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Preliminary
Abstract

This paper develops a new efficient approach for multivariate time series data mod-
eling and forecasting in the presence of an unknown number of change-points. The
predictive density has a closed form by assuming conjugate priors for the parameters
which characterize each regime. A Markov chain Monte Carlo method takes advan-
tage of the conjugacy to integrate out the parameters which characterize each regime,
treat the regime duration as a state variable and simulate the regime allocation of the
data from its posterior distribution efficiently. Two priors, one is non-hierarchical for
fast computation, the other is shrinkage hierarchical to exploit the information across
regimes, are proposed. The model is applied to 7 U.S. macroeconomic time series
and finds strong evidence for the existence of structural instability. A general pattern
of the data is similar to the great moderation. However, we discover heterogeneous
dynamics with infrequent volatility jumps for individual variables. The marginal likeli-
hood comparison shows that our approach provides superior out-of-sample forecasting
performance.

1 Introduction

Multivariate time series data analysis plays a central role in macroeconomic analysis and
forecasting. Linear models such as vector auto regressions (VAR) are standard tools to
calculate the impulse response function and forecast. Recently, many papers highlight the
importance of nonlinearity associated with structural instability for macroeconomic and
financial variables such as GDP growth, real interest rate, inflation and equity return among
many. However, because the estimation is usually involved with intensive computation,
most of the change-point models are applied to univariate time series. Existing multivariate
change-point models have restrictions to the number of regimes a priori. It is either fixed at
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a small number (2 or 3) as in Jochmann and Koop (2011) or assumed equal to the length
of the data as in Cogley and Sargent (2005). A multivariate approach which can estimate
and forecast in the presence of an unknown number of regimes is missing in the current
literature. In this paper, we develop a new multivariate time series model to fill the gap
by exploring the full posterior distribution for the allocation of the data to their respective
regimes. The estimation of the new approach is fast by using a conjugate prior for the
parameters which characterize each regime. The simulation of the regime allocation of the
data from its posterior distribution is very efficient, because the time-varying parameters for
the conditional data density are integrated out. A hierarchical structure is introduced to
exploit the information across regimes.

Accounting for structural instability in macroeconomic and financial time series modeling
and forecasting is important. Empirical applications by Clark and McCracken (2010), Gior-
dani et al. (2007), Liu and Maheu (2008), Wang and Zivot (2000) and Stock and Watson
(1996) among others demonstrate strong evidence for the existence of nonlinearity in the
form of structural changes.

The problem of estimation and forecasting in the presence of structural breaks has been
recently addressed by Koop and Potter (2007), Maheu and Gordon (2008) and Pesaran et al.
(2006) by using Bayesian methods. These approaches provide feasible solutions for univari-
ate time series modeling, but they are all computationally intensive. This is because there
are too many combinations of the break points, exploring them exhaustively is impractical.
For example, Koop and Potter’s (2007) model assumes path dependent time-varying pa-
rameters, which imply O(2T ) possible change-points scenarios. Although they have reduced
the state space from O(2T ) to O(T 2), it is still computationally challenging to calculate the
predictive density and the mixing property of their MCMC algorithm is left unanswered.
Another approach with an unknown number of regimes is Maheu and Gordon (2008). Since
their approach requires computing O(T 2) models numerically, the computational burden is
even heavier than Koop and Potter’s (2007) method. Extending these methodologies to a
multivariate framework is empirically unrealistic, since a multivariate model requires much
more computation as the number of variables increases.

Current multivariate change-point models include Jochmann and Koop (2011) and Cog-
ley and Sargent (2005). A common feature of these models is that they need to pre-specify
the number of regimes as exogenous. The full posterior distribution for the allocation of the
data to their respective regimes is not explored because of the aforementioned restriction.
One potential solution to this problem is to estimate the model many times. For each time,
the estimation is associated with a distinct number of regimes. Then, the Bayesian averaging
method can be applied to obtain the posterior distribution for the regime allocation. How-
ever, this solution is computationally brutal and the multimodal posterior density problem
in each single estimation procedure may exist and cause slow mixing of the Markov chain
and affect the inference.

To alleviate the computational burden, we use a conjugate prior for the parameters
which characterize each regime. This assumption avoids the numeric approximation for
the conditional posterior distribution and provides a closed form of the predictive density.
This give us a huge gain in the computational speed. Meanwhile, another advantage of this
methodology is that the sampler of the regime allocation is very efficient since the parameters
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which characterize each regime can be integrated out as nuisance parameters.1 Different from
the usual Gibbs sampling scheme for a hidden Markov model, in which the set of the regime
indicators and the set of the parameters characterizing each regime are simulated conditional
on each other, this assumption enables us to sample these time-varying parameters jointly.
So the multimodal problem caused by the usual Gibbs sampler is not present in our MCMC
algorithm. For a simple univariate application, we find our approach can improve the relative
numeric efficiency for the posterior mean of the number of regimes by more than 100 times
compared to Koop and Potter’s (2007) model.

Applying the conjugate priors to VAR was investigated by Kadiyala and Karlsson (1997)
for the practitioners. Recent empirical work such as Carriero et al. (2011) has shown the
usefulness of simple conjugate priors for the U.S. economy. Banbura et al. (2010) augment
the conjugate prior by a shrinkage parameter to reflect subjective belief and show that it is
competitive in forecasting. These methods are all applied to linear models without structural
change. Nonetheless, they demonstrate that a conjugate prior is practically reasonable and
a helpful starting building block for a structural break model.

Regarding to the prior elicitation for the parameters which characterize each regime,
we adopt two different but closely related approaches. The first is a slightly revised simple
conjugate prior used in Carriero et al. (2011), which is designed to approximate the Minnesota
prior (Litterman (1986)). We use this prior for the parameters characterizing each regime in
the structural break model, which is labeled as non-hierarchical SB model. The advantage of
using this prior is the fast computational speed. With our MCMC algorithm, for a simulated
data set with 7 variables and 600 observations, if we assume a VAR(1) model in each regime,
6000 times of simulation from the posterior distribution take less than 5 seconds. The
approximation of the Minnesota prior is an informative prior but covers a reasonable range
for the parameter values.

The second prior is featured by a hierarchical structure and shrinkage parameters. The
hierarchical structure is on the parameters which characterize each regime. It is able to
exploit the information across regimes. Pesaran et al. (2006) applied this method to a uni-
variate model to improve forecasting. The shrinkage (e.g., Belmonte et al. (2011)) is another
effective methodology for parsimony in Bayesian modelling. Out second prior has hyper
parameters which shrink towards the first prior. We can control the tightness parameters
to reflect the prior belief for the variation of the hierarchical structure. In our application
to the U.S. economy, the tight hierarchical model provides superior forecasting than the
non-hierarchical model and other alternatives including linear models.

From the view of computation, the aforementioned hierarchical structure is unaffordable
for a time series model as Maheu and Gordon (2008) even for the univariate case. This is
because their approach requires O(T 2) times numeric approximation. Each time is associated
with a MCMC estimation applied to a distinct subset of the data. For a univariate time series
with 600 observations, it could take one day or even longer to estimate by using a regular PC.
A simple hierarchical structure may easily increase the estimation time to months, or even
years! This is obviously impractical even if we use some regular CPU parallel programming
techniques.2 Because our conjugate prior assumption guarantees an analytic form of the

1It is called Rao-Blackwellisation. See Casella and Robert (1996).
2A large scale parallel computing method for Bayesian modeling by using GPUs is discussed by Durham
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predictive density conditional on the current regime duration, the numeric approximation
with the MCMC algorithm is avoided and the computation speed is greatly improved. Hence,
the hierarchical structure is affordable in our approach and the estimation can be done in a
reasonable time.

In order to apply the joint sampler for the time-varying parameters, assuming path
independence is necessary to reduce the dimension of the state space. Koop and Potter (2007)
applies a Gibbs sampler to reduce the the dimension from O(2T ) to O(T 2), but their approach
simulates the regime allocation and the set of parameters which characterize each regime
individually. To sample them jointly, theoretically we need to consider O(2T ) scenarios. Each
scenario has a distinct path of break points and can represent a state if the time-varying
parameters characterizing each regime can be integrated out. However, it is impractical to
estimate all O(2T ) scenarios by using a current PC. This paper applies the assumption similar
to Chib (1998) to reduce the dimension of the state space from O(2T ) to O(T ). In detail, we
assume that the data before a break point is uninformative for the current regime conditional
on the prior for the parameters characterizing each regime. For the non-hierarchical model,
this assumption is equivalent to Chib (1998). For the hierarchical approach, the parameters
which characterizes each regime are dependent, because they share the same hierarchical
prior and this prior is not exogenously fixed. However, they are independent conditional on
one sample of the hierarchical prior parameters in our MCMC algorithm. This assumption
frees the model from path dependence and enable the exhaustive exploration of the posterior
for the regime allocation. By using this assumption, we have maximal T paths for each
observation, which can be evaluated very quickly after being combined with the conjugate
prior assumption.

In summary, we introduce a new efficient approach to model multivariate time series
data in the presence of an unknown number of structural changes. Two challenges, one is
the multi-dimensionality and the other is the unknown number of regimes, is solved by two
reasonable assumptions. The first assumption is using a conditional conjugate prior for the
parameters characterizing each regime to produce a closed form of the predictive density.
This analytic form provides a super fast estimation procedure for a non-hierarchical model
and allows us to explore the hierarchical structure, which is impractical for other existing
models. The second assumption is that the data before a break point is uninformative for
the current regime conditional on the prior for the parameters characterizing each regime.
By using these two assumptions, we reduce the state space dimension to O(T ) and treat
the regime duration as a state variable by integrating out the parameters which characterize
each regime. In the MCMC algorithm, the regime allocation is jointly simulated with the
parameters which characterize each regime from their posterior distribution.

Our approach has three features attractive to the practitioners. First, the number of
regimes is estimated endogenously. This allows the full posterior distribution of the number of
regimes as well as regime allocation to be explored. All time-varying parameters are sampled
jointly, so the estimation is efficient in terms of mixing. Second, the conjugate prior makes

and Geweke (2011). However, this technique may not be appropriate for a multivariate structural change
model for two reasons. First, detecting the sudden change of the regime and the sampling of the covariance
matrices are challenging for the random walk Metropolis-Hastings algorithm, which is the only sampling
method used in Durham and Geweke (2011). Second, the inference of the time-varying parameters conditional
on the full sample is not available since this technique focuses on the real time forecasting.
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the estimation of the non-hierarchial model very fast because no numeric approximation is
involved. Lastly, the shrinkage hierarchical structure is parsimonious and able to exploit the
information across regimes to improve forecasting. We find combining the learning of the
priors and the shrinkage provides superior prediction in the application.

We apply our new approach to a VAR model with 7 variables. They are unemployment
rate(UR), Core personal consumption expenditure(PCE), non-farm employment(EM), re-
tail sales(Retail), housing starts level(Housing), industrial production index (IP) and the
federal funds rate(FFR). The new model discovers very strong evidence for the existence
of structural changes. Another interesting finding is that although a simple prior approx-
imating the Minnesota prior is useful and competitive in out-of-sample forecasting as in
Carriero et al. (2011), introducing the hierarchical structure helps to further improve the
predictive(marginal) likelihood. This new finding implies that a Minnesota prior may miss
capturing some information, which can be learned by the hierarchical structure.

The rest of the paper is organized as follows. Section 2 introduces the model. Section 3
apply the model to 7 U.S. macroeconomic variables. Section 4 concludes.

2 Model

In this section, we will first introduce the conjugate prior for a simple linear multivariate
model. Then, we introduce the non-hierarchical and hierarchical structural break model
together with the MCMC methods for their estimation. The prior elicitation is discussed in
detail afterwards.

2.1 Linear multivariate model

A simple linear multivariate model has the following form:

yt = Φ′xt + et, et
i.i.d.∼ N(0,Σ). (1)

yt is a N × 1 vector of the data at time t. xt is a M × 1 vector of the regressors. Φ is a
M ×N matrix of the coefficients. Each et is a N × 1 zero mean i.i.d. normal random vector.

Let T to represent the length of the time series data. Define Y = (y1, y2, . . . , yT )′,
X = (x1, x2, . . . , xT )′ and E = (e1, e2, . . . , eT )′ as the stacking up of yt’s, xt’s and et’s,
respectively. (1) can also be written as

Y = XΦ + E, E ∼MN(0,Σ, I), (2)

where MN(0,Σ, I) means a matrix normal distribution. The first parameter, which is a
T ×N zero matrix, represents the mean of the error matrix E. The second parameter, the
N ×N matrix Σ, is proportional to the covariance matrix of each row of matrix E, namely,
et. The last parameter, the T × T identity matrix I, is proportional to the covariance
matrix of each column of the matrix E. The identity matrix I comes from the assumption
that et is i.i.d. If vectorizing the matrix E, the matrix normal distribution is equivalent
to a multivariate normal distribution as vec(E) ∼ N(0,Σ ⊗ I) or vec(E ′) ∼ N(0, I ⊗ Σ).3

Appendix A introduces the matrix normal distribution in detail.

3Σ and I are not identified up to a scalar. This does not affect any derivation or inference in this paper.
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A special case is the VAR model, which is the focus of this paper. For a VAR(p) model,
where p is the number of lags in the autoregression, xt = (1, y′t−1, y

′
t−2, . . . , y

′
t−p)

′ and M =
Np+1. Φ can be decomposed as (φ0, φ1, . . . , φp)

′, where φ0 is a N×1 vector of the intercepts
and φi is the N ×N coefficient matrix of yt−i for i = 1, . . . , p.

The inverse Wishart matrix normal distribution is used as the conjugate prior for the
parameters (Φ,Σ):

Σ ∼ IW (S, ν), (3)

Φ | Σ ∼MN(Φ,Σ⊗ Ω). (4)

An inverse Wishart distribution is a random distribution, from which each sample is a
nonnegative definite matrix. The mean of Σ is E(Σ) = S

ν−N−1
. See the appendix for the

details of an inverse Wishart distribution.
The conjugacy shows that the posterior of Φ and Σ is still an inverse Wishart matrix

normal distribution:

Σ | Y,X ∼ IW (S, ν) (5)

Φ | Σ, Y,X ∼MN(Φ,Σ⊗ Ω) (6)

where Φ = Ω(Ω−1Φ +X ′Y ), Ω = (Ω−1 +X ′X)−1, ν = ν + T and S = S + Y ′Y + Φ′Ω−1Φ−
Φ
′
Ω
−1

Φ.
The inverse Wishart matrix normal prior also provides a closed form for the predictive

density of yt, which is a multivariate Student-t distribution. For example, if only the prior
is used, we have

yt | xt ∼ t(Φ′xt,
(1 + x′tΩxt)S

ν + 1−N
, ν + 1−N) (7)

Its probability density function is p(yt | xt) = k−1
∣∣∣1 + (yt−Φ′xt)′S−1(yt−Φ′xt)

(1+x′tΩxt)

∣∣∣− ν+1
2

, where k =

πN/2(1 + x′tΩxt)
N/2|S|1/2 Γ((ν+1−N)/2)

Γ((ν+1)/2)
. The first two moments are E(yt | xt) = Φ′xt and

Var(yt | xt) = (1 + x′tΩxt)E(Σ).
If we use the posterior distribution, which is also an inverse Wishart matrix normal

distribution, the out-of-sample predictive density of yT+1 is obtained by replacing the prior
parameters in Equation 7 by the posterior parameters.

yT+1 | IT ∼ t(Φ
′
xT+1,

(1 + x′T+1ΩxT+1)S

ν + 1−N
, ν + 1−N). (8)

IT = (y1, . . . , yT , x1, . . . , xT+1) represents the information available for the whole sample.
Notice that we assume xT+1 is also known for the prediction purpose. In a VAR model, xT+1

is simply yT , yT−1, . . . , yT−p, which is consistent with the definition of IT . For the rest of the
paper, we also define It = (y1, . . . , yt, x1, . . . , xt+1) as the information up to time t, inclusive.
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2.2 Non-hierarchical structural break model

The difference between a linear model and the structural break model in this paper is that
the parameters in the aforementioned linear model are time-varying instead of constant. In
other words, we use Φt and Σt to replace Φ and Σ to get

yt = Φ′txt + et, et
i.i.d.∼ N(0,Σt). (9)

Define θt = (Φt,Σt) as the time-varying parameters which characterize the conditional data
density at time t. At each time t, there is a positive probability π for a structural change
to occur. It the structural change happens, the new value of θt will be drawn from an
aforementioned inverse Wishart matrix normal distribution independently. Otherwise, θt
will stay the same as the value in the previous period.

The model is

dt =

{
dt−1 + 1, w.p. 1− π;
1, w.p. π.

(10)

θt = 1(dt = 1)Fθ + 1(dt > 1)δθt−1 . (11)

yt | θt, xt = N(Φ′txt,Σt). (12)

In (10), dt is an implicitly defined time-varying parameter, which represents the regime
duration up to time t. This variable will be shown to be very important and treated as
the state variable for the predictive density. The regime duration dt can take values of
1, . . . , t. The last period T has the maximal number of possible values for dt(from 1 to T ).
If dt = 1, a structural change happens and θt is drawn from the inverse Wishart matrix
normal distribution Fθ as in (11). If no break appears in the previous period, the duration
is increased by 1 and θt stays the same as value in the previous period. In each regime, the
dynamics of yt follows a linear representation as in (1) conditional on θt.

Compared to the existing structural break models, this approach explores all the possible
change-points as Koop and Potter (2007) and Giordani et al. (2007). The difference is that
if there is a structural change (dt = 1), we assume that the new parameter θt is drawn
from the distribution Fθ independently from the value of θt−1. We make this assumption
for two reasons. First of all, it is computationally feasible to calculate the predictive density
by integrating out θt’s. It reduces the effective number of paths from O(2t) to O(t) at
each period t. Second, from an empirical point, it is reasonable or even preferable for some
macroeconomic variables to have a sudden change of the parameters.

The parameters to be estimated in this model include the regime durationsD = (d1, . . . , dT )
and the conditional data density parameters Θ = (θ1, . . . , θT ). Existing MCMC methods
usually apply a sampler to randomly draw the regime allocation and the parameters char-
acterizing each regimes conditional on each other. This paper proposes to jointly simulate
these time-varying parameters from their posterior distribution. First, randomly sample the
regime duration D from its marginal distribution D | π, IT , which is obtainable only if the
conjugate prior and the path independence are assumed. Then, conditional on the duration
D, simulate Θ from the distribution Θ | D, π, IT . This is equivalent to the joint sampling
from distribution D,Θ | π, IT , which is efficient based on Casella and Robert (1996).

The MCMC method in this paper is new to the existing literature and described here
in details. The first step of sampling D from D | π, IT is done by taking advantage of
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the forward filtering and backward sampling method of Chib (1998). In our new approach,
the duration dt is treated as the state variable instead of a regime indicator in the current
literature.

In the current literature, a sample series of the regime indicator S = (s1, s2, . . . , sT )
defines the regime allocation of the data and is always in a non-decreasing order. For example,
S = (1, 1, 1, 2, 2, 3, 3, 3, 3) means that the first 3 periods are in the first regime, the 4th and
5th periods are in the second regime and the last 4 periods are in the third regime. This
sample path is equivalent to a sample path of the regime durations D = (1, 2, 3, 1, 2, 1, 2, 3, 4).
For each time t with dt = 1, the data enter into a new regime, otherwise no regime change
happens. Obviously, there is a one-to-one relationship between D and S.

However, an individual value of st and dt has different information content. The regime
indicator st is able to tell how many regime there are before time t, but is unable to show
how long the current regime is. Drawing st from its posterior distribution is usually done
conditional on the distinct regime dependent parameters θ̃i, where subscript i represents the
ith regime. By definition, θt = θ̃st . On the other hand, dt is able to tell how long the current
regime lasts but contains no information about how many regimes appear before time t. So
if one only knows dt and all the distinct values of θ̃i’s, he cannot tell the current value of θt.
However, if the data in the past regime is uninformative to the current regime, the regime
duration dt can tell which sub-sample can be used to obtain the posterior and provides a
predictive density by integrating out the parameters of the conditional data density in that
regime, which cannot be done by using the regime indicator st.

In our approach, the assumption of independent sampling of new θt from Fθ enables us
to treat dt as a state variable, because it is sufficient to produce the predictive density. Θ is
integrated out as a set of nuisance parameters and the MCMC posterior sampler simulates
directly from the marginal posterior distribution of the regime durations D | π, IT . The con-
jugate prior provides a closed form for the predictive density to accelerate the computational
speed by a great amount, which makes the MCMC algorithm practical.

The forward filter is the following:

1. At t = 1, set p(d1 = 1 | π, I1) = 1, which is trivial.

2. The forecasting step:

p(dt = j | π, It−1) =

{
p(dt−1 = j − 1 | π, It−1)(1− π), for j = 2, . . . , t;
π, for j = 1.

3. The updating step:

p(dt = j | π, It) =
p(yt | dt = j, It−1)p(dt = j | π, It−1)

p(yt | π, It−1)

for j = 1, . . . , t. The first term in the numerator is a student-t distribution density
function as the following:

yt | It−1, dt ∼ t(Φ̂′xt,
(1 + x′tΩ̂xt)Ŝ

ν̂ + 1−N
, ν̂ + 1−N) (13)
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with Φ̂ = Ω̂(Ω−1Φ + X ′t+1−dt,t−1Yt+1−dt,t−1), Ω̂ = (Ω−1 + X ′t+1−dt,t−1Xt+1−dt,t−1)−1, ν̂ =

ν+ dt− 1, and Ŝ = S+Y ′t+1−dt,t−1Yt+1−dt,t−1 + Φ′Ω−1Φ− Φ̂′Ω̂−1Φ̂. where Xt+1−dt,t−1 =
(xt+1−dt , . . . , xt−2, xt−1)′ and Yt+1−dt,t−1 = (yt+1−dt , . . . , yt−2, yt−1)′ are the data between
time t + 1 − dt and t − 1 inclusive. If dt = 1, which means a break happens, we have
the first subscript (t) less than the second subscript (t − 1). In this case, Xt+1−dt,t−1

and Yt+1−dt,t−1 are empty sets and all the hat parameters (Φ̂, Ω̂, ν̂, Ŝ) is replace by the
prior parameters (Φ,Ω, ν, S).

The second term is obtained from step 2.

The predictive likelihood in the denominator, p(yt | π, It−1), is computed by summing
over all the values of the duration dt

p(yt | π, It−1) =
t∑

dt=1

p(yt | dt, It−1)p(dt | π, It−1). (14)

4. Iterate over step 2 and 3 until the last period T .

The backward sampler of the duration vector D is the following:

1. Sample the last period duration dT from the distribution dT | π, IT , which is obtained
from the last iteration of the forward-filtering step.

2. If dt > 1, then dt−1 = dt − 1.

3. If dt = 1, then sample dt−1 from the distribution dt−1 | It−1. This is because dt = 1
implies a structural change at time t. Hence, for any τ ≥ t, the data yτ is in a new
regime and independent of dt−1. The distribution dt−1 | dt = 1, π, IT is equivalent to
dt−1 | dt = 1, π, It−1.

4. Iterate step 2 and 3 until the first period t = 1.

After obtaining the durations D, simulating Θ from Θ | D, IT is simply done by using
the conjugacy property of (5) and (6). First convert D to a series of the aforementioned
regime indicators S = (s1, . . . , sT ). This is done by calculating the number of regimes K
and index the regimes by 1, . . . , K. Label s1 = 1 and st = 1 for t > 1 until at some time τ
with dτ = 1, which implies there is a break and the data is in a new regime. Then, set sτ =
2 at this break point. Iterate this labeling procedure until the last period with sT = K.

We know that a sample series of D and S are equivalent. The reason of introducing S is
to help the sampling of Θ looks more straightforward. Because Θ can only takes K possible
values implied by a sample path of S (K can be different for other sample paths of S), we
can define its distinct values as Θ∗ = (θ∗1, . . . , θ

∗
K). Because each θ∗i is independent from the

other θ∗j ’s, we can simulate each θ∗i only conditional on the data allocated to the ith regime
implied by S. In detail , θ∗i is randomly drawn from the following distribution.

Σ∗i ∼ IW(Si, νi) (15)

Φ∗i | Σ∗i ∼MN(Φi,Σ
∗
i ⊗ Ωi) (16)
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with Φi = Ωi(Ω
−1Φ + X∗

′
i Y

∗
i ),Ωi = (Ω−1 + X∗

′
i X

∗
i )−1, νi = ν + d∗i , and Si = S + Y ∗

′
i Y

∗
i +

Φ′Ω−1Φ − Φ
′
iΩ
−1

Φi. The data X∗i = (xt0 , . . . , xt1)′ and Y ∗i = (yt0 , . . . , yt1)′, where st = i if
and only if t0 ≤ t ≤ t1, are the collection of xt and yt being allocated to the ith regime,
respectively. d∗i is the duration of the ith regime.

The above algorithm is based on a fixed break probability π. If we have a prior for π as a
beta distribution B(πa, πb), the conditional posterior of π is π | D ∼ B(πa+K−1, πb+T−K)
by conjugacy. This can be combined with the aforementioned method to form a Gibbs
sampler as follows:

1. Sample D,Θ | π, IT .

2. Sample π | D.

2.3 Hierarchical structural break model

The advantage of the non-hierarchical structural break model is that the estimation time is
almost negligible. We can estimate a model with one hundred variables in a few minutes
or even seconds. Section 2.4 proposes a reasonable conjugate prior to approximate the
Minnesota prior. For the application in Section 3, this prior works well both in terms of
marginal likelihood and predictive likelihood.

Meanwhile, the fast computational speed gives us the privilege to adventure more struc-
tures and exploit more information from the data. For a simple example, we can try thou-
sands of different priors for sensitivity check. In this paper, we pursue a more systematical
way by proposing a hierarchical structure to exploit the information across regimes. It is
also a natural solution to the prior robustness check and intrinsically more objective than
the Minnesota prior.

In the non-hierarchical model (10)-(12), the distinct parameters θ∗i ’s are drawn from an
pre-specified distribution Fθ. In this subsection, We propose to use these values to learn
Fθ instead of assuming it as exogenous. This can be translated to proposing a prior for
(Φ,Ω, S, ν), which are the parameters of the distribution Fθ.

These priors are assumed as follows:

Ω ∼ IW(Ω0, ω0), (17)

Φ | Ω ∼MN(M0,Λ0 ⊗ Ω), (18)

S ∼W(S0, τ0), (19)

ν ∼ G(a0, b0)1(ν ≥ N + 2). (20)

The detailed MCMC procedure to draw the model parameters from the posterior distri-
bution is in the appendix. A simple list of steps is as the follows:

1. Sample D,Θ | π,Φ,Ω, S, ν, IT by using the joint sampler in the non-hierarchical model.

2. Sample π | D.

3. Sample Φ,Ω | D,Θ

4. Sample S | D,Θ, ν.
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5. Sample ν | D,Θ, S.

The path independence and conjugacy assumptions greatly facilitate the computation of
Step 1, so the MCMC algorithm can iterate for thousands of times to obtain the numeric
approximation for the posterior of the hierarchical parameters (Φ,Ω, S, ν).

2.4 Priors for the non-hierarchical model

The importance of the prior elicitation for multivariate Bayesian models has been addressed
by many papers. This is because a multivariate model usually involves many parameters.
A seemingly harmless prior may be very informative and severely distort the inference. The
worse part is that this kind of prior may be left unnoticed by the applicant. It is like a black
box, from which we try to avoid.

In this paper, the prior for the non-hierarchical model is made to approximate the Min-
nesota prior (Litterman (1986)) for a linear VAR model. Since our approach has a linear
representation for each regime, the Minnesota prior is a natural candidate for the non-
hierarchical model. Notice that the Minnesota prior is not a conjugate prior, nonetheless,
its essence can be captured in a systematical way by having the following properties.

1. An uninformative prior for the intercept φ0.

2. A stationary series has its regression coefficients centered around 0. Meanwhile, a
non-stationary series has its regression coefficients to approximate the random walk.

3. The prior for a distant lag is tighter than for a closer lag. In other words, the coefficients
of the regressors shrinks to zero as their lag length increases.

4. The volatility is calibrated by using the univariate series information.

In detail:

1. Φ:

It is the prior mean of the regression coefficient Φt’s. In the VAR framework, Φ can
be written as (φ

0
, φ

1
, . . . , φ

p
)′, where φ

0
is the prior mean of the intercept vectors and

φ
i

is the prior mean of the coefficient matrix for yt−i. We set Φ equal to 0 except

φ(ii)

1
, which is the coefficient of the first lag of the ith variable in the ith equation. For

example, if φ(11)

1
= 1, the prior mean implies the first variable y

(1)
t is a random walk

process, or y
(1)
t = y

(1)
t−1 + e

(1)
t .

Let φ(ii)

1
= 1 if the process is non-stationary and 0 otherwise. The judgement can be

done by using a formal statistical test or based on experience.

2. S and ν:

Estimate a univariate AR model for each variable to get the estimated residual variance
σ̂2
i for i = 1, . . . , N . Then, set the prior mean of Σ as diag(σ̂2

1, . . . , σ̂
2
N). Specifically,

S = (ν −N − 1)diag(σ̂2
1, . . . , σ̂

2
N)

11



ν = N + 2

The value of ν guarantees the existence of the second moment of yt. It is also necessary
for the numerical stability in the MCMC algorithm.

3. Ω:

We assume Var(φ
(ij)
k ) = γ

σ2
i

k2σ2
j
, where the superscript (ij) and subscript k means that

φ
(ij)
k is the coefficient of the kth lag of the jth variable in the ith equation. γ controls

the global tightness of the prior and k2 in the denominator shows the variance shrinks

towards 0 as the lag length increases. The ratio
σ2
i

σ2
j

is for normalization.

The matrix normal assumption implies Var(φ
(ij)
k ) = σ2

i Ω1+N(k−1)+j,1+N(k−1)+j. So we

set Ω1+N(k−1)+j,1+N(k−1)+j = γ 1
k2σ2

j
to meet the assumption of Var(φ

(ij)
k ) = γ

σ2
i

k2σ2
j
. The

M ×M matrix Ω is then given by

diag(100,
γ

σ2
1

, . . . ,
γ

σ2
N

,
γ

4σ2
1

, . . . ,
γ

4σ2
N

, . . . ,
γ

p2σ2
1

, . . . ,
γ

p2σ2
N

, )

or 

100 0 0 0 0 0 0 0 0
0 γ

σ2
1

0 0 0 0 0 0 0

0 0
. . . 0 0 0 0 0 0

0 0 0 γ
σ2
N

0 0 0 0 0

0 0 0 0 γ
4σ2

1
0 0 0 0

0 0 0 0 0
. . . 0 0 0

0 0 0 0 0 0 γ
4σ2
N

0 0

0 0 0 0 0 0 0
. . . 0

0 0 0 0 0 0 0 0 γ
p2σ2

N


The value of the top left element is set as 100 to imply Var(φ

(i)
0 ) = 100σ2

i , which reflects
an uninformative but appropriate prior.4

2.5 Priors for the hierarchical model

The prior for the hierarchial model is related to that of the non-hierarchical model in the
sense that the hierarchical prior is set to center around the non-hierarchical prior and can
be controlled to shrink towards it. The first feature is the hierarchical structure. It allows us
to estimate these hyper parameters instead of fixing them exogenously. Hence, we can learn
from the information across regimes. The second feature is shrinkage. This is necessary since

4It can be changed to a much larger value such as 1.0e10. For a linear model, it is equivalent to Carriero
et al. (2011) from the empirical point of view, but their approach needs a training sample because the prior
is inappropriate.
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we want the model to be parsimonious, especially in the multivariate framework. An over
dispersed prior may harm the forecasting or even contaminate the in-sample estimation.

In detail, the prior in (17) is set as

Ω0 = (ω0 −M − 1)Ωnon-hie,

ω0 = M + 2,

where Ωnon-hie is the pre-specified value of Ω in the non-hierarchical model. So we have
E(Ω) = Ωnon-hie. ω0 is chosen to be greater than or equal to M + 2 for numeric stability
in the MCMC algorithm. Increasing ω0 shrinks the prior of Ω towards the constant matrix
Ωnon-hie.

For the prior in (18), we assume

M0 = Φnon-hie,

Λ0 = λE(Σnon-hie),

where λ is a positive scalar representing the tightness of the prior for Φ. E(Σnon-hie) is
the prior mean of the covariance matrix Σ in the non-hierarchical model. This is similar
to the prior Φt in the non-hierarchical model except that it does not depend on Σt. The
reason is that we do not want the high dimensionality and different normalization of the
variables to bring us any unrealistic prior without our notice. In other words, we try to
avoid the aforementioned black box problem. The prior is obviously centered at Φnon-hie. As
λ decreases, it shrinks towards the value of the non-hierarchical model.

For the prior in (19), we set

S0 =
1

τ0

E(Σnon-hie),

where τ0 = N + 2, or any positive scalar ≥ N + 2. This prior has a mean of E(Σnon-hie). It
shrinks towards the mean as τ0 increases.

The last parameter ν in (20) has a truncated gamma distribution as ν ∼ G(νa, νb)1(ν ≥
N + 2). If νa → ∞ and νb

νa
→ some constant c, ν shrinks towards that constant. In the

application, we set νa = νb = 5.

3 Application to the U.S. economy

3.1 Basic Results

We apply our model to a system with 7 variables downloaded from CITIBASE. They are:
unemployment rate (UR), Core PCE (1200 × log difference of the level), nonfarm employ-
ment (1200 × log difference of the level), retail sales (1200 × log difference of the level),
housing starts level (100 × log difference of the level), industrial production index (1200 ×
log difference of the level), federal funds rate.5 There are 625 observations from 1959M02
to 2011M02. Summary statistics are shown in Table 1. We can notice that the variables
are normalized differently from the variance column. This is not a problem to us since it is
automatically corrected in the prior elicitation procedure.

5This is the same set of variables used in Carriero et al. (2011).

13



Table 1: 7-variable VAR: summary statistics

Mean Min Max Variance

UR 5.99 3.40 10.80 2.45
Core PCE 3.44 -6.74 12.29 5.80
Em 1.75 -10.44 14.74 7.93
Retail 3.18 -92.54 90.04 230.9
Housing -0.20 -29.15 31.22 62.22
IP 2.77 -50.71 71.98 101.3
FFR 5.70 0.11 19.10 11.76

The models used are the hierarchical SB-VAR(1) and the non-hierarchical SB-VAR(1),
where SB means structural break and VAR(1) means each regime has a VAR(1) represen-
tation.6 For the non-hierarchical model, we estimate two versions. The first one fixes the
structural break probability p = 0.01, while the second one estimates the p by assuming a
prior p ∼ B(1, 9) as a beta distribution. For the hierarchical SB-VAR(1) model, we estimate
three versions to investigate the effect of shrinkage in the multivariate setting with structural
instability. The first and the second assumes a tight (λ = 0.1), a loose (λ = 1) and a black
box (Λ0 = I) prior for Φ. Linear VAR(p) models are applied as the benchmark models.

The model comparison is based on Kass and Raftery (1995). They suggest to compare

the model Mi and Mj by the log Bayes factors log(BFij), where BFij =
p(Y1,T |Mi)

p(Y1,T |Mj)
is the

ratio of the marginal likelihoods. A positive value of log(BFij) supports model Mi against
Mj. Quantitatively, Kass and Raftery (1995) consider the results barely worth a mention
for 0 ≤ log(BFij) < 1; positive for 1 ≤ log(BFij) < 3; strong for 3 ≤ log(BFij) < 5; and
very strong for log(BFij) ≥ 5.

Geweke and Amisano (2010) have shown the marginal likelihood can be written as the

product of one period ahead predictive likelihoods p(Y1,T ) =
T∏
t=1

p(yt | Y1,t−1). Hence the

marginal likelihood in essence is based on the out-of-sample forecasting. The model compar-
ison by the Bayes factor automatically penalize over parametrization and abides by Ockham’s
razor.

Three features are discovered in this application. First, we find structural instability
is an important feature for the U.S. macroeconomic variables, which is consistent with the
previous literature. Second, the volatility has a decreasing pattern in general and is in line
with the great moderation. Meanwhile, some volatility jumps exist. Lastly, our approach
find the number of regimes is different from most of the current models. Current model
either assume a small number of regimes (2 or 3) or structural change at each time (T ). We
find the best model supports more than 10 regimes, which is new to the multivariate analysis
of the U.S. economy.

Figure 1 plots the posterior probabilities of structural changes implied by the non-
hierarchical model.7 It shows a visible structural change at 1987M03 and some evidence

6The first data point is truncated as the regressor.
7The two versions of the non-hierarchical models produce similar figures. We produce the figure generated

14



0.
0

0.
1

0.
2

0.
3

0.
4

br
ea

k 
pr

ob

196109 196611 197202 197704 198206 198709 199211 199802 200304 200806

Figure 1: 7-variable VAR, non-hierarchical model: break probability

of structural instability in the end of 1987 and early 1988.
To understand the structural change in the multivariate system. Figure 2 shows the

posterior mean of the volatility of each individual variable (σ
(i)
t =

√
Σ

(ii)
t , for i = 1, . . . , 7

and t = 1, . . . , T ). All variables are featured by a volatility decrease after the structural
change, which is consistent with the great moderation. However, the timing is different from
the current literature, which is considered to start in early 1980’s as in Kim and Nelson
(1999).

We report the results implied by the hierarchical model with the tight prior, which
is the optimal model in Table 2.8 Figure 3 shows the smoothed break probability over
time. The hierarchical model finds more than two regimes implied by the non-hierarchical
model. Define a break happens if the posterior break probability p(dt = 1 | IT ) > 0.5, the
model identifies 1960M06, 1979M10, 1982M12 and 2009M01 as the change-points. If using
p(dt = 1 | IT ) > 0.2 as the criteria of the structural change, 1979M09, 1984M03, 1987M12,
1995M05, 2001M01, 2001M11, 2007M12 and 2009M11 can also be considered as change-
points. This finding of is consistent with Koop and Potter (2007) in their univariate analysis
of U.S. GDP growth and inflation data.

Figure 4 plots the posterior mean of φ
(ii)
1,t over time. It represents the average effect of

the first lag of the variable on itself. The unemployment rate (UR) and the federal fund
rate (FFR) is very persistent for most of the time, while the rest of the variables are mean
reverting.

by the model in which p is estimated.
8All three versions of the hierarchical structural break models produce similar posterior mean of the

time-varying parameters.
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Figure 2: 7-variable VAR, non-hierarchical model: volatility
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Figure 3: 7-variable VAR, hierarchical model: break probability
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Figure 5 plots the posterior mean of the volatility σ
(i)
t over time. All variables except

Core PCE have a trend of decreasing volatility over time. And we have identified late 1979
as structural change points. Meanwhile, these dynamics are not exact the same as implied
by the great moderation, because heterogeneous dynamics exist for these macroeconomic
variables. For example, some variables such as the unemployment rate and the federal fund
rate had their volatility increased instead of decreased after the 1979 break. The retail
sales decreased its volatility after 1979, but after 1984M03 the volatility jumped up. The
industrial production has its volatility decreased after early 80’s, however, a volatility uproar
appeared during the most recent financial crisis.
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Figure 4: 7-variable VAR, hierarchical model: AR(1) coefficient

Table 2 shows the marginal likelihoods for model comparison. Structural break models
outperform the linear models strongly. The log Bayes factor between the worst structural
break model (-9568.1) and the best linear model (−9643.5) is 75.4, which is a very strong
evidence supporting the structural break model. Among the structural break models, the
best is the hierarchical model with a tight prior on the mean of the regression coefficients Φ.
The hierarchical model with the loose prior or the black box prior for Φ has similar perfor-
mance to both non-hierarchical models. The application confirms the power of hierarchical
structure and shrinkage in terms of forecasting.

Table 3 shows the predictive likelihoods and the predictive means for the last 10 years
of the sample. The first panel is the predictive likelihoods. It shows that the hierarchical
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Figure 5: 7-variable VAR, hierarchical model: volatility
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Table 2: 7-variable VAR, Log marginal likelihood

Marginal likelihood

VAR(1) -9768.1
VAR(2) -9650.8
VAR(3) -9643.5
VAR(4) -9660.4

Non-hierarchical SB-VAR(1): p = 0.01 -9567.4
Non-hierarchical SB-VAR(1) -9568.1
Hierarchical SB-VAR(1): Λ0 = I -9564.0
Hierarchical SB-VAR(1): Λ0 = E(Σnon-hie) -9569.9
Hierarchical SB-VAR(1): Λ0 = 0.1E(Σnon-hie) -9531.0

structural break models perform better than the non-hierarchical structural break models and
the linear models. The ability of learning for the hierarchical structure shows its advantage
after a training sample. In the second panel, each row represents the root mean squared
error of the mean forecasts. The best mean forecast is represented by the bold font. Not
as the linear models, the hierarchical structural break models always provide a reasonable
mean forecasting. For every variable, the hierarchical SB-VAR(1) models do not perform
the worst in predictive means.

Table 3: 7-variable VAR, Predictive Likelihood and RMSE

PL UR Core PCE Nonfarm Em Retail Housing IP FFR

VAR(1) -1783.7 0.149 1.667 2.060 14.398 7.489 9.059 0.202
VAR(2) -1760.9 0.144 1.637 1.687 14.315 7.982 8.834 0.186
VAR(3) -1756.1 0.144 1.569 1.604 14.388 8.156 8.715 0.196
VAR(4) -1755.6 0.146 1.530 1.579 14.276 8.045 8.800 0.209

SB-VAR(1): Non-hie p = 0.01 -1714.2 0.148 2.795 1.315 19.146 7.239 12.199 0.198
SB-VAR(1): Non-hie -1707.2 0.148 2.775 1.331 18.913 7.333 11.369 0.190
SB-VAR(1): Λ0 = I -1695.5 0.149 2.635 1.392 18.533 7.349 10.829 0.191
SB-VAR(1): λ = 1 -1719.8 0.156 2.911 1.332 19.364 7.269 12.694 0.218

SB-VAR(1): λ = 0.1 -1696.5 0.148 2.636 1.381 18.767 7.402 10.811 0.190

Forecast the last 10 year.

3.2 Model Selection

Maheu and Song (2012) proposed a univariate model by using this methodology and applied
it to Canada inflation forecasting. They found adding more lags can not improve out-
of-sample forecasts if the structural instability is controlled for. This section investigates
whether this is true in our multivariate application.
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Table 4 shows that the marginal likelihood are strongly improved by moving from VAR(1)
to VAR(2) in each regime. The best model is the hierarchial SB-VAR(2) with the tight priors.

This is also supported by the predictive likelihoods of the last 10 years in Table 5. The
difference is that when the prior is very tight λ = 0.01, it performs better in the beginning
of the sample because of the shrinkage. Meanwhile, setting λ = 0.1 provides a more flexible
learning ability.

Table 4: 7-variable VAR, Log marginal likelihood

Marginal likelihood

Non-hierarchical SB-VAR(1): p = 0.01 -9567.4
Non-hierarchical SB-VAR(2): p = 0.01 -9505.9
Non-hierarchical SB-VAR(3): p = 0.01 -9537.5
Non-hierarchical SB-VAR(4): p = 0.01 -9577.7

Non-hierarchical SB-VAR(1) -9568.1
Non-hierarchical SB-VAR(2) -9503.9
Non-hierarchical SB-VAR(3) -9535.5
Non-hierarchical SB-VAR(4) -9575.8

Hierarchical SB-VAR(1): Λ0 = I -9564.0
Hierarchical SB-VAR(1): Λ0 = E(Σnon-hie) -9569.9
Hierarchical SB-VAR(1): Λ0 = 0.1E(Σnon-hie) -9531.0
Hierarchical SB-VAR(1): Λ0 = 0.01E(Σnon-hie) -9520.0

Hierarchical SB-VAR(2): Λ0 = I -9492.3
Hierarchical SB-VAR(2): Λ0 = E(Σnon-hie) -9494.5
Hierarchical SB-VAR(2): Λ0 = 0.1E(Σnon-hie) -9445.1
Hierarchical SB-VAR(2): Λ0 = 0.01E(Σnon-hie) -9433.9

Figure 6 and 7 plots the structural break probabilities and he posterior means of the
volatilities over time. We can see that the hierarchical SB-VAR(2) identifies more break
points than the non-hierarchical SB-VAR(1) but less than the hierarchical SB-VAR(1). One
major break point at 1987 is the same as in Figure 1. And we can see the volatilities
decrease after that period for all variables. Meanwhile, A structural change is consistent
with the recent financial crisis.

4 Conclusion

This paper develops a new efficient approach for multivariate time series data modeling
and forecasting in the presence of an unknown number of change-points. The predictive
density has a closed form by assuming conjugate priors for the parameters which characterize
each regime. A Markov chain Monte Carlo method takes advantage of the conjugacy to
integrate out the parameters which characterize each regime, treat the regime duration as a
state variable and simulate the regime allocation of the data from its posterior distribution
efficiently.
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Figure 6: 7-variable VAR(2), hierarchical model: break probability
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Figure 7: 7-variable VAR(2), hierarchical model: volatility
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Table 5: 7-variable VAR, Predictive Likelihood and RMSE

PL UR Core PCE Nonfarm Em Retail Housing IP FFR

SB-VAR(1): Non-hie p = 0.01 -1714.2 0.148 2.795 1.315 19.146 7.239 12.199 0.198
SB-VAR(2): Non-hie p = 0.01 -1691.4 0.140 2.669 1.164 17.972 7.611 10.070 0.177
SB-VAR(3): Non-hie p = 0.01 -1704.1 0.144 2.682 1.139 18.332 7.761 9.747 0.176
SB-VAR(4): Non-hie p = 0.01 -1714.4 0.144 2.597 1.236 17.314 7.864 9.519 0.174

SB-VAR(1): Non-hie -1707.2 0.148 2.775 1.331 18.913 7.333 11.369 0.190
SB-VAR(2): Non-hie -1685.8 0.140 2.642 1.158 17.945 7.649 9.209 0.172
SB-VAR(3): Non-hie -1700.3 0.144 2.682 1.135 18.469 7.847 9.110 0.173
SB-VAR(4): Non-hie -1716.0 0.144 2.630 1.247 17.479 7.919 9.129 0.172

SB-VAR(1): Λ0 = I -1695.5 0.149 2.635 1.392 18.533 7.349 10.829 0.191
SB-VAR(1): λ = 1 -1719.8 0.156 2.911 1.332 19.364 7.269 12.694 0.218

SB-VAR(1): λ = 0.1 -1696.5 0.148 2.636 1.381 18.767 7.402 10.811 0.190
SB-VAR(1): λ = 0.01 -1721.5 0.153 2.897 1.358 19.771 7.312 13.342 0.220

SB-VAR(2): Λ0 = I -1689.7 0.140 2.794 1.171 18.139 7.678 9.327 0.179
SB-VAR(2): λ = 1 -1692.4 0.140 2.750 1.200 18.140 7.723 8.759 0.172

SB-VAR(2): λ = 0.1 -1682.2 0.140 2.806 1.183 18.978 7.655 9.802 0.172
SB-VAR(2): λ = 0.01 -1698.7 0.143 2.750 1.200 18.839 7.679 11.220 0.192

Forecast the last 10 year.

Two priors are proposed for model estimation. The first prior is non-hierarchical and
approximates the Minnesota prior. Its advantage is the super fast computationally speed.
The second prior assumes a hierarchical structure to exploit the information across regimes
and a control over shrinkage for parsimony.

The new approach is applied to 7 U.S. macroeconomic time series. The structural break
models strongly dominate the linear alternatives. The best model is the one with the hier-
archical prior and tighter shrinkage. It identifies more regimes than what has been implied
by the existing literature. A general trend of volatility decrease is consistent with the great
moderation. However, we find heterogeneous dynamics with infrequent volatility jumps for
different variables.
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A Inverse Wishart - Matrix Normal prior

1. Σ:

The error covariance matrix Σ has a Inverse-Wishart distribution. Its prior mean is

E(Σ) =
S

ν −N − 1

The variance of each element

V ar(Σij) =
(ν −N + 1)S2

ij + (ν −N − 1)SiiSjj
(ν −N)(ν −N − 1)2(ν −N − 3)

Its density function is given by

p(Σ) =
|S|ν/2|Σ|−(ν+N+1)/2etr{−1

2
SΣ−1}

2νN/2ΓN(ν/2)

Γp is multivariate gamma function, which isΓp(a) =
∫
S>0

etr{−S}|S|a−(p+1)/2dS where

S > 0 means S is p×p positive definite matrix, or Γp(a) = πp(p−1)/4
∏p

j=1 Γ(a+(1−j)/2)

A special case is when N = 1. Then Σ = σ2 as a scalar and

p(σ2) =
sν/2(σ2)−ν/2−1 exp{− s

2
σ−2}

2ν/2Γ(ν/2)
.

So σ2 has an inverse-gamma distribution with a shape parameter ν/2 and a scale

parameter s
2
. The mean and the variance of the σ2 equal to s

ν−2
and 2s2

(ν−2)2(ν−4)
,

respectively.

The precision matrix P , which is the inverse of the covariance matrix Σ, has a Wishart
distribution W (P , ν), where P = S−1. It has density

p(P ) =
|P |−ν/2|P |(ν−N−1)/2etr{−1

2
P−1P}

2νN/2ΓN(ν/2)

A special case is when N = 1, then P = σ−2 has a gamma distribution with

p(σ−2) =
sν/2(σ−2)ν/2−1 exp{− s

2
σ−2}

2ν/2Γ(ν/2)
.

The mean and variance of σ−2 are ν
s

and 2ν
s2

.

2. Φ:

The regression coefficient matrix Φ has a matrix normal distribution. Each column of
Φ, Φ.j, is the regression coefficients for the jth equation and has a multivariate normal
distribution

Φ.j | Σ ∼ N(Φ.j,ΣjjΩ)
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Each row of Φ, Φi., is the coefficients of impact from the same source across equations.

Φi. | Σ ∼ N(Φi.,ΣΩii)

The density function is

p(Φ | Σ) =
etr{−1

2
Σ−1(Φ− Φ)′Ω−1(Φ− Φ)}

(2π)MN/2|Σ|M/2|Ω|N/2

B Sample from a matrix Gaussian

For Φ | Σ ∼ MN(Φ,Σ ⊗ Ω), to generate a sample of Φ, first get lower triangular matrices
Σ1/2 and Ω1/2 through Cholesky decomposition. Then, generate C ∼ MN(0, I ⊗ I). Φ is
generated from

Φ = Ω1/2CΣ1/2′,

since vec(Ω1/2CΣ1/2′) = Σ1/2 ⊗ Ω1/2vec(C). So the variance of vec(C) is Σ1/2 ⊗ Ω1/2(Σ1/2 ⊗
Ω1/2)′ = Σ1/2 ⊗ Ω1/2(Σ1/2′ ⊗ Ω1/2′) = (Σ1/2Σ1/2′)⊗ (Ω1/2Ω1/2′) = Σ⊗ Ω

C Sample from an Inverse-Wishart distribution

Generate Σ from a Inverse-Wishart, IW (S, ν), by

Σ = S1/2C−1S1/2′

where S1/2 is the lower triangular matrix from the Cholesky decomposition of S and C is
drawn from a Wishart W (I, ν).

D Sample the hierarchical prior

1. Φ and Ω:

The prior is matrix normal and inverse-Wishart.

Ω ∼ IW (Ω0, ω0)

Φ | Ω ∼MN(M0,Λ0 ⊗ Ω)

The conditional posterior Φ,Ω | {Σi,Φi}Ki=1 is

Ω | {Σi,Φi}Ki=1 ∼ IW (Ω1, ω1)

Φ | Ω, {Σi,Φi}Ki=1 ∼MN(M1,Λ1 ⊗ Ω)

with

Ω1 = Ω0 +
K∑
i=1

ΦiΣ
−1
i Φ′i +M0Λ−1

0 M ′
0 −M1Λ−1

1 M ′
1

26



ω1 = ω0 +KN

M1 = (M0Λ−1
0 +

K∑
i=1

ΦiΣ
−1
i )Λ1

Λ1 = (Λ−1
0 +

K∑
i=1

Σ−1
i )−1

2. S:

The prior of S is a Wishart W (S0, τ0). The conditional posterior is also Wishart.

S | ν, {Σi}Ki=1 ∼ W (S1, τ1)

with

S−1
1 = S−1

0 +
K∑
i=1

Σ−1
i

τ1 = τ0 +Kν

3. ν:

The prior is a Gamma G(a0, b0). The conditional posterior has no convenient form.

p(ν | S, {Σi}Ki=1) = pG(ν; a0, b0)
K∏
i=1

p(Σi | S, ν)

∝ pG(ν; a0, b0)
K∏
i=1

{
|S|ν/2

2νN/2ΓN(ν/2)
|Σi|−

ν+N+1
2

}

∝ νa0−1e−b0ν
|S|Kν/2

2KνN/2ΓKN (ν/2)

K∏
i=1

{
|Σi|−

ν+N+1
2

}
The log of the last equation (after discarding more constants) is

K log(|S|)− 2b0 −KN log(2)−
∑K

i=1 log(|Σi|)
2

ν−K log(ΓN(ν/2))+(a0−1) log(ν).

The sampling method of ν is a M-H step with a proposal distribution of

ν(i) ∼ G(ξ, ξ/ν(i−1))
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E Marginal likelihood

The marginal likelihood is calculated by using the bridge-sampling estimator in Frühwirth-
Schnatter (2004), Meng and Wong (1996).

p̂t(Y ) = p̂t−1(Y )

L−1
L∑
l=1

p̂(φ̃(l)|Y )

Lq(φ̃(l))+Mp̂(φ̃(l)|Y )

M−1
M∑
l=1

q(φ̃(m))

Lq(φ̃(m))+Mp̂(φ̃(m)|Y )

,

and

p̂(φ | Y ) =
p∗(φ | Y )

p̂t−1(Y )
=
p(Y | φ)p(φ)

p̂t−1(Y )

where φ represents the parameters of a model. φ(l)’s are simulated from an importance
density q; and φ(m)’s are the posterior samples from the MCMC sampler. The above two
procedures are iterated until convergence.

This method is from L−1
L∑
l=1

p̂(φ̃(l) | Y ) →
∫
p(φ | Y )q(φ)dφ and M−1

M∑
l=1

q(φ̃(m)) →∫
q(φ)p(φ | Y )dφ are equivalent. Frühwirth-Schnatter (2004) showed the mean-squared

error of log p̂(Y ) is approximated by

1

L

Vq

(
p(φ|Y )

ωq(φ)+(1−ω)p(φ|Y )

)
E2
q

(
p(φ|Y )

ωq(φ)+(1−ω)p(φ|Y )

) +
ρf (0)

M

Vp

(
q(φ)

ωq(φ)+(1−ω)p(φ|Y )

)
E2
p

(
q(φ)

ωq(φ)+(1−ω)p(φ|Y )

) ,
where ω = L

L+M
and ρf (0) is the normalized spectral density of f = q(φ)

ωq(φ)+(1−ω)p(φ|Y )
at

frequency 0.

ρ̂f (0) = 1 + 2
S∑
s=1

(
1− s

S + 1

)
rs

and

rs =
1

M

M∑
m=s+1

(f (m) − f)(f (m−s) − f)

s2
f

.

f and s2
f are the sample mean and sample variance of f .

For the MSB-LSV model, φ = (p,Φ,Ω, S, ν). The importance density for p is a beta
density implied by the posterior of mean of K, K̃. q(Ω) is inverse Wishart with parameters
Ω̃1, ω̃1, which are the posterior means of Ω1 and ω1. q(Φ | Ω) is matrix normal with parameter
M̃1, Λ̃1 which are the posterior means of M1 and Λ1. q(S) is a Wishart with parameters
S̃1, τ̃1, which are the posterior means of S1 and τ1. q(ν) is a gamma with mean and variance
matching the moments of the posterior.

q(p) = B(K̃ − 1, T − K̃)
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q(Ω) = IW(Ω̃1, ω̃1)

q(Φ | Ω) = MN(M̃1, Λ̃1 ⊗ Ω)

q(S) = W(S̃1, τ̃1)

q(ν) = G(ν̃a, ν̃b),

where ν̃a
ν̃b

and ν̃a
ν̃2
b

match the posterior mean and variance. So ν̃b = E(ν|Y )
V (ν|Y )

and ν̃a = E2(ν|Y )
V (ν|Y )
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