.00015 0.8999 0.00009
4 2 0.1000 0.00010 0.3001 0.00013 0.4999 0.00015 0.7000 0.00013 0.9001 0.00009
4 3 0.0998 0.00009 0.2999 0.00014 0.5000 0.00015 0.7001 0.00015 0.9000 0.00009

Table 3: “Getting it right” sample quantiles
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Mean Std. Dev. Skewness Excess Kurtosis
CHF -2.56 10.81 -0.30 2.45
EUR 1.45 9.98 0.10 1.90
AUD 1.27 13.45 -0.88 16.66
NZD 0.83 13.40 -0.60 5.75

MXN 3.49 9.48 1.31 26.91
BRL 6.67 19.33 0.45 14.13
GBP -1.19 8.97 -0.29 5.04
CAD -2.22 8.80 -0.20 9.36
JPY -2.05 10.35 -0.36 2.70
SGD -1.44 4.75 -0.19 4.44

Table 4: Descriptive statistics of data: annualized mean, annualized standard deviation, skewness and excess kurtosis.
The sample period is from January 5, 1999 to December 31, 2008.

for the Mexican Peso. Sample volatility varies a lot across currencies, with the Brazilian
Real, and the Australian and New Zealand Dollars being the most volatile currencies.
Although the sample statistics differ substantially across currencies, we can also observe
some commonalities in Figure 1. This shows time plots of the 10 return series and we
notice that all returns exhibit their most volatile episodes at the end of the sample, which
corresponds to the financial crisis of 2008.

In Table 5 we show the sample correlation matrix for the entire period. Correlation coef-
ficients vary from -0.9 to 0.8. The strongest negative correlation is for the pair (EUR,CHF)
and the strongest positive correlation is for the pair (AUD,NZD). The MXN and BRL are
the least correlated with the rest of currencies.

CHF EUR AUD NZD MXN BRL GBP CAD JPY SGD
CHF 1.000 -0.902 -0.372 -0.370 -0.052 0.010 -0.609 0.305 0.382 0.423
EUR -0.902 1.000 0.516 0.499 -0.067 -0.123 0.692 -0.409 -0.266 -0.466
AUD -0.372 0.516 1.000 0.822 -0.362 -0.319 0.500 -0.568 -0.018 -0.446
NZD -0.370 0.499 0.822 1.000 -0.267 -0.253 0.487 -0.485 -0.032 -0.429

MXN -0.052 -0.067 -0.362 -0.267 1.000 0.479 -0.152 0.296 -0.162 0.162
BRL 0.010 -0.123 -0.319 -0.253 0.479 1.000 -0.160 0.244 -0.087 0.213
GBP -0.609 0.692 0.500 0.487 -0.152 -0.160 1.000 -0.392 -0.162 -0.399
CAD 0.305 -0.409 -0.568 -0.485 0.296 0.244 -0.392 1.000 0.005 0.348
JPY 0.382 -0.266 -0.018 -0.032 -0.162 -0.087 -0.162 0.005 1.000 0.362
SGD 0.423 -0.466 -0.446 -0.429 0.162 0.213 -0.399 0.348 0.362 1.000

Table 5: Sample daily correlation for the period from January 1999 to December 2008 (2503 observations)
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Figure 1: Time plots of daily returns series (in percentage). The sample period is from January 5, 1999 to December
31, 2008.
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5.2 Estimation Results

We estimate three models: a model with independent currencies, each governed by a
univariate SV model with Student’s t innovations (SVt), a MSV model with no factors
(MSV-q0) and a MSV model with one factor (MSV-q1). We use comparable priors in
the three models and compare the posterior distribution of parameters, volatilities and
correlations across models.

Figures 2 and 3 show posterior densities of the parameters of the volatility equation
across currencies and models. These are computed in R using the default kernel density
estimation method2. The solid line corresponds to the univariate SVt model, the dashed
line to the MSV-q0 model and the dotted line to the MSV-q1 model. Tables 5 through 10
in Appendix D give posterior parameter means, standard deviations, numerical standard
errors (NSE) for the mean, and relative numerical efficiency (RNE) for the mean. The NSE
and RNE are are computed using the R library coda, using a time series method based on
an estimate of the spectral density at 0.

For the SVt model, the A and Σ matrices are diagonal, so that ᾱi, Aii and σii are the
parameters of the i’th univariate SV model, i = 1, . . . , 10. For the MSV-q0 and MSV-q1
models there are non-zero off-diagonal elements. In the SVt and MSV-q0 models, the αti,
governed by the ᾱ, A and Σ matrices, are the only source of volatility, while in the MSV-q1
model they give the idiosyncratic volatility, the part of volatility not attributable to the
common factor.

We observe that the posterior density of ᾱi and Aii for the MSV models is shifted left
compared with the univariate SVt models for all the currencies except MXN and BRL, for
which the three posterior densities of ᾱi are very similar3. At the same time, the posterior
densities of σii are shifted right, relative to the univariate models4. With respect to the
parameter νi, for half of the currencies the posterior distribution looks very similar, while
for the other half there are some differences, but without a clear pattern.

Passing from the univariate SVt models to the multivariate MSV-q0 model, we ob-
tain in most cases a lower mean, lower persistence and higher volatility of idiosyncratic
volatility. The MSV-q0 model allows returns to be conditionally correlated but still with
currency-specific degrees of freedom. We see that the posterior mean of the degrees of
freedom parameter varies from one currency to another in line with what we observed in
the descriptive statistics.

In the MSV-q1 model, there is both idiosyncratic and factor volatility. Figure 4 show
a plot of the factor volatility and Table 11 presents the posterior parameter distribution
statistics of the factor volatility equation. In our model the Bft are identified but not B and

2The default algorithm disperses the mass of the empirical distribution function over a regular grid of at
least 512 points and then uses the fast Fourier transform to convolve this approximation with a discretized
version of the kernel and then uses linear approximation to evaluate the density at the specified points.

3Aii denotes the AR(1) coefficient in the volatility equation (2).
4In the case of the MSV models, σii represents the square root of the diagonal elements of the variance

matrix Σ correspondent to the volatility equation. It measures the volatility of volatility.
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Figure 2: Comparison of posterior parameter distributions. The solid line corresponds to the SVt model, the dashed
line to the MSV-q0 model and the dotted line to the MSV-q1 model. Posterior densities are based on 45,000 draws,
after discarding 6,000. Densities are computed in R using the default kernel density estimation method.
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Figure 3: Comparison of posterior parameter distributions. The solid line correspond to the SVt model, the dashed
line to the MSV-q0 model and the dotted line to the MSV-q1 model. Posterior densities are based on 45,000 draws,
after discarding 6,000. Densities are computed in R using the default kernel density estimation method.
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the ft separately. The posterior distribution of B is thus quite sensitive to the priors for B
and the parameters of the factors5. We set ᾱ11 = 0 to normalize the variance of the factor to
one. Other normalization strategies are possible. Note that there are only two parameters
to estimate for the factor volatility equation: A11,11, the persistence parameter, and ν11 the
factor volatility’s degree of freedom. The posterior mean of A11,11 is 0.99, indicating that
the factor volatility is more persistent than the idiosyncratic volatilities. The posterior
mean of ν11 is around 21, which suggest the conditional factor distribution is not much
more fat-tailed than a Gaussian distribution.

0.5
1.0

1.5
2.0

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Factor volatility

Figure 4: Time series plot of the posterior mean of the factor volatility of MSV-q1 model.

We calculate the time varying decomposition of variance into factor and idiosyncratic
components and plot them in Figure 5. The solid line correspond to the factor component
and the dashed line to the idiosyncratic component. We see that the factor is capturing
most of the co-movement among the CHF, EUR and GBP currencies. The factor volatility
contribution for CHF and EUR currencies is more than 80 percent for most of the period
and for the GBP is slightly greater than 50 percent. For the rest of currencies, the id-
iosyncratic contribution is higher than the factor, specially for the case of BRL and MXN
currencies where the factor contribution is close to zero. This is consistent with the low

5Table 12 present the posterior parameter of the elements of the B matrix. The relative numerical
efficiency of these parameters are low but the efficiency is improved for the Bft.
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correlation between these two currencies and the rest. Thus, this suggest that the factor
can be identified as an “European” factor, as the CHF, EUR and GBP currencies are the
three European currencies in our sample and the factor seems to capture the shocks that
affect this region.

These results also explain why we see a big move to the left in the posterior distribution
of the ᾱi (mean idiosyncratic log volatility) for CHF, EUR and GBP. In Figure 6 we present
the time series plot of the annualized total volatility for the 10 currencies analyzed obtained
with MSV-q0 and MSV-q1. We see that estimates are similar across models except for the
three currencies with the higher factor contributions, where we notice that for the MSV-q1
model the idiosyncratic volatility has higher mean and is more persistent, compared with
the MSV-q0 model.

We now analyze estimates of correlations between currencies, across models. As we have
discussed in previous sections, the MSV-q0 model, with no factors, implies a time varying
variance matrix, but a time invariant correlation matrix; while the MSV model with factors
implies that both the variance and the correlation matrices of returns are time-varying.
Tables 14 and 15 in Appendix D.4 show the posterior mean of the R11 matrix for MSV-
q0 and MSV-q1, respectively. In the case of MSV-q0, R11 is the conditional correlation
matrix of the returns, Corr(rt|αt). For the MSV-q1 model, we show in Table 16 the
average across the time dimension of the posterior mean of the corresponding Corr(rt|αt)
matrix. If we compare these results with those of MSV-q0 and the sample correlation
matrix showed in Table 5 we can see that the estimate of the correlation matrix for the
MSV-q1 model is closer to the corresponding sample correlation matrix. The estimated
conditional correlation matrix for the MSV-q0 model agrees with respect to sign but the
magnitudes of the correlation estimates are much smaller.

6 Conclusions

We have introduced a new approach for estimating multivariate stochastic volatility mod-
els. This approach uses a numerically efficient method to draw volatilities as a block in the
time dimension and one-at-a-time in the cross sectional dimension. The proposed algorithm
is flexible, allowing different specifications and types of dependence. We can model time-
varying conditional correlation matrices by incorporating factors in the return equation,
where the factors are independent SV processes with Student’s t innovations. Further-
more, we can incorporate copulas to allow conditional return dependence given volatility,
allowing different Student’s t marginals to capture return heterogeneity. We have tested
the correctness of our implementation of the proposed method using procedures similar to
those suggested by Geweke (1994).

We apply the proposed method to an exchange rate data set and compare posterior
distributions of parameters and volatility with those obtained with univariate SV models
with Student’s t innovations. We estimate two multivariate models, one in which we do
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Figure 5: Time varying proportion of conditional variance of returns (Var(rt|αt) = V
1/2
t R11V

1/2
t + BDtB>) ex-

plained by the idiosyncratic and factor components in MSV-q1 model. The solid line corresponds to the factor
contribution and the dashed line corresponds to the idiosyncratic contribution.
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not include factors and another in which we introduce one factor. We find that for most
of the currencies, the multivariate approach with no factors gives a lower mean, lower
persistence and higher volatility of volatility than the univariate model. The factor in the
factor multivariate model seems to be a kind of “European” factor, as it is mainly capturing
co-movement of three European currencies. The factor volatility is more persistent than
the idiosyncratic volatilities. It would be interesting to introduce additional factors to see
if we can capture other co-movements.

Applying the HESSIAN method one-at-a-time in the cross section only requires that the
multivariate state sequence be a Gaussian first-order vector autoregressive process and that
the conditional distribution of the observed vector depend only on the contemporaneous
state vector. This requirement is satisfied for a wide variety of state space models, including
but not limited to multivariate stochastic volatility models.

Using the HESSIAN method overcomes two disadvantages of the auxiliary mixture
approach. First, it is less model specific — it does not require the researcher to find a
suitable transformation for the model at hand. Second, it is exact — we do not need
to correct for mixture approximation, using reweighting or additional Metropolis-Hastings
steps, or settle for simulators that are not simulation consistent.

We hope to extend this work to compute marginal likelihoods and to compare the
results from different specifications. Also, we hope to extend the model to incorporate
leverage effects.

A Computing Ω̄(i) and c̄(i)

We show here how to compute Ω̄(i) and c̄(i), the conditional precision and covector of
the conditionally Gaussian distribution αi|α−i. We start by defining Ω̄ and c̄, the prior
precision and covector of α. The precision Ω̄ is a nm × nm block band-diagonal matrix.
We will use the notation Ω̄st, s, t = 1, . . . , n, to denote the m ×m submatrix starting at
row (s − 1)m + 1 and column (t − 1)m + 1. The non-zero submatrices are the diagonal
blocks Ω̄tt and the off-diagonal blocks Ω̄t,t+1 and Ω̄t−1,t, given by

Ω̄tt = Σ−1 +A>Σ−1A, t = 2, . . . , n− 1, (7)

Ω̄11 = Σ−1
0 +A>Σ−1A,

Ω̄nn = Σ−1,

Ω̄t,t+1 = −A>Σ−1, t = 1, . . . , n− 1,

Ω̄t−1,t = −Σ−1A, t = 1, . . . , n− 1.

The co-vector is a nm× 1 vector stacking n m× 1 subvectors c̄t, given by:

c̄t = Σ−1(I −A)ᾱ−A>Σ−1(I −A)ᾱ, t = 2, . . . , n− 1 (8)

c̄1 = Σ−1
0 ᾱ−A>Σ−1(I −A)ᾱ,

c̄n = Σ−1(I −A)ᾱ.
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We now derive the n × n precision Ω̄(i) and n × 1 co-vector c̄(i) of the conditional
distribution αi|α−i. We know that the conditional density π(αi|α−i) is proportional to the
joint density π(α). Matching coefficients of the first- and second-order monomial terms of
log π(αi|α−i) gives the non-zero elements

Ω̄
(i)
tt = (Ω̄tt)ii, Ω̄

(i)
t,t+1 = Ω̄

(i)
t+1,t = (Ω̄t,t+1)ii.

c̄
(i)
t = (c̄t)i −

∑
j 6=i

[
(Ω̄tt)jiαtj + (Ω̄t,t+1)jiαt+1,j + (Ω̄t−1,t)jiαt−1,j

]
.

B Computing log π(yt|αt, ν, B,R) and its derivatives with re-
spect to αit

Using equations (3), (4), and (5), we can write log π(yt|αt, B, ν,R) in the following way:

log π(yt|αt, ν, B,R) =− 1

2

{
log |R|+ log 2π + x>t (R−1 − I)xt +

m∑
i=1

[
αit + (νi + 1) log

(
1 +

ε2it
νi

)]}

+
m∑
i=1

[
log Γ

(
νi + 1

2

)
− log Γ

(νi
2

)
− 1

2
log(νiπ)

]
,

where xt = (x1t, . . . , xmt) and for i = 1, . . . ,m,

xit = Φ−1(uit), uit = Fε(εit|νi)),

εit =

{
exp(−αit/2)(rit −

∑q
j=1Bijfjt), i = 1, . . . , p,

exp(−αit/2)fi−p,t, i = p+ 1, . . . ,m.

We can evaluate log π(yt|αt, B, ν,R) as a function of αit bottom up, evaluating the εit at
αit, then the uit at εit, then the xit at uit then log π(yt|αt, B, ν,R) at εt and xt.

We require five derivatives of log π(yt|αt, B, ν,R) with respect to αit, evaluated at αit.
Because it is a multi-level compound function of the αit, computing these derivatives in
closed form would be extremely tedious and prone to error. Fortunately, we do not need
to. Instead, we compute any values we need, bottom up, using Faà di Bruno’s formula
(B.5 below) at each step to compute derivatives of a compound function by combining
derivatives of its component functions.

We proceed using the following steps.

1. Compute five derivatives of ψ(αit) ≡ log πε(e
−αit/2ηit|θi) with respect to αit at αit,

as described in B.1.

2. Compute five derivatives of x>(R−1 − I)x with respect to xit at xit, as described in
B.2.
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3. Compute five derivatives of xit with respect to uit at uit, as described in B.3.

4. Compute five derivatives of uit with respect to αit at αit, as described in B.4.

5. Use the Faà di Bruno formula, described in B.5, to compute five derivatives of xit
with respect to αit at αit. Inputs are the derivatives of xit with respect to uit at step
3 and the derivatives of uit with respect to αit at step 4.

6. Use the Faà di Bruno formula to compute five derivatives of x>(R−1 − I)x with
respect to αit at αit. Inputs are the derivatives of x>(R−1 − I)x with respect to xit
at step 2 and the derivatives of xit with respect to αit at step 5.

7. Compute five derivatives of log π(yt|αt, θ, B,R) with respect to αit at αit directly
using the derivatives at steps 1 and 6.

For convenience, we define

ηt =

 η1t
...
ηmt

 =

[
rt −Bft

ft

]
,

B.1 Derivatives of ψ(αit) with respect to αit

For the special case of Student’s t F,

πε(e
−αit/2ηit|vi) =

Γ(νi+1
2 )

√
νiπΓ(νi2 )

(
1 +

e−αitη2
it

νi

)− νi+1

2

ψ(αit) = log

[
Γ(νi+1

2 )
√
νiπΓ(νi2 )

]
− νi + 1

2
log(1 + sit)

where sit ≡ e−αitη2
it/νi. Noting that ∂sit/∂αi = −sit, we compute

ψ′(αit) =
νi + 1

2

sit
1 + sit

, ψ′′(αit) = −νi + 1

2

sit
(1 + s2

it)
,

ψ′′′(αit) =
νi + 1

2

sit(1− sit)
(1 + sit)3

, ψ(4)(αit) = −νi + 1

2

sit(1− 4sit + s2
it)

(1 + sit)4
,

ψ(5)(αit) =
νi + 1

2

sit(1− 11sit + 11s2
it − s3

it)

(1 + sit)5
.
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B.2 Derivatives of x>(I −R−1)x with respect to xit

In this section we show how to compute partial derivatives of log c(u1, . . . , um) with respect
to the ui. We can write

log cR(u1, . . . , um) = log φR(Φ−1(u1), . . . ,Φ−1(um))−
m∑
i=1

log φ(Φ−1(ui))

=
1

2
|H|+ 1

2
x>(I −R−1)x,

where x = (x1, . . . , xm) = (Φ−1(u1), . . . ,Φ−1(um)).
The gradient and Hessian of log(cR) with respect to u are

∂ log c(u)

∂x
= (I −R−1)x,

∂ log c(u)

∂x∂x>
= I −R−1.

All third order partial derivatives and higher are zero.

B.3 Derivatives of xit with respect to uit

We now use the relationship Φ(xi) = ui to compute derivatives of xi with respect to ui.
Differentiating with respect to ui gives φ(xi)

∂xi
∂ui

= 1, and thus

∂xi
∂ui

=
1

φ(xi)
.

Taking further derivatives gives
∂2xi
∂ui

= 2πex
2
i xi,

∂3xi
∂ui

= (2π)3/2e3x2
i /2(2x2

i + 1),

∂4xi
∂ui

= (2π)2e2x2
i (6x3

i + 7xi),

∂5xi
∂ui

= (2π)5/2e5x2
i /2(24x4

i + 46x2
i + 7).
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B.4 Derivatives of Fε(e
−αit/2ηit|θi)

We describe here how to compute five derivatives of Fε(e
−αit/2ηit|θi) with respect to αit.

We write down the derivatives in terms of ψ(αit) ≡ log πε(e
−αit/2ηit|θi):

∂Fε(e
−αit/2ηit|θi)
∂αit

= πε(e
−αit/2ηit|θi)

(
−1

2
e−αit/2ηit

)
= −ηit

2
e−0.5αit+ψ(αit)

Then
∂2Fε(e

−αit/2ηit|θi)
∂α2

it

= −ηit
2
e−0.5αit+ψ(αit)[−0.5 + ψ′(αit)]

∂3Fε(e
−αit/2ηit|θi)
∂α3

it

= −ηit
2
e−0.5αit+ψ(αit)

[
ψ′′(αit) + (−0.5 + ψ′(αit)

2
]

∂4Fε(e
−αit/2ηit|θi)
∂α4

it

= −ηit
2
e−0.5αit+ψ(αit)

[
ψ′′′(αit) + 3(−0.5 + ψ′(αit))ψ

′′(αit) + (−0.5 + ψ′(αit))
3
]

∂5Fε(e
−αit/2ηit|θi)
∂α5

it

= −ηit
2
eψ(αit)

[
ψ(4)(αit) + 4(−0.5 + ψ′(αit))ψ

′′′(αit) + 3(ψ′′(αit))
2

+ 6(−0.5 + ψ′(αit))
2ψ′′(αit) + (−0.5 + ψ′(αit))

4
]

B.5 Faà di Bruno Formula

The Faà di Bruno Formula combines the derivatives of primitive functions to obtain the
derivatives of composite functions. We can use it to evaluate exact multiple derivatives
of compound functions at a point without needing to write out the derivatives of the
compound function in closed form.

For the composite function h = f ◦ g, the Faà di Bruno formula gives

h′ = f ′g′,

h′′ = f ′g′′ + f ′′(g′)2,

h′′′ = f ′g′′′ + 3f ′′g′g′′ + f ′′′(g′)3,

h(4) = f ′g(4) + 4f ′′g′g′′′ + 3f ′′(g′′)2 + 6f ′′′(g′)2g′′ + f (4)(g′)4,

h(5) = f ′g(5) +5f ′′g′g(4) +10f ′′g′′g′′′+15f ′′′(g′′)2g′+10f ′′′g′′′(g′)2 +10f (4)g′′(g′)3 +f (5)(g′)5.

If f (j) = 0 for j > 2, the third and higher derivatives simplify to

h′′′ = f ′g′′′ + 3f ′′g′g′′,

h(4) = f ′g(4) + 4f ′′g′g′′′ + 3f ′′(g′′)2,

h(5) = f ′g(5) + 5f ′′g′g(4) + 10f ′′g′′g′′′.
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C Sampling r|α, θ, f, B,R
We draw r from π(r|α, θ, f, B,R) using the following steps:

1. Compute the Cholesky decomposition R = LL> of the correlation matrix R.

2. For each t = 1, ..., n:

(a) Draw z ∼ N(0, Im).

(b) Set g = Lz

(c) Compute the integral probability transform ui = Φ(gi), i = 1, ...,m, where Φ is
the standard univariate Gaussian cdf.

(d) Transform each of the ui to a Student’s t with νi degree of freedom: ti = F−1(ui),
where F−1 is the inverse cdf of a Student’s t distribution with νi degrees of
freedom.

(e) Scale each of the ti random variables to form εti = ti exp(0.5αti).

(f) Form rt = Bft + εt.

D Tables of results

D.1 Posterior parameter’s for univariate SV-t models
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Parameters Mean Std NSE RNE
CHF
ᾱi -10.195 0.189 1.900e-03 2.048e-01
Aii 0.993 0.003 0.000e+00 4.056e-01
σii 0.061 0.010 1.000e-04 5.362e-01
νi 12.530 3.062 2.110e-02 4.227e-01
σα 0.491 0.139 7.0000e-04 7.0480e-01
EUR
ᾱi -10.333 0.218 1.600e-03 3.843e-01
Aii 0.994 0.002 0.000e+00 5.048e-01
σii 0.061 0.010 1.000e-04 4.387e-01
νi 18.507 6.252 3.760e-02 5.538e-01
σα 0.540 0.143 6.0000e-04 1.0815e+00
AUD
ᾱi -10.089 0.190 1.400e-03 3.465e-01
Aii 0.988 0.004 0.000e+00 3.944e-01
σii 0.104 0.013 1.000e-04 3.839e-01
νi 15.225 4.279 3.350e-02 3.261e-01
σα 0.657 0.133 7.0000e-04 8.1990e-01
NZD
ᾱi -9.980 0.144 1.100e-03 3.473e-01
Aii 0.983 0.006 0.000e+00 5.296e-01
σii 0.104 0.018 1.000e-04 6.050e-01
νi 10.547 2.294 1.410e-02 5.258e-01
σα 0.557 0.131 6.0000e-04 9.1270e-01
MXN
ᾱi -10.880 0.142 1.000e-03 3.906e-01
Aii 0.971 0.008 0.000e+00 5.010e-01
σii 0.188 0.023 1.000e-04 5.632e-01
νi 33.955 13.626 7.180e-02 7.197e-01
σα 0.776 0.129 6.0000e-04 8.4840e-01

Table 6: Posterior statistics of parameters of univariate SV models with student-t errors. First column shows the
posterior mean, second column show posterior standard deviation, the third colum show the numerical standard
error of the mean based on an estimate of the spectral density at 0, and the last column gives the relative numerical
efficiency. σα represents the unconditional standard deviation of αi. Estimations are based on 50,000 draws after
discarding 1,000.
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Parameters Mean Std NSE RNE
BRL
ᾱi -9.711 0.194 1.200e-03 5.672e-01
Aii 0.973 0.006 0.000e+00 6.677e-01
σii 0.253 0.023 1.000e-04 7.442e-01
νi 37.990 15.446 1.012e-01 4.661e-01
σα 1.073 0.148 8.0000e-04 7.2330e-01
GBP
ᾱi -10.637 0.174 1.500e-03 2.615e-01
Aii 0.989 0.004 0.000e+00 4.604e-01
σii 0.088 0.013 1.000e-04 5.834e-01
νi 22.118 8.072 5.420e-02 4.429e-01
σα 0.566 0.135 6.0000e-04 8.6320e-01
CAD
ᾱi -10.729 0.255 2.100e-03 3.050e-01
Aii 0.993 0.002 0.000e+00 4.161e-01
σii 0.078 0.010 1.000e-04 4.885e-01
νi 28.675 11.221 6.720e-02 5.579e-01
σα 0.662 0.150 6.0000e-04 1.1276e+00
JPY
ᾱi -10.369 0.148 1.100e-03 3.370e-01
Aii 0.986 0.005 0.000e+00 2.992e-01
σii 0.087 0.014 1.000e-04 3.502e-01
νi 11.220 2.528 1.580e-02 5.121e-01
σα 0.504 0.116 6.0000e-04 7.1950e-01
SGD
ᾱi -11.953 0.154 1.200e-03 3.081e-01
Aii 0.984 0.006 0.000e+00 3.795e-01
σii 0.102 0.017 1.000e-04 4.366e-01
νi 11.814 2.681 1.560e-02 5.915e-01
σα 0.568 0.136 7.0000e-04 6.7830e-01

Table 7: Posterior statistics of parameters of univariate SV models with student-t errors. First column shows the
posterior mean, second column show posterior standard deviation, the third colum show the numerical standard
error of the mean based on an estimate of the spectral density at 0, and the last column gives the relative numerical
efficiency. σα represents the unconditional standard deviation of αi. Estimations are based on 50,000 draws after
discarding 1,000.
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D.2 Posterior parameter’s for MSV-q0 model

Parameters Mean Std NSE RNE
CHF
ᾱi -10.594 0.095 7.1266e-03 4.4129e-03
Aii 0.97 0.008 2.3179e-04 2.8595e-02
Aij 0.002 0.001 2.3891e-05 2.7707e-02
σii 0.0746 0.016 3.6917e-04 4.4277e-02
νi 16.19 3.216 7.7741e-02 4.2774e-02
σα 0.324 0.060 1.3822e-03 4.7283e-02
EUR
ᾱi -10.764 0.112 7.1074e-03 6.2172e-03
Aii 0.98 0.004 1.0760e-04 4.2351e-02
Aij 0.001 0.000 1.1393e-05 4.2358e-02
σii 0.0722 0.014 2.9354e-04 5.4371e-02
νi 23.50 6.342 1.5043e-01 4.4441e-02
σα 0.404 0.070 1.5928e-03 4.7762e-02
AUD
ᾱi -10.387 0.114 8.1451e-03 4.8991e-03
Aii 0.97 0.010 2.3804e-04 4.6442e-02
Aij 0.003 0.001 2.6327e-05 4.8545e-02
σii 0.1294 0.024 4.3514e-04 7.3557e-02
νi 18.15 4.237 8.6456e-02 6.0037e-02
σα 0.513 0.084 2.0306e-03 4.2290e-02
NZD
ᾱi -10.226 0.101 6.9267e-03 5.2884e-03
Aii 0.96 0.012 2.4565e-04 5.6291e-02
Aij 0.003 0.001 2.7232e-05 4.8866e-02
σii 0.1268 0.026 6.1017e-04 4.7135e-02
νi 12.78 2.444 4.6843e-02 6.8060e-02
σα 0.472 0.082 1.8883e-03 4.6627e-02
MXN
ᾱi -10.911 0.127 8.3612e-03 5.7422e-03
Aii 0.95 0.011 2.3910e-04 5.0846e-02
Aij 0.004 0.001 2.6614e-05 5.4285e-02
σii 0.2353 0.041 1.0775e-03 3.6274e-02
νi 38.12 14.615 3.3147e-01 4.8600e-02
σα 0.792 0.118 3.2518e-03 3.2956e-02

Table 8: Posterior statistics of parameters of log volatility equation in the MSV model with q=0. First column
shows the posterior mean, second column show posterior standard deviation, the third colum show the numerical
standard error of the mean based on an estimate of the spectral density at 0, and the fourth column gives the relative
numerical efficiency. σα represents the unconditional standard deviation of αi. Estimations are based on 45,000
draws after discarding 6,000.

35



Parameters Mean Std NSE RNE
BRL
ᾱi -9.721 0.186 1.3186e-02 4.9542e-03
Aii 0.97 0.006 1.4302e-04 4.5711e-02
Aij 0.002 0.001 1.6865e-05 6.1487e-02
σii 0.2869 0.044 7.7500e-04 7.9142e-02
νi 40.69 16.323 3.7063e-01 4.8490e-02
σα 1.137 0.166 2.9253e-03 8.0389e-02
GBP
ᾱi -10.884 0.101 8.1928e-03 3.7836e-03
Aii 0.96 0.011 3.3021e-04 2.7418e-02
Aij 0.003 0.001 3.4675e-05 2.8054e-02
σii 0.1158 0.022 4.6367e-04 5.6518e-02
νi 25.25 8.309 2.1649e-01 3.6826e-02
σα 0.433 0.072 1.5308e-03 5.5078e-02
CAD
ᾱi -10.884 0.142 8.3868e-03 7.1511e-03
Aii 0.99 0.004 7.2136e-05 5.9020e-02
Aij 0.001 0.000 8.9339e-06 5.2327e-02
σii 0.0960 0.017 3.2542e-04 6.9751e-02
νi 31.07 11.796 2.4744e-01 5.6812e-02
σα 0.578 0.094 1.9962e-03 5.5770e-02
JPY
ᾱi -10.456 0.106 7.2345e-03 5.3986e-03
Aii 0.96 0.010 2.4814e-04 4.2152e-02
Aij 0.003 0.001 2.7392e-05 4.0232e-02
σii 0.1227 0.024 4.1054e-04 8.7760e-02
νi 13.21 3.156 1.0109e-01 2.4375e-02
σα 0.473 0.082 1.5759e-03 6.7970e-02
SGD
ᾱi -12.132 0.097 7.7733e-03 3.8583e-03
Aii 0.94 0.018 4.3584e-04 4.4761e-02
Aij 0.006 0.002 4.8223e-05 4.1560e-02
σii 0.1550 0.033 7.7144e-04 4.6245e-02
νi 14.41 3.319 7.9066e-02 4.4053e-02
σα 0.450 0.074 1.5790e-03 5.5276e-02

Table 9: Posterior statistics of parameters of log volatility equation in the MSV model with q=0. First column
shows the posterior mean, second column show posterior standard deviation, the third colum show the numerical
standard error of the mean based on an estimate of the spectral density at 0, and the fourth column gives the relative
numerical efficiency. σα represents the unconditional standard deviation of αi. Estimations are based on 45,000
draws after discarding 6,000.
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D.3 Posterior parameter’s for MSV-q1 model

Parameters Mean Std NSE RNE
CHF
ᾱi -12.913 0.210 1.1413e-02 8.5047e-03
Aii 0.98 0.007 1.9454e-04 2.8507e-02
Aij 0.001 0.001 2.1978e-05 2.5953e-02
σii 0.211 0.043 1.4328e-03 2.2969e-02
νi 9.423 2.724 1.0473e-01 1.6920e-02
σα 0.974 0.165 5.8899e-03 1.9739e-02
EUR
ᾱi -13.565 0.222 1.4209e-02 6.0833e-03
Aii 0.97 0.007 2.7650e-04 1.7289e-02
Aij 0.001 0.001 3.3092e-05 1.3731e-02
σii 0.218 0.048 1.7203e-03 1.9101e-02
νi 15.823 7.375 3.2775e-01 1.2660e-02
σα 0.977 0.163 6.6350e-03 1.5145e-02
AUD
ᾱi -10.751 0.116 8.6855e-03 4.4563e-03
Aii 0.94 0.019 5.6233e-04 2.9813e-02
Aij 0.005 0.002 5.5356e-05 2.9620e-02
σii 0.161 0.034 8.8369e-04 3.6101e-02
νi 9.641 1.708 3.8678e-02 4.8760e-02
σα 0.474 0.079 1.9784e-03 3.9497e-02
NZD
ᾱi -10.503 0.107 7.1830e-03 5.5007e-03
Aii 0.97 0.010 2.6698e-04 3.7050e-02
Aij 0.002 0.001 2.3473e-05 3.5510e-02
σii 0.110 0.024 5.4657e-04 4.7496e-02
νi 8.528 1.248 3.1835e-02 3.8428e-02
σα 0.439 0.076 2.1354e-03 3.1525e-02
MXN
ᾱi -10.902 0.136 8.8611e-03 5.8568e-03
Aii 0.96 0.010 2.8022e-04 3.2519e-02
Aij 0.003 0.001 2.6870e-05 3.8055e-02
σii 0.229 0.039 8.4206e-04 5.4197e-02
νi 37.830 14.900 4.0716e-01 3.3482e-02
σα 0.788 0.117 2.5907e-03 5.1014e-02

Table 10: Posterior statistics of parameters of log volatility equation in the MSV model with q=1. First column
shows the posterior mean, second column show posterior standard deviation, the third colum show the numerical
standard error of the mean based on an estimate of the spectral density at 0, and the fourth column gives the relative
numerical efficiency. σα represents the unconditional standard deviation of αi and Kurtosis is the unconditional
excess kurtosis. Estimations are based on 45,000 draws after discarding 6,000.
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Parameters Mean Std NSE RNE
BRL
ᾱi -9.715 0.190 1.2265e-02 6.0073e-03
Aii 0.97 0.006 1.3283e-04 5.4991e-02
Aij 0.002 0.001 2.0593e-05 3.3084e-02
σii 0.286 0.046 1.0295e-03 4.9610e-02
νi 40.773 16.229 4.3679e-01 3.4516e-02
σα 1.136 0.170 3.9321e-03 4.6466e-02
GBP
ᾱi -11.442 0.116 8.6300e-03 4.4953e-03
Aii 0.95 0.016 4.2810e-04 3.3885e-02
Aij 0.004 0.001 4.1659e-05 3.1862e-02
σii 0.147 0.034 6.8056e-04 6.3592e-02
νi 13.247 4.334 1.4878e-01 2.1219e-02
σα 0.491 0.085 1.8577e-03 5.2150e-02
CAD
ᾱi -10.919 0.129 7.0184e-03 8.3930e-03
Aii 0.98 0.005 1.2659e-04 3.1920e-02
Aij 0.001 0.000 1.1682e-05 3.2690e-02
σii 0.101 0.019 4.3968e-04 4.5543e-02
νi 29.651 11.388 2.8737e-01 3.9266e-02
σα 0.540 0.087 1.8511e-03 5.5488e-02
JPY
ᾱi -10.584 0.131 8.0320e-03 6.7004e-03
Aii 0.97 0.008 2.1608e-04 3.5409e-02
Aij 0.002 0.001 2.1152e-05 3.5898e-02
σii 0.141 0.027 6.0917e-04 4.9221e-02
νi 11.341 2.611 6.5062e-02 4.0255e-02
σα 0.588 0.097 2.3360e-03 4.2833e-02
SGD
ᾱi -12.297 0.109 7.8026e-03 4.9218e-03
Aii 0.95 0.016 5.0045e-04 2.5373e-02
Aij 0.004 0.001 4.3480e-05 2.9719e-02
σii 0.163 0.037 1.1153e-03 2.7135e-02
νi 11.883 2.633 5.5718e-02 5.5822e-02
σα 0.504 0.085 2.4041e-03 3.1497e-02

Table 11: Posterior statistics of parameters of log volatility equation in the MSV model with q=1. First column
shows the posterior mean, second column show posterior standard deviation, the third colum show the numerical
standard error of the mean based on an estimate of the spectral density at 0, and the fourth column gives the relative
numerical efficiency. σα represents the unconditional standard deviation of αi and Kurtosis is the unconditional
excess kurtosis. Estimations are based on 45,000 draws after discarding 6,000.

Mean Std NSE RNE
AR(1) 0.9903 0.003 6.2776e-05 4.453e-02

ν 21.25 7.831 2.0041e-01 3.8173e-02

Table 12: Posterior statistics of parameters of the factor volatility for MSV model with q=1. For the factor volatility,
we set ᾱ = 0, σ = 1.0. Estimations are based on 45,000 draws after discarding 6,000.

Mean Std NSE RNE
B1 -6.0683e-03 4.0507e-04 3.4856e-05 3.3765e-03
B2 5.5567e-03 3.7097e-04 3.2516e-05 3.2540e-03
B3 3.8570e-03 2.6975e-04 2.2083e-05 3.7304e-03
B4 3.8550e-03 2.7787e-04 2.1401e-05 4.2145e-03
B5 -8.6580e-05 8.8846e-05 2.0822e-06 4.5518e-02
B6 -7.0001e-04 1.4292e-04 6.0137e-06 1.4121e-02
B7 3.7751e-03 2.6207e-04 2.1915e-05 3.5753e-03
B8 -1.5098e-03 1.3428e-04 8.2632e-06 6.6019e-03
B9 -2.6726e-03 2.1028e-04 1.4747e-05 5.0834e-03
B10 -1.3541e-03 1.0205e-04 7.4755e-06 4.6590e-03

Table 13: Posterior statistics of loading factor matrix B for MSV model with q=1. First column shows the posterior
mean, second column show posterior standard deviation, the third colum show the numerical standard error of the
mean based on an estimate of the spectral density at 0, and the fourth column gives the relative numerical efficiency.
Estimations are based on 45,000 draws after discarding 6,000.
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D.4 Correlation matrices

CHF EUR AUD NZD MXN BRL GBP CAD JPY SGD
CHF 1.000 -0.354 -0.148 -0.133 -0.035 -0.007 -0.245 0.092 0.163 0.151
EUR -0.354 1.000 0.186 0.169 -0.003 -0.037 0.262 -0.120 -0.130 -0.166
AUD -0.148 0.186 1.000 0.313 -0.080 -0.089 0.163 -0.186 -0.083 -0.161
NZD -0.133 0.169 0.313 1.000 -0.060 -0.070 0.156 -0.152 -0.057 -0.147
MXN -0.035 -0.003 -0.080 -0.060 1.000 0.204 -0.016 0.081 -0.042 0.049
BRL -0.007 -0.037 -0.089 -0.070 0.204 1.000 -0.038 0.076 -0.008 0.077
GBP -0.245 0.262 0.163 0.156 -0.016 -0.038 1.000 -0.095 -0.105 -0.131
CAD 0.092 -0.120 -0.186 -0.152 0.081 0.076 -0.095 1.000 0.036 0.103
JPY 0.163 -0.130 -0.083 -0.057 -0.042 -0.008 -0.105 0.036 1.000 0.197
SGD 0.151 -0.166 -0.161 -0.147 0.049 0.077 -0.131 0.103 0.197 1.000

Table 14: Posterior mean of correlation matrix R11 for MSV-q0. Estimation is based on 45,000 draws after discarding
6,000.

CHF EUR AUD NZD MXN BRL GBP CAD JPY SGD
CHF 1.000 -0.055 0.134 0.126 -0.095 -0.101 0.034 -0.082 0.054 -0.056
EUR -0.055 1.000 -0.045 -0.047 0.008 -0.004 -0.027 0.025 0.075 0.055
AUD 0.134 -0.045 1.000 0.308 -0.101 -0.093 0.051 -0.160 -0.010 -0.100
NZD 0.126 -0.047 0.308 1.000 -0.074 -0.069 0.058 -0.118 0.013 -0.090
MXN -0.095 0.008 -0.101 -0.074 1.000 0.204 -0.032 0.091 -0.042 0.057
BRL -0.101 -0.004 -0.093 -0.069 0.204 1.000 -0.030 0.077 -0.016 0.078
GBP 0.034 -0.027 0.051 0.058 -0.032 -0.030 1.000 -0.020 -0.011 -0.021
CAD -0.082 0.025 -0.160 -0.118 0.091 0.077 -0.020 1.000 -0.010 0.063
JPY 0.054 0.075 -0.010 0.013 -0.042 -0.016 -0.011 -0.010 1.000 0.174
SGD -0.056 0.055 -0.100 -0.090 0.057 0.078 -0.021 0.063 0.174 1.000

Table 15: Posterior mean of correlation matrix R11 for MSV-q1. Estimation is based on 45,000 draws after discarding
6,000.

CHF EUR AUD NZD MXN BRL GBP CAD JPY SGD
CHF 1.000 -0.937 -0.593 -0.546 -0.005 0.071 -0.721 0.311 0.475 0.508
EUR -0.937 1.000 0.621 0.573 -0.019 -0.099 0.734 -0.330 -0.455 -0.518
AUD -0.593 0.621 1.000 0.575 -0.090 -0.137 0.517 -0.336 -0.322 -0.417
NZD -0.546 0.573 0.575 1.000 -0.072 -0.116 0.484 -0.294 -0.282 -0.385
MXN -0.005 -0.019 -0.090 -0.072 1.000 0.205 -0.037 0.092 -0.027 0.060
BRL 0.071 -0.099 -0.137 -0.116 0.205 1.000 -0.096 0.107 0.036 0.121
GBP -0.721 0.734 0.517 0.484 -0.037 -0.096 1.000 -0.273 -0.373 -0.423
CAD 0.311 -0.330 -0.336 -0.294 0.092 0.107 -0.273 1.000 0.157 0.236
JPY 0.475 -0.455 -0.322 -0.282 -0.027 0.036 -0.373 0.157 1.000 0.392
SGD 0.508 -0.518 -0.417 -0.385 0.060 0.121 -0.423 0.236 0.392 1.000

Table 16: Average of posterior mean of conditional correlation matrix Corr(rt|αt) for MSV-q1. Estimation is based
on 45, 000 draws after discarding 6, 000.
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