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This paper presents a large sample justification for a semiparametric Bayesian

approach to inference in a linear regression model. The approach is to model the

distribution of the error term by a normal distribution with the variance that is

a flexible function of covariates. It is shown that even when the data generating

distribution of the error term is not normal the posterior distribution of the lin-

ear coefficients converges to a normal distribution with the mean equal to the

asymptotically efficient estimator and the variance given by the semiparametric

efficiency bound. This implies that the estimation procedure is robust and con-

servative from the Bayesian standpoint and at the same time it can be used as

an implementation of semiparametrically efficient frequentist inference.
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1. INTRODUCTION

This paper shows that a normal linear regression model with nonparametrically modeled

heteroskedasticity is an attractive alternative to methods currently employed in the Bayesian

econometric literature such as modeling the distribution of the error term by mixtures. Thus,

it is argued that this model should be a more prominent part of the Bayesian toolbox for

regression analysis.

Many different approaches to inference in a regression model have been proposed in the

Bayesian framework. In the standard textbook linear regression model, the normality of the

error terms is assumed. In the recent literature, the normality assumption is often relaxed

by using mixtures of normal or Student t distributions for modeling the distribution of the

errors. As pointed out by Mueller (2009), if the shape of the error distribution depends
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discussions.
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on covariates then the posterior may not concentrate around the data generating values of

the linear coefficients. In the context of a linear regression model, Mueller (2009) suggests

using the ordinary least squares estimator with the heteroskedasticity robust covariance

matrix for Bayesian inference on the linear coefficients in possibly misspecified models. If the

expectation of the response variable conditional on covariates is not linear in covariates and

the linear regression provides a linear approximation to this conditional expectation, Mueller

(2009)’s suggestion seems sound (it also has a pure Bayesian justification based on flexible

multinomial-Dirichlet model or Bayesian bootstrap, see Lancaster (2003)). However, in the

situations when the linearity of the conditional expectation is a reasonable assumption, the

following approach seems to be more appropriate.

The approach is to model the distribution of the error term by a normal distribution with

the variance that is a flexible function of covariates. For example, a transformation of splines

or polynomials with a prior on parameters can be used as a prior for the variance. The

normality of the error term guarantees that the Kullback-Leibler distance between the model

and the data generating process (DGP), which does not necessarily satisfies the normality

assumption, is minimized at the data generating values of the linear coefficients and the

variance of the error term. Thus, one can expect the posterior consistency for these two

parameters, which is proved in the paper.

Furthermore, the paper proves a Bernstein-von Mises type result for the linear coefficients:

the posterior distribution of the linear coefficients converges to a normal distribution with

the mean equal to the asymptotically efficient estimator and the variance given by the

semiparametric efficiency bound. In the semiparametric efficiency literature, see, for example,

Newey (1990) and Bickel et al. (1998), the model would be called a least favorable sub-model.

The result suggests that the Bayesian inference about the linear coefficients based on this

model is conservative in the following sense. Suppose we know the correct specification for

the distribution of the error term and use it to estimate the linear coefficients. Then, the

posterior variance in the correctly specified model cannot exceed the posterior variance in

the least favorable normal model with the flexibly modeled error variance. Of course, one

could go further and model the whole distribution of the error term flexibly in covariates with
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the zero conditional mean restriction, see, for example, Pelenis (2010). It is also possible to

model non-parametrically the distribution of the response conditional on covariates without

imposing the linearity restriction, see, for example, Peng et al. (1996), Wood et al. (2002),

Geweke and Keane (2007), Villani et al. (2009), and Norets (2010) for Bayesian models based

on smoothly mixing regressions or mixtures of experts and MacEachern (1999), De Iorio et al.

(2004), Griffin and Steel (2006), Dunson and Park (2008), Chung and Dunson (2009), and

Norets and Pelenis (2011) for models based on dependent Dirichlet processes. However, these

more flexible models are harder to estimate and they require more data for reliable estimation

results. In contrast, the model considered in the paper is parsimonious and at the same time

it has attractive theoretical properties: consistent estimation of the error variance and linear

coefficients and the conservativeness of the posterior distribution for the linear coefficients

under misspecification. Thus, it can be thought of as a useful intermediate step between fully

flexible models and simple models that could be inconsistent and misleading.

Bayesian Markov chain Monte Carlo (MCMC) estimation procedures for the normal regres-

sion with flexibly modeled variance have been developed in the literature, see, for example,

Yau and Kohn (2003), who used transformed splines, or Goldberg et al. (1998), who used

transformed Gaussian process prior for modeling the variance. With carefully specified pri-

ors, Bayesian procedures usually behave well in small samples. Thus, the Bayesian normal

linear regression with nonparametric heteroskedasticity can also be an attractive alterna-

tive to classical estimators that achieve semiparametric efficiency such as Carroll (1982) and

Robinson (1987). At the same time, the results of the paper provide a Bayesian interpretation

to these classical semiparametrically efficient estimators.

The rest of the paper is organized as follows. Sections 2.1 and 2.2 describe the data gener-

ating process and the model. The Bernstein-von Mises theorem is presented in Section 2.3.

Posterior consistency is considered in Section 2.4.
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2. THEORETICAL RESULTS

2.1. Data generating process and frequentist estimators

The data are assumed to include n observations on a response variable and covariates

(Y n, Xn) = (y1, x1, . . . , yn, xn), where yi ∈ Y ⊂ R and xi ∈ X ⊂ Rk, i ∈ {1, . . . , n}.
The observations are independently identically distributed (iid), (yi, xi) ∼ F0. The distri-

bution of the infinite sequence of observations, (Y ∞, X∞), is denoted by F∞0 . The data

generating process satisfies E(yi|xi) = x′iβ0. Let εi = yi − x′iβ0. Then, E(εi|xi) = 0. Assume

σ2
0(xi) = E(ε2i |xi) is well defined for any xi ∈ X . The joint DGP distribution F0 is assumed

to have a conditional density f0(yi|xi) with respect to the Lebesgue measure.

Chamberlain (1987) showed that the semiparametric efficiency bound for estimation of β0 is

given by (E(xix
′
iσ0(xi)

−2))
−1

. This is the asymptotic variance of the generalized least squares

estimator under known σ0,

β̂GLS =

(
n∑
i=1

xix
′
i

σ0(xi)2

)−1 n∑
i=1

xiyi
σ0(xi)2

.

It follows from Carroll (1982) and Robinson (1987) that if σ0 is estimated by kernel smoothing

or nearest neighbor methods and plugged in the formula for β̂GLS the resulting estimator

attains the efficiency bound. A Bayesian analog of these results is derived below.

2.2. Model and pseudo true parameter values

The model postulates that yi|xi ∼ N(x′iβ, σ
2(xi)). The prior for (β, σ(·)), Π, is a product of

a normal prior for β, N(β,H−1), and a distribution on a space of functions

S ⊂ {σ : X → [σ, σ]}.

The distribution of covariates is assumed to be ancillary and it is not modeled. The likelihood

function is given by

p(Y n|Xn, β, σ) =
n∏
i=1

1√
2πσ(xi)

exp

(
−(y − x′iβ)2

2σ2(xi)

)
.
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The posterior is given by

Π(A|Y n, Xn) =

∫
A
p(Y n|Xn, β, σ)dΠ(β, σ)∫

Rk×S p(Y
n|Xn, β, σ)dΠ(β, σ)

.

Lemma 1 Assume |
∫

log f0(y|x)dF0(y, x)| <∞. Then model parameter values β = β0 and

σ = σ0 minimize the Kullback-Leibler (KL) distance between the DGP and the model.

In misspecified models, parameter values minimizing the KL distance between the model

and the DGP are called pseudo true parameter values. It is well known that in models

with finite dimensional parameters the maximum likelihood and Bayesian estimators are

consistent for the pseudo true parameter values under weak regularity conditions (see Huber

(1967) and White (1982) for classical results and Geweke (2005) for a textbook treatment

of the Bayesian results). Posterior consistency in misspecified infinite dimensional models is

discussed in Section 2.4 below.

2.3. Bernstein-von Mises theorem

The standard Bernstein-von Mises theorem shows that in well behaved parametric models

the posterior distribution centered at the maximum likelihood estimator and scaled by
√
n

converges to a normal distribution with zero mean and a variance equal to the inverse of

the Fisher information, see van der Vaart (1998) for a textbook treatment under weak regu-

larity conditions. Thus, the theorem implies asymptotic equivalence between confidence and

credible sets. Shen (2002) gave a set of conditions for asymptotic normality of the posterior

of a finite dimensional part of the parameter in semiparametric models. The conditions are

general but difficult to verify. Deriving easier to verify sufficient conditions for the semipara-

metric Bernstein-von Mises theorem is an active area of current research, see, for example,

Rivoirard and Rousseau (2009), Bickel and Kleijn (2010), and Castillo (2011). Misspecified

semiparametric models are not covered by the existing results. The following theorem, which

is the main result of the paper, is proved in Appendix A.

Theorem 1 Let d2(σ
−2
1 , σ−22 ) = (

∫
[σ−21 (x)− σ−22 (x)]2dF0(x))0.5. Assume that
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1. The marginal posterior of σ is consistent for the pseudo true value σ0, i.e., for any

ε > 0, Π
(
d2(σ

−2
1 , σ−22 ) > ε

∣∣Y n, Xn
)
→ 0 in F∞0 probability.

2. For any x ∈ X , σ0(x) ∈ [σ, σ].

3. 0 < σ < σ <∞.

4. For j = 1, . . . , k, n−0.5
∑
xijεiσ

−2(xi) converges weakly to a tight limit in the space of

real bounded functions on S with the sup norm, where xij is coordinate j of xi.

5. xixiσ
−2(xi), σ ∈ S, is an F0-Glivenko-Cantelli class of functions.

6. Vector xiεi has finite second moments.

7. xi has finite fourth moments.

8. E[xix
′
iσ0(xi)

−2] exists and it is invertible.

Then, the total variation distance

(1) dTV

(
Π[n0.5(β − β̂GLS)|Y n, Xn], N

(
0,
(
E[xix

′
iσ0(xi)

−2]
)−1))→ 0

in F∞0 probability.

Lemma 2.3.11 in van der Vaart and Wellner (1996) implies the following sufficient conditions

for the weak convergence assumed in condition 4 of the theorem: (S, d2) is totally bounded

and n−0.5
∑
xijεiσ

−2(xi) is stochastically equicontinuous in (S, d2).
1 Total boundedness of

(S, d2) is also essential for the Glivenko-Cantelli class assumption. Andrews (1986), pages

2175 and 2171, provides a set of sufficient conditions for stochastic equicontinuity: existence

of 2 + δ moments for xiεi, where δ > 0, and existence of uniformly bounded and uniformly

Lipschitz continuous partial derivatives of order at least k/2 for functions in S.

Posterior consistency for σ is considered in the next section under the assumption of bounded

prior support of β. Thus, the following corollary proved in Appendix B is useful.

Corollary 1 Theorem 1 remains true if the normal prior for β is truncated to a set

[−B,B]k, with a sufficiently large B > 0.

1ρZ metric in Lemma 2.3.11 of van der Vaart and Wellner (1996) is dominated by d2 under the assumptions

of Theorem 1 and existence of 2 + δ moments for xiεi, where δ > 0.



BAYESIAN REGRESSION WITH HETEROSKEDASTICITY 7

2.4. Posterior consistency

Posterior consistency in correctly specified semi- and non-parametric models is well under-

stood, see Ghosh and Ramamoorthi (2003) for a textbook treatment. Available extensions of

the posterior consistency arguments to misspecified non-parametric models are much more

involved than the corresponding extensions in the parametric case and the sufficient condi-

tions seem to be rather strong. For example, the sufficient conditions in Kleijn and van der

Vaart (2006) applied to the normal linear heteroskedastic model similarly to their Section

4 seem to rule out DGPs with normally distributed εi. Thus, the proof of the posterior

consistency result presented below is model specific.

Since σ ∈ S are uniformly bounded above and away from zero, the L2(F0) distance, d2(σ
−2
1 , σ−22 )

used in the previous section is equivalent to d2(σ
2
1, σ

2
2) and the latter is used to define a dis-

tance on the whole parameter space

ρ2
(
(β1, σ

2
1), (β2, σ

2
2)
)2

= E[(σ(xi)
2 − σ0(xi)2)2] + ||β − β0||22.

Theorem 2 Assume that

1. Prior puts positive probability on any ρ2 neighborhood of (β0, σ
2
0), i.e., for any ε > 0,

Π
(
σ, β : ρ2((β, σ

2), (β0, σ
2
0)) < ε

)
> 0.

2. Prior for β has bounded support, [−B,B]k.

3. {ε2iσ−2(xi), σ ∈ S}, {log(σ2(xi)), σ ∈ S}, and {xiεiσ−2(xi), σ ∈ S} are F0-Glivenko-

Cantelli classes.

4. E(xix
′
i) is invertible.

Then, the posterior is consistent in ρ2: for U = [ρ2
(
(β, σ2), (β0, σ

2
0)
)
≤ ε]

Π
[
U c
∣∣Y n, Xn

]
→ 0

in F∞0 probability.

Priors for σ that satisfy the assumptions in Theorems 1-2 can be based on transformations

of splines or polynomials with additional bounds on derivatives discussed after Theorem 1.

Theorems 1-2 can also be formulated for a sample size dependent prior, Πn. In this case, the
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assumptions of the theorems such as Glivenko-Cantelli properties have to hold on a set Sn.

The prior probability, Πn(Scn), should converge to zero sufficiently fast so that the posterior

probability Πn(Scn|Y n, Xn) converges to zero. Such a generalization can be used to relax the

assumptions of uniformly bounded derivatives and boundedness above and away from zero

for σ.

3. APPENDIX A. PROOFS OF MAIN RESULTS

Proof: Theorem 1.

Conditional on σ, the posterior of β, Π(β|σ, Y n, Xn), is N(β,H
−1

), where

H = H +
∑
i

xix
′
i

σ(xi)2
and β = H

−1
(Hβ +

∑
i

xiyi
σ(xi)2

).

Derivations of conditional posteriors in linear regression models can be found in any Bayesian

textbook, see, for example, Geweke (2005). The (marginal) posterior of β can be expressed

as

Π(β|Y n, Xn) =

∫
Π(β|σ, Y n, Xn)dΠ(σ|Y n, Xn).

After normalization z = n0.5(β − β̂GLS), the conditional posterior is still normal

Π(z|σ, Y n, Xn) = φ
(
z, n0.5(β − β̂GLS),

(
H/n

)−1)
,

where φ(·, ·, ·) denotes the density of the normal distribution.

The total variation distance of interest can be expressed as follows

dTV

(
Π[z|Y n, Xn], N

(
0,
(
E[xix

′
iσ0(xi)

−2]
)−1))

(2)

=

∫ ∣∣ ∫ Π(z|σ, Y n, Xn)dΠ(σ|Y n, Xn)− φ
(
z, 0,

(
E[xix

′
iσ0(xi)

−2]
)−1) ∣∣dz

≤
∫ ∫ ∣∣Π(z|σ, Y n, Xn)− φ

(
z, 0,

(
E[xix

′
iσ0(xi)

−2]
)−1) ∣∣dzdΠ(σ|Y n, Xn).

To bound the total variation distance between the two normal distributions inside the last

integral one can use the following two facts. First, the total variation distance is bounded by

2 times the square root of the KL distance, see for example, Proposition 1.2.2 in Ghosh and
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Ramamoorthi (2003). Second, the KL distance between two normal distributions N(µ1,Σ1)

and N(µ2,Σ2) is equal to

1

2

(
log
|Σ2|
|Σ1|

+ tr(Σ−12 Σ1 − I) + (µ1 − µ2)
′Σ−12 (µ1 − µ2)

)
≤

∣∣|Σ−12 | − |Σ−11 |
∣∣

min(|Σ−12 |, |Σ−11 |)
+ k · ||Σ−12 − Σ−11 ||∞ · ||Σ1||∞ + ||µ1 − µ2||22 · ||Σ−12 ||2,

where |Σ| denotes the determinant of Σ, a matrix norm ||Σ||∞ = maxij |[Σ]ij| is the largest

element of Σ in the absolute value, and ||Σ||2 = supµ ||Σµ||2/||µ||2 is a matrix norm induced

by the standard norm on Rk, ||µ||22 =
∑k

i=1 µ
2
i . Thus,

dTV

(
Π[n0.5(β − β̂GLS)|Y n, Xn], N

(
0,
(
E[xix

′
iσ0(xi)

−2]
)−1))

≤ 2

∫ √
An +Bn + CndΠ(σ|Y n, Xn),

where

An =

∣∣|H/n| − |E[xix
′
iσ0(xi)

−2]|
∣∣

min(|H/n|, |E[xix′iσ0(xi)
−2]|)

Bn = k · ||H/n− E[xix
′
iσ0(xi)

−2]||∞ · ||
(
E[xix

′
iσ0(xi)

−2]
)−1 ||∞

Cn = ||H/n||2 · ||

(
1

n

∑
i

xix
′
i

σ0(xi)2

)−1
1√
n

∑
i

xiyi
σ0(xi)2

− (H/n)−1
(
Hβ
√
n

+
1√
n

∑
i

xiyi
σ(xi)2

)
||22.

By Lemmas 2-4 and
√
a+ b ≤

√
a+
√
b for any nonnegative a and b, it suffices to show that∫

d2(σ
−2
0 , σ−2)dΠ(σ|Y n, Xn) and

∫
||n−0.5

∑
i xiεi(σ0(xi)

−2−σ(xi)
−2||2dΠ(σ|Y n, Xn) converge

to zero in outer probability F∞0 . For a definition of outer probability see, for example, van der

Vaart and Wellner (1996). It is usually introduced to avoid possible measurability issues for

supremums over large classes of functions. Convergence in probability in the proof of theo-

rems and auxiliary results below should be understood as convergence in outer probability

whenever necessary. Because convergence in outer probability is established for components

of an upper bound on the total variation distance in (1), expression in (1) will converge in

probability as long as it is measurable, which is clearly the case.
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Since d2(σ
−2
0 , σ−2) ≤ σ−2,

F∞0

[∫
d2(σ

−2
0 , σ−2)dΠ(σ|Y n, Xn) > ε

]
≤ F∞0

[
σ−2Π(d2(σ

−2
0 , σ−2) > ε/2|Y n, Xn) + ε/2 > ε

]
= F∞0

[
Π(d2(σ

−2
0 , σ−2) > ε/2|Y n, Xn) > ε/(2σ−2)

]
→ 0, ∀ε > 0.

By Lemma 5 there exists a positive sequence δn → 0 such that Π(d2(σ
−2
0 , σ−2) > δn|Y n, Xn)

converges to zero in probability. Then,∫
||n−0.5

∑
i

xiεi(σ0(xi)
−2 − σ(xi)

−2||2dΠ(σ|Y n, Xn)(3)

≤ sup
σ∈S
||n−0.5

∑
i

xiεi(σ
−2
0 (xi)− σ−2(xi)||2 · Π(d2(σ

−2
0 , σ−2) > δn|Y n, Xn)

+ sup
σ: d2(σ

−2
0 ,σ−2)≤δn

||n−0.5
∑
i

xiεi(σ
−2
0 (xi)− σ−2(xi)||2.

By Lemma 2.3.9 in van der Vaart and Wellner (1996), the assumed finiteness of the second

moments of xiε, and the assumed weak convergence of n−0.5
∑

i xiεiσ
−2(xi),

sup
σ∈S
||n−0.5

∑
i

xiεi(σ
−2
0 (xi)− σ−2(xi)||2

is bounded in probability. Thus, the first part of the bound in (3) converges to zero in

probability. By Lemma 2.3.11 in van der Vaart and Wellner (1996) and the assumed weak

convergence, the second part of the bound in (3) converges to zero in outer probability.

Q.E.D.

Proof: Theorem 2.

Let pβ,σ,i denote a normal density with mean x′iβ and variance σ2(xi). The posterior can be

expressed as

Π
(
U c
∣∣Y n, Xn

)
=

∫
Uc

∏n
i=1 pβ,σ,i/pβ0,σ0,idΠ(β, σ)∫ ∏n
i=1 pβ,σ,i/pβ0,σ0,idΠ(β, σ)

=
exp(nδ)

∫
Uc exp{

∑n
i=1 log(pβ,σ,i/pβ0,σ0,i)}dΠ(β, σ)

exp(nδ)
∫

exp{
∑n

i=1 log(pβ,σ,i/pβ0,σ0,i)}dΠ(β, σ)
.(4)

Thus, it suffices to show that the numerator converges to zero in probability F∞0 for some

δ > 0 and the denominator converges to infinity a.s. F∞0 for any δ > 0. Consider the
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numerator first.

1

n

∑
i

log
pβ0,σ0,i
pβ,σ,i

=
1

2

1

n

∑
i

(
log

σ2(xi)

σ2
0(xi)

− ε2i
σ2
0(xi)

+
ε2i

σ2(xi)
+ 2

εix
′
i

σ2(xi)
(β0 − β)

+ (β − β0)′
(

xix
′
i

σ2(xi)

)
(β − β0)

)
=

1

2

[
1

n

∑
i

log σ2(xi)− E(log σ2(xi)) + E(log σ2
0(xi))−

1

n

∑
i

log σ2
0(xi)

+ E

(
ε2i

σ2
0(xi)

)
− 1

n

∑
i

ε2i
σ2
0(xi)

+
1

n

∑
i

ε2i
σ2(xi)

− E
(

ε2i
σ2(xi)

)
+

2

n

∑ εix
′
i

σ2(xi)
(β0 − β)

+ E

(
log

σ2(xi)

σ2
0(xi)

− ε2i
σ2
0(xi)

+
ε2i

σ2(xi)

)
+ (β − β0)′

(
1

n

∑ xix
′
i

σ2(xi)

)
(β − β0)

]
.

Lines 3 and 4 of the preceding display converge to zero uniformly over σ ∈ S by the (Glivenko-

Cantelli class) assumptions of the theorem and boundedness of ||β0 − β||2. Thus, they can

be bounded below by some Qn, which does not depend on σ and converges to zero in outer

probability. The last line can be bounded below by

E
(
log(σ2(xi)/σ

2
0(xi))− 1 + σ2

0(xi)/σ
2(xi)

)
+ λn||β − β0||22

≥ min(λn, C) · ρ22
(
(β, σ2), (β0, σ

2
0)
)
,

where λn is the smallest eigenvalue of
∑
xix
′
i/(nσ

2), which converges in probability to

a positive limit λ, and constant C is defined in (15) in the proof of Lemma 7. Since

ρ2((β, σ
2), (β0, σ

2
0)) > ε over U c, the numerator in (4) can be bounded above by exp{n(δ −

0.5Qn−0.5 min(λn, C)·ε2)}, which converges to zero in outer probability for δ < 0.25 min(λ,C)·
ε2.

Let us consider the denominator. The assumption of positive prior probability of ρ2 neigh-

borhoods of (β0, σ0) (theorem’s condition 1) and Lemma 7 imply that for any δ > 0,

Π(β, σ : E(log(pβ0,σ0,i/pβ,σ,i)) < δ) > 0.

Then an argument based on Fubini’s theorem and Fatou’s lemma that shows that the de-

nominator converges to infinity a.s. in the proof of Schwartz posterior consistency theorem

(see, Ghosh and Ramamoorthi (2003), pp. 129-130) applies without any changes. 2 Q.E.D.

2Unfortunately, an analogous argument based on the lim sup version of Fatou’s lemma does not apply
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4. APPENDIX B. PROOFS OF AUXILIARY RESULTS

Proof: Lemma 1.

The marginal distribution of x is canceled out inside log in the KL distance∫
log

f0(y|x)

(2π)−0.5σ(x)−1 exp{−0.5(y − x′β)2/σ(x)2}
dF0(y, x)

=

∫
log f0(y|x)dF0(y, x) +

∫
[0.5 log(2πσ(x)2) +

(y − x′β)2

2σ(x)2
]dF0(y, x).

Since E[(y − x′β)2|x) = σ0(x)2 + [x′(β − β0)]2, β = β0 is the minimizer of the KL distance

for any function σ. Then, it follows immediately from the first order conditions that σ = σ0

minimizes the KL distance. Q.E.D.

Lemma 2 Expression Bn from the proof of Theorem 1 can be bounded above by B1
n +

B2
nd2(σ

−2, σ−20 ), where B1
n

F∞0→ 0 and B2
n

F∞0→ B2, B2 is a constant, and (B1
n, B

2
n) do not

depend on σ.

Proof:

||H/n− E[xix
′
iσ0(xi)

−2]||∞ ≤ ||H/n||∞

+ sup
σ∈S
|| 1
n

∑
i

xix
′
i

σ2(xi)
− E

(
xix
′
i

σ2(xi)

)
||∞ + ||E

(
xix
′
i

(
1

σ2(xi)
− 1

σ2
0(xi)

))
||∞.

The first term on the right hand side converges to zero. The second term converges to zero

in outer probability by the assumed F0-Glivenko-Cantelli class for xix
′
iσ
−2(xi), σ ∈ S. By

the Cauchy-Schwarz inequality and the finiteness of the fourth moments of xi, the last term

is bounded by a constant multiple of d2(σ
−2, σ−20 ). Q.E.D.

Lemma 3 Expression An from the proof of Theorem 1 is bounded above by A1
n+A2

nd2(σ
−2, σ−20 ),

where A1
n

F∞0→ 0 and A2
n

F∞0→ A2, A2 is a constant, and (A1
n, A

2
n) do not depend on σ.

Proof: It follows by the definition of the determinant and induction that for two k ×
k matrices A and B,

∣∣|A| − |B|∣∣ ≤ k! · kmax(||A||∞, ||B||∞)k−1 · ||A − B||∞. Thus, the

to the numerator as the lim sup version requires an integrable upper bound. Thus, assumptions similar to

theorem’s condition 3 are needed to handle the numerator.
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numerator of An is bounded by a multiple of the bound on Bn derived in Lemma 2 times

max(||H/n||∞, ||E[xix
′
iσ0(xi)

−2]||∞)k−1. Since ||H/n||∞ ≤ ||H/n||∞+ ||
∑

i xix
′
i/n||∞/σ2, the

numerator of An is bounded above as desired. To bound the denominator of An below

note that for symmetric positive semidefinite matrices A and B, A ≥ B implies |A| ≥ |B|
(see, for example, Lemma 1.4 in Zi-Zong (2009)). Thus, |H/n| ≥ |

∑
i xix

′
i/n|/σ2k. Since

|
∑

i xix
′
i/n|

F∞0→ |E[xix
′
i]| > 0, the claim of the lemma follows. Q.E.D.

Lemma 4 The following inequality holds for Cn defined in the proof of Theorem 1√
Cn ≤ C1

n + C2
n||

1√
n

∑
i

xiεi

(
1

σ0(xi)2
− 1

σ(xi)2

)
||2 + C3

nd2(σ
−2
0 , σ−2),

where (C1
n, C

2
n, C

3
n) do not depend on σ, C1

n

F∞0→ 0, C2
n converges in F∞0 probability to a

constant, and C3
n converges weakly to a random variable.

Proof: Plugging y = x′iβ0 + εi into the definition of Cn results in√
Cn/||H/n||2 = || (H/n)−1H(β0 − β)/

√
n(5)

+

(
1

n

∑
i

xix
′
i

σ0(xi)2

)−1
1√
n

∑
i

xiεi
σ0(xi)2

− (H/n)−1
1√
n

∑
i

xiεi
σ(xi)2

||2.

The first expression on the right hand side of (5) converges to zero in probability because

||(H/n)−1||2 is bounded above by a sequence converging in probability as it is shown below

(see (8)). The norm of the second expression can be bounded by3

|| (H/n)−1 ||2 · ||
1√
n

∑
i

xiεi

(
1

σ0(xi)2
− 1

σ(xi)2

)
||2(6)

+ ||

(
1

n

∑
i

xix
′
i

σ0(xi)2

)−1
− (H/n)−1 ||2 · ||

1√
n

∑
i

xiεi
σ0(xi)2

||2.

The norm of the difference in the inverses in the second line of (6) is bounded by4

||

(
1

n

∑
i

xix
′
i

σ0(xi)2

)−1
||2 · || (H/n)−1 ||2 · ||(

∑
i

xix
′
i(σ0(xi)

−2 − σ(xi)
−2)−H)/n||2.(7)

3||A−1a−B−1b|| ≤ ||A−1(a− b)||+ ||(A−1 −B−1)b|| ≤ ||A−1|| ||a− b||+ ||A−1 −B−1|| ||b||.
4||A−1 −B−1|| = ||A−1(A−B)B−1|| ≤ ||A−1|| ||A−B|| ||B−1||.
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Next, we separately consider the three parts of the product in (7). The first part converges

to || (E(xix
′
iσ0(xi)

−2))
−1 ||2 in probability. The second part,

||(H/n)−1||2 = sup
x

||(H/n)−1x||2
||x||2

= sup
x

||(H/n)−1(H/n)y||2
||(H/n)y||2

(8)

=

(
inf
y

||(H/n)y||2
||y||2

)−1
=

(
inf
y

||y||2 · ||(H/n)y||2
||y||22

)−1
≤
(

inf
y

|y′(H/n)y|
||y||22

)−1
≤
(

inf
y

|y′((Hσ +
∑

i xix
′
i)/n)y|/σ

||y||22

)−1
=

σ

λmin((Hσ +
∑

i xix
′
i)/n)

F∞0→ σ

λmin(E(xix′i))
,

where λmin(·) stands for the smallest eigenvalue. In the preceding display, the first inequality

on the third line follows by the Cauchy–Schwarz inequality, the second inequality follows

by the positive semidefiniteness of xix
′
i, and the last equality follows from the eigenvalue

decomposition for symmetric matrices5.

The third part of the product in (7) is bounded above by

||H
n
||+ || 1

n

∑
i

xix
′
i

σ2
0(xi)

− E
(

xix
′
i

σ2
0(xi)

)
||2 + sup

σ∈S
||E
(

xix
′
i

σ2(xi)

)
− 1

n

∑
i

xix
′
i

σ2(xi)
||2

+ ||E
(
xix
′
i

(
1

σ2(xi)
− 1

σ2
0(xi)

))
||2,

which can be bounded as in Lemma 2 (||A||2 ≤ dim(A)||A||∞). The bounds derived above

and the Slutsky theorem imply the claim of the lemma.

Q.E.D.

Lemma 5 If for any ε > 0 Π
(
||σ − σ0|| > ε

∣∣Y n, Xn
)
→ 0 in F∞0 probability then for any

positive constants a, b, c, and d there exists a sequence {εn} → 0 such that

F∞0

(
Π
[
||σ − σ0|| > aεn

∣∣Y n, Xn
]
> b/

√
c+ d/εn

)
→ 0.

Proof: By the definition of convergence in probability, for any fixed m there exists Nm

such that for any n ≥ Nm

F∞0

(
Π
(
||σ − σ0|| > a/m

∣∣Y n, Xn
)
> b/
√
c+ dm

)
< 1/m.

5A = QΛQ′, QQ′ = I and Λ is a diagonal matrix with eigenvalues of A on the diagonal.
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The sequence of Nm can be chosen to be increasing. Then, for n ∈ [Nm, Nm+1) set εn = 1/m.

Q.E.D.

Lemma 6 For two distributions P1 and P2 with densities p1 and p2 with respect to a measure

µ, the total variation distance between P2 truncated to a set E and P1 can be bounded as

follows ∫
|p1 −

1Ep2
P2(E)

|dµ ≤ P1(E
c) +

P2(E
c)

P2(E)
+

∫
|p1 − p2|dµ
P2(E)

.

Proof: ∫
|p1 − 1Ep2/P2(E)| =

∫
E

|p1P2(E)− p2|/P2(E) + P1(E
c)

≤
∫
E

|p1(P2(E)− 1) + p1 − p2|/P2(E) + P1(E
c)

≤ P1(E
c) + (1− P2(E))/P2(E) +

∫
|p1 − p2|/P2(E).

Q.E.D.

Proof: Corollary 1.

The proof is a slight modification of the proof of Theorem 1. With the truncated prior, the

conditional posterior of z =
√
n(β − β̂GLS), Π(z|σ, Y n, Xn), is N(

√
n(β − β̂GLS), (H/n)−1)

truncated to
√
n([−B,B]k − β̂GLS). Thus, with the truncated prior, the total variation dis-

tance in the last line of (2) is a distance between a truncated normal distribution and a normal

distribution. By Lemma 6 and the proof of Theorem 1, it suffices to show that the probability

of set
√
n([−B,B]k− β̂GLS) under N(

√
n(β− β̂GLS), (H/n)−1) and N(0, (E[xix

′
iσ0(xi)

−2])−1)

is bounded below by a bound that does not depend on σ and converges to 1 in F∞0 probability.

1−
∫
√
n([−B,B]k−β̂GLS)

φ(z, (
√
n(β − β̂GLS), (H/n)−1)dz

= 1−
∫
√
n([−B,B]k−β)

φ(z, 0, (H/n)−1)dz

≤
k∑
i=1

∫
zi /∈
√
n([−B,B]−βi)

φ(z, 0, (H/n)−1)dz.
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Next, note that

(9) z′(H/n)z ≥ z′[(H +
∑
i

xix
′
i/σ

2)/n]z ≥ z′zλnm,

where λnm is the smallest eigenvalue of (H +
∑

i xix
′
i/σ

2)/n). Also, as in the proof of Lemma

3,

(10) |H/n| ≤ |(H +
∑
i

xix
′
i/σ

2)/n|.

Using the bound on ||(H/n)−1)||2 from Lemma 4, we get

|βi| ≤ ||β||2 ≤ ||(H/n)−1)||2 · ||(Hβ +
∑
i

|xiyi|/σ2)/n||2(11)

≤
σ||(Hβ +

∑
i |xiyi|/σ2)/n||2

λmin((Hσ +
∑

i xix
′
i)/n)

≡ Fn
F∞0→ F ≡ σ||E|xiyi|/σ2||2

λmin(E(xix′i))
.

The assumption of the corollary that B is sufficiently large means that B > F .

From (9) - (11),∫
zi /∈
√
n([−B,B]−βi)

φ(z, 0, (H/n)−1)dz ≤ 2

∫
zi≥
√
n(B−|βi|)

φ(z, 0, (H/n)−1)dz

≤ 2|(H +
∑
i

xix
′
i/σ

2)/n|0.5
∫
zi≥
√
n(B−Fn)

exp{−0.5z′zλnm}(2π)−k/2dz

≤ 2|(H +
∑
i

xix
′
i/σ

2)/n|0.5(λnm)−k/2
∫
zi≥
√
n(B−Fn)λnm

exp{−0.5z2i }(2π)−1/2dz.

For z ≥ 1 the normal CDF can be bounded as follows, 1 − Φ(z) ≤ exp(−z2). Thus, the

integral in the last display is bounded by

exp{−n(B − Fn)2(λnm)2}+ 1{
√
n(B − Fn)λnm < 1}

F∞0→ 0,

where the convergence in probability follows from the convergence of Fn and λnm. This com-

pletes the proof of convergence for the probability of
√
n([−B,B]k− β̂GLS) under N(

√
n(β−

β̂GLS), (H/n)−1). The proof for N(0, (E[xix
′
iσ0(xi)

−2])−1) is similar. Q.E.D.

Lemma 7 For some positive constants C0 and C1

E(log(pβ0,σ0/pβ,σ)) ≥ C0ρ
2
2

(
(β, σ2), (β0, σ

2
0)
)
,(12)

E(log(pβ0,σ0/pβ,σ)) ≤ C1ρ
2
2

(
(β, σ2), (β0, σ

2
0)
)
.(13)



BAYESIAN REGRESSION WITH HETEROSKEDASTICITY 17

Proof: The law of iterated expectations implies

E(log
pβ0,σ0
pβ,σ

) =
1

2
E

(
log

σ2(xi)

σ2
0(xi)

+
σ2
0(xi)− σ2(xi)

σ2(xi)
(14)

+ (β − β0)′
(

xix
′
i

σ2(xi)

)
(β − β0)

)
.

First, note that

λmin(E(xix
′
i))

σ2 ||β − β0||22 ≤ (β − β0)′E
(

xix
′
i

σ2(xi)

)
(β − β0) ≤

λmax(E(xix
′
i))

σ2
||β − β0||22,

where λmin and λmax are the smallest and largest eigenvalues. Second, let σ2
0/σ

2 = z and

q(z) = (z − 1 − log z)/(z − 1)2. Note that q(z) is well defined, positive, and monotonically

decreasing on (0,∞). Thus, for any z ∈ [σ2/σ2, σ2/σ2], q(σ2/σ2) ≤ q(z) ≤ q(σ2/σ2). From

this inequality,

(15)
E(σ2

0 − σ2)2

σ4 q(σ2/σ2) ≤ E

(
log

σ2

σ2
0

+
σ2
0 − σ2

σ2

)
≤ E(σ2

0 − σ2)2

σ4
q(σ2/σ2).

Thus, inequalities (12) and (13) are proved. Q.E.D.
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