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Abstract

We provide an analysis of the question in the title in terms of a bivariate

probit framework representing two (possibly correlated) separate decisions, and a

multinomial probit framework representing the four possible outcomes viewed as

one joint decision. We offer a Bayesian treatment that builds on Weeks and Orme

(1998) and Di Tommaso and Weeks (2000) who showed that the bivariate probit

corresponds to a singular four-dimensional multinomial probit under testable

restrictions. We also discuss extensions to trivariate and quadrivariate probit.
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1. Introduction

The observation that a multivariate binomial model can be recast as a multinomial model has

been long known [e.g., Cox (1972, p. 115), Amemiya (1981, p. 1525), Velandia et al. (2009)]. But

all of the implications of the nesting are not widely understood. For example, in the case of J-

dimensional  multivariate  probit (J-MVP) nested within a M-dimensional multinomial  probit

(M-MNP), where M = 2 , Amemiya (1981, p. 1525) states: “Therefore, the theory of statisticalJ

inference I discussed in regard to a multi-response model in Section 3.A is valid for a multivariate

model without modification.” 

In under-appreciated contributions, Weeks and Orme (1998)  and Di Tommaso and Weeks

(2000) added an important qualifier that necessitates a modification to Amemiya’s remark.  Consider

the case of bivariate probit (2-MVP) in which the four outcomes are viewed as a 4-dimensional

multinomial probit (4-MNP). Weeks and Orme (1998) point out that 2-MVP corresponds to a
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singular multinomial model which lies on the boundary of the permissible parameter space. This

irregularity can affect asymptotic distribution theory for likelihood ratio and Wald tests [Chernoff

(1954)]. In contrast, Moran (1971) and Chant (1974) showed that the asymptotic properties of the

score/LM test under such “non-standard” conditions are unaffected. This led Weeks and Orme

(1998) to propose the score test as a specification test for 2-MVP. Di Tomasso and Weeks (2000)

implement this test for labor force participation and fertility decisions. The present paper  offers a

alternative Bayesian posterior odds framework and extends it to higher dimensional caes.

The intuition behind Weeks and Orme is (1998) and Di Tommaso and Weeks (2000) is

straightforward. 2-MVP consists of two equations involving two shocks. 4-MNP involves three

shocks (its identified structure is trinomial). Hence, a singularity is required in the trinomial

specification in order to equate to a binary structure. This singularity provides a specification test for

BVP within the more general 4-MNP.

While nesting 2-MVP inside 4-MNP is of general interest, generalization of 2-MVP in the

direction of 4-MNP is particularly attractive when the two discrete outcomes of the 2-MVP

correspond to two decisions by the same individual. In 2-MVP the two decisions are made

separately, but not necessarily independently. If the 2-MVP can be shown to be equivalent to 4-

MNP, then the two univariate decisions are also jointly optimal.

2. Underlying Latent Variable Models

Consider n = 1, ..., N independent observations on the latent multivariate normal regression

where   is a K×1 vector of covariates,  is a J×JK matrix,

 S is a J×J covariance matrix, and  denotes a J-dimensional normal

ijdistribution with zero mean and covariance S = [T ]. (1) is the latent model underlying J-

dimensional MVP model in which (n = 1, ..., N) are not observed, but only their component signs

(1)

(2)



3

Next consider n = 1, ..., N independent observations on the M-dimensional latent

multivariate normal regression

where   and E is a M×M covariance matrix. This is the latent

variable model underlying M-MNP in which agents construct latent Gaussian utilities and select 

the category that corresponds to the largest utility, i.e., (n = 1, ..., N) are not observed, but rather

only which is the maximum:

3. Identification and Priors

The latent variable models (1) and (3) underlying the J-MVP and the M-MNP models,

respectively, are identified if the latent data are observable, but they are unidentified if only the

discrete choices (2) and (4) are observed. Priors (dogmatic or proper) provide vehicles for adding

additional information. Two broad approaches have been suggested: (i) add dogmatic restrictions

to some parameters in order to yield the remaining parameters identified [e.g., McCulloch et al.

(2000) and Nobile (2000)], and (ii) ignore the identifiability problem, perform the analysis on the

unidentified model with proper priors, and post-process samples by scaling to obtain draws on

identified parameters [e.g., McCulloch and Rossi (1994), Nobile (1988), Imai and van Dyk (2005a),

Edwards and Allenby (2003)]. The first approach is common in the case of J-MVP [e.g., Chib and

Greenberg (1998)]. In the case of  M-MNP, both approaches have been used - even by the same

authors [e.g., McCulloch and Rossi (1994), McCulloch et al. (2000)].

Approach (i) is used in non-Bayesian analyses. For example, the scale identification 

problem for J-MVP can be eliminated by setting all the diagonal elements of S equal to one,

denoting the restricted matrix as  This identifies $ but changes the interpretation of the off-

diagonal elements of  to correlations rather than covariances. Thus, in a Bayesian setting, a prior

on these off-diagonal elements needs to be adjusted before imposing the diagonal restrictions. Let

1R = [R , (J = 1, ..., J), denote the support of   The J-MVP

(3)

(4)
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choice probability is  

where  is the J-dimension multivariate normal density, and the region of integration is

 with 

The likelihood function is , where 

M-MNP suffers from both location and scale identification problems. The location

identification problem is addressed by differencing and measuring effects relative to one of the

choices, in effect setting  the location of one choice outcome to zero. For example, subtracting the

  M  equation from the first M - 1 equations leads toth

where    

 Since the

ordering of the utilities is invariant to additive shift or multiplicative rescaling, identifying

assumptions on the location and scale are needed. The normalization  identifies

the remaining parameters. The M-MNP choice probability is

where the region of integration is given by 

and  denotes all element in  except the j . The likelihood function is th

For M-MNP Burgette and Nordheim (2010) showed that the choice of which element you

(5)

(6)

(7)

(8)

(9)
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fix can have a meaningful impact on posterior predictions in the case of the prior used by Imai and

van Dyk (2005a): independent of  with the latter having an inverted Wishart

distribution with degrees of freedom  positive definite scale matrix , and

marginal density

subject to  and  Basically, the choice of prior for the identified parameters should not

be invariant to how the scale problem is solved. To avoid this problem, Burgette and Nordheim

(2010) proposed a model that identifies the scale of the model by fixing the trace of the covariance

matrix, which makes the prior covariance invariant to joint permutations of the rows and columns.

Burgette and Nordheim (2010) also showed that Bayesian M-MNP predictions can be sensitive to

the specification of the base choice, here, the M . This problem exists because, instead of specifyingth

a prior for the original utilities and inducing a prior on the base-subtracted utilities, it has been

customary to specify a prior directly on base-subtracted utilities.

Burgette and Nordheim (2011) propose two models that do not have this base category

problem. They describe a Bayesian M-MNP whose prior and likelihood (and therefore posterior) can

be symmetric with respect to relabeling the outcome categories, unless prior knowledge suggests a

desired deviation from that symmetry. Rather than selecting a reference category whose utility is

assumed to be equal to zero, they enforce a series of  “sum-to-zero” restrictions, both on the unit-

level errors and on the regression coefficients. If respondents choose from M categories, other MNP

methods transform the utilities to (M-1)-dimensional space. Instead, Burgette and Nordheim

constrain utilities to exist in a (M-1)-dimensional hyperplane in M-space.

4. Nesting MVP in MNP

To see how to nest a J-MVP model in a M-MNP model, first consider the case J = 2 and M

= 4 considered by Weeks and Orme (1998). For n = 1, ..., N suppose 

  Singularity (11) implies the K + 3 restrictions

(10)

(11)
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In addition we impose the testable restriction

Under (12) and (13), 4-MNP reduces to 2-MVP. To see this, suppose Then (6) implies

, , and . Substituting (10) into the second inequality implies .

These last two inequalities imply the first two. Proceeding similarly,  implies  and

,  implies  and , and  implies  and . This

shows the singular 4-MNP reduces to 2-MVP with

In other words, the two binary decisions are also optimal in the quadnomial context. The parameters

of the 2-MVP are given by  and 

In the case J = 3 and M = 8 the number of singularities required increases noticeably over the

previous case because of the need to reduce the seven dimensions of 8-MNP down to the three

dimensions of trivariate probit (3-MVP):

  for n = 1, ..., N. The singularities in (15) imply the 4K + 28 restrictions 

for i = 1, ..., 7. Analogous to (13), we also impose the testable restrictions

Then it can be shown that (16) - (18) imply the singular 8-MNP reduces to 3-MVP with

The parameters of the 3-MVP are  and 

Finally, the case J = 4 and M = 16 involves the eleven singularities.

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(22)

(21)



7

for n = 1, ..., N. Singularities (21) - (23) imply the restrictions for (i = 1, ..., 15). Analogous to (13)

and (18), we also impose the testable restrictions

Then it can be shown that (24) - (30) imply the singular 16-MNP reduces to 4-MVP. The parameters

of the 4-MVP are given by  

 and  It can be shown that (16) - (18) imply the singular 8-MNP

reduces to 3-MVP with

5. Estimation

The development of MCMC techniques led to an explosion of Bayesian analysis of limited

dependent variable models in the 1990s. Early Albert and Chib (1993) recognized the data

augmentation introduced by Tanner and Wong (1987) had major implications for computation. Such

ideas were expanded upon by Meng and van Dyk (1999) and van Dyk and Meng (2001). Rather than

struggle with computing multivariate normal integrals appearing in the likelihood function, instead

it was possible to generate samples from the posterior without computing such integrals [also see

Geweke et al. (1994) for an early contribution]. Imai and van Dyk (2005) provide a nice summary

discussion of the literature in the context of MNP.

(23)

(28)

(29)

(24)

(25)

(26)

(27)

(30)

(31)

(32)
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6. Specification Tests

Let  denote the hypothesis that a 2 -MNP model reduces to a J-MVP model and J

denote the hypothesis that it does not. We denote the prior densities for all unknown parameters by

 and  where  denotes all the elements in  excluding the

identifying restriction  Recall we have imposed the normalization  The Bayes

10factor in favor of , B  = f(y* )/f(z* ), where

Note that it is also of interest to consider the case starting with M-MNP model and asking

whether it has a singular covariance matrix giving rise to a sub-model which has a MVP structure.

But it is not necessary that M = 2 . For example,  Figures 1-3 display the tree structure of 2-MVP,J

4-MNP, and a mixed model with M = 6 where  the last four categories have a binary structure that

renders 2-MVP plausible for them. From (7),

where    

  Proceeding analogous to (11) - (13), the singularity

  implies the K + 3 restrictions

In addition we impose the testable restriction

nmUnder (37) and (38), the structure for z  (m = 3, 4, 5, 6) reduces to a 2-MVP. The parameters of this

2-MVP are given by  and  The 6-MNP model has 5K + 14 parameters:

 (m = 1, ..., 5) and  ...,  The model subject to the K + 4 restrictions in (37) and (38) has

the unrestricted parameters  (m = 1, ..., 4) and  ...,  and 

(33)

(34)

(35)

(36)

(37)

(38)
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6. Empirical example

7. Discussion

Identification can be fragile in MNP unless there are exclusion restrictions on the  (m =

1, ..., M) across choices [Keane (1992)]. Researchers have tried to add further structure and eliminate

some parameters by putting restrictions on S and , e.g., exchangeability across equations or a

factor structure. The singularity restrictions discussed here provide alternative restrictions that may

be attractive when a subset of the multinomial choices have a binary structure. Furthermore, the

restrictions are numerous and increase rapidly as M increases.
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Figure 1: Tree diagram for 2-MVP
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Figure 2: Tree diagram for 4-MNP
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Figure 3: Tree diagram for Mixed Case with M = 6
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