
CORE DISCUSSION PAPER

2011/13

MARGINAL LIKELIHOOD FOR MARKOV-SWITCHING AND

CHANGE-POINT GARCH MODELS

Luc Bauwens1, Arnaud Dufays1, and Jeroen V.K. Rombouts2

November 22, 2011

Abstract

GARCH volatility models with fixed parameters are too restrictive for long time series due
to breaks in the volatility process. Flexible alternatives are Markov-switching GARCH
and change-point GARCH models. They require estimation by MCMC methods due to
the path dependence problem. An unsolved issue is the computation of their marginal
likelihood, which is essential for determining the number of regimes or change-points. We
solve the problem by using particle MCMC, a technique proposed by Andrieu, Doucet,
and Holenstein (2010). We examine the performance of this new method on simulated
data, and we illustrate its use on several return series.

Keywords: Bayesian inference, Simulation, GARCH, Markov-switching model, Change-
point model, Marginal likelihood, Particle MCMC

JEL Classification: C11, C15, C22, C58.
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1 Introduction

GARCH models with fixed parameters are used to model and predict the volatility of financial

time series since the contributions of Engle (1982) and Bollerslev (1986). When estimating

such models a common finding is that conditional variances are strongly persistent, espe-

cially for long time series. This high degree of persistence (very close to unit root type) has

been questioned, see e.g. Noh, Engle, and Kane (1994). Several researchers, e.g. Diebold

(1986) and Mikosch and Starica (2004), have argued that the nearly integrated behaviour of

conditional variances is due to changes in the parameters of the GARCH process, which are

overlooked if the model specification imposes fixed parameters.

An interesting way of making GARCH models more flexible is enriching them with a

dynamic discrete latent state Markov process in such a way that the parameters can switch

from one value to another.1 These models are called Markov-switching (MS) GARCH mod-

els when the Markov chain is recurrent, see among others Francq and Zakoian (2008) and

Bauwens, Preminger, and Rombouts (2010). Change-point (CP) GARCH models, see He

and Maheu (2010), arise when the chain is not recurrent, a feature that makes these models

non-stationary. Whether a MS- or CP-GARCH model is estimated, the number of possible

states (or regimes) must be chosen. To do this, one can maximize the marginal likelihood

which is the usual tool for model choice in Bayesian inference. However, the computation of

the marginal likelihood for a MS- or CP-GARCH model, and more generally models subject

to the path dependence problem, is an unsolved difficult problem.

In this paper, we solve this problem by applying a particle Markov chain Monte Carlo

(PMCMC) method, a technique introduced by Andrieu, Doucet, and Holenstein (2010). This

approach is particularly suitable for conducting inference in non-linear state space models as

pointed out by Flury and Shephard (2011). The MS- and CP-GARCH models belong to this

class. For a fixed number of regimes, a Gibbs sampling algorithm for Bayesian inference on

the MS-GARCH model has been proposed by Bauwens, Preminger, and Rombouts (2010).

1Other more flexible GARCH models are component models, e.g. Ding and Granger (1996), smooth tran-

sition models, e.g. Gonzales-Rivera (1998), and mixture models, e.g. Haas, Mittnik, and Paolella (2004a).

Markov-switching models that circumvent the path dependence problem are proposed by Gray (1996) and

Haas, Mittnik, and Paolella (2004b), and non-stationary GARCH models by Engle and Rangel (2008), Baillie

and Morana (2009) and Amado and Terasvirta (2011).
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They sample the state variables individually, whereas in our new algorithm, called particle

Gibbs sampler, they are sampled jointly. This makes a big difference in performance, due to

the strong dependence between the state variables. Using PMCMC, it turns out that we can

also go one step further and compute the marginal likelihood using either bridge sampling,

as proposed by Meng and Wong (1996), or the method of Chib (1996), see also Chib and

Jeliazkov (2001). Note that the marginal likelihood can be computed in MS-ARCH models,

introduced by Hamilton and Susmel (1994) and Cai (1994), where the conditional variance

depends only on past shocks. For example, Kaufman and Fruhwirth-Schnatter (2002) compute

the marginal likelihood for a MS-ARCH model using Chib (1996), and mention that it cannot

be extended to the MS-GARCH case due to the path dependence problem.

The path dependence problem occurs because the conditional variance at time t depends

on the entire sequence of regimes visited up to time t, due to the recursive nature of the

GARCH process. Since the regimes are unobservable, one needs to integrate over all possible

regime paths when computing the likelihood function. However, the number of possible paths

grows exponentially with t, rendering the likelihood evaluation unfeasible. In the CP-GARCH

model, the path dependence problem is less acute, since the number of regimes visited up to

time t increases at least linearly in t but not exponentially. The path dependence is the reason

why maximum likelihood estimation is very difficult, if not out of reach, for MS-GARCH

models even for a given number of regimes. The possibility to compute the likelihood function

by the PMCMC algorithm mentioned above is not useful for ML estimation by standard

optimization algorithms because the likelihood function is approximated by simulation in

such a way that it is not differentiable with respect to the model parameters, see Pitt, Silva,

Giordani, and Kohn (2010) who develop a general framework for computing the marginal

likelihood using SMC.

PMCMC combines the advantages of sequential Monte Carlo (SMC) and Markov chain

Monte Carlo (MCMC). Particle filtering, a widely applied SMC method, provides a discrete

approximation of a distribution of interest that contains latent variables, see for example

Fernandez-Villaverde and Rudio-Ramirez (2007) and Johannes, Polson, and Stroud (2009).

Andrieu, Doucet, and Holenstein (2010), ADH hereafter, make use of SMC to build high

dimensional proposal distributions for MCMC samplers. We use a particle filter algorithm to

sample the state variables jointly given the parameters of MS- and CP-GARCH models, and
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we sample these parameters given the states. Thus we embed the particle filter in a Gibbs

sampler, hence the name particle Gibbs sampler. We adapt the particle filter of ADH for

the states in two ways in our sampler. First, we employ an auxiliary particle filter of Pitt

and Shephard (1999) instead of a multinomial resampling step. Second, we sample backward,

rather than forward, the full state vector using a smoothing approach similar to Godsill,

Doucet, and West (2004). Moreover, we can also use the particle filter algorithm to compute

the likelihood function for a given number of regimes since it integrates out the full state

vector. Thanks to this, the computation of the marginal likelihood becomes feasible.

It is an empirical question whether a MS-GARCH model or a CP-GARCH model (or any

other model) is better fitting a particular series. We apply the two types of models (MS

and CP) to several series of returns over the period 1999-2011. For four US stock indices,

MS-GARCH models with two regimes dominate CP-GARCH models. One regime of the MS

models has a low unconditional volatility regime and the other has a high level. For individual

stock returns and one commodity index, more regimes (MS) or breaks (CP) are selected and

MS models are preferable in all cases, with small differences between marginal log-likelihood

values. For the dollar/yen exchange rate, a MS-GARCH model with two regimes is favored.

In Section 2, we present the particle Gibbs algorithm we propose for posterior inference

on the parameters of MS- and CP-GARCH models. In Section 3, we explain the two methods

for computing the marginal likelihood. In Section 4, we illustrate the algorithm on simulated

and real data. Conclusions are presented in the last section.

2 Inference for MS- and CP-GARCH models

We consider the model defined by

yt = σtǫt

σ2
t = ωst + αsty

2
t−1 + βstσ

2
t−1

ǫt ∼ N(0, 1), (1)

wihere st is an integer random variable taking values in [1,K+1]. We define YT = {y1, ..., yT }
′

and ST = {s1, ..., sT }
′ where T denotes the sample size, and θ = (ω1, . . . , ωK+1, α1, . . . , αK+1,

β1, . . . , βK+1). The latent state process {st} is first order Markovian either with the transition

3



matrix

PS =























p11 p12 p13 ... p1K 1−
∑K

j=1 p1j

p21 p22 p23 ... p2K 1−
∑K

j=1 p2j

... ... ... ... ... ...

pK1 pK2 pK3 ... pKK 1−
∑K

j=1 pKj

pK+1,1 pK+1,2 pK+1,3 ... pK+1K 1−
∑K

j=1 pK+1,j























,

where pij = P [st = j|st−1 = i], or with the absorbing and non-recurrent transition matrix

PC =























p11 1− p11 0 ... 0 0

0 p22 1− p22 ... 0 0

... ... ... ... ... ...

0 0 0 ... pKK 1− pKK

0 0 0 ... 0 1























.

The first transition matrix characterizes a Markov-switching model (MS-GARCH) with K+1

regimes and the second a change-point model (CP-GARCH) with K breaks. Note that other

distributional assumptions than the normal, a non-zero conditional mean, and other functional

forms for the conditional variance σ2
t can be easily handled. In fact, a state dependent mean

would make it easier to separate the regimes. A relevant empirical issue is the value K and

the choice between a model with recurrent states (PS) or non recurrent states (PC). The

marginal likelihood is a standard Bayesian criterion to make this choice.

Estimation by maximum likelihood of the model parameters, consisting of θ and P , where

P denotes the unrestricted elements of PS or PC , is unfeasible for realistic sample sizes because

of the path dependence problem. In fact, this would require integration over the (K + 1)T

possible paths in the case of a MS-GARCH model and likewise the number of paths increase

at least linearly in T (but not exponentially) for a CP-GARCH model.

Bayesian inference is feasible by treating explicitly ST as a parameter, a technique called

data augmentation. This is typically done within a Gibbs sampling algorithm that samples

from the posterior distribution f(θ, P, ST |YT ) by iteratively drawing from three full conditional

distributions:

1. p(ST |θ, P, YT )

2. f(P |ST , θ, YT ) = f(P |ST )
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3. f(θ|ST , P, YT ) = f(θ|ST , YT ).

Sampling from the last two distributions is standard. The full conditional distribution of P is

Dirichlet under a Dirichlet prior distribution assumption, and the full conditional distribution

of θ can be simulated with an adaptive Metropolis-Hastings step the details of which are

given in the Appendix. After convergence, the algorithm - called particle Gibbs in the sequel

- generates a sample {Si
T , P

i, θi}G1

i=1 which is a dependent sample of f(θ, P, ST |YT ). In the

next two subsections, we describe and explain how we implement step 1 with a conditional

sequential Monte Carlo (SMC) algorithm.

2.1 Sampling the full state vector using a conditional SMC algorithm

Sampling the state vector ST is complex because of the path dependence problem. Bauwens,

Preminger, and Rombouts (2010) sample each st given the other, which gives a slowly con-

verging and computationally demanding sampler. We next show how we can draw ST in one

step using a SMC sampler that furthermore allows to compute the marginal likelihood of the

data as explained in Section 3.

We define St = {s1, ..., st} and St+1 = {st+1, ..., sT } and likewise for Yt and Y t+1. We

factorize p(ST |θ, P, YT ) as

p(sT |YT , θ, P )p(sT−1|sT , YT , θ, P ) . . . p(st|S
t+1, YT , θ, P ) . . . p(s1|S

2, YT , θ, P ). (2)

For the CP-GARCH model the first and last distributions are degenerate since sT = K + 1

and s1 = 1 with probability one. We explain next how to sample ST by focussing on the

typical term p(st|S
t+1, YT , θ, P ) which can be written as follows:

p(st|S
t+1, YT , θ, P ) =

p(st|Yt, θ, P )f(Y t+1, St+1|st, Yt, θ, P )f(Yt|θ, P )

f(St+1, YT |θ, P )

∝ p(st|Yt, θ, P )f(Y t+1, St+1|st, Yt, θ, P )

∝ p(st|Yt, θ, P )f(Y t+1|St, Yt, θ, P )p(st+1|st, P ). (3)

The probabilities p(st|Yt, θ, P ) (for each t and possible value of st) in (3) are complicated to

evaluate because of the path dependence problem. They are computed by a conditional SMC

algorithm defined below, which integrates out the state vector, while more explanations are

provided in the next subsection. We denote by wi
t the normalized weights that are associated

to N particles {s1t , ..., s
N
t } which represent possible realizations of st. We condition on the st
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draw from the previous Gibbs iteration - hence the name conditional SMC - which becomes the

first particle s1t . The fact that the previous state draw needs to survive ensures convergence

to the stationary distribution. The SMC algorithm for p(st|Yt, θ, P ) for t = 1, . . . , T given

uniform initial weights wi
0 = 1/N and initial particles si0 (equal to 0 for a change-point model

and a uniform draw for a MS-model) is given by:

1. ∀i ∈ [2, N ], compute git = wi
t−1

∑K+1
j=1 p(st = j|sit−1, P )f(yt|Ft−1, θ, P, st = j), Ft−1

denoting the data and particles until t − 1, and the normalized weights Πi
t|t−1 =

git/
∑N

j=1 g
j
t .

2. ∀i ∈ [2, N ], sample independently a label variable Ai
t−1 ∼ Πt|t−1 such that Ai

t−1 ∈ [1, N ].

3. ∀i ∈ [2, N ], sample a particle sit ∼ p(st|s
Ai

t−1

t−1 , P ).

4. ∀i ∈ [1, N ], compute ŵi
t =

f(yt|Ft−1,s
i
t,θ,P )

∑K+1

j=1
f(yt|Ft−1,θ,P,st=j)p(st=j|s

Ai
t−1

t−1
)

and the normalized weights

wi
t = ŵi

t/
∑N

j=1 ŵ
j
t .

The weights wi
t serve to approximate the probability p(st|Yt, θ, P ) that appears in (3). Specif-

ically p(st = j|Yt, θ, P ) =
∑N

i=1w
i
t1{sit=j}. Notice that the algorithm is computationally

demanding since N particles are used for each t. The choice of N is discussed in section 4.1.

The second term in (3) is approximated by considering the path of each particle: for each

q ∈ [1,K + 1], we compute

λq
t =

∑N
i=1 f(Y

t+1|sit, ..., s
i
T , Ft−1, θ, P )1{sit=q}

∑N
i=1 f(Y

t+1|sit, ..., s
i
T , Ft−1, θ, P )

,

where each f() is the product of Gaussian densities implied by (1).

To end the procedure, we iteratively sample an entire state vector ST starting from T :

1. Sample k ∼ wT . Set b
k
T = k and sT = s

bkT
T

2. ∀t = T − 1, ..., 2, 1,

• ∀i ∈ [1, N ] compute πi
t = wi

tλ
sit
t p(st+1|s

i
t, P ) and the normalized weights Πi

t =

πi
t/
∑N

j=1 π
j
t .

• Sample bkt ∼ Πt and set st = s
bkt
t .

The full vector ST is therefore sampled from t = T, . . . , 1 as written in (2).
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2.2 More details on the conditional SMC algorithm

Our SMC algorithm is valid according to the auxiliary particle filter (APF) theory, see Pitt

and Shephard (1999) for details. This approach adds an auxiliary particle to ease the sampling

of st. It introduces an integer random variable k taking values in [1,K + 1] and defines (we

drop the conditions θ, P for ease)

p(st, k|Yt) ∝ f(yt|Yt−1, st)p(st|s
k
t−1)w

k
t−1

∝
f(yt|Yt−1, st)p(st|s

k
t−1)w

k
t−1g(st, k|Yt)

g(st, k|Yt)

∝
f(yt|Yt−1, st)p(st|s

k
t−1)w

k
t−1g(st|Yt, k)g(k|Yt)

g(st, k|Yt)
.

The intuition behind the first line of the formula above is that the sum of p(st, k|Yt) over all

values of k is the probability p(st|Yt) which appears in (3). The idea of the next two lines

is that the sampling of st from the proposal distribution g(st, k|Yt) will be quite accurate if

the proposal takes into account yt. We take g(st, k|Yt) ∝ wk
t−1p(st|s

k
t−1)f(yt|Yt−1, st). Hence

g(k|Yt) ∝ wk
t−1

∑K+1
j=1 p(st = j|skt−1)f(yt|st = j, Yt−1). Finally,

p(st, k|Yt) ∝
f(yt|Yt−1, st)

∑K+1
j=1 f(yt|Yt−1, st = j)p(st = j|skt−1)

p(st|s
k
t−1)g(k|Yt) (4)

since g(st|k, Yt) =
p(st|skt−1

)f(yt|Yt−1,st)
∑K+1

j=1
f(yt|Yt−1,st=j)p(st=j|skt−1

)
.

The SMC algorithm described in four steps in the previous subsection comes from the

formula (4). We start by sampling ki from g(k|Yt) (step 1), then we sample sit ∼ p(st|s
ki
t−1)

(step 3), and we compute the weight
f(yt|Yt−1,s

i
t)

∑K+1

j=1
f(yt|Yt−1,st=j)f(st=j|s

ki
t−1

)
(step 4). The normalized

weights provide in fact an approximation of the distribution p(st|Yt, θ, P ).

The sampler we develop is in line with the particle Gibbs sampler defined in ADH. To make

the link clear, here are more details. Define the ancestor variable Ak
t as the particle from which

the particle k at time t is sampled, and the variable bkt as the particle belonging to the path of

the particle k at time t. Set bkT := k so that we have the backward recursion bkt = A
bkt+1

t . The

particle Gibbs sampler extends the target distribution by incorporating all random variables

generated by the conditional SMC, but ADH show that θ, P and ST are still distributed

according to the distribution of interest f(θ, P, ST |YT ). The extended target distribution

is f̃(θ, P, ST , A1, ..., AT−1, S̃1, ..., S̃T , k) where A1, ..., AT−1, S̃1, ..., S̃T , k are the set of random

variables generated by the SMC algorithm (At = {A1
t , ..., A

N
t }, S̃t = {s1t , ..., s

N
t } and k denote
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the selected particle at time T in the SMC sequence). The justification of our algorithm is

based on Theorem 5 in section 4.5 of ADH which implies that the designed particle Gibbs

algorithm admits f(θ, P, ST |YT ) as invariant density. This holds for a conditional SMC which

considers a resampling step using the current weights and samples k from its full conditional

under f̃( ) and deterministically tracing back the ancestral lineage of Sk
T . We deviate from this

in our algorithm since we apply an auxiliary particle filter, and having sampled the particle

k we sample backward a new path bkt . However, as we explain next, the theorem still holds

under these two adaptations embedded in our algorithm.

First, the auxiliary particle filter improves the resampling scheme with respect to the

multinomial resampling. Following the discussion of R. Chen in ADH, the APF can be

viewed as a change in the intermediate distribution and hence does not modify the theoretical

properties of the standard particle filter or the particle Gibs.

Second, following the discussion of N. Whiteley in ADH, the particle Gibbs still works if

we sample the particle k and sample a new ancestral lineage of this particle. Indeed, we can

show - this is related to the decomposition of p(st|S
t+1, YT , θ, P ) presented in (3) - that

f̃(bkt |YT , θ, P, S
t+1, A1, .., AT−1, S̃1, .., S̃T , b

k
t+1, .., b

k
T , k)

∝ p(s
bkt
t |Ft, θ, P )f(Y t+1|Ft, S

t+1, s
bkt
t , θ, P )p(s

bkt
t |st+1)

∝ w
bkt
t f(Y t+1|Ft, S

t+1, s
bkt
t , θ, P )p(s

bkt
t |st+1).

The advantage of this backward sampling is that it enables the exploration of all possible

ancestral lineages and not only those obtained during the forward conditional SMC sequence.

Remark that in our algorithm, we compute λ
s
bkt
t
t ≈ f(Y t+1|s

bkt
t , Ft, θ, P ) which is not equal

to f(Y t+1|Ft, S
t+1, s

bkt
t , θ, P ) but can be viewed as a good approximation. The computation

of f(Y t+1|Ft, S
t+1, s

bkt
t , θ, P ) would be much more time consuming and avoiding it allows us

to consider more particles for the conditional SMC.

3 Marginal likelihood

We use two ways to compute the marginal likelihood, a global method that relies on bridge

sampling, as proposed by Meng and Wong (1996), and a local method based on the marginal

likelihood identity of Chib (1995). The difficulty of computation of the likelihood f(YT |θ, P )

is the main reason why the marginal likelihood has not been used. The SMC algorithm
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constitutes an interesting alternative to obtain an unbiased estimation of the quantity, see

Chib, Nardari, and Shephard (2000).

3.1 Bridge sampling

The marginal likelihood is defined as f(YT ) =
∫

f(YT |θ, P )f(θ, P )dθ dP . The bridge sampling

idea is to estimate this integral by using the MCMC output and an importance sampling

approach. For a given function t(θ, P ) and a proposal density q(θ, P ), we define

A1 =

∫

t(θ, P )q(θ, P )f(θ, P |YT )dθ dP

A2 =

∫

t(θ, P )f(YT |θ, P )f(θ, P )q(θ, P )dθ dP.

Meng and Wong (1996) highlight that f(YT ) = A2/A1 and that the quantities A1 and A2

can be estimated by Â1 = 1
G1

∑G1

j=1 t(θ
j , P j)q(θj , P j) with {θj , P j} the G1 posterior draws,

and Â2 = 1
G2

∑G2

j=1 t(θ
j , P j)f(YT |θ

j , P j)f(θj , P j), this time with G2 draws {θj , P j} from

q(θ, P ). The likelihood f(YT |θ
j , P j) is computed (G2 times) by the conditional SMC algorithm

described in Section 2 . In fact,

f(YT |θ, P ) = f(y1|θ, P )

T
∏

t=2

f(yt|Yt−1, θ, P ) (5)

where f(yt|Yt−1, θ, P ) can be estimated by, see Pitt, Silva, Giordani, and Kohn (2010),

(

1

N

N
∑

i=1

ŵi
t

)(

N
∑

i=1

git

)

. (6)

Notice that if t(θ, P ) = 1/q(θ, P ), the method is equivalent to importance sampling, and

to reciprocal importance sampling if t(θ, P ) = 1/f(θ, P |YT ). We follow Meng and Wong

(1996) who obtain t(θ, P ) = (f(θ, P |YT ) + q(θ, P ))−1 as an asymptotically optimal choice

which minimizes the expected relative error of the estimator in the case of i.i.d draws from

f(θ, P |YT ) and q(θ, P ). The proposal distribution q(θ, P ) is split into two independent blocks

q(θ) and q(P ). The two proposal distributions are respectively mixtures of normal and beta

distributions constructed with posterior draws in order to cover the posterior support. A

similar mixture of normal distributions (see the Appendix) is used as proposal for sampling

θ in step 3 of the particle Gibbs algorithm sketched in the beginning of Section 2. We refer

the reader to Fruhwirth-Schnatter (2004) for more details on the implementation of bridge

sampling and examples for mixture and Markov-switching models.
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3.2 Chib’s method

As proposed by Chib (1995), the marginal likelihood can also be computed as

f(YT ) =
f(θ∗, P ∗)f(YT |θ

∗, P ∗)

f(θ∗, P ∗|YT )
(7)

where P ∗ and θ∗ can be any admissible value but is typically chosen to be a high density point

like the mode, mean or median of the posterior distribution. The prior is easily computed

and the likelihood f(YT |θ
∗, P ∗) is computed (once) by the SMC algorithm as in the previous

subsection.

The evaluation of the posterior distribution f(θ∗, P ∗|YT ) is done in two parts. Since

f(θ∗, P ∗|YT ) = f(P ∗|YT , θ
∗)f(θ∗|YT ) we use in the first part that

f(P ∗|YT , θ
∗) =

∫

f(P ∗|YT , ST )p(ST |YT , θ
∗)dST ≈

1

G3

G3
∑

g=1

f(P ∗|YT , S
g
T ), (8)

where Sg
T is the sampled value of ST at the g-th iteration of an auxiliary Gibbs/PMCMC

sampler where θ is kept fixed at θ∗, and G3 denotes the number of iterations after convergence.

The auxiliary sampler iterates between p(ST |θ
∗, YT , P ) and f(P |ST , YT ).

For the second part, we use the method of Chib and Jeliazkov (2001) since we sample

θ with a proposal distribution through a Metropolis step. The method uses the reversibil-

ity of the Markov chain generated by the PMCMC sampler to compute f(θ∗|YT ). Let us

denote by α(θ′, θ∗|YT , P, ST ) the Metropolis-Hastings probability to move from θ′ to θ∗ and

by q(θ′, θ∗|YT , P, ST ) the density of the proposal at (θ′, θ∗). The subkernel satisfies the local

reversibility condition

f(θ∗|YT , ST , P )α(θ∗, θ′|YT , ST , P )q(θ∗, θ′|YT , ST , P )

= f(θ′|YT , ST , P )α(θ′, θ∗|YT , ST , P )q(θ′, θ∗|YT , ST , P ).

By multiplying both sides by f(P, ST |YT ) and integrating over (θ′, P, ST ), we get

f(θ∗|YT ) =

∫ ∫ ∫

α(θ′, θ∗|YT , ST , P )q(θ′, θ∗|YT , ST , P )f(θ′, P, ST |YT )dθ
′dPdST

∫ ∫ ∫

α(θ∗, θ′|YT , ST , P )q(θ∗, θ′|YT , ST , P )f(P, ST |YT , θ∗)dθ′dPdST

. (9)

A Monte Carlo estimate of the numerator is given by

1

G1

G1
∑

g1=1

α(θg1 , θ∗|YT , S
g1
T , P g1)q(θg1 , θ∗|YT , S

g1
T , P g1) (10)
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where (θg1 , P g1 , Sg1
T ) is the g1-th draw of the particle Gibbs posterior sampler described in

Section 2 and G1 is the total number of draws. The denominator is estimated by

1

G3

G3
∑

g=1

α(θ∗, θg|YT , S
g
T , P

g) (11)

where (P g, Sg
T ) is the g-th draw of the auxiliary sampler (with G3 draws) defined above

for the first part. Given this draw, θg is generated from q(θ∗, θ|YT , S
g
T , P

g), the proposal

for θ conditioned on (P g, Sg
T ). Hence (P g, Sg

T , θ
g) is a draw from the joint distribution of

(θ′, P, ST ) defined by q(θ∗, θ′|YT , ST , P )f(P, ST |YT ), and (11) is an estimate of the expectation

of α(θ∗, θ′|YT , ST , P ) with respect to that joint distribution.

The computation of the marginal likelihood can be summarized as follows:

1. Choose a high density point (θ∗, P ∗) from the posterior particle Gibbs sample.

2. Compute the prior density value f(θ∗, P ∗).

3. Launch a SMC algorithm to compute the likelihood f(YT |θ
∗, P ∗) using (5) and (6).

4. Estimate the numerator of (9) from the posterior sample, using formula (10).

5. Launch an auxiliary particle Gibbs sampler with fixed parameter θ∗ and from the gen-

erated draws compute the denominator of (9) using formula (11). Also compute an

estimate of f(P ∗|YT , θ
∗) using (8).

6. Collect all terms and compute log f(YT ) from the right hand side of (7).

For Markov-switching models Fruhwirth-Schnatter (2004) highlights that Chib’s marginal

likelihood estimator is biased. We do not apply this correction because it is very difficult

to quantify the bias. The marginal likelihood estimator à la Chib is a bridge sampling

estimator corresponding to a specific non-optimal choice of t(θ, P ), see Meng and Schilling

(2002), Mira and Nicholls (2004) and Ardia, Basturk, Hoogerheide, and van Dijk (2010) for

examples. However the bridge sampling estimator with optimal choice of t(θ, P ) is derived

asymptotically and assumes i.i.d draws of the posterior distribution, so it is interesting to

provide an empirical comparison of the two estimators, as we do in the next section. We

remark finally that Chib’s estimator requires to launch G3 auxiliary particle Gibbs samplers,

and is therefore as time-consuming as the bridge sampling estimator that requires to launch

G2 SMC samplers, assuming that G2 an G3 are equal.

11



4 Illustrations

This section is divided in three parts. To be precise on the implementation of the sampler in

the illustrations, we first describe the prior distributions, starting values and other parameters

of the algorithm. Second, we illustrate the approach on simulated data, which allows us to

check if the correct model is chosen by the marginal likelihood criterion and to investigate

the posterior distributions of misspecified models. Third, we provide applications to daily

returns of eleven return series.

4.1 Prior distributions, starting values and other parameters

We use standard prior distributions for this type of models. We assume independence between

the transition matrix parameters P and the GARCH parameters θ. Following Chib (1996)

and Chib (1998), the prior on P is a Dirichlet distribution. The prior hyperparameters are

given in Table 1. They imply a probability of 0.9991 to stay in a given regime, or an expected

duration of 1111 days in a given regime, which is similar to He and Maheu (2010). The prior

on the GARCH equation parameters is specified in terms of appropriate transformations

of the elements of θ - see the note of Table 1- and is a multivariate normal distribution

with a diagonal covariance matrix having large variances. The sensitivity of the results, i.e.

selection of optimal number of regimes using the marginal likelihood, to the choice of the

hyperparameters is discussed in Section 4.4.

Although the particle Gibbs algorithm should converge in principle for any starting point

in the parameter space, a high density starting value for the parameters ensures a quicker

convergence to the posterior distribution. For the MS- and CP-GARCH models considered

here, we use the particle swarm optimization method, see Kennedy and Eberhart (1995), to

find starting values that are likely to be close to the maximum likelihood estimate.

For every model, we perform 10,000 particle Gibbs iterations (G1) after convergence ac-

coding to the Geweke diagnostic (Geweke (1992)). The marginal likelihood is computed by

bridge sampling with 1,000 draws (G2) of the proposal distribution, and by Chib’s method

using the posterior median of each parameter, by running 600 auxiliary particle Gibbs iter-

ations (G3). Based on several experiments, we fix the number of particles (N) to 150 for

CP- and 250 for MS-GARCH models, respectively. This number is very low compared to the

several thousands of particles used for models with a continuous state vector or models that

12



Table 1: Hyperparameters of the prior distributions

GARCH parameters (θ)

Distribution :

µ = (µω, µα, µβ)
′ Σ = 8I3(K+1)

µω = (−4, . . . ,−4) Normal(µ,Σ)

µβ = (ln( 0.750.25 ), . . . , ln(
0.75
0.25 )), µα = (ln( 0.250.75 ), . . . , ln(

0.25
0.75 ))

Transition probabilities (P)

Model Distribution:

CP-GARCH α = 1110.11, β = 1 Beta(α, β)

MS-GARCH α =

















K × 1110.11 1 ... ... 1

1 K × 1110.11 1 ... 1

... ... ... ... ...

1 1 1 ... K × 1110.11

















Dirichlet(α)

GARCH parameters are mapped on the real line with ω ∈]0,+∞] → lnω, α ∈]0, 1[→ ln( α
1−α

), and

β ∈]0, 1[→ ln( β

1−β
). K is the number of regimes minus 1.

use the particle filter for inference on all the parameters, as He and Maheu (2010) who use

300,000 particles for a CP-GARCH model.

Note that inference on the models described here requires nontrivial programming and

many computations that can be time consuming. For example, given the configuration defined

above, and for a sample size of 3000 observations, the computing time for estimating a MS-

or CP-GARCH model (including the marginal likelihood) with K = 2 is of the order of three

hours on a Intel Core 2 Duo 3Ghz with 3.48Gb RAM memory. This is about 200 times more

than for the standard GARCH model. Executable codes are available on the web site of the

corresponding author.

4.2 Illustrations with simulated data

We illustrate our algorithm and the marginal likelihood computation on two simulated data

sets of 3000 observations. The first dataset is generated by a CP-GARCH model with two

breaks and the second by a MS-GARCH model with two regimes. We compute the marginal

13



likelihood for the true number of regimes plus one to illustrate that the algorithm selects the

true model, and we report some posterior information. A Monte Carlo study investigating

the sampling properties of the ”Bayesian estimator” is infeasible given the computation time

this would imply.

4.2.1 CP-GARCH data

The true parameter values that we used to simulate 3000 observations are given in Table 3. A

structural break occurs after 1000 observations and another one after 2000. This implies that

the probabilities p11 and p22 are equal to 0.999. The persistence of the volatility processes,

measured by α + β, is 0.9 in the first and second regimes and 0.6 in the third regime. The

unconditional variance jumps from 2 to 7 in the second regime and drops to 1 in the third

regime.

Table 2: Marginal log-likelihood values for 3000 simulated data of CP-GARCH

Regimes 1 2 3 4

Change-Point
BS -5463.22 -5451.42 -5438.43 -5442.10
Chib -5463.00 -5450.28 -5438.09 -5439.78

Markov-switching

BS -5463.22 -5448.95 -5442.05 -5445.63
Chib -5463.00 -5448.14 -5441.07 -5443.66

The parameters of the 3-regime CP-GARCH DGP are shown in
Table 3.

The marginal likelihood values (in logarithms, MLL hereafter) computed for MS- and

CP-GARCH models are given in Table 2. The differences between the values estimated by

bridge sampling (BS) and by Chib’s method are very small. The fact that both the global

and local way of computing the marginal likelihood gives the same results indicates that

we obtain the correct estimate with high probability. The CP-GARCH model with three

regimes (i.e. two breaks) is correctly selected among all models, and consistently with the

data generating process (DGP), the MS-GARCH model with three regimes is selected among

MS-GARCH models. We observe that the MLL increases substantially from one to three

regimes but decreases less strongly beyond the correct number of regimes. In fact, imposing

one superfluous regime is less harmful than missing an existing one.
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Tables 3 and 4 display posterior information about the parameters of the GARCH equa-

tions and of the transition matrix of all the MS- and CP-GARCH models for which we report

the MLL values. When the misspecified model with one regime is estimated, we find that as

expected the persistence is overestimated, i.e. 0.99, and the unconditional variance amounts

to 2.85. The ignored latent state dynamics is partly picked up by the volatility dynamics.

The estimation of the misspecified one break CP-GARCH model finds a break at obser-

vation 2007 of the 3000 observations. This is no surprise since this is the biggest of the two

breaks in the DGP in the sense that the unconditional variance drops from seven to one. The

estimated parameters of the first regime are closest to the first regime true parameter values.

The estimated break dates of the correctly specified two break model are 1046 and 2010 (with

standard deviations 31 and 8) compared to the true values of 1000 and 2000 respectively. The

corresponding volatility process parameter estimates are also reasonably close to the true val-

ues if we take into account the posterior standard deviations. The three break CP-GARCH

model finds a spurious estimated regime starting at observation 2847, i.e almost at the end

of the sample as expected since the third break has to occur in-sample by construction. The

high standard deviation of 170 clearly indicates that this break date is highly uncertain, in

contrast with what occurs for the other breaks. As expected, the estimated parameters of the

more general three-regime MS-GARCH model are globally in line with the true parameters.

For the MS-GARCH models, though more regime switches can in principle occur, the dates of

regime switches are very close to those reported for the break models. Finally, three regimes

of the over-fitted four regime MS-GARCH model have regime parameters close to the MLE

given true states parameters, while the spurious regime has completely different parameters

implying an unreasonably high unconditional variance.

The posterior means of the transition probabilities in Table 4 are close to the prior means.

Actually, the prior information about these parameters is quite close to the data information,

since expected durations of staying in a given regime are 1111 in the prior and 1000 in the

DGP. We checked the robustness of our results by varying the beta hyper-parameters. Our

conclusion is that, similar to He and Maheu (2010), an informative prior is necessary to ensure

that the conditional SMC behaves well and then it does not affect the posterior distribution.

For example, for the correctly specified model with a less informative prior (p ∼ Beta(100, 0.5),

implying expected durations of 201 observations), the estimated break dates of 999 and 2029
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Table 3: Results for 3000 simulated data of 3-regime CP-GARCH: GARCH parameters

DGP MLE given true states

Regime 1 2 3 1 2 3
ω 0.2 0.7 0.4 0.29 0.71 0.31
α 0.1 0.2 0.2 0.14 0.16 0.16
β 0.8 0.7 0.4 0.70 0.72 0.54

Break date 1000 2000
Change-point K = 0 Markov-switching K = 0

Regime 1 2 3 4 1 2 3 4
ω 0.05 0.05

(0.02) (0.02)
α 0.13 0.13

(0.02) (0.02)
β 0.86 0.86

(0.02) (0.02)
Change-point K = 1 Markov-switching K = 1

Regime 1 2 3 4 1 2 3 4
ω 0.12 0.31 0.19 0.67

(0.04) (0.08) (0.05) (0.24)
α 0.14 0.15 0.15 0.18

(0.02) (0.05) (0.03) (0.04)
β 0.83 0.54 0.72 0.71

(0.03) (0.10) (0.06) (0.05)
Break date 2007

(32.2)
Change-point K = 2 Markov-switching K = 2

Regime 1 2 3 4 1 2 3 4
ω 0.34 0.78 0.32 0.39 0.81 0.29

(0.14) (0.23) (0.07) (0.14) (0.24) (0.08)
α 0.15 0.17 0.17 0.15 0.17 0.15

(0.03) (0.04) (0.05) (0.03) (0.03) (0.04)
β 0.68 0.70 0.52 0.65 0.70 0.56

(0.12) (0.06) (0.09) (0.09) (0.05) (0.10)
Break date 1046 2010

(31.7) (8.5)
Change-point K = 3 Markov-switching K = 3

Regime 1 2 3 4 1 2 3 4
ω 0.26 0.76 0.42 0.24 0.38 0.30 0.82 2.24

(0.09) (0.22) (0.18) (0.09) (0.06) (0.15) (0.08) (0.22)
α 0.13 0.19 0.10 0.41 0.15 0.14 0.17 0.03

(0.03) (0.03) (0.04) (0.17) (6E-4) (0.03) (0.04) (0.03)
β 0.73 0.69 0.51 0.33 0.65 0.56 0.70 0.90

(0.06) (0.05) (0.16) (0.14) (0.08) (0.09) (0.05) (0.11)
Break date 1007 2011 2847

(36.7) (6.7) (170.4)

Posterior means and standard deviations in parentheses. The break dates are the posterior
modes of the state variables.
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Table 4: Results for 3000 simulated data of 3-regime CP-GARCH : transition probabilities

Regimes Change-point Markov-switching

K = 2

(

0.9994 0.0006
0 1

) (

0.9990 0.0010
0.0007 0.9993

)

K = 3





0.9991 0.0009 0
0 0.9990 0.001
0 0 1









0.9990 0.0006 0.0004
0.0003 0.9994 0.0003
0.0006 0.0003 0.9991





K = 4









0.9991 0.0009 0 0
0 0.9990 0.001 0
0 0 0.9982 0.0018
0 0 0 1

















0.9991 0.0003 0.0003 0.0003
0.0002 0.9991 0.0005 0.0002
0.0002 0.0002 0.9991 0.0005
0.0004 0.0003 0.0002 0.9991









Posterior means of the transition probabilities. The DGP parameters of the 3-regime CP-GARCH model
are given in Table 3.

(with standard deviations 32 and 21) are close to those in Table 3.

4.2.2 MS-GARCH data

We simulated 3000 observations of a two-regime MS-GARCH model with the same GARCH

parameters for the first two regimes as in the CP-GARCH model, see Table 3. The transition

probabilities are given by p11 = 0.9999 and p22 = 0.9995. They are chosen to be high in order

to have only two regime switches, so that the CP-GARCH model can also cover this case

without needing to estimate models with many breaks. For conciseness, we do not report the

posterior results as in Table 3.

Table 5: Marginal log-likelihood values for 3000 simulated data of MS-GARCH

Regimes 1 2 3 4

Change-Point
BS -5879.88 -5862.75 -5848.05 -5851.07
Chib -5879.56 -5859.22 -5846.93 -5850.99

Markov-switching

BS -5879.89 -5843.55 -5849.04 -
Chib -5879.67 -5843.05 -5849.48 -

The DGP parameters of the 2-regime MS-GARCH model are
shown in Table 3 (regimes 1 and 2 of DGP).

Table 5 presents the MLL values. The differences between the values by bridge sampling

(BS) and Chib’s method are again very small. The MS-GARCH model with two regimes is
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correctly chosen as the best model. As expected, in the CP-GARCH class the three-regime

model has the highest MLL.

4.3 Illustrations on financial time series

We first provide detailed results for MS- and CP-GARCH models fitted to S&P 500 daily

index returns. Next, we provide results for ten other series. For the sake of comparison, we

also estimate the spline GARCH model of Engle and Rangel (2008). The latter model is more

flexible than the standard GARCH model since in addition to the usual GARCH dynamics

it captures long run volatility movements by spline functions. It is defined as

yt = τtgtǫt, ǫt ∼ N(0, 1),

g2t = (1− α− β) + α(yt−1/τt)
2 + βg2t−1

τ2t = γ exp

(

λ0t+
k
∑

i=1

λi[(t− ti−1)+]
2

)

,

where (α, β, γ, λ0, . . . , λk) are parameters, (t−ti)+ = min(0, t−ti) and {t0 = 0, t1, t2, . . . , tk−1}

are time indices (knots) partitioning the sample size T in k equally spaced intervals. For

this model, the number of knots is chosen by the BIC criterion and the prior density to be

integrable but fairly little informative since it is uniform on finite intervals for each parameter.

4.3.1 S&P 500 index

We use a sample of 3000 daily percentage returns from May 20, 1999 to April 25, 2011. The

time series is plotted in Figure 1 with estimated regime switches shown by vertical lines.

Table 6: Marginal log-likelihood values for S&P 500 data

Regimes 1 2 3 4

Change-Point
BS -4505.33 -4505.83 -4503.05 -4519.23
Chib -4504.95 -4505.93 -4502.97 -4516.16

Markov-switching

BS -4505.31 -4497.99 -4502.74 -
Chib -4505.08 -4496.04 -4497.73 -

The MLL estimates computed by bridge sampling and by Chib’s method are given in

Table 6 and they indicate that the two-regime MS-GARCH model fits the data best. There

18



Figure 1: S&P 500 index returns with switches from the 2 regime MS-GARCH model

are three regime switches, occurring on July 22, 2003, June 15, 2007, and September 27, 2010,

which make sense after inspecting Figure 1. These dates are the modes of the posterior draws

of the state variables; estimation uncertainty as measured by posterior standard deviations

is respectively 37, 17 and 20. The second best model, with a decrease in MLL of about 5, is

the CP-GARCH model with two breaks (three regimes), at dates July 18, 2003 and June 14,

2007 (see the values in italics in the table).

To get an idea about the precision of the marginal likelihood estimators, we computed

the MLL’s ten times for all the models in Table 6 using different seeds. More than ten times

would be desirable but too computationally intensive. It turns out that both the BS and

Chib estimators seem to be fairly precise. In fact, from Table 7 we see that for the best

MS-GARCH model (two regimes) the difference between the maximum and minimum MLL

is 0.49 and 3.13 for the BS and Chib’s estimators respectively. We obtain similar results (not

reported) for the best CP-GARCH model (with two breaks), results not reported, i.e the

difference is 0.40 and 1.08 for the BS and Chib’s estimators respectively. However it becomes

larger when the model exhibits at least one spurious regime, see e.g. the reulst in the last
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column of Table 7.

Table 7: Minima and maxiima of ten marginal log-likelihood estimates for S&P 500 data

Regimes 1 2 3 4

Change-Point
BS-min -4505.36 -4506.02 -4503.01 -4519.23
BS-max -4505.28 -4505.40 -4502.61 -4509.14

Chib-min -4505.11 -4506.04 -4503.20 -4516.16
Chib-max -4504.97 -4505.44 -4502.12 -4504.92

Markov-switching
BS-min -4505.36 -4497.99 -4505.01
BS-max -4505.28 -4497.50 -4501.89

Chib-min -4505.11 -4496.94 -4505.35
Chib-max -4504.97 -4493.81 -4497.73

Table 8 provides the posterior means for the single regime GARCH model and the best

MS- and CP-GARCH models. The single regime GARCH model has an unconditional vari-

ance of 1.67, with a persistence of 0.99. The first regime in the CP-GARCH model has a

higher unconditional variance of 1.95 with a lower persistence of 0.95, the second regime un-

conditional variance is equal to 0.45, with the same persistence as the first regime. Finally

in the last regime, triggered in June 2007, the unconditional variance jumps to 2.75, with a

persistence of 0.99 due to the relatively high posterior mean of 0.098 for α. The two-regime

MS-GARCH model has local unconditional variances of 2.32 and 0.46, with persistences of

0.98 and 0.93, respectively. This model alternates between these two regimes, and detects a

switch back to the low volatility regime in September 2010. The CP-GARCH model does not

infer a new episode of low volatility at the end of the sample, contrary to the MS-GARCH

model.

The α and β parameter estimates (posterior means of 0.073 and 0.902, respectively) for

the best spline-GARCH model (which has three knots) are very close to the estimates for the

standard GARCH model. Figure 2 provides a graphical comparison of the spline-GARCH

and the CP and MS-GARCH models in terms of local unconditional variances and volatility

persistence (α+β). While the spline-GARCH has a smooth unconditional volatility function

determined by the three knots, the MS- and CP-GARCH models have local constant levels,

which for forecasting purposes may be more desirable. Visually, the short term volatilities
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Table 8: Posterior means for S&P 500

GARCH CP-GARCH MS-GARCH
Regime σ2 α β σ2 α β σ2 α β

1 1.67 0.075 0.915 1.95 0.085 0.868 2.32 0.089 0.891
(0.51) (0.009) (0.011) (0.32) (0.020) (0.031) (0.512) (0.012) (0.015)

2 0.45 0.023 0.931 0.46 0.031 0.901
(0.033) (0.011) (0.027) (0.036) (0.013) (0.042)

3 2.75 0.098 0.890
(0.792) (0.015) (0.016)

The (local) unconditional variance σ2 is computed as ω/(1− α− β).

are very similar for the three models.

Finally, we also estimated the above models on the S&P 500 index starting at April,

1988 instead of May, 1999 which increases the sample size from 3000 to 5800 observations.

The MS-GARCH model, with a MLL of -7840.31, is still the preferred model but now with

three regimes instead of two regimes for the shorter series analyzed above. Similarly, the

best CP-GARCH model has now five regimes instead of three with a marginal likelihood of

-7857.99.

4.3.2 Other series

To get more insight in the differences between MS- and CP-GARCH models, we provide

MLL estimates for three other major US indices, five stocks, one exchange rate, and one

commodity index. For each series, we estimated the models on data from May 20, 1999 to

April 25, 2011 (3000 observations). Table 9 reports the MLL estimates of the best CP- and

MS-GARCH models together with the single regime GARCH model, and the maximized log-

likelihood values of the spline-GARCH and all other models. The reported MLL values are

those obtained by bridge sampling, the values obtained by Chib’s method are close to them

and not reported to save space.

To compare the MLL values of two models, we use the informal rule of Kass and Raftery

(1995): if the difference is smaller than 1, the evidence in favor of the model that has the

highest values is ”not worth than a bare mention”, whereas if it is larger than 1, the evidence

is positive, and strong if it exceeds 3. For the 11 series, the MLL values are higher for the MS-

GARCH model than for the CP-GARCH model. The evidence is at least positive in 10 cases,
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Figure 2: Unconditional volatility (top) and conditional volatility (bottom), S&P 500
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Series Spline-GARCH GARCH CP-GARCH MS-GARCH

knots log-lik MLL log-lik MLL K+1 log-lik MLL K+1 log-lik MLL nswitch

S&P 500 3 -4477.36 -4500.12 -4494.55 -4505.33 3 -4476.70 -4503.05 2 -4478.59 -4497.99 3

NASDAQ 3 -5404.39 -5426.64 -5418.99 -5429.84 1 -5418.99 -5429.84 2 -5410.00 -5429.58 5

DJIA 3 -4307.91 -4330.44 -4322.79 -4333.43 1 -4322.79 -4333.43 2 -4309.52 -4328.97 3

NYSE 3 -4355.77 -4378.22 -4369.77 -4380.62 1 -4369.77 -4380.62 2 -4360.08 -4377.5 4

BAC 4 -6088.38 -6110.77 -6117.49 -6127.39 3 -6059.24 -6085.62 3 -6021.05 -6049.83 9

BA 4 -6140.58 -6165.47 -6163.93 -6174.57 2 -6147.13 -6165.7 2 -6141.35 -6161.77 4

JPM 3 -6370.73 -6391.45 -6388.83 -6400.27 3 -6367.75 -6394.74 3 -6363.1 -6392.69 5

MRK 5 -6136.08 -6160.95 -6198.78 -6209.73 5 -5928.36 -5999.31 3 -5889.78 -5922.88 10

PG 4 -4795.84 -4825.68 -4832.63 -4842.02 4 -4781.52 -4816.14 2 -4789.65 -4809.59 9

Metals 2 -5239.80 -5260.78 -5256.63 -5267.44 3 -5234.26 -5258.68 2 -5234.73 -5253.15 5

Yen/Dollar 1 -2966.94 -2985.67 -2972.94 -2982.33 1 -2972.94 -2982.33 2 -2957.62 -2980.52 7

log-lik: Maximum of the log-likelihood values over all the MCMC draws; MLL: marginal log-likelihood value computed by bridge sampling;

K+1: number of regimes; nswitch: number of regime switches. S&P 500: Standard and Poors 500 index; NASDAQ: Nasdaq Composite Index;

DJIA: Dow Jones Industrial Average; NYSE: New York Stock Exchange Composite Index; BAC: Bank of America Corporation: BA: Boeing

Co.; JPM: JPMorgan Chase & Co.; MRK: Merck & Co Inc.: PG: Procter & Gamble Co. Metals: WCFI Base Metals Sub-Index.
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and strong in 8 of these cases. The standard one-regime GARCH model has even lower MLL

values than the CP-GARCH model, except when they are identical (i.e. the CP-GARCH

model has a single regime). The spline model has a higher MLL than the MS model in two

cases (NASDAQ and JPM, with positive evidence), and a lower MLL in the other cases (with

at least positive evidence in 8 cases, and strong in 5 of these). In brief, regarding in-sample fit,

there is clear evidence in favor of the MS-GARCH model, i.e. recurrent regimes for the series

we have analyzed, but the spline model might be considered as a useful alternative. Obviously,

from this analysis it is unclear how the models differ in producing volatility forecasts out-of-

sample. We checked the MS and CP-GARCH regime parameters that are prevailing at the

end of the sample period (values unreported to save space) and we see pronounced differences

both in the level and the dynamics of the (local) volatility process. Forecast comparisons are

left for further research.

Note that the log-likelihood values of MS- and CP-GARCH models can be very close. For

example, the S&P 500 log-likelihood values in Table 9 are respectively -4478.59 and -4476.70 –

thus slightly higher for the CP model – but the MLL is higher for the MS-GARCH model due

to the penalization of the more heavily parameterized CP-GARCH model (eleven parameters

versus six). Similarly for the DJIA, the two regime MS-GARCH has a log-likelihood of

-4309.52 while the three regime CP-GARCH has a value of -4307.57.

The number of regimes in the MS-GARCH models varies between one and three, and one

and five in the CP-GARCH models. The four major indices have the same optimal number

of regimes, i.e. two, for the MS-GARCH model. As can be seen in Table 9, the maximum

number of MS regime switches over the index series is five, while it goes up to eleven for

the individual series, which is a relatively high number in order to be replicated by a CP-

GARCH model, especially knowing that some regimes have durations as small as forty-four

days. Note that the above discussion on the best models may depend on the choice of the

prior hyperparameters, as discussed next in Section 4.4.

4.4 Sensitivity of marginal likelihood to the prior distribution

It is well known, but perhaps too often neglected, that the marginal likelihood is sensitive to

the choice of the prior distribution, see for example Kass and Raftery (1995) and Sinharay and

Stern (2002). Chib’s marginal likelihood identity, eq (7), particularly underlines the interde-
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pendence between the marginal likelihood and the prior. The penalty for the introduction of

new parameters does not have to be too strong or too small, in the sense that adding an extra

regime should sufficiently improve the fit. This section illustrates how the marginal likelihood

based model selection varies when using three different priors for the GARCH parameters.

Prior 1 uses a uniform distribution for ω, α, and β. The other two priors use Gaussian distri-

butions on the GARCH parameters transformed to the real line. Prior 2 is the one used in the

paper so far, and Prior 3 is much more diffuse, see Table 10 for details. Each prior differently

penalizes the marginal likelihood. The uniform distribution on finite (small) intervals nearly

imposes any penalty for an extra regime. In contrast, Prior 3 strongly decreases the marginal

likelihood if an additional regime is imposed.

We study the model selection by the marginal likelihood criterion for the two simulated

data sets and the four US index series. Some results for the CP-GARCH and MS-GARCH

models are shown in Table 11. Not surprisingly, the selection varies according to the choice of

the prior. More precisely, Prior 1 sometimes overestimates the number of breaks, in particular

it selects the wrong model for the MS-GARCH data. Alternatively, for time series with small

evidence in favor of one specific model, Prior 3 selects the model with the smallest number

of parameters. Prior 2 gives in-between results. We also observe that for the stock indices,

the MS-GARCH models find breaks irrespective of the prior and therefore we find strong

evidence of regime switches in at least two of the four index series.

To complement Table 11 we give another more visual illustration of the sensitivity of the

MLL with respect to the prior. In particular, we focus on Prior 1 since only the interval of ω

penalizes the MLL (the two other parameters, having a uniform prior on the unit interval, do

not modify the MLL). Moreover as any uniform density cancels out in the Metropolis-Hastings

acceptance probability, the denominator of equation (7), i.e. the posterior distribution, is not

modified if the selected prior interval is large enough. The alteration of the MLL is then only

due to the prior density. In order to show the dependence of the MLL on the prior, we let

the upper bound bω increase from 10 to 1000 while keeping the lower bound aω fixed to 0.

As can be seen in Figures 3 and 4, the optimal number of regimes may change with respect

to the size of the prior interval. Nevertheless, the values of the upper bound of the uniform

prior of ω has to be quite high (and very unrealistic for the type data we analyze) for the

changes to occur. Thus this type of sensitivity is not a source of worry.
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Table 10: Hyperparameters for the prior distributions

Prior 1 : GARCH parameters (θ) Distribution :

a = (aω, aα, aβ)
′ b = (bω, bα, bβ)

′

aω = (0, . . . , 0) bω = (25, . . . , 25) U[a, b]

aα = aβ = (0, . . . , 0) bα = bβ = (1, . . . , 1)

Prior 2 : GARCH parameters (θ) Distribution :

µ = (µω, µα, µβ)
′ Σ = 8I3(K+1)

µω = (−4, . . . ,−4) Normal(µ,Σ)

µβ = (ln( 0.750.25 ), . . . , ln(
0.75
0.25 )), µα = (ln( 0.250.75 ), . . . , ln(

0.25
0.75 ))

Prior 3 : GARCH parameters (θ) Distribution :

µ = (µω, µα, µβ)
′ Σ = 100I3(K+1)

µω = (−4, . . . ,−4) Normal(µ,Σ)

µβ = (ln( 0.750.25 ), . . . , ln(
0.75
0.25 )), µα = (ln( 0.250.75 ), . . . , ln(

0.25
0.75 ))

GARCH parameters for Prior 2 and Prior 3 are mapped on the real line. One to one functions to

map parameters are ω ∈]0,+∞] → lnω, α ∈]0, 1[→ ln( α
1−α

), and β ∈]0, 1[→ ln( β

1−β
).

Figure 3: CP-GARCH: Model selection with respect to the upper bound bω
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Table 11: Marginal log-likelihoods for various priors

Series CP-GARCH
Prior 1 Prior 2 Prior 3

K+1 MLL K+1 MLL K+1 MLL
CP-data 3 -5435.78 3 -5438.43 3 -5447.94
MS-data 3 -5837.46 3 -5848.05 3 -5856.81
S&P 500 4 -4493.14 3 -4503.05 1 -4508.94
NASDAQ 4 -5423.00 1 -5429.84 1 -5433.31
DJIA 3 -4324.15 1 -4333.43 1 -4337.11
NYSE 3 -4373.01 1 -4380.62 1 -4384.2

MS-GARCH
Prior 1 Prior 2 Prior 3

K+1 MLL K+1 MLL K+1 MLL
CP-data 3 -5438.72 3 -5442.05 3 -5451.31
MS-data 3 -5836.07 2 -5843.55 2 -5850.59
S&P 500 2 -4491.72 2 -4497.99 2 -4504.99
NASDAQ 2 -5423.48 2 -5429.58 1 -5433.31
DJIA 3 -4319.39 2 -4328.97 2 -4335.77
NYSE 3 -4372.18 2 -4377.50 1 -4384.2

MLL values are computed by bridge sampling. K+1 is the number of regimes.

Figure 4: MS-GARCH: Model selection with respect to the upper bound bω
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5 Conclusion

MS- and CP-GARCH models are flexible alternatives to GARCH models with fixed parame-

ters. We estimate them by Bayesian inference using data augmentation because of the path

dependence problem. We choose the number of regimes or breaks by computing the marginal

likelihood. We introduce an efficient method to do this, which was not feasible until our con-

tribution, due to the challenge posed by such models in integrating the latent state variables

that govern the parameter evolution between regimes. The algorithm belongs to the particle

filter class and is intensive in computations but feasible as we are able to use a reasonable

number of particles, due to the discrete nature of the state variables, and the fact that we do

not use particles for the parameters of the volatility processes and of the transition matrix.

We have illustrated the use of the method on several time series of financial returns, for which

it seems that CP-GARCH and especially MS-GARCH models are useful for capturing changes

in the dynamics and level of volatilities. Further research will be centered on forecast com-

parisons with these and competing models, and using the same framework for multivariate

volatility models. Furthermore, other empirically relevant issues related to the optimal num-

ber of regimes are first the effect of relaxing the Gaussian innovation assumption, and second

the impact of more complex volatility functions than the standard GARCH specification.

Appendix: Sampling the conditional variance parameters

This appendix describes the sampling of θ in the Gibbs sampler of Section 2. We implement

a Metropolis-Hastings step that samples from a mixture of five normally distributed compo-

nents. The mixture is adapted during the burn-in period. The expectation and the variance-

covariance matrix of the first component are computed using burn-in draws. This component

behaves as an independent Metropolis-Hastings. For the other components we only specify

the variance-covariance matrix. Besides the second component, variance-covariance matrixes

only differ from a scaling parameter. The expectation is given by the current parameter of the

Particle Gibbs as in a standard random-walk Metropolis-Hastings. The weights are given in

Table 12 where µ and Σ respectively stand for the posterior mean and the posterior variance-

covariance matrix estimated using available draws, I denotes the identity matrix and θcur is

the current parameter of the particle Gibbs.
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Table 12: Mixture weights of the proposal distribution

Mixt. comp. weight distribution

1 0.05 N(µ, 0.01Σ)
2 0.15 N(θcur, 0.5I)
3 0.15 N(θcur, 0.05Σ)
4 0.55 N(θcur, 0.1Σ)
5 0.10 N(θcur,Σ)

In the case of a MS-GARCH model, one can switch the label of the states without changing

the likelihood. A way to deal with this problem is to use identification constraints. However,

this is difficult to implement in a high dimensional parameter space and may generate a bias in

the estimation of the posterior means, see Geweke (2007) for examples. Instead, we run an un-

constrained sampler and apply a loss function on the posterior sample by considering all pos-

sible permutations. We minimize this loss function on the posterior sample which leads to the

best permutation. The following idea of Marin, Mengersen, and Robert (2005) has been im-

plemented: τ ∈ Σk stands for a possible permutation on the set of all possible permutations of

{1, ..., k} and we denote by τ(θ, P, ST ) = {(θτ(1), ..., θτ(k)), (Pτ(1), ..., Pτ(k)), (STτ(1), ..., STτ(k))}

the corresponding permutation of the parameters (θ, P, ST ). Considering a posterior sample

of size M , we apply the following scheme:

1. Find (θ, P, ST )
i∗ = arg maxi=1,...,Mf(YT |θ

i, P i, Si
T )

2. ∀i ∈ {1, ...,M}

(a) Compute τi = arg minτ∈Σk

〈

τ(θ, P, ST )
i, (θ, P, ST )

i∗
〉

where 〈.〉 stands for the canon-

ical scalar product.

(b) Set (θ, P, ST )
i = τi(θ, P, ST ).
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