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Abstract

Dramatic changes in macroeconomic time series volatility pose a challenge to contempo-
rary vector autoregressive (VAR) forecasting models. Traditionally, the conditional volatility
of such models had been assumed constant over time or allowed for breaks across long time
periods. More recent work, however, has improved forecasts by allowing the conditional
volatility to be completely time variant by specifying the VAR innovation variance as a dis-
tinct discrete time process. For example, Clark (2011) specifies the volatility process as an
independent log random walk for each time series in the VAR. Unfortunately, there is no
empirical reason to believe that the VAR innovation volatility process of macroeconomic
growth series follow log random walks, nor that the volatility of each series is independent
of the others. This suggests that a more robust specification on the volatility process—one
that both accounts for co-persistence in conditional volatility across time series and exhibits
mean reverting behaviour—should improve density forecasts, especially over the long run
forecasting horizon. In this respect, I employ a latent Inverse-Wishart autoregressive stochas-
tic volatility specification on the conditional variance equation of a Bayesian VAR, with U.S.
macroeconomic time series data, in evaluating Bayesian forecast efficiency against a com-
peting log random walk specification by Clark (2011).

Keywords: Inverse Wishart distribution, stochastic volatility, predictive likelihoods, MCMC,
macroeconomic time series, density forecasts, vector autoregression, steady state priors,
Bayesian econometrics
JEL: C11, C32, C53, E17

1 Introduction
Forecasts of macroeconomic time series have become a ubiquitous component of any pol-

icymaker’s toolkit. As such, central banks like the Federal Reserve typically publish density
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forecasts for inflation, output, interest rates, or other major indicators. This information is im-
portant because it helps both industry and consumers make decisions consistent with economic
fundamentals. However, forecasts themselves are not infallible. In fact, while major advances
have been made in the area of statistical forecasting, there remains much room for improvement.

This paper resolves some of the relevant issues by proposing a key change in the volatility
process of VARs (vector autoregressions) popular among macroeconomists. Instead of assum-
ing cross-series independent log random walk processes on the volatilities of the VAR shocks,
I employ an Inverse-Wishart process where the scale matrix is an autoregressive process of past
covariance matrices (see the model section (3) for more details and a discussion of the pros
and cons of this change). Furthermore, as data I employ four major U.S. macroeconomic time-
series: GDP growth, the inflation rate, the interest rate, and unemployment rate.1 A Bayesian
approach is then taken in both estimation (MCMC estimation steps are provided) and in compar-
ing forecasts between the benchmark model (Clark (2011)) and my competing Inverse-Wishart
autoregressive volatility modification. Results suggest that incorporating the more sophisticated
Inverse-Wishart autoregressive volatility process improves density forecasts in both the short and
long run, with larger improvements seen as the horizon increases, despite a small sample size
and increased parameterization of the model. With this in mind, the following discussion aims to
provide a broader context surrounding the relevant forecasting issues precipitated this proposed
modification to the typical VAR process volatility specification.

1.1 Background
A fundamental issue facing the production of good forecasts has been that of how to deal

with the changing moments of the conditional forecast distributions. For example, dramatic
changes in U.S. economic volatility have posed a modeling challenge to contemporary forecast-
ers, specifically amongst macroeconomists where Gaussian vector autoregressive (VAR) models
are popular. An analysis of major U.S. economic indicators, such as output growth over the past
100 years, illustrates that the economy goes through periods of changing volatility. For exam-
ple, “The Great Moderation,” which began in the 1980’s, represented a period of unusually low
volatility vis a vis both the lengthy prior period of erratic volatility and more recent instability
we’ve experienced since 2007. In this respect, both Sims (2001) and Stock (2001) in separate
discussions of Cogley and Sargent’s (2001) paper, criticized their assumption of homoskedastic
VAR variances, pointing to evidence as described above and analyzed by Bernanke and Mihov
(1998a,1998b) (in the case of monetary policy shocks between 1979 and 1982), Kim and Nelson
(1999), or McConnell and Perez Quiros (2000) (with respect to the growing stability of output
around 1985). Finally, Clark (2011) also finds significant changes in conditional volatility across
time when estimating the latent stochastic volatilities of his model.

It should not come as a surprise then that while, traditionally, the volatility of forecasting
models was assumed constant over time—primarily for the sake of simplicity—it can be shown
that this assumption leads to poor conditional forecasts. For example, Jore, Mitchell, and Vahey
(2010) employ a model averaging approach to U.S. data, with both equal weights and recursively
adapted weights based on log predictive density scores across a range of different specifications.

1Note that the data is taken from the RTDSM database – the same dataset, in fact, as Clark (2011), my benchmark
comparison model (with the exception of the interest rate—see the data section below). Moreover, all data is at the
aggregate U.S. level. Finally the interest rate employed in my paper is the 3-month Federal Treasury Bill rate.
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Their results show strong support for a recursive weighting scheme across specifications. More
interestingly, however, they find that during periods of changing macroeconomic volatility, for
example when the US economy transitioned into “The Great Moderation”, the weighting scheme
tends to place more weight on specifications which dynamically account for structural breaks
in volatility. Moreover, they find evidence of poor forecasting given a simple assumption of
fixed volatility or equal weights across model specifications. However, it worth noting that the
specifications which do respond to structural change within Jore et. al’s (2010) framework are
limited in that they are restricted to a finite set of possible volatility states and breaks.

Consequently, it is important to account for changing volatility in any forecasting specifi-
cation. Furthermore, if such changes in volatility occurred relatively infrequently and could be
extracted from the data with reasonable statistical significance, then employing a regime switch-
ing specification such as in Jore et. al. (2010) might prove sufficient in drawing good forecasts.
However, the truth is that, given the complexity of the economy, changes in volatility probably
occur much more frequently and take on many more values than can be effectively captured by
a finite state model. For this reason forecasters have adopted a continuous state-space frame-
work for estimating the conditional volatility of VAR models as opposed to the finite state regime
switching type model applied to volatility, as popularized by Hamilton (1989), and employed
by Jore et. al (2010). Moreover, the use of the so called continuous state “stochastic volatility”
model has also grown in popularity given its usefulness in modeling a latent volatility process
based on a filtration that includes more than just lagged VAR series shocks, as for example in the
case of a GARCH model.2

Both Cogley & Sargent (2005) and Primiceri (2005) allow for time variation in the conditional
covariance matrix across VAR series shocks according to a stochastic volatility law of motion,
where the conditional volatility can take on any value in a continuous positive real set (and co-
variances can be any real number). Moreover, they also allow for time variation in the VAR
parameters themselves, through another stochastic volatility law of motion on their state across
time. Clark (2011), which will represent my benchmark model, also follows the same structure
of the previous two studies, albeit without the time varying VAR parameters which are dropped
in favour of tight Bayesian steady state priors on the deterministic trend parameters (which define
the unconditional mean of the VAR process) and a rolling sample window which re-estimates the
parameters across time. Villani (2009) showed that imposing Bayesian steady state prior dis-
tributions allow us to incorporate prior beliefs about macroeconomic variable steady states into
our model. Furthermore, I believe that employing this information probably reduces the need for
time varying VAR parameters since much of the time variation in the autoregressive parameters
(which is not due to a lack of time variation in the shock covariance, as was the case with Cog-
ley and Sargent (2001)), may in fact be due to a lack of a well defined deterministic trend (see
Cogley and Sargent (2005) where they model their VAR intercepts3 as stochastic random walks).
Moreover, it should be noted that given the quarterly nature of most macroeconomic time se-
ries, small sample sizes are usually the norm. In this situation a tight prior also plays the role
of constraining VAR parameters to aid in the identification of deterministic trends that might not
otherwise be readily apparent.4 In this respect, Villani (2009) also demonstrates that informative

2See also Sartore and Billio (2005) for a good, general, survey of Stochastic Volatility.
3Noting of course that given their formulation, the VAR long-run mean µt is both time varying, stochastic, and a

function of the VAR intercepts, αt, as µt = (I− Φt)
−1
αt.

4In Clark (2011) for example, his rolling sample window is only of size T = 80.
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steady state priors can greatly improve point forecasts, especially over the longer term horizon
where correct specification of the unconditional mean of the series is important—see Clements
and Hendry (1998). All of this of course assumes that our prior beliefs on the deterministic nature
of the time series trends are correct. In fact, whether or not the trends in macroeconomic data are
better modeled as stochastic (i.e. unit roots with drift) or deterministic is still an open question
of debate.

However, most of these studies adopt certain features which could still be improved upon. For
one, they all employ cross-series independent specifications of the individual volatility processes
of each time-series. Therefore, the latent time-varying covariance matrices are constrained to
be diagonal. This is done in order to reduce the parameterization of the model but I believe
it severely limits the richness of the volatility dynamics since in order to generate conditional
covariance matrices, some form of deterministic relationship must be drawn upon the diagonal
covariance matrix, usually by pre-multiplying it by a lower triangular matrix. Therefore, the
covariance between series is driven directly by some linear function of the variances and this
relationship between variances and covariances does not depend on time.

Furthermore, all of the aforementioned studies employ a random walk formulation for the
conditional volatility. The reason for this choice of specification is not entirely clear since an
analysis of U.S. quarterly output growth suggests a great deal of autoregressive volatility per-
sistence, as do other indicators such as inflation or the unemployment rate. Moreover, without
explicitly parameterizing time ′t′ covariances across series it is left unknown whether these series
exhibit volatility spillovers across time as has been shown to be the case with financial time series
from U.S. markets (see for example, Diebold and Yilmaz, (2007)). Furthermore, studies such as
Cogley and Sargent (2005) seem to provide little explicit justification for this choice other than
a brief comment that “the random walk specification is designed for permanent shifts in the in-
novation variance, such as those emphasized in the literature on the growing stability of the U.S.
economy.” Ultimately, if a random walk is mispecified and there does in fact exist co-persistence
in the conditional volatility across macroeconomic time series, then a Wishart autoregressive
process should capture this and allow us to extend our forecasts more accurately across longer
horizons where the random walk specification would otherwise suggest an explosive volatility
process.

Given this, the multivariate volatility process should be constructed to directly model the time
varying covariance matrices without simply extending the univariate specification ad hoc to the
multivariate case. Moroever, any autoregressive persistence in volatility should be captured and
a finite unconditional mean should be specified. As described in Chib, Omori, and Asai (2009),
one natural extension to the multivariate stochastic volatility framework involves modeling the
time varying covariance matrices directly as a Wishart autoregressive process, since the scatter
matrix5 itself is a natural estimator of the covariance of multivariate Normal random variables.

5Given n samples of m-dimensional data, represented as the m × n matrix X = [x1, x2, . . . , xn] the scatter
matrix is the nxn positive semi-definite matrix defined as:

S =
∑n
j=1 (xj − xµ) (xj − xµ)

T

Or equivalently as:

S = XCnXT

where Cn is the n× n centering matrix and xµ is the sample mean across the n samples of dimension m.
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In fact, Philipov and Glickman (2006) apply such an autoregressive Wishart process to analyze
the conditional volatility of financial data and find that it improves volatility forecasts over sim-
pler formulations, where a number of Bayesian and Frequentist measures are applied to compare
forecast accuracy given a variety of competing specifications. It is worth noting, however, that
there exist problems with the Philipov and Glickman (2006) implementation of the Wishart au-
toregressive volatility process as it stands—see Rinnergschwentner et. al (2011) for more details
and quite a few corrections. Therefore, in light of Phillipov and Glickman’s idea of direct Wishart
modeling, I form my Inverse Wishart autoregressive volatility process by accounting for some of
the weaknesses in their specification—see the model estimation section below for more details.

The rest of the paper is organized as follows. Section 2 discusses the data and deterministic
trend methods employed in generating forecasts. Section 3 discusses both the benchmark model
based on Clark (2011) and the proposed Inverse Wishart process modification based on Philipov
and Glickman (2006). Moreover, this section discusses the Gibbs sampler Markov Chain Monte
Carlo (MCMC) estimation technique employed to estimate both models. Section 4 details the
steady state and other conjugate priors I employ within the Bayesian framework to sample from
conditionally conjugate posterior densities of the model parameters. Section 5 discusses the
method whereby I generate forecast densities for both the VAR data and covariance matrices
across various horizons. Section 6 details the results of both the estimation process and the
forecast comparisons based on Bayesian analysis of the predictive likelihoods. Finally, Section 7
summarizes and concludes.

2 Data
The VAR model will involve at most four macroeconomic time series generated from aggre-

gate U.S. data: 1) output growth (i.e. real GDP) 2) the inflation rate 3) the unemployment rate
and 4) some form of interest rate.

The data source considered is the same as in Clark (2011): the so-called “real-time” 6 data
from the Federal Reserve Bank of Philadelphia’s Real-Time Data Set for Macroeconomics (or
“RTDSM”). The total sample size is quite small: only T = 252 data points extending from the
2nd quarter of 1948 (hereon denoted as 1948:Q2) until the 1st quarter of 2011. Output from the
RTDSM database is quarterly real data and measured as either GDP or GNP depending on the
data vintage.7 Inflation from the RTDSM is also measured quarterly and as either a GDP or
GNP deflator or a price index, depending on the vintage. I measure growth and inflation rates
as annualized log changes.8 The unemployment rate, however, is available on a monthly basis
so I simply average across each quarter in matching the quarterly nature of output and inflation.
Moreover, it should be noted that the unemployment rate tends to differ much less dramatically
across vintages. Finally, while Clark (2011) employs the federal funds interest rate series, Prim-
iceri (2005) recommends the nominal annualized yield on 3-month Federal Treasury Bills, since
this series goes back much further. I therefore adopt the latter series, and again, average across

6That is data that is regenerated annually to conform to new changes in the way we measure macroeconomic in-
dicators, or to take into account flaws in some previous set, observed ex-post. Each new issue is deemed a “vintage.”

7The RTDSM generates entirely new time series each quarter (deemed “vintages”) based on updated chain
weighting techniques or other improvements. Thus newer vintages represent larger samples than older ones which
were generated at previous dates.

8Since log differences are already continuously compounded, I simply multiply each quarterly value by 4.
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quarters since the data is monthly.9 Finally, output, inflation, and the unemployment rate are
already seasonally adjusted by their source providers.

Clark and McCracken (2008,2010) also provide evidence that point forecasts of GDP growth,
inflation, and interest rates are improved by specifying the latter two series as deviations from
some form of deterministic trend simulating inflation expectations. Given this result Clark (2011)
adopts the Blue Chip Consensus forecast produced from survey data and published by Aspen
Publishers Ltd., as a form of long-term inflations expectations. Unfortunately, as Clark mentions
in his online appendix, the data for this Blue Chip forecast of inflation expectations only extends
back to the fourth quarter of 1979 (i.e. 1979:Q4). Therefore, Clark appends an exponentially
smoothed trend from his inflation series to be beginning of the Blue Chip series in extending
it back to 1964. Clark mentions that despite his attempts at keeping the data “as real time as
possible” by employing every quarterly vintage of inflation data, in the end a trend based on his
most recent vintage (2008:Q4) deviates little from the others. Moreover, as Clark notes, Kozicki
and Tinsley (2001a,2001b) and Clark and McCracken (2008), both suggest that exponentially
smoothed trends of the inflation rate match up reasonably well with survey-based measures of
long-run expectations in the data since the early 1980’s. Given both of these facts, I will simply
employ an exponentially smoothed trend of the inflation rate through the most recent vintage
currently available (2011:Q4) in generating a long-term inflations expectations series, skipping
the Blue Chip survey data entirely and ignoring the previous vintages of inflation data.10

Citing studies such as Romer and Romer (2000), Sims (2002), and Croushore (2006), Clark
(2011) also suggests that since the nature of how we measure macroeconomic aggregates has
changed over time, GDP data available today, for example, is quite different than output as de-
fined and measured in 1970. Unfortunately, this reality of data generation presents us with a
difficult choice as to which vintage to use for forecasting comparisons. In this respect, Clark
follows Romer and Romer (2000) in that when making out of sample forecast comparisons (from
older vintages of smaller sample size), the forecast error should be based off of a newer vintage of
data than that which generated the forecast. However, for simplicity, in my rolling sample fore-
cast comparisons, I will simply employ the newest vintage of data since the focus of this paper
is on a relative comparison across model specifications and not on absolute forecast efficiency
(which could depend on data vintages employed). Moreover, I believe that given the small sam-
ple sizes available for the macroeconomic data in question, a trade off needs to be made between
estimation sample size and out of sample forecast comparison. Therefore, the larger is the total
sample size, the more flexibility is permitted in choosing our rolling window estimation size (to
account for parameter drift) and out of sample comparisons given longer forecast horizons.

Finally, it should be mentioned that the unemployment rate series is also de-trended by an
exponential smoother (in the same way the inflation rate was de-trended in order to generate
the long-run inflation expectations (see footnote 10)). Therefore, to summarize, GDP growth
is not de-trended (although I center it around a long run constant mean of 3.0% through the

9The 3-month Federal Treasury bill rate series employed is a combination of two very similar series joined
together at June 2000, since the first vintage was discontinued. “H15/discontinued/H1.RIFSGFPIM03 N.M” is
the unique ID for the discontinued series and “H15/H15/RIFLGFCM03 N.M” is the newer series. Both series are
available at the Federal Reserve website: http://www.federalreserve.gov/releases/h15/data.htm.

10The exponential smoother employed is as follows: y∗t = y∗t−1 +α(yt − y∗t−1), where yt is the actual data series
and y∗t is the exponentially smoothed trend. α is a parameter which can be adjusted depending on how “tight” we
want the trend to follow the data series. For the inflation rate trend used as long-term inflation expectations, Clark
suggests a value of α = 0.05.

6



prior on Ψ), unemployment is de-trended around its exponentially smoothed values lagged one
period (with a smoothing parameter of α = 0.02), the inflation rate is de-trended around its
exponentially smoothed trend (with a smoothing parameter of α = 0.05), and the interest rate
(3-month Treasury bill) is de-trended around the same trend as inflation (which is supposed to
simulate long-term inflation expectations), although I force a long run constant mean of 2.5%
above trend through the prior on Ψ. See the model and estimation section for more details as to
how these trends are implemented into the model through the Ψ and dt terms.

3 Model specifications
The benchmark model is the BVAR-SSP-SV specification referred to in Clark (2011). This

model employs a Bayesian V AR(J) formulation for the multivariate mean equation and separate
univariate log random walks with Normal shocks as the volatility processes for each macroeco-
nomic series. Since the volatility shocks are uncorrelated, all of the covariance structure across
macroeconomic series are driven by a deterministic lower-triangular matrix, B. See the “bench-
mark model” below for the mean and volatility equations.

Moreover, the model employs informative “Steady-State priors” on the parameters of the
steady state variables dt as in Villani (2009). Note that the V AR(J) is specified in what Villani
(2009) refers to as “Steady-State” form—that is the p×1 macroeconomic time series vector yt is
differenced from its time-varying unconditional mean µt = Ψdt, where Ψ is a p× q coefficient
matrix and dt is a q×1 vector of deterministic trends.11 This will be important when we consider
the role Bayesian steady-state priors play in identifying the deterministic trend coefficients of the
VAR. See the section on priors for more details.

3.1 Benchmark model
In summary, I refer to this benchmark model as the Clark specification:

Π (L) (yt −Ψdt) = νt

νt=B−1Λ0.5
t εt s.t. εt ∼MVNp (0, Ip)

Λt=diag(λ1,t, λ2,t, . . . , λp,t)

ln (λi,t) = ln (λi,t−1) + ξi,t ∀i = 1, . . . , p

ξi,t ∼ i.i.d.N(0, ϕi)

and Π (L) = Ip−
J∑
j=1

ΠjL
j where L is the lag operator.

11Note that the choice of values for dt can have dramatic consequences. For example, if dt = 1,∀t, i.e. takes
on a single constant value for all time periods, then Ψ is a vector of regression constants, the values of which
determine the time invariant long-run means of the autoregressive processes. However, if for example, dt = t, then
the values in the vector Ψ measure individual responses to a linear time-trend relationship shared by yt. Moreover,
if dt = [t, f(t)], where f(t) is perhaps some non-linear function of t, then Ψ becomes a matrix, the elements of
which reflect how the time-varying long-run means of each process are expressed as a linear combination of both the
linear-trend and the non-linear one simultaneously. Given this model flexibility, we can incorporate an exponential
smoother as one possible method to de-trend the relevant macroeconomic series in a non-linear fashion. See the data
section for more details.
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3.2 Alternative volatility process specification
As an alternative to the Clark log random walk volatility specification, I propose augmenting

the volatility process to incorporate any persistence in (co)variation across time through the use
of a multivariate Inverse Wishart specification (here on referred to as the InvWishart(K)). This
formulation would eliminate the need for a B matrix since the covariance matrices across time
are estimated directly in the hopes of capturing richer dynamics than the simple random walk can
generate. While the random walk presumes that the series covariances are both constant across
time and generated through the B matrix, the InvWishart(K) estimates the latent covariance
matrices directly for each time ’t’. Moreover, the Inverse Wishart process is assumed to be
autoregressive and includes a constant matrix CCT which defines a finite long-run mean under
suitable stationarity conditions (discussed below).

In summary, the InvWishart(K) as follows represents a modification of the autoregressive
Wishart specification employed in Philipov and Glickman (2006):

νt|Σt ∼ MVNp(0,Σt)

Σt|Σt−1, . . . ,Σt−K ∼ IWp(v,St−1)

St−1=

(
CCT +

K∑
k=1

AkΣt−kAT
k

)
(v − p− 1)

E [Σt | Σt−1, . . . ,Σt−K] =
St−1

v − p− 1
= CCT +

K∑
k=1

AkΣt−kAT
k

V ar [σij,t | Σt−1, . . . ,Σt−K] =
(v − p+ 1) s2

ij,t−1 + (v − p− 1) sii,t−1sij,t−1

(v − p)(v − p− 1)2(v − p− 3)

where σij is the ijth element of Σt and sij,t−1 is the ijth element of St−1.12

Note that in this case C is lower triangular and the Ai’s are not necessarily symmetric or
positive-definite. However, given that CCT is positive-definite, then the scale matrix St is sym-
metric and almost surely positive-definite. Moreover, the model is identified if the main diagonal
of C and the top-left element of each Ai is strictly positive (see Engle and Kroner (1995)).

Note also that both volatility processes (i.e. either the Clark or InvWishart(K)) are cou-
pled to the V AR(J) process for the conditional mean of the macroeconomic time series, and
together constitute a state-space representation with the V AR(J) as observation equation and
the InvWishart(K) or Clark as the state equation, with the covariance as the “state” of the
model.

In summary the improvements of such a change to the volatility process are as follows:

1. The direct estimation of the latent stochastic volatility covariance process precludes the
need to estimate a B matrix and should capture more richly any existing co-persistence
between macroeconomic series volatility across time.

2. The inclusion of autoregressive parameter matrices Ai avoids the curious assumption of a
unit-root in the volatility processes of each series.

12See S.J. Press (1982).
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3. The inclusion of the constant matrix CCT allows for a finite unconditional mean of the
multivariate volatility process (the unconditional mean will be some symmetric positive-
definite matrix).

4. Both (2) & (3) above should prove critical in resolving a major issue with the log random
walk volatility specification—that of poor long-term density forecasts—since no longer
will the forecasts “blow up” as the horizon increases, but rather should revert to a finite
long-run mean given suitable stationarity conditions being satisfied.

However, there are some disadvantages as well:

1. The direct estimation of the latent stochastic volatility covariance process increases the
number of latent parameters from Tp to Tp(p + 1)/2, raising the curse of dimensionality
as an issue quickly as p increases. Moreover, the number of regular parameters goes from
p(p−1)

2
+ p to p(p+1)

2
+ Kp2 + 1, although in this latter case many possible reparameteriza-

tions are possible to reduce the number of regular parameters the InvWishart(K) must
estimate.

2. Since conditionally conjugate priors are unknown at this point for the conditional posterior
densities of the InvWishart(K) regular parameters, a Metropolis-Hastings random walk
sampler is employed. This additional Metropolis-Within-Gibbs step requires some extra
work to obtain reasonable draws.

Finally, both specifications suffer from the fact that they estimate the latent stochastic volatil-
ity processes sequentially rather than jointly. Clearly, if the volatility Σt is relatively correlated
across time, joint sampling would reduce autocorrelation in the Markov process, since a condi-
tional sampler will not propose draws sufficiently far from the previous value to be independent.
In other words the sampler will fail to traverse the full parameter support in a reasonable amount
of steps due to low variance of the conditional posterior. See Greenburg (2008) pg. 94 for a
simple example illustrating the problem.

As in Philipov and Glickman (2006) the volatility autoregression of the InvWishart(K)
is defined directly on the scale matrix, St, of the Inverse Wishart process. It should be noted,
however, that this is not the only way to go about modeling the volatility in general. In fact, the
literature suggests a number of different approaches.

One alternative is to place the autoregression on the underlying centrality parameter of the
Wishart process such as in Gourieroux et. al. (2009). Recall that if Xi = [xi,1, xi,2, . . . , xi,p] is
an independent draw from a p-variate multivariate Normal distribution MVNp(0,Σ), then the
matrix A = XTX =

∑n
i=1 X

T
i Xi, with n rows made up of Xi’s, has the Wishart distribution

denoted A ∼ Wp(n,Σ). However, in this case the centrality parameter is implicitly zero and we
have thatXi = 0+Σ1/2εwhere ε ∼ MVNp(0, Ip). Gourieroux et. al. (2009) propose rather that
if Xi depends on time so that we have Xi,t = MXi,t−1 + εt, then At = XT

t Xt ∼ Wp(n,M,Σ)
where M is the p × p centrality matrix. Therefore, in my model the emphasis is on updating
the scale parameter through past covariance matrix estimates Σt, since I assume that the time ′t′

V AR(j) shocks have zero mean and are uncorrelated (i.e. M=0) but that their variance changes
over time (i.e. νi,t ∼ MVNp (0,Σt) and E [Σt | v,St−1] =CCT +

∑K
k=1 AkΣt−kAT

k ).
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Fox and West (2011) also propose a novel class of stationary covariance matrix processes
which exploit properties of Inverse Wishart partitioned matrix theory. Specifically, by aug-
menting the parameter state-space they show that we can easily obtain representations for the
terms in a factorization of the joint density of covariance matrices across time, f(ΣT , . . . ,Σ0) =∏T

t=1 f(Σt,Σt−1)
∏T

t=2 f(Σt−1). Note that this expression defines a stationary first-order Markov
process on the covariance matrices across time, with the marginal distribution given as Σt ∼
IWq(v + 2, vS), since given the following augmented matrix:(

Σt φTt
φt Σt−1

)
∼ IW2q(v + 2, v

(
S SFT

FS S

)
)

(such that φt = ΥtΣt−1), we have that by Inverse Wishart partitioned matrix theory, the covari-
ance process can be written as an AR(1): Σt = Ψt+ΥtΣt−1Υ

T
t , with Υt, representing a random

coefficient matrix and Ψt representing an innovation (note both Υt and Ψt are latent variables).
Note that under this framework the conditional density Σt|Σt−1 is not of an analytical form but
can nonetheless be explored theoretically. See Fox and West (2011) for more details.

At this point it is worth investigating the relevant stationarity conditions of the Inv-Wishart(K)
volatility process. As the InvWishart(K) is just a special case of the CAW (p, q) process of
Golosnoy et. al. (2010) I adopt their Proposition 1 directly:

“The unconditional mean of the InvWishart(K) process is finite iff all the eigenvalues of the
matrix Υ =

∑K
i=1 Ξi are less than 1 in modulus. In this case the unconditional mean is given by:

E [σt] =(Ig −Υ)−1c

where g = p(p+1)
2

, c = vech
(
CCT

)
, σt = vech (Σt) , and Ξi = L (Ai ⊗Ai) D.

Note that in this case L and D are the elimination and duplication matrices respectively
so that vec (X) = Dvech(X) and vech (X) =Lvec(X). See Magnus and Neudecker (1980) for
more details.

3.3 Model Estimation:
Both model specifications are estimated using Markov Chain Monte Carlo techniques. The

benchmark specification, i.e. Clark, which employs a univariate random walk process for the
stochastic volatility equations of each series is due to Clark (2011), given estimation steps I have
derived myself based on those of Villani (2009) and Cogley and Sargent (2005).13 The alternative
multivariate Wishart specification for the stochastic volatility equation, i.e. InvWishart(K), is
built as a modified version of Philipov and Glickman (2006), and employs the same sequen-
tial sampling algorithm of the time-varying covariance matrices. Details for the estimation of
each model specification are provided in the appendix as a series of Gibbs sampler steps (and

13Clark (2011) provides expressions for the conditional posterior distributions of the VAR parameters of his Gibbs
sampler estimation process, obtained from Mattias Villani, who himself derived them based on the constant variance
sampler employed in Villani (2009). However in my desire to be extremely clear, and precise, in explaining where
all of my sampling steps come from, I have re-derived all of the relevant expressions for the posterior distributions
employed in my Gibbs sampler and provide details in the appendix.
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Metropolis-within-Gibbs steps where appropriate i.e. where the conditional posterior is not of a
family from which we can easily draw samples).

The Gibbs sampler is a MCMC technique whereby we can indirectly sample from a distribu-
tion for which we have an expression for the p.d.f. but are unable to sample from it directly using
traditional methods. In most cases, the distribution we wish to sample from is the joint posterior
of the model parameters p(θ|y) ∝ p (y | θ)π(θ) (by Bayes Theorem the left hand side is known
as the “posterior”, and the right hand side represents the likelihood times the “prior”). It turns
out that a sequence of conditional draws from a Markov process14 that satisfy certain ergodicity
conditions will converge in unconditional distribution. Therefore, if we set the unconditional
distribution of the Markov process draws to the target distribution we wish to sample from, we
need only sample from the conditional distribution of some suitable Markov process to generate
the desired unconditional.

Moreover, suppose we now partition the parameter set θ into θ1 and θ2. It can be shown
that drawing the conditional Markov process in sequence from the conditional posteriors of
θ1
′|θ1, θ2 ∼ q1(θ

′
1|θ1, θ2, y) and then θ2

′ |θ′1, θ2 ∼ q2(θ
′
2|θ′1, θ2, y),15 the repeated sequence of

draws on (θ1, θ2) will converge in unconditional distribution to the joint posterior p(θ1, θ2|y),
given a suitable “proposal” distribution q(·). This is known as the Gibbs sampler. See Greenburg
(2008) for a much more detailed yet accessible treatment of Bayesian estimation and MCMC
methods.

4 Priors
The Bayesian estimation framework employed requires of us to specify certain prior beliefs

upon the parameter set before estimation and this is done through the specification of prior densi-
ties. In most cases the prior densities are chosen to be conditionally conjugate—that is, they are
chosen of a known family such that the conditional posterior density works out to be of the same
family as the prior. This facilitates estimation greatly since the need for a well fitting proposal
density to the target (as in a Metropolis-Hastings or Accept-Reject algorithm) is obviated—in
fact, in this case the proposal is always accepted since the conditional posterior is the target and
we can draw directly from it. Moreover, this Gibbs sampling algorithm is designed such that if
we draw from a series of conditionally conjugate posterior densities in sequence, each conditional
on the last Markov process draw, this sequence will converge to the joint posterior density from
which marginals are easily available as the individual processes themselves.

This section outlines and considers the specific forms and numerical values my prior densities
will take. First, the prior for the VAR slope coefficients Π, follow a modified Minnesota specifi-
cation (see Litterman (1986)). In this case the prior mean assumes that the VAR follows an AR(1)
process (i.e. means of additional lags beyond 1 are set to 0).16 Since GDP growth displays less
persistence in its levels, I set its autoregressive prior mean to 0.25 and set the others to 0.8. Cross

14Where the process is set to draw values from the parameter space θ ∈ Θ.
15Where the primed values denote the next draws in the Markov process, drawn from the proposed conditional

distribution q(·). Note that q (·) is chosen by the analyst and may or may not be a good “fit” to the true conditional
distribution of the Markov process. The better is the choice of the proposal distribution q(·), the better will be the
convergence of the Markov process draws to the unconditional distribution we desire to sample from.

16However, in this case our prior beliefs do not assume unit-root levels processes–rather than they are autoregres-
sive.
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equation prior means are also set to 0. Moreover, Minnesota “own equation” variances shrink as
a harmonic series for each additional lag (i.e. ωii,j = 0.2

j
s.t.j = 1, . . . J and ωii,j ∈ ΩΠ given the

ith equation out of the p series and where j is the lag length of the autoregression). Also, “cross
equation” variances are typically set to ωik,j = 0.5(0.2

j
× σ∗i

σ∗k
), where σ∗i is the estimated standard

error of the residuals from a univariate autoregression on the ith equation with six lags, pre-fit to
the data in advance. For simplicity, however, I will employ ωik,j = 0.5(0.2

j
) instead.

Priors on the deterministic parameters of Ψ are extremely important given the modest sample
sizes employed and are chosen as to influence the series’ steady-states toward certain reasonable
values. In the case where we pre-difference the data series by their deterministic trends (specified
in the data section above) Ψp×q is such that q = 1 and dt = 1, ∀t. This dramatically reduces
the number of parameters that need be estimated as the number of series increases, however, it
places a prior constraint on the model by assuming that the trends chosen are correct. On the other
hand, if we allow the trends to enter individually through the dt term (where dt then becomes
a 3 element column vector for each t, such that dt=[1, f(t− 1), g(t)]T where f(t) and g(t) are
exponentially smoothed trends for the unemployment rate and inflation growth respectively) then
Ψp×q becomes a p × 3 matrix from which we can statistically evaluate whether the relevant
diagonal elements are indeed equal to 1 (which would imply the trends are in fact correct).

Either way, GDP growth is influenced to have a constant trend around 3.0% through its prior
mean, while unemployment and inflation are pushed to center around their trends (so their prior
means would be 0 in the case of pre-differencing and 1 in the case where trends are added later
through dt). Finally, the interest rate is centered around its trend as well; however, we also add
to this the constant trend of 2.5% to reflect the real long run rate. Therefore, in the case where
the data is pre-differenced, the prior mean of Ψp×q (i.e. µΨ in matrix form) will take the form:

3.0
0
0

2.5


and when added to dt it would be: 

3.0 0 0
0 1 0
0 0 1

2.5 0 1


The prior variances of Ψp×q (i.e. ΩΨ) are set as follows: GDP growth, 0.2 (0.3); unemploy-

ment, 0.2 (0.3); inflation, 0.2 (0.3); and the interest rate, 0.6 (0.75)—where these values have
been adopted directly from Clark (2011). The first values, not in parenthesis, represent those em-
ployed in the recursive estimation scheme and are tighter since the gradually increasing sample
size tends to limit the influence of the prior.

Priors on the volatility components of the model are as follows. For the components of the
Clark (2011) independent random walk specification, I borrow numerical values directly from
his paper (see Clark (2011) pg.331 for details). For my Wishart autoregressive specification,
I employ multivariate Normal priors on both Ak ∀k and C, and a Gamma prior on (v − p).
The Gamma prior is set with hyperparameters α = 30, β = 2 (shape and rate) as to represent
ignorance of its value while the multivariate Normal priors for the C and Ak’s are set somewhat
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loosely to let the data speak. In this respect, prior means are set at diag (C) =0.3 and diag (A1) =
0.9 (both with off-diagonals equal to 0, and all other A matrices set to 0). Variances are set equal
to 0.002 (i.e. standard deviation of about 0.045).

5 Forecasts
Given the Bayesian model estimation framework employed, forecasts can be easily obtained

with little extra computational overhead. Generally, the desired predictive density of some fore-
casted value yf , given parameter set θ and data set y is given within the Bayesian framework
as:17

p (yf | y) =

∫
p (yf | θ, y) π (θ | y) dθ

where p(yf |θ, y) is the likelihood of θ given the data y, the forecast value yf , and the particular
model formulation chosen; and where π(θ) is the prior distribution assumed on θ. Therefore after
integrating out parameter uncertainty, the left hand side is known as the predictive likelihood of
the given forecast value yf .

Moreover, given our particular model specification this expression can be recast in terms of
VAR forecasts of horizon length h, that is yT+h, where we have taken into account the stochas-
tic/latent nature of the conditional variance matrices Σt :

p
(
yT+1, . . . ,yT+h

∣∣ YT
)

=

∫
. . .

∫
p(yT+1, . . . ,yT+h,ΣT+1, . . . ,ΣT+h,Ω

∣∣YT
)
dΩ

h∏
i=1

dΣT+i

s.t. YT = {yT,yT−1, . . .,y1}

where Ω represents all the other the other parameters of the model, including past covariance
matrices (i.e. ΣT−i ,∀i ≥ 0 in the case of the InvWishart (K) model or ΛT−i ,∀i ≥ 0 for the
Clark) and where p (·) is the joint density implied by the model formulation. In drawing forecasts
then, it is simply a matter of factorizing the above joint density and then drawing simultaneously
from each factor. That is we can rewrite the above as:

p
(
yT+1, . . . ,yT+h

∣∣ YT
)

=∫
. . .

∫
p (yT+1, . . . ,yT+h|ΣT+1, . . . ,ΣT+h,Ω,Y

T)p(ΣT+1, . . . ,ΣT+h|Ω,YT)·

p(Ω|YT)dΩ
h∏

i=1

dΣT+i

Note that we already possess draws from p(Ω|YT) since this is simply the target posterior
distribution of the parameter set given the data (i.e. that which we employed the Gibbs sam-
pler to generate and which we obtain estimates of the model parameters conditional on the data
YT). Therefore, each time we draw a value for the Markov process, we can simultaneously draw
a {ΣT+1, . . . ,ΣT+h} and {yT+1, . . . ,yT+h} , given the parameterization of the model and its

17See Greenburg (2008) section 3.2.3.
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implied conditional Normality. That is, given a draw for Ω from the Markov process, we can
condition on these “fixed” parameter values (and the data) to draw both a covariance matrix at
time T + 1, ΣT+1 (given the relevant volatility process equation) and a V AR(J) data vector
yT+1. Consequently, these draws are conditional on both the current values of the latent covari-
ances and the regular parameters of the VAR (all of which are embodied in Ω). We then simply
repeat this process recursively up to period T + h. Finally, since what we have essentially done
by this process is drawn from the joint density p(yT+1, . . . ,yT+h,ΣT+1, . . . ,ΣT+h,Ω|YT), it is
understood then that {yT+1, . . . ,yT+h} is therefore a sample from the desired marginal distribu-
tion p

(
yT+1, . . . ,yT+h

∣∣ YT
)
. Moreover, the draws themselves for each time T + i represent a

finite sample distribution on the forecasted values themselves. Therefore, conditional moments
can be estimated by their sample counterparts.18

For the purposes of forecasting, that which we wish to estimate is the conditional mean of the
predictive density p

(
yT+1, . . . ,yT+h

∣∣ YT
)

=p
(
yT+h

∣∣ yT+h−1,Y
T
)
. . .p

(
yT+1

∣∣ YT
)
. There-

fore, for the first horizon out we have that a consistent estimator is the mean of yT+1 since:

plim

(
1

N

N∑
i=1

yT+1

)
= E

[
yT+1

∣∣ YT
]
by LLN

whereN is the number of Markov process draw iterations. Moreover, it can be shown by the Law
of Iterated Expectations that the Rao-Blackwellization of the estimator is suggested as follows:

E
[
yT+1

∣∣ YT
]

=

∫ y

yT+1 · p
(
yT+1

∣∣ YT
)
dyT+1 =

∫ y

yT+1

∫ Ω

p
(
yT+1,Ω

∣∣ YT
)
dΩdyT+1

=

∫ y

yT+1

∫ Ω

p
(
yT+1

∣∣ Ω,YT
)
p
(
Ω
∣∣ YT

)
dΩdyT+1

=

∫ Ω ∫ y

yT+1p
(
yT+1

∣∣ Ω,YT
)
dyT+1p

(
Ω
∣∣ YT

)
dΩ

=

∫ Ω

Ey

[
yT+1

∣∣ Ω,YT
]
p
(
Ω
∣∣ YT

)
dΩ=EΩ

[
Ey

[
yT+1

∣∣ Ω,YT
] ∣∣ YT

]
=Ey[yT+1|YT]

Therefore, an appropriate estimator is also,

1

N

N∑
i=1

Ey[yT+1|Ωi,Y
T]

so long as the conditional expectation has an analytical form we can draw directly from (which
works in this case since the V AR(J) formulation specifies a linear conditional mean).

Moreover, again by the Iterated Law of Expectations we can employ the same estimators for
any horizon h = 1, 2, . . . ., H since we have that:

Ey[Ey

[
yT+h

∣∣ yT+h−1,Y
T
] ∣∣yT+h−2,Y

T
]
. . .] =Ey[yT+h|YT]

18There will therefore be one draw of {yT+1, . . . ,yT+h,ΣT+1, . . . ,ΣT+h} for each iteration of the Markov
process (i.e. for each draw of Ω|YT). Thus taking the sample average of the former draws is a consistent estimator
of E[yT+i|YT] or E[ΣT+i|YT] for each horizon i = 1, . . . , h.
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Furthermore, in comparing point forecasts we can employ the root mean squared error (RMSE)
estimator for any forecast horizon h :

RMSEh =

√√√√ 1

T − T0

T∑
t=T0

ut+huT
t+h

where the expected forecast error ut+i = E [yt+i | Yt]−y∗t+i can be computed for out of sam-
ple forecasts19 and T − T0 represents the number of “runs” or forecasting attempts employing
different out of sample sections (via a rolling or recursively growing sample window scheme—
see below for a diagramatic explanation). Note that since we are taking the outer product of the
forecast errors, the RMSE will be a Cholesky decomposition of a symmetric positive-definite
matrix and there will exist p(p+1)/2 unique elements to compare. The off-diagonals in this case
represent the squared forecast errors across macro series squared forecast errors and the main
diagonal elements are the squared forecast errors for each individual series themselves.

Finally, the main measure of overall model fit can be computed as the sample estimator of the
predictive likelihood described above:

p
(
y∗t+h

∣∣ Yt
)

=EΩ[p
(
y∗t+h

∣∣ Yt,Ω
)

] ∼=
1

N

N∑
i=1

p(y∗t+h|Yt,Ωi)

where N is again the number of Markov process iterations, but in this case y∗t+h is the true out of
sample data point we had previously set aside for comparison. Therefore, this estimator gives us
an idea of how well the model and parameter estimates “fit” the true outcomes that actually took
place. That is, given that y∗t+h is actually the value that occurred in reality, what is the probability
of its occurrence given our model and estimated parameters? If our model is more congruent
with the actual future outcomes than another, its predictive likelihood should be greater.

Note we typically take the log version of the above estimator and can then sum across the
T − T0 runs given different out of sample windows so as to gauge the model’s performance
across a number of independent forecasting attempts:

LPLh =
T∑

t=T0

log p
(
y∗t+h

∣∣ Yt
)

Finally, we can then compare the Clark and InvWishart(K) specifications by looking at
the ratio or difference of these LPLh scores across different forecast horizons. More specifically,
we can view the log-difference of two different model LPLh’s as a means of comparing the
“term structure” of competing forecast performance across all possible horizon choices h =
1, 2, . . . , H . Furthermore, the log-difference can be “decomposed” into a sum of log-ratios which
suggest at which points (i.e. which “runs”) of the sample either model did better or worse at
“fitting” the true VAR process at horizon h:

LPLAh − LPLBh =
T∑

t=T0

log pA
(
y∗t+h

∣∣ Yt
)
−

T∑
t=T0

log pB
(
y∗t+h

∣∣ Yt
)

=

19That is, I set aside some portion of the sample from T0 to T , s.t. T0 < T . Therefore, forecast errors can be
computed where y∗t+h is the “real” out of sample data at forecast horizon h and E

[
yt+h

∣∣ Yt
]

is estimated as
described above and each time is conditioned on the sample data set given at t. This data set will depend on whether
we are employing the rolling window or recursive scheme (see below).
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T∑
t=T0

log(
pA
(
y∗t+h

∣∣ Yt
)

pB
(
y∗t+h

∣∣ Yt
))

At this point it is worth mentioning that the predictive likelihood method represents an inher-
ently Bayesian approach to forecast comparison and as such we do not require p-values, since
we obtain the finite sample distribution directly. For more details on Bayesian versus Frequentist
approaches to forecast generation and analysis see Geweke and Amisano (2010).

Again, forecasts comparisons are made by initially setting aside a portion of the data set to
use as the “true” outcome of the macroeconomic time series (i.e. from T0 to T, and leaving at
least H after T available for comparison). As in Clark (2011) I employ both a recursive and
rolling window estimation scheme. In the recursive process, for each iteration (or “run”) one
forward data point is added to the sample size each time so that the sample grows larger for later
runs. Under the rolling window scheme, however, a set sample size is employed for each run but
the sample employed moves forward in time. The idea here is that a rolling window should take
into account changes in the underlying parameters across time.

To be absolutely clear, the following diagram illustrates both the rolling window and recursive
schemes where T00(i) represents the beginning datum of the sample window under the rolling
window scheme at “run” number i and T0(i) represents the end of the window in both the rolling
and recursive schemes under the same run number, in the case where we start with an initial
window size of 130, chosen arbitrarily:

Note that the recursive scheme diagram is exactly the same except that T00(i) = 1,∀i; that is
the window size grows from 130, by 1 each run, until it reaches T ∗ = T −H for the last run.

After forecasting each iteration within the extended sample we’ve set aside, we eventually
exhaust the entire dataset. Consequentially, given the estimated model parameters across each
iteration, we can compute forecast RMSE’s and LPL’s for comparison. It is important to note
that any deterministic trend components dT+i must be constructed in real time for each forecast
draw, as required according to their various specifications (e.g. exponential smoothed values), if
we do not pre-difference the data by them beforehand.

The next section will detail not only the outcome of the parameter estimation process but the
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results of Bayesian forecast comparisons between the Clark benchmark forecasting model and
the InvWishart(K) modification.

6 Results

6.1 Simulated Data
The model is estimated separately for each run given the data set particular to that run’s

sample window. For each run, a Markov process is generated on the parameters of the model, of
length 100,000 with a burn-in of 10,000. Sample means of the Markov processes draws are then
interpreted as the estimated parameters given sufficiently well-behaved mixing.

To confirm that the estimation process is working correctly, I first simulate 1500 data points
according to the V AR(3)&InvWishart(3) combined processes given the following parameters:

Diag (C) = 0.3 (all other elements are zero)
Diag (A1) = 0.5, 0.75, 0.85, 0.98 (all other elements zero,

including all other A2,A3 elements)
Diag (Π1) ={0.25, 0.8, 0.8, 0.8} (all other elements zero, including all

other Π2,Π3 elements)
v = 30

I then estimate the two competing specifications (i.e. Clark and InvWishart(K)) according
to a rolling window scheme, a fixed window size of 1000, 100 runs, and a forecast horizon extent
of 100.

The estimated parameters turn out to be quite close to their true values—see table A.1 in
the appendix. The only parameter that seems systematically biased is the degree of freedom
parameter of the InvWishart(3) process, v. It tends to typically estimate lower than the true
value for small sample sizes, and converges on the true value as T gets large.

Moreover, under the InvWishart(3) process, the tracking of the latent stochastic volatility
estimated posterior means is also quite good, but tends to be worse when tracking series with
low autoregressive coefficients on their lagged values (see figures 1 & 2 below).20 It appears as
though there exists a lower bound on the tracking of the posterior mean estimates across time
of the latent covariance top-left element (i.e. that which corresponds to the series with a 0.5
autoregressive coefficient—see figure 2). Multiple tests have revealed that the smaller is the au-
toregressive term, the more pronounced is this lower bound, and conversely, the closer is the
autoregressive coefficient to 1 the better the S.V. tracking. More generally, it is probably safe
to assume that the tracking improves as the eigenvalues of the stability matrix Υ =

∑K
i=1 Ξi

approach 1. More investigation is needed, however, to establish definitively the theoretical prop-
erties of this phenomenon.

20Note that all plots below that do not involve all runs simultaneously employ the 1st run in each series, since
subsequent runs are quite similar in their performance.
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Figure 1: InvWishart(3) - 6.1
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Figure 2: InvWishart(3) - 6.1
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Figure 3: Clark - 6.1
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Interestingly, the Clark specification also suffers from poor performance in this case—see
above figure 3. However, here the effect isn’t so much a “sandwiching” or lower bound of the
tracking (as in figure 2) but of a general meandering across the true values with no inherent
pattern. Notice also the explosive forecast in red, appended to the S.V. tracking series (in pink)
on the right-hand-side at t = 1000.

Finally, the log-predictive-likelihood (LPLh) term structure of the InvWishart(3) estima-
tion is much better than the Clark estimation, as is expected–see figure 4.

6.2 Real data
(larger data window size used in each estimation but less runs)

Next, I turn to the real Clark (2011) data set. I first estimate the model with an initial window
size of 204, 30 runs, and a horizon extent of 16, under the assumption of a V AR (3) process on
the mean equation and either an InvWishart(3) or Clark on the volatility. Both rolling window
and recursive schemes are estimated. Note various lag values of J and K were tried and the
general result was the more lags the better (as measured by LPLh term structure graphs)—three
lags were ultimately chosen as a balance between parameterization and improvement in fit.

The following figure 5 suggests that the InvWishart(3) formulation outperforms the Clark
volatility in both the short-term and long-term horizon forecasts, with the improvement becoming
more dramatic as the horizon increases. Moreover, note that the recursive schemes tend to do
better at longer horizons than their rolling window scheme counterparts, and vice versa at shorter
horizons:
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Figure 4: Simulated data - 6.1
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Figure 5: Real data - 6.2
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Unsurprisingly, if I do not constrain the joint draws on the C,Ai and v parameters to remain in
the area of the parameter space within which the unconditional mean of the InvWishart(3) pro-
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cess exists and is finite, the results are slightly improved (although the improvement is marginal at
best). This is illustrated in figure 6. Note I also include results for the case where the covariance
process is estimated as homoskedastic for reference (see footnote in section 6.4 below).

Figure 6: Real data - 6.2
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Moreover, the superiority of the InvWishart(3) in fitting the data appears to be relatively
uniform across the runs (and thus across the data set) at the 16th horizon, although both speci-
fications had problems at t = 243 = 252 − 9 (see figure 7, run = 21). Note that this datum
corresponds with the 4th quarter of 2009 and represents an outlier given our small sample size. It
will be shown later that this specifically represents a failure on the part of both models to predict
the volatility correctly during this period.

Considering the earlier discussion from section 6, tracking of the latent stochastic volatility
estimated posterior means of each element of the covariance matrices is assumed satisfactory
given that the estimated volatilities of all the series are highly autoregressive (i.e. the eigenvalues
of the stability matrix are close to 1, especially the one associated with GDP growth). Of course,
we do not know the “true” path of the volatility (and no model is ever 100% correctly specified),
so it is impossible to speak of how “well” the estimation tracks the truth. Nonetheless, figure 8 &
9 present the time-paths of the estimates of the covariance posterior means for both the volatility
specifications, where the elements are interpreted as the vech(Σt) (recall that since Σt is a 4× 4
symmetric matrix, we have that 6 elements are redundant). Moreover, the posterior mean tracking
is extended beyond t = 204 by means of the estimated forecasted means (which in the constrained
InvWishart(K) case exist and are finite – recall the earlier discussion in section 3).

Note first that the variance of the first series (i.e. GDP growth) is much larger than that of
the other series in both cases. Secondly, the covariances across series tend to be largest on those
between GDP growth and the inflation rate, and GDP growth and the interest rate. Third, the
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Figure 7: Real data - 6.2
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InvWishart(3) model tends to highlight covariance changes more than theClark. Perhaps most
important to consider, however, is the bizarre nature of the covariance forecasts under the Clark
specification. Since the specification assumes a log random walk on the volatility processes of
each series, the end result are forecasts that become explosive within a few periods out.21

21Interestingly, the result is the same whether we consider a volatility process on the covariance or precision
matrix; both explode since the random walk sample paths of the variances (or precisions) under Clark are bounded
by 0.
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Figure 8: Real data - 6.2
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Figure 9: Real data - 6.2
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The performance of the V AR(3) forecasts of the series’ means can be analyzed through the
RMSEh term structure plots across horizons (recall the formula provided in section 5). In this
case I take the percentage difference between the RMSEh values between the InvWishart(3)
and Clark versions (given a rolling window scheme)–see figure 10.

Figure 10: Real data - 6.2
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Of interest here is the fact that none of the percentage differences are greater than 5%. This
suggests that for the most part, the volatility specification bears little effect on the estimated
forecasts of the V AR(3) mean.22 Also, notice that the InvWishart(3) volatility process tends
to improve the V AR(3) forecasted means out near the further horizons (i.e. h > 11) on the latter
three series, while the Clark does better in this case on the first series, GDP growth.

For completeness, I also include plots of the actual Clark (2011) data series, along with fore-
casts, in the appendix—see figures 17 to 24.

6.3 Real data
(smaller data window size used for each estimation but more runs)

Now suppose that we wish to consider how the models compare when we employ a smaller
initial window size, but more runs. That is, we estimate the model more often across the total
sample so that our LPLh estimators are more representative (i.e. include a sum with more terms)
of performance across more of the sample.

22To be more definitive on this issue, below I will demean the Clark (2011) data by estimating the V AR(3) first
with homoskedastic covariance assumed, and then re-estimate the volatility process directly on this demeaned data
to isolate the volatility forecast quality.
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In this case I employ an initial window size of 130, 100 runs, and a horizon extent of 20, again
under the assumption of a V AR(3) process on the mean equation and either an InvWishart(3)
or Clark on the volatility. Both rolling window and recursive schemes are again estimated.

The corresponding LPLh term structure plot (i.e. the analog to figure 5 above) is given below
in figure 11 and the analog to figure 7 is given in figure 12.

Figure 11: Real data - 6.3
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These results serve to further reinforce that the InvWishart(3) is preferred to the Clark
even when the sample size is relatively small. This is a surprising result considering the greater
parameterization of the InvWishart(3).

6.4 Real data
(demeaned data)

In order to emphasize that the improvements in the InvWishart(3) are due to the improved
modeling on the time-varying covariance matrix forecasts and not due to any possible improve-
ments in the V AR(3) forecasted means, I now demean the Clark (2011) data prior to estimating
the volatility process parameters.

Again, as in section 6.3, I employ an initial window size of 130, 100 runs, and a horizon
extent of 20 in order to emphasize the forecasts across a majority of the sample. However, in
this case, I first estimate a V AR(3) on the whole data set with the assumption of homoskedastic
covariance.23

23This simply involves replacing the Gibbs sampler steps for the volatility estimation with a single Gibbs step
that employs an Inverse-Wishart prior density. Since the Inverse-Wishart prior is conditionally conjugate with the
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Figure 12: Real data - 6.3
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The corresponding LPLh term structure plot (i.e. the analog to figures 5 & 11 above) is given
in figure 13.

What is impressive here is that after we demean the data series according to a V AR(3) process
with homoskedastic covariance matrix, and then re-estimate each of the two volatility processes
(so as to focus solely on the volatility forecast quality) the superiority of the InvWishart(3)
over the Clark is even more dramatic at h = 20 than was the case originally. In fact, it appears
that the volatility forecasts do better at h = 20, than they do at h = 1, where the Clark seems
to have a small advantage. Given the small sample size employed in estimating the highly pa-
rameterized InvWishart(3) the results appear even more impressive. Finally, notice that in the
case where the InvWishart(3) parameter draws are constrained to the stationary process region,
we see that the volatility forecasts do better in the long-run than the short, and vice versa for the
unconstrained version (as was in the case in sections 6.2 & 6.3).

Moreover, note that given the demeaned data we now find that the recursive scheme strictly
dominates the rolling window given both volatility specifications. This suggests that for pure
volatility forecasting a the recursive scheme is preferred.

Finally, I present the analog to figures 7 & 12 in figure 14.

multivariate Normal, the conditional posterior is also Inverse-Wishart. That is, if π (Σ) ∼ IW (a0,V0) ⇒
p (Σ | ν) ∼ IW (a1,V1) s.t V1 =

∑T
t=1 νtνt

T + V0 and a1 = T + a0, where νt is the p× 1 vector of V AR(J)
residuals. In this case V0 is set to the unconditional sample covariance matrix of simulated VAR residuals (generated
with reasonable guesses on the VAR parameters) and a0 = 15.
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Figure 13: Real data - 6.4
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Figure 14: Real data - 6.4
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From figure 14 it appears the forecasting improvements in the InvWishart(3) are pretty
uniform across runs, although there are a few cases where the Clark actually outperforms the

27



InvWishart(3) at the 20th horizon (e.g. runs i = 28 and 33).

6.5 Real data
(LDLT factorization)

Further evidence can also be drawn by considering the form of the constraint which the Clark
model places on the time-varying structure of the covariance process. Recall from section 3.1
that the Clark model imposes the following parameterization on the V AR(J) innovations:

νt=B−1Λ0.5
t εt s.t. εt ∼MVNp (0, Ip)

Which implies that:
Γt=B−1Λt

(
B−1

)T
= var (νt)

The interesting point to note here is that this parameterization is equivalent to imposing an
LDLT factorization on the covariance matrix of the V AR(J) innovations, where L is a lower
triagular matrix with ones on the diagonal and D is a diagonal matrix. Note that this LDLT

factorization always exists for positive definite, real, symmetric matrices and is unique.
This result implies a method for testing whether Clark’s parameteric assumption on the

volatility process is correct given the Clark data set. Suppose that we estimate the model, given
the entire sample, under an InvWishart(K) specification. At each point in time that we draw
a covariance matrix estimate, we then factorize this covariance matrix by Σt = LtDtL

T
t . This

provides us with finite sample distibutions of the Lt matrices implied by the InvWishart(K)
specification for each time period ’t’. Since these Lt matrices are unique, their time-varying dis-
tributions must suggest something about whether or not it is appropriate to assume that the B−1

matrix in the Clark specification is constant across time.
Of course, while there are other ways to check the validity of this assumption (e.g. esti-

mate the Clark with time-varying B matrices and compare results according to some metric), the
aforementioned test proves the most immediately applicable.

Figures 15 and 16 illustrate the results of this test which seem to suggest that there does
exist significant time variation in the elements of the L matrix factor across time, especially with
regards to the elements corresponding to the pairing of GDP growth with the inflation rate and
the interest rate (i.e. L2,1 and L3,1).
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Figure 15: L matrix element densities

-1.5

-1

-0.5

 0

 0.5

 1

 1  20  39  58  77  96  115  134  153  172  191  210  229

L
(2

,1
) e

le
m

en
t

Time 't'

L(2,1) element conditional mean across time with 90% DI's

L(2,1) element
udi
ldi

Figure 16: L matrix element densities
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7 Conclusion
In conclusion, I have shown that given a competing volatility specification and accompany-

ing data set from Clark (2011), direct modeling of the time-varying covariance process of VAR
forecast shocks is superior to the assumption, common in the macroeconomic forecasting litera-
ture, of cross-series independent random walks in the variance. More specifically, the proposed
InvWishart(K) specification works to capture both cross and own series autoregressive per-
sistence and mean reverting behaviour in the volatility process, and in doing so, dramatically
improves long-run forecast fit as measured by Bayesian predictive likelihoods. Moreover, these
improvements are achieved despite the small Clark (2011) sample size, the high degree of pa-
rameterization of the InvWishart(K) specification, and are robust to varying sample window
schemes (i.e. rolling window or recursive) and sizes.

A Gibbs estimation steps
The following section describes in detail the steps required in generating the joint posterior

distribution of the model parameters according to a Gibbs sampler approach. Note that it includes
two sections: one for estimating the V AR(J) coupled with Clark volatility and another that em-
ploys instead InverseWishart(K) volatility.

BVAR-SSP-ClarkSV Gibbs Estimation Steps:

1. Draw the slope coefficients ΠT
p×pJ= [Π1,Π2, . . . ,ΠJ] of the VAR, conditional on Ψp×q,

Λt ∀t, B, and Φ=diag(ϕ1, ϕ2, . . . , ϕp) and given multivariate Normal prior, Π ∼ N(µΠ,ΩΠ).

For this step we rewrite the VAR as:

Yt=ΠTXt + νt

where Yt=yt−Ψdt, νt=B−1Λ0.5
t εt

and Xt =
[
(yt−1−Ψdt−1)T, (yt−2−Ψdt−2)T , . . . , (yt−J−Ψdt−J)T

]T
so Xt is pJ × 1

⇒ Yt=vec
(
ΠTXt

)
+ νt = vec

((
ΠTXt

)T)
+νt= vec

(
XT

t Π
)

+νt

⇒ Yt=
(
Ip ⊗XT

t

)
· vec (Π) +νt

so
(
Ip ⊗XT

t

)
is p× p2J

Eliminating the heteroskedasticity by pre-multiplication we have:

Y∗t=Γ−0.5
t Yt=Γ−0.5

t

(
Ip ⊗XT

t

)
· vec (Π) +εt

s.t. εt ∼ N (0, Ip) and Γ−0.5
t =Λ−0.5

t B
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Since Γt=B−1Λt

(
B−1

)T
= var (νt)

=⇒ Γt= B−1Λ0.5
t

(
Λ0.5

t

)T (
B−1

)T
= B−1Λ0.5

t

(
B−1Λ0.5

t

)T
= Γ0.5

t

(
Γ0.5

t

)T
=⇒ Γ−0.5

t =Λ−0.5
t B

Thus stacking the columns by time ′t′, we have:

Y∗Tp×1=
[
(Γ−0.5

1 Y1)
T
, . . . ,(Γ−0.5

T YT )
T
]T

X∗Tp×p2J=
[(

Γ−0.5
1

(
Ip ⊗XT

1

))T
, . . . ,

(
Γ−0.5
T

(
Ip ⊗XT

T

))T]T
Finally, by standard results,24 we have that the conditional posterior for Π is distributed
Normal with mean vector µ∗Π and covariance matrix Ω∗Π s.t:

Ω∗Π =
[
Ω−1

Π + X∗TX∗
]−1

µ∗Π=Ω∗Π[Ω−1
Π µΠ+X∗TY∗]

where µΠ and Ω−1
Π are the mean vector and co-precision matrix of the Normal prior density

for Π. See the section on priors for more details on actual numerical values.

Note that it can also be shown that:

X∗TX∗ =
T∑
t=1

[
Γ−0.5

t

(
Ip ⊗XT

t

)]T
[Γ−0.5

t

(
Ip ⊗XT

t

)
] =

T∑
t=1

(
Γ−0.5

t ⊗XT
t

)T (
Γ−0.5

t ⊗XT
t

)
=

T∑
t=1

(
Γ−0.5

t
T ⊗Xt

) (
Γ−0.5

t ⊗XT
t

)
=

T∑
t=1

(Γ−1
t ⊗XtX

T
t )

where the second equality holds only because XT
t has row order 1 (i.e is a row vector). This

expression for X∗TX∗ is desirable because it involves a sum of smaller matrices rather than
the single product of an overly large matrix.

Moreover, we also have that:

X∗TY∗=
T∑
t=1

[
Γ−0.5

t

(
Ip ⊗XT

t

)]T
(Γ−0.5

t Yt)=
T∑
t=1

(Ip ⊗Xt)
(
Γ−0.5

t

)T
Γ−0.5

t Yt=

T∑
t=1

(Ip ⊗Xt)Γ
−1
t Yt=

T∑
t=1

(
Γ−1

t ⊗Xt

)
Yt=

T∑
t=1

(
Γ−1

t ⊗Xt

)
vec(Yt) =

T∑
t=1

vec(
[
Γ−1

t YtX
T
t

]T
)=vec(

T∑
t=1

XtY
T
t Γ−1

t )

where again, the fourth equality holds because Xt has column order 1 (i.e. is a column
vector).

24See Tsay (2005) section 12.3.2, or Box and Tiao (1973).
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2. Draw the steady state coefficients Ψp×q of the VAR, conditional on Π’, Λt ∀t, B, and
Φ=diag(ϕ1, ϕ2, . . . , ϕp) and given multivariate Normal prior, Ψ ∼ N(µΨ,ΩΨ).

This time, rewrite the VAR somewhat differently as:

Yt=Π (L) yt=Π (L) Ψdt+νt

This can be further simplified as:

⇒ Yt = Π(L)yt =

(
Ip −

J∑
j=1

ΠjL
j

)
Ψdt + νt

= IpΨdt −Π1Ψdt−1 − · · · −ΠJΨdt−J + νt

=
(
dt

T ⊗ Ip

)
· vec(Ψ)−

(
dt−1

T ⊗Π1

)
· vec(Ψ)− · · · −

(
dt−J

T ⊗ΠJ

)
· vec(Ψ) + νt

=
((

dt
T ⊗ Ip

)
−
(
dt−1

T ⊗Π1

)
− · · · −

(
dt−J

T ⊗ΠJ

))
· vec(Ψ) + νt

= Xt · vec(Ψ) + νt

s.t. Xt =
((

dt
T ⊗ Ip

)
−
(
dt−1

T ⊗Π1

)
− · · · −

(
dt−J

T ⊗ΠJ

))
is p× pq

Therefore, removing the heteroskedasticity again by pre-multiplication we have:

Y∗t=Γ−0.5
t Yt=Γ−0.5

t (Π (L) yt) =Γ−0.5
t Xt · vec (Ψ) +εt

And again, stacking by columns across ′t′ as before, we have:

Y∗Tp×1=
[(

Γ−0.5
1 Y1

)T
, . . . ,

(
Γ−0.5
T YT

)T]T
X∗Tp×pq=

[(
Γ−0.5

1 X1

)T
, . . . ,

(
Γ−0.5
T XT

)T]T
Finally, by standard results, we have that the conditional posterior for Ψ is distributed
Normal with mean vector µ∗Ψ and covariance matrix Ω∗Ψ s.t:

Ω∗Ψ =
[
Ω−1

Ψ + X∗TX∗
]−1

µ∗Ψ=Ω∗Ψ[Ω−1
Ψ µΨ+X∗TY∗]

where µΨ and Ω−1
Ψ are the mean vector and co-precision matrix of the prior density for Ψ.

See the section on priors for more details on actual numerical values.

Again, similar to step (1) above, we can rewrite the expressions for X∗TX∗ and X∗TY∗ in
more computationally tractable forms:

X∗TX∗=
T∑
t=1

(
Γ−0.5

t Xt

)T
Γ−0.5

t Xt=
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T∑
t=1

Xt
TΓ−0.5

t
T
Γ−0.5

t Xt =
T∑
t=1

Xt
TΓ−1

t Xt

X∗TY∗=
T∑
t=1

(
Γ−0.5

t Xt

)T
Γ−0.5

t Yt =
T∑
t=1

Xt
TΓ−1

t Yt

3. Draw the elements of B (lower triangular with ones in the diagonal) conditional on Π
′
,Ψ

′
, Λt ∀t,

and Φ=diag(ϕ1, ϕ2, . . . , ϕp), given Normal, independent, priors on each of the elements
of the B matrix.

This time rewrite the VAR as:

BΠ (L) (yt −Ψdt) = By∼t =Λ0.5
t εt

Since B is lower triangular, this system of equations reduces to:

y∼1,t = λ0.5
1,t ε1,t

y∼2,t = −b21y
∼
1,t + λ0.5

2,t ε2,t

y∼3,t = −b31y
∼
1,t−b32y

∼
2,t + λ0.5

3,t ε3,t

y∼4,t = −b41y
∼
1,t−b42y

∼
2,t−b43y

∼
3,t + λ0.5

4,t ε4,t

. . . .

y∼p,t = −bp1y∼1,t−bp2y∼2,t−bp3y∼3,t − . . .−bp,(p−1)y
∼
(p−1),t + λ0.5

p,t εp,t

where y∼i,t is the ith element of the p× 1 column vector Π (L) (yt −Ψdt) = y∼t .

We can therefore treat each of the i = 2, . . . , p equations above as linear regressions.
Again, pre-multiplication of each of the i equations by λ−0.5

i,t ∀t removes the heteroskedas-
ticity. Furthermore, given the assumption of independent Normal prior densities, the con-
ditional posterior for each row vector of B is also Normal. Consequently, we can eas-
ily draw the bij elements for each row, equation by equation in sequence, according to
N (βi

∗,Gi
∗) ∀i = 2, . . . , p s.t:

G∗i=
[
Gi
−1 +X∗i

TX∗i
]−1

β∗i =G∗i [G
−1
i βi+X∗i

TY∗i ]

where Gi=α × Ii−1 (see priors section for the numerical value of α), is the prior variance
for equation i, and βi is the prior mean vector. Finally, Y∗i=

[
λ−0.5
i,1 y∼i,1, . . . , λ

−0.5
i,T y∼i,T

]T and:

X∗i=

 −λ−0.5
i,1 y∼1,1 −λ−0.5

i,1 y∼2,1 . . . −λ−0.5
i,1 y∼i−1,1

. . . . . . . . . . . .
−λ−0.5

i,T y∼1,T −λ−0.5
i,T y∼2,T . . . −λ−0.5

i,T y∼i−1,T
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4. Draw the elements of the time-varying covariance matrix Λtfor each time ′t′ in sequence,
each conditional on Π

′
, Ψ

′
, B′, and Φ=diag(ϕ1, ϕ2, . . . , ϕp).

First, note that since the stochastic volatility equations are independent of each other for all
i = 1, . . . , p, (i.e. Φ is diagonal), we can estimate them each separately. In order to do so,
however, what we need is an expression for the posterior density of each λi,t conditional
on everything else, including the entire macroeconomic series values for all T . This is also
known as the “smoothed” density for λi,t.

Since we have that the volatility equation is Markov of the first order we can write the
conditional kernel for each i = 1, . . . , p as:25

g
(
λi,t

∣∣ λi,\t, ϕi,Y∗i ) ∝ f (Y∗i | λi) g
(
λi,t

∣∣ λi,\t, ϕi) ∝ f
(
y∗i,t
∣∣ λi,t) g (λi,t ∣∣ λi,\t, ϕi) =

f
(
y∗i,t
∣∣ λi,t) g (λi,t | λi,t−1, ϕi) g (λi,t+1 | λi,t, ϕi) = f

(
y∗i,t
∣∣ λi,t) g (λi,t | λi,t−1, λi,t+1, ϕi)

s.t. Y∗i =
{
y∗i,1, . . . , y

∗
i,T

}
where y∗i,t is the ith element of BΠ (L) (yt −Ψdt). Further-

more, since λi,t|λi,t−1 ∼ LN
(
eln(λi,t−1) +

ϕi
2 , (eϕi − 1)e2ln(λi,t−1) +ϕi

)
, we have that:

f
(
y∗i,t
∣∣ λi,t) g (λi,t | λi,t−1, λi,t+1, ϕi) ∝

λ−0.5
i,t exp

(
−
(
y∗i,t
)2

2λi,t

)
λ−1
i,t exp

(
−(ln (λi,t) − µi,t)2

2σ2

)
where we can solve for missing values according to section 12.6.1 of Tsay (2005) and find
that:

µi,t =
1

2
(ln (λi,t+1) + ln (λi,t−1) ) , σ2 =

1

2
ϕi

Therefore, in implementing a Metropolis-within-Gibbs step we can draw a proposal for λmi,t
from λmi,t ∼ LN(eµi,t+

σ2

2 , (eµi,t − 1)e2µi,t+σ
2
), and accept it with probability:

a
(
λm−1
i,t , λmi,t

)
= min{1,

f
(
y∗i,t
∣∣ λmi,t)

f
(
y∗i,t
∣∣ λm−1

i,t

)}
Since the proposal densities cancel out in the ratio.

5. Draw the diagonal elements of Φ conditional on Π
′
, Ψ

′
, B′, and Λ′t ∀t.

Note that the Inverse-Gamma prior is conjugate to the variance of the Normal density.
Therefore, it can be shown that the conditional posterior of ϕi is also Inverse-Gamma:

f(ϕi|λi) ∝ h (λi | ϕi) p(ϕi) ∝

T∏
t=1

1

ϕ0.5
i

exp

{
−(ln (λi,t) − ln (λi,t−1) )2

2ϕi

}
× ϕ−( γ2 +1)

i e
− δ

2ϕi

25Note that λi,\t denotes all elements of the λi vector except for the tth element.

34



Furthermore, the right hand side above is equal to:

ϕ
−( γ2 +1)−T2
i exp

{
− δ

2ϕi
− 1

2ϕi

T∑
t=1

ln

(
λi,t
λi,t−1

) 2
}

= ϕ
−( γ+T2 +1)
i exp

−
δ +

∑T
t=1 ln

(
λi,t
λi,t−1

) 2

2ϕi


Consequently, assuming identical Inverse-Gamma priors on each ϕi ∼ IG(γ

2
, δ

2
), we have

that the conditional posterior is also Inverse-Gamma, or IG(γ
∗

2
, δ
∗

2
), s.t.:

γ∗ = γ + T, δ∗ = δ +
T∑
t=1

(
ln

(
λi,t
λi,t−1

) )2

BVAR-SSP-WishartSV Gibbs Estimation Steps:

1. First we repeat the exact same step as step (1) above, except that this time we replace
Γt=B−1Λt(B

−1)
T

= var (νt), with Σt. That is, we no longer condition on B, Λt ∀t,
and Φ, but rather on Ak ∀k = {1, . . . , K}, C, v, and Σt ∀t.

2. Again the same thing applies: we repeat step (2) above again, except that this time we
replace Γt=B−1Λt(B

−1)
T

= var (νt), with Σt.

3. Next we draw the parameters Ak ∀k,C, and v jointly, conditional on Π, Ψ, and Σt ∀t.
All of the individual elements of the parameter matrices Ak ∀k,C and v are drawn jointly
by a random-walk Metropolis-within-Gibbs step. The joint proposal is multivariate Nor-
mal, and I impose MVN priors on both Ak ∀k and C and a Gamma prior on (v − p). See
the section on priors for more details.

Further note that the random-walk multivariate Normal proposal is symmetric and condi-
tioned on the last value in the process through its mean vector; therefore it drops out of the
acceptance ratio. The variance of the proposal is initially set to the inverse of the observed
negative Hessian matrix at the mode of the conditional posterior for a first run, and then
a second run is employed using the covariance matrix of the initial Markov process draws
themselves for improved mixing.

Moreover, the likelihood of the InvWishart (K) model is now:

f (ν | θ) = L (θ) =
T∏
t=1

f (νt | Σt) g (Σt | Σt−1, . . . ,Σt−K; θ)

=
T∏
t=1

1

(2π)
p
2 |Σt|

1
2

exp

{
−1

2
νTt Σ−1

t νt

}
×
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2−( vp2 ) |St−1|
v
2 Γp

(v
2

)−1

|Σt|−(v+p+1)/2exp

{
−1

2
tr
[
St−1Σ−1

t

]}
Note that ν=Π (L) (yt −Ψdt), so it is a function of the data, y. Therefore, by Bayes The-
orem we can consider the conditional posterior of θ as proportional to the likelihood (which
is really a function of the data) times the prior density for θ (where θ = {A1, . . . ,Ak,C,
v}) as follows:26

p (θ | y; Π,Ψ,Σ) ∝ L (θ) π (θ) = f (y,Σ | θ; Π,Ψ) π(θ) ∝ f (ν | θ) π (θ)

Therefore, the Metropolis acceptance probability of the random walk sampler can be ex-
pressed as:

α (θ, θ′) = min

{
1,
p (θ′ | y; Π,Ψ,Σ)

p (θ | y; Π,Ψ,Σ)

}
4. Finally, in a similar fashion as was employed in step (4) above, we now draw Σt conditional

on Σ\t,A
′
k
∀k,C′ , v′ ,Π′

, and Ψ′ for all ′t′ in sequence. Again we have that:

P
(
Σt

∣∣ Σ\t, ν
)
∝ P (νt | Σt)P (Σt | Σt−1)P (Σt+1 | Σt) ∝

|Σt|−
1
2 |St|

v
2 |Σt|−(v+p+1)/2exp

{
−1

2
tr
[(

St−1 + νtν
T
t

)
Σ−1

t

]}
exp

{
−1

2
tr
[
StΣ

−1
t+1

]}

s.t.
St−1

v − p− 1
=CCT +

K∑
k=1

AkΣ
−1
t−kAT

k

Therefore, by letting the proposal be Inverse-Wishart Σt ∼ IWp

(
v,S∗t−1

)
s.t. S∗t−1 =

St−1 + νtν
T
t the proposal drops out of the Metropolis-Hastings ratio. Therefore, we have

that the probability of accepting a draw of Σt (sequentially for each ′t′, starting with 1)
is:27

α (Σt,Σt
′) = min

{
1,
|Σt

′|−
1
2 |St

′|
v
2 exp

{
−1

2
tr
[
St
′Σ−1

t+1

]}
|Σt|−

1
2 |St|

v
2 exp

{
−1

2
tr
[
StΣ

−1
t+1

]}
}

26Note that the lack of a subscript on say, ν or Σ, indicates the set of all T elements.
27Note: to avoid numerical problems logs are taken of both the numerator and denominator, then differenced,

before finally taking their exponential (i.e. the inverse function of the initial logs taken). This avoids issues when the
non-logged function values grow either too large or too small to be machine comparable.
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A.1 Tables and Figures
Table A.1

Parameter Pop. values Estimates 25% DI 75% DI Parameter Pop. values Estimates 25% DI 75% DI
vech(C) 0.3 0.3048067 0.2986989 0.3106097 Ψ 3 2.989978 2.9817319 2.9982527

0 -0.004543 -0.01307 0.0041573 0 -0.00742 -0.026974 0.0121962
0 0.0040364 -0.008375 0.0165825 2.5 2.5000301 2.480028 2.5199119
0 -0.004546 -0.017613 0.0091572 0 0.00597 -0.015043 0.0268138
0.3 0.3080188 0.3000249 0.3160946
0 -0.005497 -0.017898 0.0071127
0 0.017993 0.0058068 0.0299014
0.3 0.3064622 0.2967589 0.3155485
0 0.0059086 -0.009476 0.0205295
0.3 0.3144775 0.3007619 0.328237

vec(A 1) 0.5 0.4958902 0.4816772 0.5102997 vec(Π 1) 0.2 0.203067 0.1818246 0.2242618
0 0.0024868 -0.012623 0.0173502 0 0.0191343 -0.008198 0.0465216
0 0.0049993 -0.009395 0.0191631 0 0.0092204 -0.024373 0.0426402
0 0.0007086 -0.014299 0.0160316 0 0.0785083 0.0170608 0.1402327
0 0.0051099 -0.00988 0.0207817 0 0.0224101 0.0059593 0.0389707
0.75 0.7422374 0.7284686 0.7558432 0.8 0.8377045 0.815873 0.8595974
0 0.0027259 -0.011197 0.0163227 0 0.0310997 0.0049297 0.0574669
0 0.0083849 -0.005988 0.0228076 0 0.0045642 -0.044952 0.05423
0 -0.005162 -0.017116 0.0062144 0 0.0275359 0.0144587 0.0405824
0 0.0029687 -0.008882 0.0143381 0 0.0052861 -0.011677 0.0222193
0.85 0.845122 0.8344947 0.8563897 0.8 0.7477523 0.7260779 0.7696097
0 0.0013346 -0.011855 0.0149829 0 0.0295836 -0.009455 0.0683902
0 -0.004354 -0.009064 0.0004438 0 -0.00732 -0.013495 -0.001152
0 -0.007785 -0.012145 -0.003305 0 0.0120076 0.0039424 0.0200806
0 -0.001321 -0.005601 0.0030164 0 -0.010948 -0.02075 -0.001181
0.98 0.9731136 0.9682256 0.9786167 0.8 0.8322424 0.8100259 0.8543505

vec(A 2) 0 0.0181686 0.0072719 0.0262129 vec(Π 2) 0 -0.035788 -0.057587 -0.014035
0 -0.000187 -0.015698 0.0154666 0 -0.048275 -0.075841 -0.020669
0 0.0021431 -0.012429 0.0168972 0 0.0023807 -0.032155 0.0368863
0 -0.000201 -0.015658 0.0147217 0 -0.181691 -0.245393 -0.117468
0 0.0001618 -0.014322 0.0148431 0 0.0039256 -0.01715 0.0249879
0 -0.000836 -0.014431 0.0144369 0 -0.084736 -0.11276 -0.05653
0 -0.000973 -0.016262 0.0149579 0 0.0102287 -0.023407 0.0438769
0 -0.001339 -0.01691 0.0145956 0 -0.097716 -0.161552 -0.033722
0 0.0013751 -0.012526 0.0148502 0 -0.021575 -0.037903 -0.005195
0 -0.004763 -0.019613 0.0092085 0 0.007884 -0.013093 0.0288199
0 0.0040955 -0.010645 0.0199832 0 0.0573499 0.0303681 0.0842961
0 0.0031088 -0.013321 0.0197369 0 -0.000885 -0.049737 0.0482779

0 0.0001272 -0.013017 0.0125786 0 0.015079 0.0071316 0.0230623
0 0.0015171 -0.015073 0.0177086 0 -0.001201 -0.011513 0.0091777
0 0.0028091 -0.010796 0.0165486 0 0.0145664 0.0020213 0.0271719
0 -0.000922 -0.01551 0.0137548 0 -0.062941 -0.09114 -0.034784

vec(A 3) 0 0.0169788 0.0066137 0.0245011 vec(Π 3) 0 -0.016282 -0.037365 0.0048585
0 0.0018876 -0.013159 0.0170465 0 0.003695 -0.02342 0.0308181
0 0.0032602 -0.010407 0.017481 0 0.0083428 -0.025006 0.0416217
0 0.0031293 -0.012355 0.0180682 0 0.194614 0.1328817 0.2564857
0 -0.002463 -0.017236 0.0123474 0 -0.010037 -0.026447 0.0062422
0 7.779E-05 -0.014382 0.015211 0 0.0398893 0.0184721 0.0611843
0 0.002959 -0.013434 0.0184915 0 -0.051051 -0.076812 -0.025254
0 -0.000346 -0.014503 0.0144719 0 0.0764383 0.0268855 0.1258434
0 -0.005501 -0.021799 0.0110332 0 0.0069021 -0.006159 0.0200284
0 -0.001555 -0.015631 0.0126231 0 -0.011329 -0.02822 0.0054462
0 0.0010484 -0.013776 0.0160192 0 -0.008135 -0.02934 0.0130758
0 -0.004589 -0.019862 0.0118073 0 -0.00101 -0.040783 0.0384009
0 -0.003385 -0.016385 0.0092182 0 -0.006783 -0.012892 -0.000671
0 0.0016518 -0.013823 0.016844 0 -0.004481 -0.012473 0.0035003
0 0.0005964 -0.014179 0.0155372 0 -0.001215 -0.010827 0.0083997
0 0.0010657 -0.014317 0.0164658 0 0.0407181 0.0197003 0.0618022

v 30 25.486853 23.775212 27.257565
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Figure 17: Clark data
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Figure 18: Clark data
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Figure 19: Clark data
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Figure 20: Clark data
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Figure 21: Clark data
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Figure 22: Clark data
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Figure 23: Clark data
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Figure 24: Clark data
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