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Abstract. In this paper we extend the parametric, asymmetric, stochastic volatility model (ASV), where
returns are correlated with volatility, by flexibly modeling the bivariate distribution of the return and
volatility innovations nonparametrically. Its novelty is in modeling the joint, conditional, return-volatility,
distribution with a infinite mixture of bivariate Normal distributions with mean zero vectors, but having un-
known mixture weights and covariance matrices. This semiparametric ASV model nests stochastic volatility
models whose innovations are distributed as either Normal or Student-t distributions, plus the response in
volatility to unexpected return shocks is more general than the fixed asymmetric response with the ASV
model. The unknown mixture parameters are modeled with a Dirichlet Process prior. This prior ensures
a parsimonious, finite, posterior, mixture that bests represents the distribution of the innovations and a
straightforward sampler of the conditional posteriors. We develop a Bayesian Markov chain Monte Carlo
sampler to fully characterize the parametric and distributional uncertainty. Nested model comparisons and
out-of-sample predictions with the cumulative marginal-likelihoods, and one-day-ahead, predictive log-Bayes
factors between the semiparametric and parametric versions of the ASV model shows the semiparametric
model projecting more accurate empirical market returns. A major reason is how volatility responds to an
unexpected market movement. When the market is tranquil, expected volatility reacts to a negative (pos-
itive) price shock by rising (initially declining, but then rising when the positive shock is large). However,
when the market is volatile, the degree of asymmetry and the size of the response in expected volatility is
muted. In other words, when times are good, no news is good news, but when times are bad, neither good
nor bad news matters with regards to volatility.
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1 Introduction

In this paper we extend the parametric, asymmetric, stochastic volatility model (ASV),

where returns are correlated with volatility, by flexibly modeling the bivariate distribution

of the return and volatility innovations nonparametrically.1 In the model, log-volatility

belongs to the parametric, stationary, first-order autoregressive class of stochastic volatility

made popular by Jacquier et al. (1994) and Kim et al. (1998). The rest of the model is

nonparametric in the sense that no assumptions are made about the underlying joint distri-

bution of returns and volatility. Instead, the flexible Dirichlet process mixture (DPM) class

of priors by Lo (1984) along with return data is used to estimate the unknown distribution.

The version of the DPM used is an infinite mixture of bivariate, normal distributions

with mean zero, but unknown covariance matrices and mixture probabilities. This is used

to fit the return and log-volatility distribution. As a mixture, each observations covariance

matrix is distributed according to a Dirichlet process prior – a nonparametric prior over the

value of the covariance matrix and the probability of its occurrence.

Others have nonparametrically modeled the return distribution of a stochastic volatility

model, but the joint return, log-volatility distribution has not. Jensen (2004), Griffin and

Steel (2006), Jensen and Maheu (2010), Griffin and Steel (2011), and Delatola and Griffin

(2011a), each apply a Dirichlet process mixture type prior to the return distribution. For

the asymmetric stochastic volatility model, Delatola and Griffin (2011b) include a constant

leverage effect and model the distribution of the log-squared return innovation nonparamet-

rically with the infinite mixture, Constant Component Variance model of Griffin (2011). Yu

(2011) directly models the leverage effect nonparametrically by modeling the correlation be-

tween returns and volatility with a fixed ordered linear spline, and Durham (2007) models

the return distribution with a finite mixture model where its order is fixed a prior by the

econometrician.

By relaxing the parametric distribution of the asymmetric stochastic volatility model,

the approach taken in this paper is more flexible and better positioned to model non-

Gaussian behavior. As pointed out by Das and Sundaram (1999), the parametric stochastic

volatility model can only produce the level of skewness and kurtosis observed in the data

when it takes on implausible parameter values. By design a nonparametric joint distribution

allows the stochastic volatility model to capture these types of characteristics in the data

without sacrificing the time dependent nature of the stochastic volatility model.

A Markov chain, Monte Carlo posterior algorithm for sampling the nonparametric and

1See Harvey et al. (1994), Yu (2005) and Omori et al. (2007) or Eq. (30)-(32) for the parametric version
of the asymmetric stochastic volatility model.
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parametric portions of the model is presented. Our semiparametric sampler extends the

univariate algorithm of the semiparametric stochastic volatility model by Jensen and Maheu

(2010). A restricted version of the algorithm is also applied to a fully parametric, asym-

metric, stochastic volatility model. Parameter, volatility, and distributional uncertainty are

integrated out with the sampler of the posterior. These draws will be used to generate both

the one-day-ahead predictive joint density for daily market returns and log-volatility, and

the marginal density for one-day-ahead returns.

Stochastic volatility models and econometric models in general are chosen based on their

predictability (see Geweke (2001), and Geweke and Whiteman (2006)). This is understand-

able given the important role predictions play in valuing stocks and options, constructing

portfolios, and creating hedging strategies. Strong evidence in favor of our semiparametric

model relative to parametric models is provided by the sequential predictive likelihoods for

returns. In particular, the DPM estimate of the unknown predictive distribution for returns

is found to be robust over low and high volatility periods and to large return shocks.

Great emphasis is also placed on the ability of a model to forecast volatility.2 Asym-

metry, where an unexpected decline in price leads to higher volatility, whereas an increase

in price causes volatility to decline, is common in volatility models (see Bekaert and Wu

(2000), Chen and Ghysels (2011)). In the stochastic volatility model this asymmetry comes

from negatively correlated returns and log-volatility. Since the covariance matrix of the

nonparametric return and log-volatility innovations distribution follows a random second-

order effect, this paper’s semiparametric volatility model exhibits asymmetry. However,

the random second-order effect for the covariance also allows this correlation to change de-

pending on market conditions. During a regular market the asymmetry is like that found

by Chen and Ghysels (2011), moderate increases in stock prices reduces expected volatil-

ity, whereas any decline in stock prices or a large unexpected increase in prices leads to

higher expected volatility. However, during highly volatile times, expected volatility barely

increases following an unexpected shock to market returns. In other words, the asymmetric

return and volatility relationship is not a high volatility phenomenon.

The paper is organized as follows. In the Section 2, the asymmetric, stochastic volatility

model with a nonparametric Dirichlet process mixture prior for the unknown distribution

is constructed. Section 3 spells out the nonparametric model’s Markov chain, Monte Carlo

sampler of all the unknown parameters and latent variables. In Section 4 we apply our

semiparametric and an existing parametric asymmetric, stochastic volatility models to 28

years worth of daily market returns as measured by the value-weighted market portfolio

2See Poon and Granger (2003) for an extensive overview of the volatility forecasting literature
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from the Center of Research in Security Prices. In Section 5 and 6, we compare our empir-

ical results by first evaluating the Bayes factor in favor of a nested parametric versions of

the nonparametric model with the Savage-Dickey density ratio. We then compare the fore-

casting performance of the models over the last two years of the data with their cumulative

log predictive Bayes factors. In Section 7 we estimate volatility’s response to unexpected

changes in stock prices. A summary and conclusions are contained in Section 8.

2 Model

We model asset returns using the following semiparametric, asymmetric, stochastic, log-

volatility model

yt = µ+ exp{ht/2}ǫt (1)

ht+1 = ϕht + ηt (2)

where yt is the continuously compounded daily return at time periods t = 1, . . . , n, and

ht+1 is the value of the latent, log-volatility, one-day-ahead. The absolute value of the

autoregressive parameter, ϕ, is constrained to the unit interval, ensuring the log-volatility

process in Eq. (2) is stationary.3

We relax all assumptions concerning the joint distribution of ǫt and ηt, and, instead,

allow their distribution to be completely unknown and random as if the distribution were

an additional unknown to the parameters and latent volatilities of the ASV model. Being

unknown and random, the joint innovation distribution requires a prior, which can then be

used to obtain the random distributions posterior once data has been collected. We choose

the following Lo (1984) type Dirichlet process mixture prior (DPM)
(

ǫt
ηt

)
∼ N(0,Λt), (3)

Λt ∼ G, (4)

G ∼ DP (α,G0), (5)

to model the unknown distribution. In Eq. (3)-(5), the tth observation’s innovations are

distributed as a bivariate Normal with a mean zero vector but with a random covariance

matrix, Λt =

(
σ2
y,t σyh,t

σyh,t σ2
h,t

)
, that is distributed as G. The distribution G is also unknown

and its prior is the Ferguson (1973) Dirichlet process distribution, DP (α,G0), where the

3Because the mean of ht+1 can be subsumed into the variance of ǫt, identification requires the mean of
log-volatility to be zero; i.e., the intercept term of ht+1 must be set equal to zero.
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nonzero scalar α is the precision parameter and G0 is the base distribution. We will provide

a concrete definition for the DP prior, shortly.

The DPM builds on the well known property that a flexible distribution can be found

by mixing together a finite number of known distributions. It extends this concept by

mixing together an infinite number of distributions. In its simplest and most basic form the

Dirichlet process mixture models the innovation vector (ǫt, ηt)
′ as independent realizations

from the same, unknown, distribution which we model as a mixture of distributions
∫

FN (0,Λ)G(dΛ), (6)

where FN is a Normal distribution function with mean zero and covariance matrix Λ, and

G is a weighted mixture of the Λs.

Eq. (1)-(5) constitute the semiparametric, asymmetric, stochastic volatility model with

DPM prior model (ASV-DPM). At first glance, the ASV-DPM model, with its mean zero,

bivariate, Normal distribution function, might seem to lack the capacity to fit the non-

Gaussian behavior of returns and log-volatility. This, however, is incorrect. Fixing the

mean of F to zero only limits the DPM prior to the class of distributions having one mode.

This is hardly a limitation since asset returns are not known to have distributions with

more than one mode.

The DPM prior for the ASV model can be viewed in terms of a random, second-order,

effects model, where Λt is the random effect, but with a slight twist. Unlike a random effects

model where Λt is typically assumed to follow a parametric, Inverse-Wishart distribution,

in the ASV-DPM model G is unknown and is modeled nonparametrically. As a unknown

random distribution function, G enables the Λts to be distributed with “multimodality”, and

more “skewness” and “kurtosis” than is possible with a parametric distribution. However,

because G is nonparametric the second-order, random effects matrices, Λts, do not have

any financial or economic meaning. They are simply building blocks in fitting the unknown

distribution of (ǫt, ηt).

Employing Sethuraman (1994) representation of DP (α,G0), G will almost surely be

equal to the discrete distribution

G(dΛ) =

∞∑

j=1

πjδΣj
(dΛ), (7)

where δΣj
(·) is a degenerative distribution on the covariance matrix atom

Σj =

(
σ2
y,j σyh,j

σyh,j σ2
h,j

)
, (8)
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where σyh,j = ρjσy,jσh,j . Each Σj is a unique covariance matrix randomly drawn from the

DP prior’s base distribution, G0. To ensure conjugacy, we let G0 be the Inverse-Wishart

distribution with scale matrix S0 and v0 degrees of freedom, i.e.,

G0 ≡ Inv-Wish(S0, v0). (9)

The probability of Λt being equal to a particular Σj is πj where π1 = V1, πj = Vj
∏

j′<j(1−

Vj′), and Vj ∼ Beta(1, α), for α > 0.

In (7), G0 is our “best” guess at the distribution of the Λts. Because the πjs are

dependent on the Vjs being drawn from the Beta(1, α) distribution, whose expected value

is 1/(1 + α), for relatively large values of α, the DP prior for G converges to G0; i.e., each

πj is close to zero with a unique Σj drawn from G0. Hence, as α gets larger, it follows that

the uncertainty about Λt distribution declines and the Λts will be distributed as G0. On the

other hand, if α is close to zero, the prior for G will consist of a discrete distribution whose

support is located on only a few covariance matrices, Σj . The DP precision parameter, α,

can thus, be understood as controlling the complexity of the random, second-order, effects.

2.1 Parsimony with the DP

Parsimony, in other words, clustering or uniqueness in the covariances, Λt, of the ASV-DPM

model is provided by the almost sure discreteness of Eq. (7). By modeling G as a DP prior

there is guaranteed to be ties among the Λts. To be explicit, the joint distribution of the co-

variances can be defined sequentially as π(Λ1,Λ2, . . . ,Λn) ≡ π(Λ1)π(Λ2|Λ1)...π(Λ|Λ1, . . . ,Λn−1)

where π(Λ1) ≡ G0 and

Λt|G,Λ1, . . . ,Λt−1 ∼ G, (10)

G|Λ1, . . . ,Λt−1 ∼ DP

(
α,

α

α+ t− 1
G0 +

t−1∑

t′=1

1

α+ t− 1
δΛt′

(dG)

)
, (11)

for t = 2, . . . , n (see Blackwell and MacQueen (1973)). Integrating out G from each of the

conditional distributions in Eq. (10), we obtain the conditional distribution for Λt

Λt|Λ1, . . . ,Λt−1 ∼

{
G0 with probability α

α+t−1 ,

Σj with probability
nj

α+t−1 , j = 1, . . . , kt,
(12)

where Σj , j = 1, . . . , kt are the unique covariance matrices among the Λt′ , t
′ = 1, . . . , t, and

kt is the number of unique covariances.

Eq. (12) shows the self-reinforcing property of the DP where previously sampled values

are more likely to be resampled in the future. The more Λt′s belonging to the cluster whose

covariance matrix is Σj , the larger nj will be and the greater the probability Λt will be
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assigned Σj . On the other hand, if only a few Λt′ have been assigned Σj , both nj and the

likelihood of Λt being assigned Σj will be smaller.

Notice in Eq. (12) that there is also a non-trivial chance, proportional to α, of a new

covariance cluster being selected from G0. Extreme clustering occurs when the precision

parameter α → 0. On the other hand, if α → ∞, no clustering occurs and every observation

is assigned its very own unique Σj , j = 1, . . . , n. In this case, the ASV-DPM model’s joint,

return, log-volatility distribution is a multivariate Student-t distribution but the model will

typically not have finite unconditional moments (see Nelson (1991)).

2.2 Orthogonal representation

The ASV-DPM model can be written in terms of orthogonal innovations by first defining

the latent assignment variable st = j when Λt equals the jth unique covariance Σj ; i.e.,

when Λt = Σj , then st = j. Under the DP prior for G, st will be distributed

st ∼
∞∑

j=1

πjδj ,

where the probability weights, πj , j = 1, . . . , are the same as those defined in Eq. (7).

Incorporating st into the definition of the ASV-DPM model, we arrive at

yt = µ+ σy,st exp{ht/2}ut, (13)

ht+1 = ϕht + σh,stvt, (14)
(

ut
vt

)∣∣∣∣ st,Υst ∼ N(0,Υst), (15)

st ∼
∞∑

j=1

πjδj , (16)

Σst ∼ G0, (17)

where the correlation matrix Υj =

(
1 ρj
ρj 1

)
, with ρj = σhy,j/(σh,jσy,j).

Letting Υ
1/2
st represent the Cholesky decomposition, Υst ≡ Υ

1/2
st Υ

1/2′

st , we pre-multiply

(ut, vt)
′ by the inverse of Υ

1/2
st to obtain the uncorrelated innovation vector

(
wt

vt

)
≡
(
Υ1/2

st

)−1
(

ut
vt

)
=

(
(ut − vtρst)/

√
1− ρ2st

vt

)
.

Solving for ut in terms of wt and substituting this into Eq. (13), the ASV-DPM model in

terms of the orthogonal shocks (wt, vt)
′ equals:

yt = µ+ σy,st exp{ht/2}ρstvt + σy,st exp{ht/2}
√
1− ρ2stwt (18)

ht+1 = ϕht + σh,stvt. (19)
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where (wt, vt)
′ iid
∼ N(0, I2). This form of the ASV-DPM model will be shown to be conve-

nient for the posterior sampling of log-volatilities and ϕ.

3 Estimation

In this section we provide a likelihood-based approach to parameter inference, distributional

uncertainty, and model comparison with the ASV-DPM model by using a Markov chain

Monte Carlo (MCMC) sampler. The MCMC sampler has a number of advantages. Along

with providing parameter estimates, the MCMC sampler also estimates the latent volatilities

and integrates out the uncertainty of the latent mixture variables from the DPM prior.

Let y = (y1, . . . , yn)
′ be the observed asset returns and h = (h1, . . . , hn)

′ the vector of

its unobserved log-volatilities. The ASV-DPM posterior distribution

π(µ, ϕ, h, {Λt}, α|y) ∝ f(y|µ, ϕ, h, {Λt}, α)π(µ)π(h|ϕ)π(ϕ)π({Λt}|α)π(α)

does not have a closed form. As a result, we strategically group the unknown parameters,

latent volatilities, and mixture order, identities and assignments into manageable blocks

where the selected blocks conditional posterior distributions are either known or have a

tractable form. A Markov chain is then constructed by iteratively sampling through each

block’s posterior distribution conditioning on the value of the other parameters and latent

variables drawn earlier.

The blocks of conditional distributions are:

• π({Λt}|y, h, µ, ϕ, α)

• π(h|y, µ, ϕ, {Λt})

• π(ϕ|y, h, µ, {Λt})

• π(µ|y, h, {Λt})

• π(α|{Λt})

3.1 Λt sampler

Sampling {Λt}|y, h, µ, ϕ, α can be carried out by employing a Polya urn type Gibbs sampler

of Escobar (1994). The Polya urn approach sequentially samples Λt, for t = 1, . . . , n,

from the conditional posterior distribution. More formally, let z = (z1, . . . , zn)
′, where
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zt = ((yt − µ) exp{−ht/2}, ht+1 − ϕht)
′, and draw Λt from the distribution:

Λt|{Λt′ : t
′ 6= t}, zt, α ∼

α

α+ n− 1
g(zt)G(dΛ|zt)

+
1

α+ n− 1

∑

t′ 6=t

fN (zt|Λt′)δΛt′
(dΛ), (20)

where g(zt) ≡
∫
fN (zt|0,Λ) G0(Λ)dΛ, and by the law of conditional probability, G(dΛ|zt) ∝

fN (zt|0,Λ)G0(dΛ). Applying the prior information of Eq. (3) and (9) it follows that the

density function of G(dΛ|zt):

g(Λ|zt) ∝ |Λ|−1/2 exp

{
−
1

2
trztz

′
tΛ

−1

}
|S0|

v0/2

|Λ|(v0+3)/2
exp

{
−
1

2
trΛ−1S0

}
,

=
|S0|

v0/2

|Λ|(v0+4)/2
exp

{
−
1

2
tr(S0 + ztz

′
t)Λ

−1

}
, (21)

is the kernel to a Inverse-Wishart distribution; i.e., G(dΛ|zt) ≡ Inv-Wish(S0 + ztz
′
t, v0 +1)

(see Zellner (1971), p.395). Integrating out the Λ from the Inverse-Wishart distribution is

the marginal likelihood g(zt), which equals the density of a bivariate Student-t distribution:

g(zt) = fMSt(zt|0, (S0/(v0 − 1))−1, v0 − 1), (22)

with v0 − 1 degrees of freedom, mean-zero vector, and covariance, S0/(v0 − 3) (see Zellner

(1971), Eq. (B.20), p. 383 for the exact formula of fMSt).

The more efficient Poly urn approach of West et al. (1994) and MacEachern and Müller

(1998) can be applied to the ASV-DPM model to generate draws from a distribution equiv-

alent to π({Λt}|y, h, µ, ϕ, α). This distribution is π(Σ1, . . . ,Σk, s|y, h, µ, ϕ, α) where the Σj ,

j = 1, . . . , k, k ≤ n, are the distinct Λt, t = 1, . . . , n, and s = (s1, . . . , sn)
′ is the vector

consisting of the assignment variables, st; i.e., st = j when Λt = Σj .

Define nj to be the number of observations where st = j, k(t) to be the distinct number

of Σj in {Λt′ : t
′ 6= t} and n

(t)
j the number of observations where st′ = j, t′ 6= t. For a given

h, µ, ϕ and α, draws from the posterior π({Σj}, s|z, α) ≡ π({Σj}, s|y, h, µ, ϕ, α) are made

with the following 2-step algorithm

1. s and k are drawn by sampling st, for t = 1, . . . , n, from:

st|{Λt′ : t
′ 6= t}, zt, α ∼

{
α

α+n−1g(zt) δ0(dst)
1

α+n−1

∑k(t)

j=1 n
(t)
j fN (zt|0,Σj) δj(dst).

(23)

If a zero is drawn for st, we then draw a new Σj from the Inverse-Wishart distribution

in Eq. (21), increase k by one and set st equal to the new k. Otherwise, we set st

equal to the randomly drawn j and leave k unchanged.
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2. Discard the Σjs from Step 1 and use the s and k to iteratively draw new Σj , for

j = 1, . . . , k, from:

π(Σj |z, s, k) ∝
∏

t:st=j

fN (zt|0,Σj)G0(dΣ) (24)

∝
∏

t:st=j

|Σj |
−1/2 exp

{
−
1

2
trztz

′
tΣ

−1
j

}

×
|S0|

v0/2

|Σj |(v0+3)/2
exp

{
−
1

2
trS0Σ

−1
j

}
(25)

=
|S0|

v0/2

|Σj |(v0+nj+3)/2
exp



−

1

2
tr


∑

t:st=j

ztz
′
t + S0


Σ−1

j



 (26)

∼ Inv-Wish


S0 +

∑

t:st=j

ztz
′
t, v0 + nj


 . (27)

Breaking up the draws of the assignment variables st from the draws of the identities

of the random effects, Σj , reduces the inherent dependency that exists when sampling the

DPM covariances from the existing set of covariances. This helps the randomly drawn

covariances to span the entire support of the posterior distribution.

3.2 Latent volatility sampler

Given the heightened correlation that exists between the log-volatilities, we propose a effi-

cient tailored, Metropolis-Hasting sampler of randomly drawn blocks of h. Volatility draws

are made by forming random partitions of h where the length of each subvector in the parti-

tion is equal to a random draw from a Poisson distribution. Random length blocks promote

mixing from sweep to sweep by ensuring that volatilities are not drawn conditionally on

time adjacent volatilities where their time position is fixed.

Given a particular partition of h one sequentially draws each volatility block conditional

on the value of the other volatilities. The conditional distribution of a volatility block

h(t′,τ) = (ht′ , ht′+1, . . . , hτ )
′, where 1 ≤ t′ ≤ τ < n, and the vector length lt′ = τ − t′ + 1 is

equal to the random draw from lt′ ∼ Pois(λh), is:

π(h(t′,τ)|y(t′,τ), h−(t′,τ)) ∝ π(h(t′,τ)|hτ+1, ht′−1)f(y(t′,τ)|h(t′,τ), hτ+1)

= exp

{
−
1

2

(ht′ − ϕht′−1)
2

σ2
h,st′

}
τ∏

t=t′

exp

{
−
1

2

[
(ht+1 − ϕht)

2

σ2
h,st

+ ht

]}

×

τ∏

t=t′

exp

{
−
1

2

(
yt − µ− eht/2σy,stρst(ht+1 − ϕht)/σh,st

)2

(1− ρ2st) exp{ht}σ
2
y,st

}
(28)
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When the conditional distribution is for the first block, π(h(1,τ)|hτ+1, h0) depends on h0.

We choose to model h0 with the prior π(h0) ∼ N(0, σ2
h,0/(1−ϕ2)) where σ2

h,0 ≡ E[G0(dΛ)]2,2

is the expected variance of log-volatility from the the DPM base distribution. Drawing h0

from π(h0|h1) ≡ N(ϕh1, σ
2
h,0), we numerically integrate out h0 from the draws of h(1,τ).

If the draw of lt′ were to cause τ to be greater than or equal to n, the volatility blocks

conditional distribution is the same as above except τ = n. For this last block in the

partition of h we integrate out the one period ahead, out of sample volatility, hn+1, by

replacing it with a random draw from:

π(hn+1|y, hn) ∼ N(h̄n+1, σ̄
2
hn+1

), (29)

where

h̄n+1 = ϕhn +
(yn − µ)ρsnσh,sne

−hn/2

σy,sn
, σ̄2

hn+1
=

(
ρ2sn

(1− ρ2sn)σ
2
h,sn

+
1

σ2
h,sn

)−1

,

and the value of hn is from the previous sweep of the sampler.

Since the conditional distributions of Eq. (28) are nonstandard we use a Metropolis-

Hasting sampler (see Chib and Greenberg (1995)). Candidate draws of h(t,τ) are made with

a lt-variate Student-t distribution with mean vector m, covariance matrix, S, and ξ degrees

of freedom where m is the argument maximizing π(h(t′,τ)|hτ+1, ht′−1)f(y(t′,τ)|h(t′,τ), hτ+1)

and S is the negative inverted Hessian evaluated at m.

3.3 Sampler of ϕ

We assume a prior for ϕ equal to the truncated normal distribution, π(ϕ) ∝ N(µϕ, σ
2
ϕ)I|ϕ|<1.

Under this prior, we sample from π(ϕ|y, h, {Λt}) by carrying out a Metropolis-Hasting draw

where the candidate draw ϕ′ is made from the N(ϕ̂, σ̂2
ϕ) distribution where:

ϕ̂ = σ̂2
ϕ

(
µϕ

σ2
ϕ

+
n−1∑

t=1

ht+1ht
σ2
h,st

)
, σ̂2

ϕ =

(
1

σ2
ϕ

+
n−1∑

t=1

h2t
σ2
h,st

)−1

,

and is accepted with probability α(ϕ′, ϕ) = min
{

g(ϕ′)
g(ϕ)

fN (ϕ|ϕ̂,σ̂2
ϕ)

fN (ϕ′|ϕ̂,σ̂2
ϕ)
, 1
}
where

g(ϕ) ∝ f(y|ϕ, h, {Σj}, s, hn+1)π(h|ϕ, {Σj}, s)π(hn+1|hn, ϕ)π(h0|ϕ)π(ϕ),

=
n∏

t=1

exp

{
−
1

2

[(
yt − µ− ρte

ht/2σy,st(ht+1 − ϕht)/σh,st
)2

(1− ρ2st)σ
2
y,ste

ht
+

(ht+1 − ϕht)
2

σh,st

]}

× exp

{
−
1

2

[
(h1 − ϕh0)

2

σ2
h,0

+
h20

σ2
h,0/(1− ϕ2)

]}
fN (ϕ|µϕ, σ

2
ϕ)I|ϕ|<1.

When the candidate ϕ′ is rejected, the prior sweep’s draw of ϕ is kept as the draw from

π(ϕ|y, h, {Λt}).
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3.4 Sampler of µ

To perform draws from π(µ|y, h, {Λt}) we let π(µ) ∼ N(m, τ). Since π(µ) is a conjugate

prior, draws of µ are made from N(µ̂, τ̂) where:

µ̂ = τ̂

(
m

τ
+

n∑

t=1

ỹt
σ̃2
t

)
, τ̂ =

(
1

τ
+

n∑

t=1

1

σ̃2
t

)−1

,

and ỹ = yt − ρte
ht/2σy,st(ht+1 − ϕht)/σh,st and σ̃2

t = (1− ρ2st)σ
2
y,st exp{ht}.

3.5 Sampler of α

The two step algorithm of Escobar and West (1995) is used to sample the ASV-DPMmodel’s

precision parameter α. When the mixture order, k, identifying vector, s, and locations {Σj},

are all known, the posterior of α will only depend on k. Assuming a gamma prior, Γ(a, b),

where a > 0 and b > 0, for α, draws from π(α|k) can be made by

1. Sampling the random variable ξ from π(ξ|α, k) ∼ Beta(α+ 1, n)

2. Sampling α from the mixture π(α|ξ, k) ∼ πξΓ(a+k, b−ln ξ)+(1−πξ)Γ(a+k−1, b−ln ξ),

where πξ/(1− πξ) = (a+ k − 1)/[n(b− ln ξ)].

3.6 Results with quasi-return data

To benchmark the ASV-DPM sampler, we apply it to 1,000 returns generated with Harvey

et al. (1994) parametric, asymmetric, stochastic volatility model

yt = µ+ exp{ht/2}ǫt (30)

ht+1 = ϕht + ηt (31)(
ǫt
ηt

)
∼ N(0,Σ). (32)

where Σ =

(
σ2
y ρσyσh

ρσyσh σ2
h

)
and ρ ≡ Corr(ǫt, ηt). Except for the distribution of the

innovations, (ǫt, ηt)
′, which is normally distributed with a constant covariance Σ, the ASV

model has the same structural form as the ASV-DPM model.

The ASV parameters are set equal to the estimates reported in Table 2 of Section 4.

These parameter estimates come from estimating the ASV model with 7,319 daily returns

(multiplied by a 100) of the Center of Research in Security Prices (CRSP) value-weighted

portfolio index over the January 2, 1980 to December 31, 2008 time period. We use these

parameter values in the ASV model to generate 1,000 quasi-returns.

12



We fit both the ASV-DPM and ASV model to the simulated returns. The priors for

the ASV-DPM model are π(µ) ≡ N(0, 0.1) and π(ϕ) ≡ N(0, 100)I|ϕ|<1. For the DPM,

we choose the base distribution G0 ≡ Inv-Wish(S0, v0) where S0 = I2 and v0 = 10. The

prior for the DPM precision parameter is π(α) = Gamma(2, 8) so that E[α] = 1/4 and

Var[α] = 1/32. For the ASV model, the priors are the same as those for the ASV-DPM,

meaning the prior for Σ is G0. The sampler of the ASV model is the same as the ASV-DPM

model’s except with k and st, t = 1, . . . , n, fixed and set equal to 1.

Using the initial starting parameter values, we throw away the first 1,000 draws of log-

volatility and then the following 10,000 draws of both the volatilities and parameters, before

keeping the last 30,000 parameter draws. Table 1 reports the posterior mean, standard

deviation, and 95% probability interval for the ASV-DPM and ASV parameters. There is

nothing out of the ordinary in these posterior estimates. Each model’s parameter estimates

are reasonably close to the true values and the ASV-DPM model finds on average one

mixture covariance matrix.

Table 1: The posterior estimates for the ASV-DPM and ASV models as applied to 1,000
simulated ASV returns using the parameter values from Table 2. Given the initial starting
parameter values, the first 1,000 draws of log-volatility are discarded and then the next
10,000 draws of both the volatilities and parameters are thrown away, before keeping the
last 30,000 draws.

ASV-DPM ASV

mean stdev 95% prob interval mean stdev 95% prob interval

α 0.1690 0.1414 (0.0207, 0.4727)
k 1.0 0.8454 (1, 4)
ϕ 0.9634 0.0118 (0.9386, 0.9849) 0.9897 0.0122 (0.9545, 0.9995)
µ 0.0501 0.0237 (0.0032, 0.0962) 0.0653 0.0237 (0.0195, 0.1116)
σ2
y 0.1633 0.1644 (0.0427, 0.6495)

σ2
h 0.0480 0.0117 (0.0299, 0.0770

ρ -0.3350 0.1059 (-0.5377,-0.1248)

Using data generated from the ASV model, yt = 0.06 + exp{ht/2}ǫt and ht+1 = 0.97ht + ηt where

(

ǫt
ηt

)

∼ N

((

0
0

)

,

(

0.61 −0.46 ∗
√
0.61 ∗ 0.04

−0.46 ∗
√
0.61 ∗ 0.04 0.04

))

.

We also compare the joint predictive densities, f((yn+1, hn+2)
′|y,M), M = ASV-DPM, ASV,

by numerically calculating them. The predictive density for the ASV-DPM is approximately

f

((
yn+1

hn+2

)∣∣∣∣ y,ASV-DPM

)
≈

13



R−1
R∑

l=1

f

((
yn+1

hn+2

) ∣∣∣µ(l), ϕ(l), h(l), h
(l)
n+1,

{
Σ
(l)
j

}
, s(l), α(l)

)
(33)

where R = 30,000, and µ(l), ϕ(l), h(l),
{
Σ
(l)
j

}
, s(l), α(l) are the lth draw from the posterior

and

f

((
yn+1

hn+2

)∣∣∣∣µ, ϕ, h, hn+1, {Σj} , s, α

)
=

α

α+ n
fMSt

((
yn+1

hn+2

)∣∣∣∣
(

µ
ϕhn+1

)
,

(
Hn+1S0Hn+1

v0 − 1

)−1

, v0 − 1

)

+
k∑

j=1

nj

α+ n
fN

((
yn+1

hn+2

)∣∣∣∣
(

µ
ϕhn+1

)
, Hn+1ΣjHn+1

)
(34)

with Hn+1 =

(
ehn+1/2 0

0 1

)
and hn+1 being a draw from the posterior distribution of

Eq. (29). By averaging over the weighted draws of the parameters and the unknown volatil-

ities, the predictive density integrates out both parameter and log-volatility uncertainty

leaving a distribution dependent on only the return series, y. In the ASV model, the

predictive density integrates out µ, ϕ, h,Σ, from the sampling distribution,

fN

((
yn+1

hn+2

)∣∣∣∣
(

µ
ϕhn+1

)
, Hn+1ΣHn+1

)
. (35)

In Figure 1 we plot the joint predictive densities of both models. Since the densities

are three-dimensional, we plot each model’s density from two vantage points – the left

side figures plot the joint densities from the yn+1-axis vantage point, and the righthand

figures plot the densities, but from the hn+2-axis perspective. The two model’s densities

are nearly identical in their shape and location. Both densities are centered at yn+1 = 0

and hn+2 = 1.25, and both show a slight upward skewness in the hn+2 dimension. If there

is a difference to be found it is in their height. The ASV-DPM model’s predictive density

reaches a maximum density value of 0.2 that is slightly larger than the ASV, indicating the

predictive distribution of the ASV-DPM model is leptokurtotic relative to the predictive

distribution of the ASV model. This does not come as a surprise. From the results in

Table 1, there are sweeps where the DPM sampler drew a mixture representation with two

or more clusters. Furthermore, in Eq. (34) we see that the ASV-DPM predictive density

includes the Student-t distribution with v0 − 1 degrees of freedom – a known leptokurtotic

distribution.
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Figure 1: Joint predictive densities of the ASV-DPM and ASV model from the vantage
points of the yn+1-axis (lefthand side plots) and hn+2-axis (righthand side plots) as applied
to return data simulated from the ASV model.
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4 Empirical Application

We analyze the ASV-DPM and ASV models by applying them to 7,319 daily returns (mul-

tiplied by a 100) over the period of January 2, 1980 to December 31, 2008 from the Center

of Research in Security Prices (CRSP) value-weighted portfolio index. In Figure 2, we plot

the value-weighted portfolio returns. The chosen time period is ideal since market returns

exhibit a number of different dynamics. For example, the pre- and post-1987 market crash

periods, the tech bubble of the late 90s, and the financial crisis of 2008. Over the entire

sample, returns average 0.045 and have a variance of 1.12. Daily market returns appear to

be asymmetrically distributed with fat-tails as is evident in a negative skewness of -0.757

and an excess kurtosis measure of 19.296.

Figure 2: CRSP value-weighted portfolio daily compounded returns from January 2, 1980
to December 31, 2008 (in percentages).
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The priors applied to the ASV-DPM and ASV models are the same as were used in

Section 3.6. They are π(µ) ≡ N(0, 0.1), π(ϕ) ≡ N(0, 100)I|ϕ|<1, G0 ≡ Inv-Wish(I2, 10),

and π(α) = Gamma(2, 8). For the ASV model, the prior for Σ is the Inv-Wish(I2, 10)

distribution and k and st, t = 1, . . . , n, are set equal to 1.

To reduce the influence of the starting values, we first perform 1000 sweeps over the

log-volatilities using the step-by-step volatility sampler of Kim et al. (1998) while holding

the other parameters constant. We then let the entire sampler of Section 3 iterate 40,000
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Table 2: Posterior estimates of the ASV-DPM and ASV models for daily compounded
CRSP value-weighted portfolio returns from January 2, 1980 to December 29, 2008 (7319
observations, 41,000 draws with the first 1000 draws of log-volatility followed by the next
10,000 draws of all the unknowns being discarded).

ASV-DPM ASV

mean stdev 95% prob interval mean stdev 95% prob interval

α 0.3188 0.1609 (0.0862, 0.7007)
k 4.4220 1.3120 (3, 8)
ϕ 0.9799 0.0030 (0.9739, 0.9855) 0.9740 0.0037 (0.9662, 0.9809)
µ 0.0665 0.0082 (0.0506, 0.0826) 0.0611 0.0083 (0.0448, 0.0774)
σ2
y 0.6100 0.0514 (0.5112, 0.7169)

σ2
h 0.0391 0.0046 (0.0308, 0.0490)

ρ -0.4682 0.0371 (-0.5402,-0.3944)

times, keeping only the last 30,000 draws from the two models for inference purposes.

Table 2 reports the posterior mean, standard deviation, and 95% posterior, probability

interval for the parameters of the ASV-DPM and ASV models. The posterior mean for

the ASV-DPM model’s unconditional mean of return, µ, at 0.067 is slightly larger than

the ASV model’s estimate of 0.061. But their posterior standard deviations have the same

value of 0.008. Hence, the model’s posterior distributions, π(µ|y), are similar in shape but

the ASV-DPM is shifted slightly to the right. Although the difference in the estimates of µ

are small, it can still have an effect on one’s expected median wealth say 20 years into the

future. For example the median expected wealth per unit of investment over twenty years

(eµ/100∗365∗20) is 128.32 for the ASV-DPM model as opposed to 86.51 for the ASV.

Persistence in volatility, as captured by the posterior distribution of the autoregressive

parameter, ϕ, is close to being the same for the two models. In the ASV-DPM model, the

posterior mean of ϕ is 0.98, whereas, in the ASV model it is 0.97. The standard deviations

are also similar with the ASV-DPM model’s equaling 0.003 and the ASV slightly larger at

0.004. Values of ϕ so close to one is evidence of a strongly persistent volatility process where

a shock to volatility impacts its future values and lives on for a very long time in either

model. Even under a nonparametric distribution, the ϕ for ASV-DPM finds clustering in

volatility where large and small fluctuations follow similar type of behavior.

In Table 2, the posterior average number of mixture clusters is k = 4.42. Because

of label switching in the sweep to sweep draws of the sts,
4 we are unable to identify the

posterior distribution of the assignment vector, s. However, we are able to calculate the

4See Richardson and Green (1997) for a extensive discussion on label switching in mixture models.
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average posterior value for each observation’s covariance matrix, Λt.

Figure 3: Time plots of the posterior average of σ2
y,t, σ

2
h,t, ρt, t=1,. . . ,7319
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In Figure 3, we plot the estimates of Λt by graphing the average posterior draw of

σ2
y,t, σ

2
h,t, ρt, for t = 1, . . . , 7319. In the figure, the movement over time in σ2

y,t is nearly

indistinguishable from σ2
h,t. Both move at exactly the same instances in exactly the same

direction. Such dynamics suggests markets requiring a large σ2
y,t also need σ2

h,t to be large.

Furthermore, those instances where the value of σ2
y,t and σ2

h,t are large also identifies a

mixture cluster whose probability is relatively low but is still important. For instance, the

triplet (σ2
y,t = 0.6, σ2

h,t = 0.12, ρt = −0.48) only occurs a dozen or so times over the sample

period, but each occurrence corresponds to a sizable market decline.

This contrasts with the covariance cluster where the spikes in σ2
y,t and σ2

h,t emerge from

and whose value is approximately (σ2
y,t = 0.07, σ2

h,t = 0.02, ρt = −0.455). This cluster can

be viewed as the market’s typical covariance behavior. It consists of most of the sample,

and, hence, has the highest probability of occurring.

Figure 3 also identifies three clear mixture clusters. Two of the three are those mentioned

in the previous paragraph; the one cluster representing the typical market, and the other
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for when there is a large market decline. The third cluster consists of those days where both

σ2
y,t and σ2

h,t are elevated, but the level of correlation remains unchanged at ρt = −0.455.

For instance, the third and fourth episode of σ2
y,t and σ2

h,t spiking in Figure 3 are occurrences

of this cluster.

4.1 Fit

A point of possible contention with the ASV-DPM model is that it nonparametrically fits

an unknown joint distribution where one of the random variables, h, is not observed. This

latency could cause the parameters of the DPM to be unidentified. Since the DP parameters

suffer from label switching we are unable to analyze the sampled distribution parameters to

determine if they are identified. Alternatively, we can compare the nonparametric model’s

draws of h with those from the ASV model. If the ASV-DPM model is unidentified, we

would expect to find the draws from the smooth distribution π(h|y) to be less precise and

have a very different posterior mean from the parametric model. We would also expect the

location and spread of the ASV-DPM model’s joint predictive density to not match up with

the ASV model’s predictive distribution.

In Figure 4 we plot two graphs. In Figure 4(a) we plot the difference between the ASV

and ASV-DPM sampler’s standard deviations of π(h|y) over the trading days, January 2,

1980 to December 29, 2008, and in Figure 4(b) the sample means of the two model’s draws

of h. Except for a few trading days, the standard deviation of the ASV draws are slightly

larger than the ASV-DPM models. Because of the large difference between the ASV-DPM

and ASV standard deviation on those days where the ASV-DPM standard deviations is

larger, on average, the ASV-DPM standard deviations are 0.0026 larger than the ASV. On

these days market volatility was generally low.

In Figure 4(b), the two model’s smoothed volatilities, E[h|y], are similar in their level

and pattern. However, there are differences, such as when volatility reaches a local peak.

In these instances, the ASV model’s smooth volatility is larger than the ASV-DPM model.

Because the instantaneous variance of returns, σ2
y , in the ASV model is constant, large

changes in the return process correspond to large changes in volatility. This contrasts with

the ASV-DPM model where σ2
y,st is flexible and, as we saw in Figure 3, changes value when

it needs to adapt to a market decline. As a result the ASV-DPM model’s volatilities are

less volatile and do not increase by as much as the ASV model.
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Figure 4: (a) difference between the ASV and ASV-DPM standard deviation from the
MCMC draws of π(ht|y), and (b) the average draw of ht|y from the ASV and ASV-DPM.
Both figures are for the period of January 2, 1980 to December 31, 2008.
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5 Nested Model Comparison

The DP precision parameter α can be understood as being a tuning parameter to the number

of unique Λts; i.e., the degree of clustering imposed by the DP prior. Under the DP (α,G0)

prior, a data set of length n is expected to have E[kn] =
∑n

i=1 α/(α + i − 1) clusters. By

increasing or decreasing the value of α, the ASV-DPM model is more or less likely to add

new clusters. As α approaches zero, the probability of a second unique covariance matrix,

α/(1 + α), approaches zero, as does the probability of there being a second, third, fourth,

etc. cluster. It follows that the ASV-DPM model is equivalent to the parametric ASV model

when α is equal to zero.

At the other end of the spectrum, the prior probability of drawing a new cluster for Λt

goes to one as α → ∞. Because the DP prior for G is no longer discrete, but is instead equal

to the distribution G0, when α → ∞, the prior for Λt, t = 1, . . . , n, is G0. Hence, as α → ∞,

the ASV-DPM model is the ASV-t model – a parametric ASV model whose innovations are

distributed as a bivariate, Student-t with mean-vector zero, covariance matrix, S0/(v0 − 3)

and v0 − 1 degrees of freedom (see Eq. (22)).

Because the ASV and ASV-t models are nested versions of the ASV-DPM that depend

on the value of α, Bayes factors in favor of the nested models can be computed using the

Savage-Dickey density ratio test (see Dickey (1971)). In general, the Savage-Dickey density

ratio favors the nested model M ′ : α = α0, where, in our case, α0 = {0,∞}, over the general

model M : α, where α ≥ 0, when Bayes-factor

BF (α = α0) ≡
m(y|M ′)

m(y|M)
, (36)

=
π(α = α0|y)

π(α = α0)
, (37)

where m is the marginal likelihood, is large. In our case, M = ASV-DPM and M ′ =

ASV, ASV-t, respectively.

The limit α0 → ∞ does not lend itself easily to the Savage-Dickey density ratio, so we

transform α into the random variable u ≡ α/(α + 1) and assume u is distributed as the

maximum entropy prior

π(u|λ) =
eλuλ

eλ − 1
, λ ∈ R, (38)

over the unit interval, u ∈ [0, 1]. The corresponding maximum entropy prior for α is

π(α|λ) =
λ exp{αλ/(1 + α)}

(eλ − 1)(1 + α)2
. (39)
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Under this transformation, u → 0, as α → 0, and u → 1, as α → ∞. The random variable

u is thus, the prior probability of there being a second mixture cluster. If u = 1, then Λ2

will be drawn from G0. Whereas, if u = 0, the probability of drawing a second cluster is

zero and Λ2 = Λ1.

Let the nested ASV and ASV-t models M ′ : u = u0, be, respectively, u0 = {0, 1} and

the unrestricted model M : u ∈ [0, 1]. In terms of u, the Savage-Dickey density ratio in

favor of the nested model M ′ is

BF (u = u0) ≡
π(u = u0|y)

π(u = u0)
.

Unlike the Gamma prior we used earlier for α, the maximum entropy prior does not lend

itself to a standard distribution for the conditional posterior of α, so, we modify the Escobar

and West (1995) sampler of α. Since drawing either α or u requires a Metropolis sampler,

we could choose to sample either one. However, because α is defined on the positive real

line, whereas u is constrained to the unit interval, we choose to draw α and use a random

walk proposal with unit variance to generate the candidate draws.

Denote the candidate draw by α′. It will be accepted as a draw from π(α|y) with

probability

π(k|α′, n)π(α′|λ)

π(k|α, n)π(α|λ)
=

α′kΓ(α′)/Γ(α′ + n)π(α′|λ)

αkΓ(α)/Γ(α+ n)π(α|λ)
, (40)

where α is the draw from the previous sweep and k is the number of clusters from the current

sweep (see Escobar and West (1995) for the formula of the likelihood function, π(k|α, n)).

For each draw of α we compute the corresponding draw of u and evaluate u’s empirical

posterior distribution π(u|y) at zero and one. If the Savage-Dickey ratio at these points is

greater than one then there is evidence in favor of the nested model, M ′.

We choose the maximum entropy prior for u where λ = 0 when testing the nested ASV

and ASV-t models against the ASV-DPM. When λ = 0, the maximum entropy prior is a

uniform prior over the unit interval. Except for the prior of u, the MCMC sampler is the

same as Section 4.

In Figure 5, we plot the uniform prior and empirical posterior density of u. The Savage-

Dickey density ratio in favor of the ASV model (u0 = 0) has a 1-in-10 chance of occurring

and indicates that there is some likelihood for the parametric ASV model but not much.

Since π(u = 1|y) = 0, there is virtually no evidence supporting the ASV-t model (u0 = 1).

Though there is little empirical evidence supporting the nested ASV and ASV-t models,

in Figure 5, there is still a range of values for u0 where a sharp hypothesis is supported.

If we restrict u0 to values where π(u = u0|y) is greater than π(u0), we find a number of
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Figure 5: The prior, π(u|λ = 0) ≡ Unif(0, 1), and the empirical posterior density π(u|y).
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Bayes-factors in favor of the restricted ASV-DPM model. From Figure 5, the data supports

a ASV-DPM model where u0 is between 0.125 and 0.525. In other words, the data supports

ASV-DPM models having on average 1 to 9 clusters.

5.1 Prior sensitivity

Because M ′ is a sharp hypothesis, the prior for u under M ′ is the Dirac delta function,

π(u|M ′) = δuo(u). For the unrestricted model, M , the prior is the maximum entropy

distribution of Eq. (38) with hyperparameter λ ∈ R. As λ → −∞, the prior π(u|λ,M) →

δ0(u); i.e., the prior of the unrestricted model converges to that of the sharp ASV model

hypothesis. As λ → ∞, π(u|λ,M) → δ1(u) and the prior is that of the ASV-t model.

The marginal likelihood for M is

m(y|λ,M) =

∫
l(y|u, λ,M)π(u|λ,M) du, (41)

and the marginal likelihood for the nested model M ′ is

m(y|M ′) =

∫
l(y|u, λ,M)δu0(u) du (42)

= l(y|u = u0,M). (43)

The Bayes factor in favor of the restricted model M ′ written in terms of these marginal

likelihoods is

BF (u = u0|y, λ,M) =
l(y|u = u0,M)

m(y|λ,M)
.
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Under this prior for u, there exists limits where the unrestricted model equals the re-

stricted. The two restricted models are u0 = 0 (ASV) and u0 = 1 (ASV-t). To obtain the

ASV model with the unrestricted model, the prior

lim
λ→−∞

π(u|λ,M) = δ0(u),

and for the ASV-t model

lim
λ→∞

π(u|λ,M) = δ1(u).

Thus, the Bayes factor in favor of the ASV model can be written in terms of M ’s marginal

likelihood function as

BF (u = 0|y, λ,M) =
m(y|λ → −∞,M)

m(y|λ,M)
(44)

and for the ASV-t the Bayes factor can be expressed as

BF (u = 1|y, λ,M) =
m(y|λ → ∞,M)

m(y|λ,M)
. (45)

Eq. (44) illustrates how the Bayes factor of a sharp hypothesis is influenced by the prior

even when the posterior is robust to the prior. The situation occurs when the marginal

likelihood of the unrestricted model is sensitive to the prior. For example, the maximum

entropy prior causes the Bayes factor in favor of the ASV model to get closer and closer to

one for more and more negative values of λ.

We use the prior π(u|λ = −10,M) to compute the Bayes factor favoring the ASV model

and the prior π(u|λ = 10,M) for the Bayes factor favoring the ASV-t. These priors give

the benefit of doubt to the restricted ASV-DPM model. In Figure 6 we graph in subplot

(a) the prior π(u|λ = 10,M) and in subplot (b) the prior π(u|λ = −10,M). Each plot also

contains the empirical distribution of u using the respective prior.

Using these two maximum entropy priors, the Savage-Dickey density ratio for the two

sharp hypothesis reinforces the findings of Section 5. In the case where the prior lends

support to a ASV model (λ = −10), the density ratio at u0 = 0 in Figure 6(b) again shows

there to be a 1-in-10 chance of a ASV model. The Savage-Dickey density ratio goes to zero

in Figure 6(a) when the prior heavily weights ASV-DPM models having a large number of

clusters. Neither prior changes the likelihood of the data coming from a ASV-t model. In

each case π(u = 1|y,M) is zero.

Figure 6 also shows how the expected number of posterior clusters is robust to the prior.

As was the case with the uniform prior, the data supports a u between 0.125 and 0.5 (0.75)

when λ = −10 (λ = 10). Again these are sharp hypothesis that the data can support.
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Figure 6: The the empirical posterior density of u under the maximum entropy priors (a)
π(u|λ = 10) and (b) π(u|λ = −10).
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6 Predictability

To compare the ASV-DPM model with the ASV model, and more generally other stochastic

volatility models, we compute each model’s marginal likelihood using the product of its one-

step-ahead predictions. As we have mentioned, in addition to integrating out parameter

uncertainty, the marginal likelihood of stochastic volatility models also integrates out the

uncertainty associated with the latent volatilities. In the past, particle filters have been

applied to stochastic volatility models to integrate out volatility (see Chib et al. (2002)).

However, the marginal likelihood for the ASV-DPM model also requires integrating out

the latent DP covariance matrices. Basu and Chib (2003) have a way of doing this but

only for a DPM type model, not a DPM model with stochastic volatility. The ASV-DPM

model requires a particle filter for integrating out the latent volatilities and DP parameters,

making the Basu and Chib approach infeasible.5

Because of the additional computation costs involved in integrating out the volatilities

and DPM covariances, and also because of the increased availability of parallel computing,

Beowulf clusters, and quad-core processors, we choose to compute the ASV model’s marginal

likelihood sequentially with one-step-ahead predictive likelihoods. Given the low cost of

multi-thread computing and availability of multiple processors, a large number of individual

and independent MCMC draws can be conducted on the histories of the return series. For

the ASV-DPM and ASV models we carry out 50 separate and unique MCMC samplers

simultaneous on 5 servers each possessing two quad-core processors. As a result the marginal

likelihood is computed in less than a day.

Our approach is as follows. Let the vectors yt−1 = (y1, . . . , yt−1)
′, where t = 2, . . . , n,

denote the histories of returns up to time period t − 1. By the law of conditional proba-

bility, the marginal likelihood can be expressed in terms of the one-step-ahead predictive

likelihoods

m(y|M) =
n∏

t=1

f(yt|y
t−1,M), (46)

where M = ASV-DPM, ASV denotes the particular model. The selected priors overly influ-

ence the predictive likelihoods for yt with small t. So, in practice the product in Eq. (46) does

not begin at t = 1. In our empirical calculations we use mL(y|M) =
∏n

t=L f(yt|y
t−1,M),

where L = 216.

The marginal likelihood in Eq. (46) is a recursive computation in which all parameter

uncertainty is integrated out. Each one-step-ahead predictive likelihood is approximated by

5An appealing alternative to the approach we take here is the sequential Monte Carlo method to esti-
mating and filtering DPM type model of Carvalho et al. (2010).
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averaging out the randomly sampled draws of the unknown parameters, µ and ϕ, volatilities,

ht−1, and the DPM order, indicator vector, locations, and precision from their posterior

conditional on the data history yt−1. For the ASV-DPM model the predictive likelihood

equals

f
(
yt|y

t−1,ASV-DPM
)

=

∫
f(yt|ht, µ, ϕ, {Λ}, α)π(ht, µ, ϕ, {Λ}, α|y

t−1)

×d(ht, µ, ϕ, {Λ}, α),

≈ R−1
R∑

l=1

f

(
yt

∣∣∣∣µ
(l), h

(l)
t ,
{
σ
2(l)
y,j , n

(l)
j

}k(l)

j=1
, α(l)

)
, (47)

where

f

(
yt

∣∣∣∣µ
(l), h

(l)
t ,
{
σ
2(l)
y,j , n

(l)
j

}k(l)

j=1
, α(l)

)
=

α(l)

α(l) + t− 1
fSt


yt

∣∣∣∣∣∣
µ(l),

(
s11e

h
(l)
t

v0 − 1

)−1

, v0 − 1




+
1

α(l) + t− 1

k(l)∑

j=1

n
(l)
j fN

(
yt

∣∣∣µ(l), eh
(l)
t σ

2(l)
y,j

)
, (48)

with the h
(l)
t s being random draws from π

(
ht|y

t−1, h
(l)
t−1

)
≡ N

(
h̄
(l)
t , σ̄

(l)2
ht

)
where

h̄
(l)
t = ϕ(l)h

(l)
t−1 +

(yt−1 − µ(l))ρ
(l)
st−1σ

(l)
h,st−1

e−h
(l)
t−1/2

σ
(l)
y,st−1

,

σ̄
(l)2
ht

=


 ρ

(l)2
st−1

(1− ρ
(l)2
st−1)σ

(l)2
h,st−1

+
1

σ
(l)2
h,st−1




−1

,

and µ(l), ϕ,(l) , h
(l)
t−1, σ

2(l)
y,st−1 , σ

2(l)
h,st−1

, ρ
2(l)
st−1 are lth posterior draw from the MCMC sampler of

Section 3.

Each of the n−L MCMC posterior conditional samplers is independent from the others.

Given this independence we only need to supply a particular sampler with one of the n−L

histories yt−1 before letting it run. First, we farm out as many histories as there are

processors available. On a quad-core, multi-threaded, computer this generally equals 10

potential MCMC samplers. When a processor’s task of sampling R draws from the posterior

distribution conditioned on that particular history is completed, the processor computes the

one-step-ahead predictive likelihood in Eq. (48) and returns it for later use. If predictive

likelihoods for other histories still need to be computed, the processor will request another

history and sample from its posterior. Once all n − L predictive likelihoods have been

computed the marginal likelihood is calculated.
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6.1 Cumulative Bayes-factor

From the one-step-ahead predictive likelihoods, f(yt|y
t−1,ASV-DPM) and f(yt|y

t−1,ASV),

t = L, . . . , n, the cumulative log-Bayes factor (CLBF) for the two models is equal to

log

(
mL(y

τ |ASV-DPM)

mL(yτ |ASV)

)
=

τ∑

t=L

log

(
f(yt|y

t−1,ASV-DPM)

f(yt|yt−1,ASV)

)
, τ = L, . . . , n. (49)

Each point on the CLBF represents the log-Bayes factor comparing the two models for the

data up to yτ . By plotting the CLBF over τ we are able to identify those instances where

one model out predicts the other. Its day-to-day change depicting how well the models

perform relative to one another in forecasting the next day’s return as illustrated by the

quantities log f(yt|y
t−1,ASV-DPM)− log f(yt|y

t−1,ASV).

Because of the enormous computational costs involved in computing the predictive like-

lihoods over the lengthy return series of Section 4, we investigate the cumulative log-Bayes

factors for the ASV-DPM and ASV models using value-weighted CRSP portfolio returns

from January 3, 2006 to December 31, 2008 (755 trading days). For the two models we com-

pute 540, one-day-ahead predictive likelihoods, f(yt|y
t−1,M), from t = 216 (Nov. 8, 2006)

to 755 (Dec 31, 2008), by sampling the model’s unknowns 11,000 times and discarding the

first 1,000 draws.

The cumulative log-Bayes factors for τ = 216, . . . , 755, are plotted in the top panel of

Figure 7. In the bottom panel of the figure, we plot the daily return for the CRSP value-

weighted portfolio over the corresponding period. From the initial CLBF value of zero, the

ASV-DPM and ASV models are equivalent in their prediction of y215. The CLBF then

climbs steadily in favor of the ASV-DPM model while experiencing a few temporary drops,

until it briefly enjoys a period during the summer of 2008 where it exceeds five before

declining during the financial crisis. This general upward trend in the CLBF reflects a

ASV-DPM model producing better day-ahead predictions of market returns than the ASV

model. According to Jefferies (1961), the final CLBF value of 4.1 is “strong” evidence in

favor of the ASV-DPM model over the ASV model.

There are a few days and time periods where the CLBF either quickly jumps, or rapidly

climbs upwards – the most notable being the jump on Feb. 27, 2007. On this day the

market portfolio declined 3.4 percent. By comparing the CLBF to the plotted returns in

the bottom panel of Figure 7, we find that those periods of rapid increase in the CLBF

often correspond with a shift from a low to high volatility state. For instance, in the middle

of the year 2007 the CLBF begins to climb from a local low just as returns become more

volatile. However, it is also the steady strength of the ASV-DPM model’s daily prediction
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Figure 7: Cumulative log-Bayes factor of the ASV-DPM model relative to the ASV model
(red line) using return data back to January 3, 2006, for the period of November 8, 2006 to
December 31, 2008 and CRSP value-weighted portfolio returns (blue line).
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over the entire period that results in it being the “better” model.

7 Volatility Response

Ever since Black (1976) proposed the leverage hypothesis and French et al. (1987) the

volatility feedback effect, many have studied how volatility reacts to changes in market

returns.6 Yu (2005) and Asai and McAleer (2009) both establish the theoretical relation-

ship for stochastic volatility and returns when leverage is present. Yu (2005) derives the

volatility-return relationship for the asymmetric stochastic volatility model and Asai and

McAleer (2009) for the multivariate stochastic volatility model, but neither empirically

investigates the relationship.

Volatility’s response in the ASV-DPM to a change in market returns is found in Eq. (33)

– the joint posterior predictive density, f((yn+1, hn+2)
′|yn). This predictive density dis-

penses with parameter and latent volatility uncertainty by integrating them over their

posterior.7 We compute f((yn+1, hn+2)
′|yn) over a 200× 200 grid of equally spaced values

of (yn+1, hn+2)
′ centered around the market return, yn+1.

The ASV-DPM’s predictive joint density contains a healthy amount of information

concerning the return-volatility relationship. However, since the predictive posterior density

is bivariate and depends on today’s return, yn, it is difficult to visualize this information in

a density plot. Instead, we choose to summarize some of the return-volatility relationship

by computing and plotting the conditional expectation of the next period’s log-volatility,

E[hn+2|y
n, yn+1], over a range of values for yn+1.

We compute the ASV-DPM model’s joint predictive density using the MCMC draws

from Section 6 and the CRSP portfolio returns from January 3, 2006 to December 31,

2008. In Figure 8, we plot fifteen of the contour lines from the predictive density (solid

lines) along with E[hn+2|y
n, yn+1] (dashed line). In the figure, the contour lines bow up

and out when tomorrow’s return is negative, while the contours are nearly linear over small

values of hn+2; i.e., conditional on returns being negative, the predictive distribution for

hn+1 is not symmetrical but is skewed upward. Skewness is also present when yn+1 > 0.

However, these contour lines are less (more) bowed out for large (small) values of hn+1.

When market returns are positive, the conditional distribution of tomorrow’s log-volatility

is skewed upward, but less so relative to when yn+1 is negative. Thus, tomorrow’s volatility

6See Bekaert and Wu (2000) for a review of the research prior to 2000 and Chen and Ghysels (2011) for
more recent work on the subject.

7The volatility-return relationship of Yu (2005) and Asai and McAleer (2009) do not integrate out this
uncertainty and depend on the value of the estimated parameters.
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is likely to be higher following either a market decline or increase, but because of the

difference in the degree of skewness, volatility’s expected response is asymmetric.

Figure 8: Contour lines (solid lines) of the ASV-DPM model’s joint predictive density,
f((yn+1, hn+2)

′|yn), and the conditional expected value of log-volatility given tomorrow’s
return, E[hn+2|y

n, yn+1], (dashed line) where yn contains 755 daily CRSP value-weighted
portfolio returns from January 3, 2006, to December 31, 2008.
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This asymmetric response in volatility is seen in the dashed line of E[hn+2|y
n, yn+1].

When the market does not move, tomorrow’s expected log-volatility is 1.46. With each

percentage point decline in the daily market return, expected log-volatility increases at

approximately the rate of 0.3. This contrasts with a market increase, where expected log-

volatility responds in a nonlinear manner. Expected log-volatility ever so slightly declines

for market gains smaller than 0.2%. increasing at a rate of 0.1. But as returns get even

larger expected log-volatility rises at a faster rate of 0.2. Even though this rate of increase

in expected log-volatility is smaller than had the market dropped, tomorrow’s expected

volatility will be larger after any sizable move in the market, be it negative or positive.

Thus, in the words of Campbell and Hentschel (1992) and Chen and Ghysels (2011),“No
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news is good news,” when talking about market returns and volatility.

7.1 Time-varying volatility response

Like volatility, the volatility-return relationship can vary. This begs the question, does the

dashed line in Figure 8 represent the typical joint predictive distribution of tomorrow’s

market return and log-volatility, or is it an abnormality? To answer this question we delete

the last 540 returns from the return history and sequentially estimate the volatility-return

relationship beginning with the return history ending on November 8, 2006 and adding one

return at a time until we reach December 31, 2008.

Figure 9: The ASV-DPM conditional expected log-volatility, E[hn+2|y
n, yn+1], plotted

against future return, yn+1, for the return series, yn = (y1, . . . , yn), n = 216, . . . , 755.

In Figure 9, we plot E[hn+2|y
n, yn+1] for each of the 540 return histories, yn, n =

216, . . . , 755. This figure illustrates how the volatility-return relationship depends on the re-

turn history. The value of E[hn+2|y
n, yn+1 = 0] ranges from -1 to 4, with the highest concen-

tration falling between −0.5 to 1.5. Histories associated with the largest E[hn+2|y
n, yn+1 =

0] end during the most volatile period of September, 2008. The E[hn+2|y
n, yn+1 = 0]

near the origin have yn that end during calmer more normal market periods. Current
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volatility explains 89 percent of the variation in E[hn+2|y
n, yn+1 = 0] when regressing it on

E[hn+1|y
n]. Hence, as one would expect tomorrow’s expected volatility is strongly corre-

lated with today’s volatility.

Many studies of the leverage effect assume that debt is unaffected by changes in the

stock market, and is hence, riskless; e.g. see Schwert (1989) and Figlewski and Wang

(2000). Christie (1982) shows that by allowing the value of debt to change in the same

direction as market capital, the leverage effect is weakened. Under risky debt, a negative

market return leads to an increase in volatility, but the size of the impact declines as leverage

grows. By most practitioners, leverage was viewed as being high during 2008. The return

histories ending during this period have the highest values for E[hn+2|y
n, yn+1], but also

the flattest.

The degree of asymmetry in E[hn+2|y
n, yn+1] is also affected. Asymmetry is greatest

when E[hn+2|y
n, yn+1 = 0] is negative and today’s volatility is low. At the other end of the

spectrum, volatility’s response to the market is nearly symmetrical when E[hn+2|y
n, yn+1 =

0] is greater than 2 and the return history ends during volatile bear markets. Volatility

response is not only symmetrical for these histories, there is almost no volatility response

at all.

The degree of shading in Figure 9 provides a rough density measure of the different

volatility-return responses. Dark bands over the negative returns show that for many of

the 540 volatility-return responses a drop in the market today corresponds to an increase in

expected log-volatility. A similar but not quite as dark a band can also be seen for positive

daily returns.8 The lighter lines are the volatility-return relationships whose histories end

during rare, but very volatile, times. As mentioned above, these responses are symmetrical

and nearly flat. Thus, we see that during “normal” times, no news is good news for volatility,

which is even more true during tranquil times. During the most turbulent of markets, news

of any sort just does not matter for volatility. This is a notable feature of the semiparametric

ASV model. When markets are highly volatile, a return shock must be large in order to

affect the market’s expectations about tomorrow’s volatility. Whereas, on a typical day

only a little bit of news is required to cause expected volatility to increase.

8 Conclusion

In this paper we extended the asymmetric, stochastic, log-volatility model whose innova-

tions are correlated and normally distributed by modeling the uncertainty in their joint

8The dark band in Figure 9 has a shape very similar to Chen and Ghysels (2011) nonparametric news
impact curve on p. 49.
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distribution with a nonparametric, bivariate Dirichlet process mixture prior. We provide

a sampling algorithm to integrate out the parameter, volatility and distributional uncer-

tainty of our semiparametric, asymmetric, stochastic volatility model. Our algorithm is also

used to compute the log Bayes predictive forecast of the semiparametric model relative to

the parametric version. These log Bayes predictions are used to evaluate and compare the

forecasting abilities of the two models.

The nonparametric prior increases the flexibility of the asymmetric stochastic volatility

model by allowing the correlation between its innovations to take on infinite number of val-

ues, while being manageable and parsimonious by taking on a finite number of correlations

for a finite length data set. This flexibility is important when forecasting market returns,

especially when the market transitions from a low to high volatility state or the market

suddenly declines. In the empirical case study, forecasts from our semiparametric asym-

metric stochastic volatility model capture these types of episodes, whereas the parametric

model does not. This leads to the daily predictive Bayes factors favoring the nonparametric

asymmetric stochastic volatility model more often than the parametric version.

The flexibility of having more than one value to model the correlation between volatility

and return is also important for modeling the volatility-return relationship and the response

in expected volatility to a unexpected change in market returns. In particular, the size and

and degree of asymmetry in the response of volatility to an unexpected change in market

prices can vary. Using the semiparametric model of the asymmetric stochastic volatility, the

response in the expected value of volatility to a decline in stock prices versus an increase

is highly asymmetric when volatility is currently low and the market is calm. However,

if volatility is high and the market irregular, the asymmetry nearly disappears and the

response in expected volatility becomes muted. In other words, during normal times, just a

little bit of news affects volatility, whereas, during a turbulent market, it takes a significant

amount of news to impact volatility.
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