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Abstract

This paper proposes a full Bayesian nonparametric procedure to investigate the
predictive power of exchange rates on commodity prices for 3 commodity-exporting
countries: Canada, Australia and New Zealand. We examine the predictive effect
of exchange rates on the entire distribution of commodity prices and how this effect
changes over time. For this purpose, a time-dependent infinite mixture of normal linear
regression model is proposed for the conditional distribution of the commodity price
index. The mixing weights of the mixture follow a Probit stick-breaking prior and are
hence time-varying. As a result, we allow the conditional distribution of the commodity
price index given exchange rates to change over time nonparametrically. It is shown
that exchange rates do not have consistent predictive power for commodity prices in
all countries considered in this paper. We find that exchange rates do have predictive
power in some cases, but their impact tends to be constant over time. On the other
hand, the intercept in the regression and the lagged dependent variable show signs
of parameter change over time in most cases, which is important in predicting both
the mean and the density of the commodity prices one period ahead. The results also
suggest that for all countries considered, a significant source of time variation in the
conditional distribution of commodity prices comes from the variance.

1 Introduction

This paper proposes a full Bayesian nonparametric procedure to investigate the predic-
tive power of exchange rates over commodity prices for 3 commodity-exporting countries:
Canada, Australia and New Zealand. We examine the predictive effect of exchange rates on
the entire distribution of commodity prices and how this effect changes over time. For this
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purpose, a time-dependent infinite mixture of normal linear regression model is proposed for
the conditional distribution of the commodity price index. The mixing weights of the mix-
ture follow a Probit stick-breaking prior and are hence time-varying, As a result, we allow
the conditional distribution of the commodity price index given the exchange rate to change
over time nonparametrically. In terms of forecasting, we are able to produce density forecasts
as well as point forecasts of future commodity prices, which fully incorporates potential time
variation in the underlying relationship.

In a recent paper by Chen, Rogoff, and Rossi (2010), a predictive relationship is uncovered
between “commodity currency”1 exchange rates and global commodity prices. In a classical
econometric setting, they show that after controlling for parameter instability, the currencies
of a panel of small commodity-exporting countries with floating exchange rate regimes have
robust predicting power for the prices of the commodities being exported. They show that the
relationship holds both in-sample and out-of-sample, and against a variety of benchmarks.

Their study has important implications from both an economic theory point of view and a
policy-making perspective. First, testing the predictive power of exchange rates for commod-
ity prices can be viewed as a test to a present-value model of exchange rate determination.2

At the same time, predicting commodity prices is very important for policy-making. For
example, commodity price fluctuations are closely related to inflation dynamics. For small
open economies with substantial commodity exports, price changes have a significant impact
on their GDP and current accounts.

Chen, Rogoff, and Rossi (2010) study the predictive power of exchange rates for com-
modity prices one period ahead in a linear predictive regression framework. They show that
their success in finding the relationship depend critically on controlling for parameter in-
stabilities in the regression model they used. In their in-sample study, Chen et al. (2010)
incorporated the Exp-W* Test by Rossi (2005) into their model to test the null hypothesis
that at no point in time there exists predictive power of exchange rates on commodity prices.
The results showed that the null is rejected in almost all cases, indicating Granger causality
of exchange rates on commodity prices for at least some points in time during the whole
sample period. In their out-of-sample studies, to account for parameter instability they used
a rolling window forecasting scheme to generate point forecasts of commodity prices. They
showed that including the exchange rates in the mean predictive regression generally pro-
duces forecasts of commodity prices with lower mean squared error, compared to alternative
benchmark models such as AR1 and random walks.

Their findings are encouraging and their ways of testing are clever within a mean regres-
sion framework. However there still remain questions that need to be addressed. First, their
mean regression framework only concerns the impact of exchange rates on the conditional
mean of commodity prices, and hence can only generate point forecasts of future commodity
prices. But for policy-making purposes, an accurate forecast of the future distribution of
commodity prices would be of greater relevance. Second, their model has no mechanism to
describe the possible time variation in the parameters. In their framework, no quantitative
inference can be made on the parameters at any point in time. They only answered the ques-

1Commodity currencies are referred to currencies of countries which depend heavily on the export of
certain raw materials for income.

2Engel and West (2005) also use present-value approach to modeling exchange rates, but they use other
fundamentals such as money supplies, etc.
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tion of whether there is a predictive relationship from exchange rates to commodity prices,
given the possibility of parameter change; but we still do not know if there is any parameter
change at all,or how significant the change is, or when the change happens, etc. In other
words, they have answered the “yes” or “no” questions, but failed to address “how” and
“by how much”. Knowing “yes” or “no” is undoubtedly theoretically significant. However
to understand “how” and “by how much” will have further implications, particularly for
purposes of policy making.

Finally their out-of-sample studies are a disconnected and distinct procedure from their
in-sample analysis. The rolling window scheme is an ad hoc way of dealing with time-varying
parameters. Without a law of motion of the underlying parameter, it cannot optimally
incorporate parameter change to help forecast.here is also the issue of deciding the size
of the window. To maintain a fixed size of the rolling window in-sample data points get
discarded as out-of-sample data points are added, leading to potential information loss.

The contribution of this paper is motivated by the above issues. This paper revisits the
topic on the relationship between exchange rates and commodity prices and addresses all the
issues in a unified Bayesian nonparametric setting. It proposes a flexible time-dependent infi-
nite mixture of normal linear regressions to model the conditional distribution of commodity
prices given exchange rates. Thus it focuses on the predictive effect of exchange rates on the
entire distribution of commodity prices, rather than just the conditional mean. It allows the
relationship to change by letting the mixture weights vary over time, thus effectively allow-
ing for time-varying parameters. This is achieved nonparametrically by drawing the mixture
weights from a set of Probit stick breaking processes with the underlying latent processes
formulated as independent AR(1). Under this framework direct inference on the impact of
exchange rates on commodity prices at any point in time in-sample is straightforward using
standard Bayesian inference procedure. Meanwhile the latent processes in the PSBP priors
provide a law of motion for the time-varying conditional distributions over time, making
out-of-sample density forecast and point forecast an integrated and coherent part of whole
the procedure that fully incorporates parameter instability.

We examine the predictive power of exchange rates on commodity prices for three commodity-
exporting countries: Canada, Australia, New Zealand. Our results suggest that nominal
exchange rates do not have a consistent predictive power for commodity prices in all three
countries. We find that exchange rates do have predictive power in some cases, but their im-
pact tends to be constant over time. On the other hand, the intercept in the regression and
the lagged dependent variable show signs of time-varying parameter change in most cases,
which is important in predicting both the mean and the density of the commodity prices
one period ahead. The results also suggest that for all countries considered, a significant
source of time variation in the conditional distribution of commodity prices comes from the
variance.

The rest of the paper is organized as follows. In Section 2, we review the theory on
Bayesian density estimation using Dirichlet Process Mixture (DPM). In Section 3, the Time-
Dependent PSBP Mixture of Normal Linear Regression Model is proposed to nonparamet-
rically model the time-varying conditional distribution of a scalar response yt on a set of
predictors xt. Section 4 briefly explains the posterior sampling procedure and outlines model
comparison. Section 5 provides simulation study for illustration. Section 6 contains the data
description. A detailed report of the results is in Section 7 and Section 8 concludes. The
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Appendix contains details on posterior simulation.

2 Density Estimation using DPM

Ferguson (1973) opened the door for modern Bayesian nonparametrics by developing theories
and properties of the Dirichlet process (DP), which can be used as a nonparametric prior
for discrete random distributions. In the application of Bayesian density estimation, the
Dirichlet Process Mixture (DPM) model was used by Escobar and West (1995) and West,
Müller, and Escobar (1994) to model a continuous density by an infinite mixture of normal
densities, with the mixture distribution drawing from a DP prior. More specifically, a typical
DPM model for an unknown continuous distribution f(y) can be formalized as the following:

f(y) =

∫

f(y|φ)G(dφ) (1)

G ∼ DP(αG0) (2)

where φ = (µ, σ2), f(y|φ) = N(.|µ, σ2), and DP(αG0) is a DP prior with scalar precision
parameter α and base measure G0. It is a well known fact that DPM can approximate any
continuous density with arbitrary accuracy (Ghosal, Ghosh, and Ramamoorthi 1999).

In situations where the conditional distribution of the response yi depends on some
covariates xi = (xi1, . . . , xip)

′ as in this paper, we can easily extend equation (1) to

f(yi|xi) =

∫

f(yi|xi, φ)G(dφ).

In particular, if we assume f(yi|xi, φ) = N(.|x′
iβ, σ2), where φ = (β, σ2), then f(yi|xi) is

modeled as an infinite mixture of normal linear regressions using a DPM (West, Müller, and
Escobar (1994)). In the special case of xi ≡ 1, we are back to the unconditional distribution.

According to Sethuraman (1994), a random distribution G follows a DP prior if and only
if it has a stick-breaking representation of the form:

G =
∞
∑

j=1

wjδφj
(.)

wj = vj

∏

k<j

(1 − vk), vj
iid
∼ Beta(1, α)

φj
iid
∼ G0

wj are called the stick-breaking weights, φj are the associated atoms drawn iid from G0. δφj
(.)

denotes a discrete measure concentrated at φj. Beta(1, α) stands for a Beta distribution with
parameters 1 and α. φj and vi are generated independently. Thus, the above DP mixture
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of normal linear regression model (DPM) of f(yi|xi) can be re-written as:

f(yi|xi) =
∞
∑

j=1

wjN(yi|x
′

iβj, σ
2
j ) (3)

wj = vj

∏

k<j

(1 − vk) (4)

vj
iid
∼ Beta(1, α) (5)

(βj, σ
2
j )

iid
∼ G0 (6)

Compared to a simple normal linear regression f(yi|xi) = N(yi|x
′
iβ, σ2), the DPM model

offers more flexibility in modeling the conditional distribution of f(yi|xi), since it relaxes
the normal error assumption and allows much more general density form in a nonparametric
way. At the same time the linear mean regression structure is preserved. Indeed, assuming
that the weights {wj} and the regression coefficients {βj} are known,

E(yi|xi) =
∞
∑

j=1

wjx
′

iβj

=

∞
∑

j=1

wj

p
∑

l=1

xilβjl

=

p
∑

l=1

xil

∞
∑

j=1

wjβjl

= x′

iβ̄

where β̄ = (β̄1, . . . , β̄p) and β̄l =
∑

j wjβjl. β̄ represent the linear effect of the covariates
on the mean of the dependent variable. This linear structure is often desirable because of
its simplicity and ease for interpretation. The limitation of this DPM model is, however,
that this linear relationship along with the shape of the conditional density are homogeneous
across all observations. This may be too restrictive in certain situations. For example, when
yt and xt are time series data and we want to examine the relationship between yt and xt,
and how this relationship evolves (or if it evolves at all) over time, we may then need a more
flexible model that, on one hand, still maintains the linear conditional mean structure and
flexible density form assumptions for the conditional distribution, but on the other hand
allows both of the features to change over time. And more than likely, we would prefer the
change to occur in a “smooth” fashion. That is, two observations that are close in time
should have similar conditional distribution structure.

3 Time-Dependent Probit Stick-Breaking Process Mix-

ture of Normal Linear Regression Model

Rodŕıguez and Dunson (2011) introduced a new class of Bayesian nonparametric priors
called the Probit Stick-Breaking Processes (PSBPs), where probit transformations of normal
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random variables are utilized in constructing the stick-breaking weights.3 They show that
compared to conventional DPs, PSBPs can easily extend from priors on single distributions
to priors on collections of dependent distributions, while preserving computation tractability.
Under their framework, we propose the following time-dependent PSBP mixture of normal
linear regression model for the conditional distribution of yt on xt = (x1t, . . . , xpt)

′, t =
1, . . . , T :

f(yt|xt) =

∞
∑

j=1

wjtN(yt|x
′

tβj , σ
2
j ) (7)

wjt = Φ(αjt)
∏

k<j

(1 − Φ(αkt)) (8)

αjt
⊥
∼ N(.|γ0 + γ1αjt−1, σ

2
α) (9)

(βj, σ
2
j )

iid
∼ G0(λ) (10)

λ ∼ G1 (11)

(γ0, γ1, σ
2
α) ∼ G2 (12)

where Φ(.) denotes the cumulative distribution function for the standard normal variable.
In the rest of the paper we refer to the above model as the “time-dependent model”. The
time-dependent model resembles the DP mixture of normal linear regression (DPM) in many
ways. As is the case with DPM, f(yt|xt) is modeled as an infinite mixture of normal linear
regressions, so the conditional mean of the response yt is still linear in the covariates. And
in both models, the mixing weights are drawn from some stick-breaking processes (SBPs).
There are, however, some important differences between the two models. First of all, the
stick-breaking processes that produce the mixing weights are different for the two models.
In DPM, the SBP uses i.i.d. beta random variables, which corresponds to a DP prior. While
in the time-dependent model, the SBPs make use of Probit transformations of marginally
normal random variables, so they belong to the class of PSBP priors. This probit structure
in the stick breaking mechanism has important implications in posterior sampling and will
be discussed in more details in Section 9. Secondly, instead of having a constant set of fixed
weights {wj}

∞
j=1 for all t, which is the case in the DPM, the time-dependent model allows the

weights wjt to change over time, hence allowing f(yt|xt) to change over time as well. More
specifically, at each point t in time, a set of {wjt}

∞
j=1 is produced from a Probit stick-breaking

process associated with time t (equation (8)). That is, the single SBP for individual sets of
random weights in DPM is replaced by a collection, or a “time series” of dependent Probit
SBPs (indexed by t) that produce a “time series” of sets of random weights.

In the meantime, this time series of PSBPs are linked together through the underlying
infinitely many latent processes {αj}

∞
j=1. For each j, αj = {αjt}

T
t=1 is an independent process

assumed to have a Gaussian marginal distribution. The Gaussian marginal distribution
together with the probit structure serves for the purpose of computation tractability and
again will be discussed in more detail in Section 9.

Compared to the DPM, the time-dependent model maintains the linear conditional mean
and flexible density form assumptions for f(yt|xt), but it includes the possibility that both

3 PSBP priors are also used in Chung and Dunson (2009).
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the features are time varying. Indeed, assuming that {wjt}
∞
j=1 and {βj}

∞
j=1 are known, the

conditional mean at time t is E(yt|xt) = x′
tβ̄t, where β̄t = (β̄1t, . . . , β̄pt) and β̄lt =

∑

j wjtβjl.
By allowing the mixing weights wjt to change over time, the conditional mean of yt may
respond to xt differently at different points in time; or xt may be more powerful in explaining
the mean of yt at one point than at other points.

By the same token, the variance of yt is also allowed to change. Define σ̄2
t =

∑

j wjtσ
2
j .

σ̄2
t is the average variance of the regression errors in the mixture at time t, and it changes

over time as the weights wjt change. In this way, heteroscedasticity is easily accounted for
and changes in the scale of f(yt|xt) can be detected. Time variation in the higher moments
can be produced in similar fashions, thus allowing the whole distribution structure to vary
over time.

The property of time-varying for f(yt|xt) is desirable, but we would also like to avoid
the problem of overfitting, so that f(yt|xt) does not over react to individual observations.
That is, we prefer that f(yt|xt) has some sort of time dependence or persistence, and in
the case where a fundamental change does occur over time, the model has the capability
to capture it in a smooth fashion. The smoothness of the PSBP model (in terms of total
variation distance between distributions) is guaranteed by Rodŕıguez and Dunson (2011,
Theorem 5) under some general conditions. The specific time-dependent structure is however
generated by the specific dynamics of the set of latent series {αj}

∞
j=1. Different choices for the

dynamics of {αj}
∞
j=1 impose different implications on the inter-temporal relationship among

the set of PSBPs, and ultimately induce various kinds of dependence and levels of persistence
among f(yt|xt) across t. In equation (9), the common AR1 specification for all the {αj}

∞
j=1

series offers a parsimonious way to introduce dependence. It also fully takes advantage
of the computational tractability offered by the probit structure in posterior sampling, see
Section 9.4 The AR1 coefficient γ1 and the error variance σ2

α control the degree of persistence
for f(yt|xt) over time. Intuitively, if γ1 is close to 1 and σ2

α is small, we would expect that for
adjacent points in time, f(yt|xt) would have similar structure. In a special case, let γ1 = 0,
then each αj becomes a series of iid normal random variables, so {wjt}

∞
j=1 are independent

sets of weights across t. As a result, f(yt|xt) are a priori independent. In another extreme

case where γ0 = 0, γ1 = 1 and αj1
⊥
∼ N(µα, σ2

α) for some µα and σ2
α, there is no time variation

in αj for all j and the same set of {wj}
∞
j=1 is produced for each t. Hence f(yt|xt) is the same

for all t, a case that is parallel with the DPM, with the only difference in the stick-breaking
structure.5

The time-dependent model in equation (7) through equation (12) is very general in the
sense that it allows all the predictors to have a time-varying effect on the dependent variable.
Indeed, in equation (7), each predictor xlt may have a different value for its coefficient βjl

across all regression components in the mixture. Depending on the specific questions of
interest, some simplifications can be made to the regression mixture structure in the model,
resulting in different nested model versions. For example if we are confident that some of
the covariates xt = (x′

1t, x
′
2t)

′, say x1t have a constant effect on the conditional mean of yt

over time, but suspect that x2t may have a time-varying effect. We can replace equation (7)

4 In one example, Rodŕıguez and Dunson (2011) used a simple random walk dynamic for {αj}
∞

j=1.
5This process belongs to the PSBP prior for single distribution. Details are provided in Rodŕıguez and

Dunson (2011).
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by

f(yt|xt) =
∞
∑

j=1

wjtN(yt|x
′

1tβ̃ + x′

2tβj, σ
2
j )

and add a prior for β̃:
β̃ ∼ G3

This nested model forces the coefficient on x1t to be constant, but allows the effect of x2t

and the shape of f(yt|xt) to change. Or if we suspect the linear conditional mean structure
in a whole is stable over time, and only the shape of the conditional distribution is subject to
change, we can make adjustments accordingly and arrive at another nested model version:

f(yt|xt) =
∞
∑

j=1

wjtN(yt|x
′

tβ̃, σ2
j )

σ2
j

iid
∼ G0(λ)

β̃ ∼ G3

In this case, the location-scale mixture structure is reduced to a scale mixture.

4 Posterior sampling and model comparison

4.1 Posterior sampling

To carry out Bayesian inference, we first apply a finite truncation on the infinite number of
components in equation (7):

f(yt|xt) =

L
∑

j=1

wjtN(yt|x
′

tβj, σ
2
j )

where L is a large number (for example 40). This truncation is justified in Rodŕıguez
and Dunson (2011), where they showed that the posterior distribution based on a L-finite
PSBP converges in distribution to the one based on the infinite PSBP as L goes to infinity.
Accordingly, since the stick-breaking weights have to add up to one for all t, we have:

wjt = Φ(αjt)
∏

k<j

(1 − Φ(αkt)), αjt
⊥
∼ N(.|γ0 + γ1αjt−1, σ

2
α), j = 1, . . . , L − 1

wLt = 1 −
L−1
∑

j=1

wjt
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As a second step to facilitate posterior sampling, we introduce a sequence of group indicators
S = {st}

T
t=1 and rewrite the time-dependent model in an equivalent form as below:

yt|S, Θ, xt ∼ N(yt|x
′

tβst
, σ2

st
) (13)

st ∼
L
∑

j=1

wjtδj(.) (14)

wjt = Φ(αjt)
∏

k<j

(1 − Φ(αkt)) (15)

αjt
⊥
∼ N(.|γ0 + γ1αjt−1, σ

2
α) (16)

(βj, σ
2
j )

iid
∼ G0(λ1) (17)

λ1 ∼ G1 (18)

(γ0, γ1, σ
2
α) ∼ G2 (19)

where Θ = {(βj, σ
2
j )}

L
j=1. So, st indicates which of the L normal regression components yt is

drawn from. i.e. st = j ⇒ yt ∼ N(yt|x
′
tβj, σ

2
j ). Rewriting model this way with S included,

data augmentation can be employed in the sampling, making the procedure straightforward.
The complete joint likelihood function of {yt}

T
t=1 and S is f({yt}

T
t=1, S|{xt}

T
t=1, Θ, α) =

∏T

t=1 wsttN(yt|x
′
tβst

, σ2
st

).
The distribution G0 in equation (17) assumes a normal-gamma distribution commonly

used in the Bayesian literature as a standard conjugate prior for linear models:

σ−2
j ∼ Gamma(

ν

2
,
d

2
), βj |σ

2
j ∼ N(m, σ2

j H
−1) (20)

ν and d are positive scalars, m is a q × 1 vector, H is a q × q positive definte matrix. The
mean and the variance of the Gamma distribution is ν/d and 2ν/d2, respectively. In equation
(18), the hyperprior G1 on the hierachical parameters λ1 = {m, H, d} is the following:6

H ∼ Wishartq(a0, H0), m|H ∼ N(m0, τ0H
−1) (21)

d ∼ Gamma(
c0

2
,
d0

2
) (22)

Wishartq(a0, H0) denotes a Wishart distribtution with a0 degrees of freedom and scale matrix
H0. a0 is a positive scalar satisfying a0 > q and H0 is a q × q positive definite matrix. m0

is a q-dimensional vector. τ0, c0, d0 are each a positive scalar. In equation (19), the prior
distribution G2 on {γ0, γ1, σ

2
α} admits another normal-gamma distrition:

σ−2
α ∼ Gamma(

να

2
,
dα

2
), (γ0, γ1)|σ

2
α ∼ N(mα, σ2

αH−1
α ) (23)

να and dα are positive scalars, mα is a 2 × 1 vector, Hα is a 2 × 2 positive definte matrix.
We carry out posterior sampling based on Markov chain Monte Carlo (MCMC) tech-

niques. A modified blocked Gibbs sampler (Ishwavan and James, 2001) is proposed. We

6In the paper we fix ν at 5, but it can also be estimated by placing a prior (e.g. Exponential distribution)
and using a Metropolis-Hastings step to sample from its distribution, see for example Song (2011).
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divide the parameter set Υ into 5 blocks, S, Θ, α, λ1 and λ2, where λ2 = {γ0, γ1, σ
2
α}. We

iteratively sample through the conditional posterior distribution of each block

S|Θ, α, {xt}
T
t=1, {yt}

T
t=1

Θ|S, λ1, {xt}
T
t=1, {yt}

T
t=1

α|S, λ2

λ1|Θ
λ2|α

See Appendix for details of the sampling algorithm. Taking a draw from all of the conditional
distributions constitutes one sweep of the sampler. After dropping an initial set of draws as
burn-in we collect M draws {S(i), Θ(i), α(i), λ

(i)
1 , λ

(i)
2 }M

i=1 for posterior inference. Simulation
consistent estimates of posterior moments can be obtained as sample averages of the draws.
For instance, the posterior mean of λ2 can be estimated as M−1

∑M

i=1 λ
(i)
2 .

4.2 Model comparison

Model comparison is carried out using predictive likelihoods. In a Bayesian framework, the
predictive likelihood is a key input into model comparison through predictive Bayes factors
(Geweke 2005). Given a whole sample (y1, . . . , yT ), the cumulative log-predictive likelihood
of the subsample (yT0

, . . . , yT ) for a candidate model A is calculated as

p̂A =
T−1
∑

t=T0−1

log(p(yt+1|It,A)), (24)

where T0 < T , and It = {y1, . . . , yt, x1, . . . , xt+1}
7. p̂A measures the forecast performance

based on the out-of-sample data points: yT0
, ..., yT . Better models, in terms of more accurate

predictive densities, will have larger (24). The one-period predictive likelihood p(yt+1|It,A)
is approximated as:

p(yt+1|It,A) ≈
1

M

M
∑

i=1

p(yt+1|Υ
(i), It,A) (25)

where Υ denotes the set of model parameters and {Υ(i)}M
i=1 are the MCMC draws from

the posterior distribution p(Υ|It,A) of the model parameters given the information It. In
particular, for the time-dependent model,

p(yt+1|It) ≈
1

M

M
∑

i=1

L
∑

j=1

w
(i)
jt+1N(yt+1|x

′

t+1β
(i)
j , σ

2(i)
j ). (26)

After calculating the one-period period likelihood of yt+1, the in-sample data is updated by
adding the observation yt+1. we then re-estimate the model to obtain a new set of draws

7xt+1 is included in It because it is pre-determined at time t + 1
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from the posterior to compute (25). In other words the model is recursively estimated for
t = T0 − 1, . . . , T − 1.

Given a model A with log-predictive likelihood p̂A, and model B with log-predictive
likelihood p̂B, based on the common data {yT0

, . . . , yT}, the predictive Bayes factor in favor of

model A versus model B is BFAB = p̂A

p̂B
. The Bayes factor is a relative ranking of the ability of

the models to account for the data. A value greater than 1 means that model A is better able
to account for the data compared to model B. Kass and Raftery (1995) suggest interpreting
the evidence for A as: not worth more than a bare mention if 0 ≤ log(BFAB) < 1; positive
if 1 ≤ log(BFAB) < 3; strong if 3 ≤ log(BFAB) < 5; and very strong if log(BFAB) ≥ 5.

4.3 Predictive mean

For the time dependent model, the predictive mean of yt+1 conditional on the information
set It = {y1, . . . , yt, x1, . . . , xt+1} is

ŷt+1 = E(yt+1|It)

= E(E(yt+1|xt+1, Υ)|It)

= E(x′

t+1β̄t+1|It) (27)

Equation (27) is approximated as

ŷt+1 ≈
1

M

M
∑

i=1

x′

t+1β̄
(i)
t+1

where β̄
(i)
t+1 is generated from the ith MCMC draw of the posterior distribution p(Υ|It) of the

model parameters, given the information It. Over the whole out-of-sample period T0, . . . , T ,
the mean squared predictive error based on predictive mean is calculated as

MSE =
1

T − T0 + 1

T−1
∑

t=T0−1

(yt+1 − ŷt+1)
2

A smaller number in MSE indicates that the model does a better job in predicting the mean
value of a future response.

5 Simulation study

In this section, we conduct a simulation study to illustrate the time-dependent models and
evaluate their performance in comparison with some benchmark models. A univariate time

series of predictor xt is generated as xt
iid
∼ Uniform(0, 5) for t = 1, . . . , T = 500. The response
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yt is generated as:

yt = b0 + b1txt + ǫt

b1t =







0.3 if t < τ1

0.3 + 0.004 × (t − τ1) if τ1 ≤ t ≤ τ2

0.3 + 0.004 × (τ2 − τ1) if t > τ2

ǫt ∼ N(.|0, σ2
t )

σ2
t = 0.1 + 0.03 × ǫ2

t−1 + 0.95 × σ2
t−1

where b0 = 0.2, τ1 = 200, τ2 = 300, and σ2
1 = 5 is set as the initial condition. The

intercept coefficient b0 is constant over time, but the slope coefficient b1t has a time pattern:
it is constant at 0.3 for the first 200 observations, after that, it increases linearly with t,
until after t = 300, where it remains constant at 0.7 hereafter. The error term ǫt follows a
stationary GARCH specification, with a long run variance equal to 5.

We want to uncover the predicting power of xt on yt over time. Two time-dependent mod-
els (M1,M2) are considered here, each corresponds to a specific regression mixture structure:

M1 : f(yt|xt) =

∞
∑

j=1

wjtN(yt|β0j + β1jxt, σ
2
j )

M2 : f(yt|xt) =

∞
∑

j=1

wjtN(yt|β0 + β1jxt, σ
2
j )

The implications of the different regression mixture structures of the two models should be
clear. M1 allows that both the intercept and the slope coefficients to change over time; M2
is a nested version of M1 and only allows the slope coefficient to change while assuming
the intercept to be constant. We estimate the model using the entire sample. The posterior
summary statistics for some of the parameters are in Table 1. The posterior means of
γ1 are 0.991 and 0.977, respectively, indicating strong time persistence of the conditional
distribution of f(yt|xt) in both models. To directly investigate the effects of xt on yt through
the entire sample, we calculate the smoothed β̄1t =

∑

j
wjtβ1j at each point t in time for both

models, and plot them against t, together with b1t from DGP, see Figure 1. We see that for
both models, β̄1t track the true b1t reasonably well through the whole sample, demonstrating
their ability to detect change in the predicting power of xt over time. Similarly, from Figure
2, we can see that both models do a good job picking up the time variation in the variance
of the error term. Meanwhile, note that for M2, the posterior mean of β0 is 0.231, with a
95% density interval of (−0.139, 0.601), which is a good estimate of the true value of b0.

Now we compare the out-of sample performance of the time-dependent models with the
benchmark models based on the predictive likelihoods, as illustrated in Section 4.2. We add
another two time-dependent models (M3, M4) to the comparison, their regression mixture
structures are:

12



M3 : f(yt|xt) =
∞
∑

j=1

wjtN(yt|β0j, σ
2
j )

M4 : f(yt|xt) =

∞
∑

j=1

wjtN(yt|β0 + β1xt, σ
2
j )

Obviously, M3 allows the intercept to change, but assuming that xt has no predicting power
on yt at all. M4 assume constant β0 and β1 over time. Compared to the DGP, M2 is “closest”
to the truth, while M3 and M4 are both “mis-specified” in some way. For comparison, a
benchmark model is also estimated for the data, namely, normal linear regression (Lin).

Lin : f(yt|xt) = N(yt|β0 + β1xt, σ
2) (28)

The model assumes a constant effect of xt on yt, and also assumes that the error term is
homoskedastic.

The last 80 observations are preserved as out-of-sample data and are used to calculate
the the predictive likelihoods. All models are recursively estimated over the whole out-of-
sample period with a burn-in of 10000 iterations after which M=10000 draws are collected to
compute the predictive likelihoods. The results are reported in Table 2. Both M1 and M2
are favorable than the benchmark model Lin. Indeed, the log predictive Bayes factor in favor
of M1 versus Lin is −186.466− (−188.108) = 1.642 > 1, which is positive evidence that M1
accounts for the data better than Lin. For M2, the evidence of better accountability over
Lin is strong, with a difference of −184.607 − (−188.108) = 3.501 > 3 in the log predictive
likelihoods. This is not surprising, since both M1 and M2 accommodate time variation
in the slope coefficient and heteroscedasticity, while Lin does not. Between M1 and M2,
however, there is a difference of −184.607 − (−186.466) = 1.859 > 1 in the log predictive
likelihoods, in favor of M2.

Next, we investigate the out-of-sample performance among the models by comparing the
MSE of predicting the mean of yt, see Table 2. The ranking of all candidate models in MSE
is perfectly consistent with the ranking in log predictive likelihoods. Model with higher log
predictive likelihood also produce lower MSE.

The above results render some interesting implications. First, the general time-dependent
model M1, which is the most flexible version, does a good job picking up the time variation
from both the regression coefficient and the variance, hence can help forecast compared
to a simple linear model. Second, if we know a priori that some predictor has a constant
effect, we should take advantage and incorporate the information into our model (e.g., M2),
which would improve forecast. Third, if on the other hand, we make the wrong restrictions
(as in M3 and M4), the model can do worse in terms of forecasting. Last, M4 and Lin
both assume constant effects from the intercept and the predictor, the difference is that Lin
also assumes homoscedasticity while M4 does not. The fact that M4 does worse than Lin
suggests that when there is both time variation in the regression coefficient and variance as
in the simulated data, simply accounting for the latter while ignoring the former might not
necessarily improve forecast compared to the simple linear model that ignores both.
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6 Data

We are interested in the relationship between exchange rates and commodity prices among
each of the following countries: Canada, Australia and New Zealand. We use monthly data on
exchange rates and commodity prices. The exchange rates data are obtained from Statistics
Canada, the Reserved Bank of Australia, and the Reserve Bank of New Zealand, and the
end-of-period U.S. dollar rates are used. For commodity prices, we use the country-specific
commodity price indices issued by the Bank of Canada, the Reserved Bank of Australia, ANZ
National Bank Limited, respectively. Each commodity price index is a weighted average of
the prices for a range of commodities the corresponding country exports. All three indices
are in terms of US dollars. For all countries, the sample periods end at May 2011, but have
different starting points: The Canadian data start at January 1972, the Australian data
start at January 1984 and the New Zealand data start at January 1986.8

7 Results

We study the predictive power of exchange rates (ERt) on commodity prices (CPt+1) one
period ahead and how it changes through time. Let yt+1 = 100×(log(CPt+1)−log(CPt)), xt =
100×(log(ERt)−log(ERt−1)), and xt = (1, xt, yt)

′. The dependent variable is the percentage
change of commodity prices for time t+1, the independent variable is the percentage change
of exchange rates for time t. The lagged dependent variable is included as a common practice
in the literature. We model f(yt+1|xt) using the time-dependent models in Section 3. This
specification has the same linear conditional mean structure as the regression model in Chen,
Rogoff, and Rossi (2010). In all cases, we let the truncation L = 40. Posterior sampling
is carried out using the block sampler in Section 4.1. The first 10000 draws of the MCMC
chain are discarded as burn-in and the next 10000 draws are used for inference.

7.1 In-Sample Results

We apply a general model P1 on the data for in-sample analysis. P1 has the the following
regression mixture structure

P1 : f(yt+1|xt) =
∞
∑

j=1

wjtN(β0j + β1jxt + β2jyt, σ
2
j ) (29)

Model P1 assumes that the exchange rates xt as well as the intercept and the lagged depen-
dent variable yt all have a time-varying effect on future commodity prices yt+1. The priors

8Canada, Australia and New Zealand started their floating exchange rate regimes respectively in 1970,
1983 and 1985.
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of P1 are the following:

H ∼ Wishart3(4, 0.2Id)

m|H ∼ N(0, H−1)

d ∼ Gamma(2.5, 0.5)

σ−2
α ∼ Gamma(5, 0.5), (γ0, γ1)|σ

2
α ∼ N

(

(0, 0.95), σ2
α

(

1 0
0 0.32

))

We estimate the model based on the entire sample for all three countries respectively. The
posterior summary statistics for some of the parameters are in Table 3. The posterior
mean of γ1 is 0.982, 0.972 and 0.996 for the 3 countries, respectively, indicating strong time
persistence of the conditional distribution of f(yt|xt) in all cases.

One way to look at the effects of the predictors on the dependent variable is through
the effects on the mean. For each country, we calculate the posterior mean and 95% density
interval of β̄lt for l = 0, 1, 2 at each point t in time, where β̄lt =

∑L

j=1 wjtβlj represent the
linear effect at time t on the mean of the dependent variable from the intercept, the exchange
rates and the lagged dependent variable, repectively. We also calculate the posterior mean
of σ̄2

t =
∑L

j=1 wjtσj , which measures the average variance of the regression errors at time t.
We plot the set of quantities against t for each country (Figure 3 for Canada, Figure 4 for
Australia, and Figure 5 for New Zealand) and examine their time patterns over the whole
sample period.

For Canada, there seems to be some weak evidence of time variation in β̄0t, β̄1t and β̄2t,
suggesting all predictors may have time-varying linear mean effects on commodity prices.
For instance, the posterior mean of β̄1t starts around 0 and ends around 0.4. But there is
substantial uncertainty. The significance of β̄1t seems increasing over time, while that of β̄2t

is decreasing. The overall significance of the coefficients is weak. For the majority of the
sample period 0 is within the 95% density boundaries for all three coefficients. For σ̄2

t , the
evidence of time variation is very strong. The posterior mean of σ̄2

t fluctuates around 4 from
the start of the sample in 1972 until 1996, when it starts rising abruptly, peaking at 19 by
2002 and maintaining the high level thereafter. The pattern strongly suggests a structural
change in the variance of the dependent variable.

In the Australian case, the pattern is different. The linear effect of exchange rates on
the mean of commodity prices represented by β̄1t is in general constant through the whole
sample. It is clearly identified and significant for the mid one third of the sample from 1992
to 2003. Its 95% density interval is relatively narrow with an almost constant width of about
0.2. However for the first 6 years and the last 8 years of the sample period, β̄1t is less stable
and significant, especially towards the end of the sample. Compared to exchange rates, the
intercept and the lagged commodity prices both have a much more volatile linear effect on
the mean of the dependent variable. Both effects are weak but stable from 1992 to 2002.
For the rest of the sample, especially after 2003, both effects experience drastic changes in
significance as well as in magnitudes. σ̄2

t also show ups and downs over time, not even though
as dramatic as in the Canadian case.

For New Zealand, β̄1t is insignificant through out the whole sample, the posterior mean lies
within 0.02 of 0 for more than half of the time. It suggests that the mean effect of exchange
rates on commodity prices is very weak for the whole time considered. The intercept also
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has a weak mean effect on commodity prices, since the 95% density interval of β̄0t always
contains 0. Mean while, the significance and the magnitude of β̄2t increase dramatically from
the beginning to the end, which indicates that the linear mean effect on commodity prices
from the lagged dependent variable has greatly strengthened over the course.

In summary, the above in-sample analyses for the three countries show that there is
no strong evidence for a time-varying linear effect of exchange rates on future commodity
prices. The effect, if there is any, is weak in most cases. On the other hand, for Australia and
New Zealand, the intercept in the regression and the lagged dependent variable show strong
signs of parameter change over time, suggesting both have a time-varying relationship with
commodity prices. The results also suggest that for all countries considered, a significant
source of time variation in the conditional distribution of commodity prices comes from the
variance.

7.2 Out-of-Sample Evaluation

In this section, we evaluate models based on their out-of-sample performance on both den-
sity forecasts and point forecasts. Besides the general model P1, five nested versions of
the general model are also considered, each with a different regression mixture structure.
A complete list of all six time-dependent models (P1, P2, P3, P4, P5, P6) characterized by
their regression mixture structures are presented below

P1 : f(yt+1|xt) =
∞
∑

j=1

wjtN(β0j + β1jxt + β2jyt, σ
2
j ) (30)

P2 : f(yt+1|xt) =

∞
∑

j=1

wjtN(β0j + β2jyt, σ
2
j ) (31)

P3 : f(yt+1|xt) =
∞
∑

j=1

wjtN(β0 + β2yt + β1jxt, σ
2
j ) (32)

P4 : f(yt+1|xt) =

∞
∑

j=1

wjtN(β0 + β1xt + β2yt, σ
2
j ) (33)

P5 : f(yt+1|xt) =
∞
∑

j=1

wjtN(β0 + β2yt, σ
2
j ) (34)

P6 : f(yt+1|xt) =

∞
∑

j=1

wjtN(β0j + β2jyt + β1xt, σ
2
j ) (35)

P2 assumes that exchange rates (xt) has no predicting power for commodity prices, while
allows the coefficient on the lagged dependent variable and the intercept coefficient to change
over time. P3 assumes that the coefficients on the intercept and the lagged dependent
variable to be constant (β0 and β2) and only allow exchange rates to have a time-varying
effect on commodity prices. P4 assumes that the coefficient on exchange rates is constant,
and so are the other 2 coefficients. P5 also assumes that exchange rates has no predicting

16



power, and it assumes that the other 2 coefficients are constant. P6 assumes that exchange
rates does a constant effect on future commodity prices, but allows the coefficient on the yt

and the intercept coefficient to change over time. Note that all the above time-dependent
models can accommodate time variation in the variance. Finally, a Normal linear regression
model (Lin) is included as a bench mark:

Lin : f(yt+1|xt) = N(β0 + β1xt + β2yt, σ
2) (36)

It assumes that all predictors have a constant effect on the dependent variable and the error
term is homoskedastic.

By comparing all models’ forecasting abilities, we hope to identify the most important
factors in terms of forecasting. We try to answer the question of whether it is important to
account for time variation when doing forecast, and if yes, where does the variation come
from.

The last 80 observations are reserved for out-of-sample data, representing the time period
from October 2004 to May 2011. All models are recursively estimated over the whole out-of-
sample period with a burn-in of 10000 iterations after which M=10000 draws are collected
to compute the predictive quantities (predictive likelihoods and predictive mean).

7.2.1 Density Forecast

In this sub-section, we compare all models on density forecasts through predictive likelihoods,
as illustrated in Section 4.2. Forecasting (conditional) density is directly relevant here since
the main subject of interest of this paper is the conditional distribution of commodity prices
on exchange rates. Predictive likelihood is commonly used in the literature for density
forecast evaluation(reference). We compare the abilities to forecast the conditional density
of f(yt+1|xt) one period ahead among different models over the same out-of-sample data.
This is done by comparing the cumulative log-predictive likelihoods calculated from each
model. Models that produce more accurate density forecasts for the common out-of-sample
data will have larger cumulative log-predictive likelihoods. The Results are reported in Table
4.

For Canadian data, model P4 produces the highest log predictive likelihoods, suggesting
that all the predictors including the exchange rates are important for density forecast of
future commodity prices, but their effects are stable over time. Compared to the normal
linear model Lin which also assumes constant coefficients, the log predictive Bayes factor
in favor of P4 is −259.492 − (−307.503) ≈ 48. This is overwhelming evidence against
the homoscedasticity assumption, a fact also suggested in the previous in-sample analysis
( Figure 3 ). Among the group of time-dependent models, in general, models that include
xt in the conditional mean of yt+1 beat their counterparts that leave out xt. For instance,
the difference between P4 and P5 is −259.492 − (−262.545) = 3.053 in favor of P4, and
the difference between P3 and P5 is −259.530 − (−262.545) = 3.015 in favor of P3, both
provide strong evidence that when assuming that the intercept coefficient and the coefficient
on yt are constant, exchange rates have a predictive effect on commodity prices. However,
no evidence suggests any time variation in this predictive effect, since letting it change over
time as in P3 does not improve forecasting.
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For the Australian case, there are some different results. The highest log predictive
likelihoods come from P2 and P6, both of which allow β̄0t and β̄2t to change over time.
With the exception of P1, P2 and P6 dominate all the other models with a remarkable
margin of at least 5. These facts show strong evidence that both the intercept and the
lagged dependent variable have a time-varying effect on commodity prices. At the same
time, the difference between P2 and P6 is negligible, and they both improve on P1 by more
than 2, suggesting that exchange rates have no predictive power on commodity prices. The
simple linear model Lin still has the lowest log predictive likelihoods, and again is most
likely due to its homoskedasticity assumption.

For New Zealand, P6 has the highest log predictive likelihood, suggesting that the inter-
cept in the regression and the lagged dependent variable have a time-varying effect on yt+1.
Furthermore, P6 beats P5 by more than 2, which is positive evidence that exchange rates
can help forecast the density of the dependent variable. In addition, P6 beats P1 by more
than 6, strongly suggesting that the predictive effect from exchange rates is constant over
time. Lin still has the lowest log predictive likelihoods, but the difference between Lin and
other models are not as overwhelming as it is for Canadian data and Australian data. This
means the heteroscedastic effects for New Zealand data is not as eminent as in the other
countries, which can also be seen in the in-sample plots in the previous sub-section.

To summarize, there is no single model that is best for all countries in terms of density
forecasts. But for Australia and New Zealand, the data seems to suggest that the intercept
and the lagged dependent variable have a time-varying effect on commodity prices, while the
effect from the exchange rates is either weak or constant. On the contrary, the Canadian
data suggest all predictors matter and their effects are all constant.

7.2.2 Predictive mean evaluation

In this sub-section we calculate each model’s MSE of the predictive mean of yt+1 over the
out-of-sample period for all three countries, respectively. The results are the second row of
each sub-panel of Table 4.

For Canadian data, P6 has the lowest MSE with a value of 32.271. In particular, it
indicates exchange rates have a constant but nonzero effect on the mean of the dependent
variable. Lin produces the third smallest value in MSE. It suggests that despite its poor
density forecasts, a simple normal linear regression has relative advantage in predicting the
mean of future commodity prices, where accounting for heteroscedasticity in the error term
is not as important. Among the time-dependent models, leaving out exchange rates in the
mean regression increases the MSE. Indeed, P2 has a greater MSE than P1, and P5 has
a greater MSE than P4.

For Australian data, P6 again produces the lowest MSE = 10.375 followed by P2,
implying time variation in the intercept coefficient and the coefficient on the lagged dependent
variable. It also implies that the exchange rates help predict the mean as well. Mean while,
the fact that P6 has a much lower MSE than P1 suggests the predictive effect from exchange
rates is constant rather than time-varying.

Turning to New Zealand data. P6 still has the lowest MSE, which again indicates that
the intercept and the lagged dependent variable have a time-varying effect on the mean of
future commodity prices, while the effect from exchange rates is constant. It is worth noting
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that Lin produces the highest MSE among all models. This is interesting since for both
Canadian data and Australian data, Lin is rather competing in predicting the mean of yt+1,
despite its difficulty in density forecast.

The above results show that for point forecasts, P6 is the best for all countries, which
emphasizes time-varying effects from the intercept and the lagged dependent variable, but a
constant effect from the exchange rates.

8 Conclusion

This paper investigates the predictive relationship from exchange rates to commodity prices
for 3 commodity-exporting countries: Canada, Australia and New Zealand. A full Bayesian
nonparametric procedure which allows for time-varying parameters is proposed. We find
that in contrast to the results in Chen et al (2010), nominal exchange rates don’t have a
consistent predictive power for commodity prices in all countries considered in this paper.
We find that exchange rates do have predictive power in some cases, but their impact tends
to be constant over time. On the other hand, the intercept in the regression and the lagged
dependent variable show signs of time-varying parameter change in most cases, which is
important in predicting both the mean and the density of the commodity prices one period
ahead. The results also suggest that for all countries considered, a significant source of time
variation in the conditional distribution of commodity prices comes from the variance.

9 Appendix: Blocked Gibbs sampler

Let X = {xt}
T
t=1, Y = {yt}

T
t=1

9.1 Sampling S|Θ, α, X, Y

The joint likelihood function of Y and S is

f(Y, S|X, Θ, α) =

T
∏

t=1

wsttN(yt|x
′

tβst
, σ2

st
). (37)

For each t, the conditional posterior distribution of st satisfying following:

p(st = j|X, Y, Θ, α) = p(st = j|xt, yt, Θ, {αlt}
L−1
l=1 )

∝ wjtN(yt|x
′

tβj , σ
2
j )

j = 1, . . . , L.

9.2 Sampling Θ|S, λ1, X, Y

Θ = {βj, σ
2
j }

L
j=1. We use the standard conjugacy results for linear models to sample the

posterior distribution of (βj, σ
2
j ). The prior is

(βj , σ
2
j ) ∼ N − G(m, H, ν, d)
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N−G(m, H, ν, d) denotes a normal-gamma distribution with parameters λ1 = m, H, ν, d, see
equation (20). By conjugacy, the posterior is

(βj , σ
2
j )|S, λ1, X, Y ∼ N − G(mj, Hj , νj , dj)

where

Hj = H + X ′

jXj

mj = (Hm + X ′

jYj)H
−1

j

νj = ν + nj

dj = d + Y ′

j Yj + m′Hm − m′

jHjmj

Yj = {yt : st = j}, Xj = {xt : st = j}. nj is the number of elements in Yj.

9.3 Sampling λ1|Θ

λ1 = {m, H, ν, d}. The conditional posterior of (m, H) is

(m, H)|{βj , σ
2
j}

L
j=1 ∼ N − W(m1, τ1, a1, H1) (38)

N−W(m1, τ1, a1, H1) denotes a normal-Wishart distribution with parameters m1, τ1, a1, H1,
where

m1 =
τ−1
0 m0 +

∑L

j=1 σ−2
j βj

τ−1
0 +

∑L

j=1 σ−2
j

τ1 =
1

τ−1
0 +

∑L

j=1 σ−2
j

a1 = a0 + L

H1 =

(

H−1
0 +

L
∑

j=1

σ−2
j βjβ

′

j + τ−1
0 m0m

′

0 − τ−1
1 m1m

′

1

)−1

The conditional posterior distribution of d is

d|ν, {σ2
j} ∼ Gamma(c1/2, d1/2)

where c1 = c0 + L and d1 = d0 +
∑L

j=1 σ−2
j .

As mentioned earlier, we fix ν at 5, but it can also be estimated by placing a prior (e.g. Ex-
ponential distribution) and using a Metropolis-Hastings step to sample from its distribution,
see for example Song (2011).

9.4 Sampling λ2|α

λ2 = {γ0, γ1, σ
2
α}. The conditional posterior is

(γ0, γ1, σ
2
α)|α ∼ N − Gamma(mα, Hα, να, dα)
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with

Hα = Hα + X ′

αXα

mα = (Hαmα + X ′

αYα)H
−1

α

να = να + (L − 1)(T − 1)

dα = dα + Y ′

αYα + m′

αHαmα − m′

αHαmα

Yα = (α1,2, α1,3, . . . , α1,T , α2,2, α2,3, . . . , α2,T , . . . , αL−1,2, αL−1,3, . . . , αL−1,T )′. That is, Yα is a
(L − 1)(T − 1) × 1 vector.
Xα = ((1, α1,1)

′, . . . , (1, α1,T−1)
′, (1, α2,1)

′, . . . , (1, α2,T−1)
′, . . . , (1, αL−1,1)

′, . . . , (1, αL−1,T−1)
′)′.

So Xα is a (L − 1)(T − 1) × 2 matrix, the first column are all 1.

9.5 Sampling α|S, λ2

To facilitate the sampling of {αj}
L−1
j=1 , we introduce a set of indicator variables {Zjt}

L−1
j=1

T
t=1.

Given S, let Zjt = 0 if j < st, and Zjt = 1 if j = st, and if j > st, then Zjt is undefined.
So the information on S is mapped into the information on {Zjt}. Indeed, any particular
sequence of of values for S correspondes to a unique set of values for {Zjt}. We then once
again apply data augmentation and define latent variables {Z∗

jt}
L−1
j=1

T
t=1 such that:

Zjt = I(Z∗

jt > 0),

Z∗

jt ∼ N(.|αjt, 1)

Thus, we set ourselves up for another block of Gibbs sampler: conditional on {αj} and {Zjt}
(or S), sample {Z∗

jt} from its full conditional distribution

Z∗

jt|αjt, st ∼

{

N(.|αjt, 1)IR− if j < st (Zjt = 0)
N(.|αjt, 1)IR+ if j = st (Zjt = 1)

This makes use of the standard Bayesian inference for the Probit model. For derivation, see
for example Koop (2003). If j > st (Zjt undefined), record Z∗

jt as missing value.

Second, conditional on {Z∗
jt} and (γ0, γ1, σ

2
α), the L−1 latent processes {αj}

L−1
j=1 are then

sampled one process at a time using an efficient block sampler. The block sampler used here
is constructed in the same spirit as the sampler proposed by Jensen and Maheu (2010) to
sample a latent volatility process in a stochastic volatility model.
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Table 1: Posterior summary of common parameters from M1 and M2 in the simulation
study

M1 M2
Par Mean Std 0.95 DI Mean Std 0.95 DI
γ0 0.001 0.004 (−0.005, 0.008) 0.014 0.013 (−0.009, 0.039)
γ1 0.991 0.003 (0.985, 0.996) 0.977 0.006 (0.964, 0.981)
σ2

α 0.109 0.036 (0.056, 0.191) 0.141 0.052 (0.073, 0.274)

Table 2: Model comparison based on simulated data

M1 M2 M3 M4 LR
LPL −186.466 − 184.607 −193.043 −190.445 −188.108
MSE 5.909 5.865 6.929 6.637 6.330

M1 : f(yt|xt) =

∞
∑

j=1

wjtN(yt|β0j + β1jxt, σ
2
j )

M2 : f(yt|xt) =

∞
∑

j=1

wjtN(yt|β0 + β1jxt, σ
2
j )

M3 : f(yt|xt) =

∞
∑

j=1

wjtN(yt|β0j , σ
2
j )

M4 : f(yt|xt) =

∞
∑

j=1

wjtN(yt|β0 + β1xt, σ
2
j )

Table 3: Posterior summary of seleted parameters of P1

CAN AUS NZL
Par Mean Std 0.95 DI Mean Std 0.95 DI Mean Std 0.95 DI
γ0 −0.015 0.008 (−0.034,−0.002) −0.018 0.010 (−0.039, 0.002) −0.004 0.003 (−0.011, 0.002)
γ1 0.982 0.004 (0.972, 0.989) 0.972 0.014 (0.938, 0.989) 0.996 0.001 (0.992, 0.998)
σ2

α 0.112 0.046 (0.057, 0.216) 0.099 0.033 (0.049, 0.181) 0.085 0.022 (0.051, 0.151)
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Table 4: Out-of-sample forecast results in terms of Log predictive likelihood(LPL)(top) and
mean square error(MSE)(bottom)

P1 P2 P3 P4 P5 P6 Lin

CAN LPL −262.840 −264.366 −259.530 −259.492 −262.545 −264.587 −307.503
MSE 32.582 34.268 33.316 33.199 35.067 32.271 33.048

AUS LPL −217.646 −215.241 −224.792 −220.956 −220.759 −215.460 −248.017
MSE 11.296 10.796 11.565 11.280 11.397 10.375 11.161

NZL LPL −181.485 −177.196 −179.811 −180.543 −178.354 −175.201 −189.689
MSE 5.546 5.720 6.108 6.346 6.405 5.486 6.431

P1 : f(yt+1|xt) =
∞
∑

j=1

wjtN(β0j + β1jxt + β2jyt, σ
2
j )

P2 : f(yt+1|xt) =

∞
∑

j=1

wjtN(β0j + β2jyt, σ
2
j )

P3 : f(yt+1|xt) =

∞
∑

j=1

wjtN(β0 + β2yt + β1jxt, σ
2
j )

P4 : f(yt+1|xt) =

∞
∑

j=1

wjtN(β0 + β1xt + β2yt, σ
2
j )

P5 : f(yt+1|xt) =

∞
∑

j=1

wjtN(β0 + β2yt, σ
2
j )

P6 : f(yt+1|xt) =

∞
∑

j=1

wjtN(β0j + β2jyt + β1xt, σ
2
j )
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Figure 1: Posterior mean of β̄1t from M1 and M2, respectively, and b1t from DGP.
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Figure 2: Posterior mean of σ̄2
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Figure 3: Posterior mean and 95% density interval of β̄lt for l = 0, 1, 2 and posterior mean
for σ̄2

t in model P1 over the full sample for Canadian data
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Figure 4: Posterior mean and 95% density interval of β̄lt for l = 0, 1, 2 and posterior mean
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t in model P1 over the full sample for Australian data
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