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Abstract

This paper reconsiders sequential Monte Carlo approaches to Bayesian infer-
ence in the light of massively parallel desktop computing capabilities now well
within the reach of individual academics. It first develops an algorithm that is
well suited to parallel computing in general and for which convergence results have
been established in the sequential Monte Carlo literature but that tends to require
manual tuning in practical application. It then introduces endogenous adaptations
in the algorithm that obviate the need for tuning, using a new approach based on
the structure of parallel computing to show that convergence properties are pre-
served and to provide reliable assessment of simulation error in the approximation
of posterior moments. The algorithm is generic, requiring only code for simulation
from the prior distribution and evaluation of the prior and data densities, thereby
shortening development cycles for new models. Through its use of data point tem-
pering it is robust to irregular posteriors, including multimodal distributions. The
sequential structure of the algorithm leads to reliable and generic computation
of marginal likelihood as a by-product. The paper includes three detailed exam-
ples taken from state-of-the-art substantive research applications. These examples
illustrate the many desirable properties of the algorithm.
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1 Introduction

Bayesian approaches have inherent advantages in solving inference and decision prob-
lems, but practical applications pose challenges for computation. As these challenges
have been met Bayesian approaches have proliferated and contributed to the solution
of applied problems. McGrayne (2011) has recently conveyed these facts to a wide
audience.

Until the 1970’s computation was limited to essentially deterministic closed-form
solutions adapted either to quite specific applications or to statistical models generally
applicable but rather simple. Zellner (1971) concisely represents the state of the art
at that juncture. Posterior simulation evolved shortly thereafter. For example, the
importance sampling methods pioneered by Kloek and van Dijk (1978) with the theory
articulated in Geweke (1989) found widespread application in economics and business.
Beginning with the revolutionary work of Gelfand and Smith (1990) Markov chain Monte
Carlo (MCMC) greatly expanded the application of Bayesian inference, for example by
making practical the innovations of Lindley and Smith (1972) in hierarchical models.

The evolution of Bayesian computation over the past half-century has conformed with
exponential increases in speed and decreases in the cost of computing. The influence on
algorithms, models, and the way that substantive problems are formulated for statistical
inference can be subtle but is hard to over-state. Successful, innovative basic and applied
research recognizes the characteristics of the tools of implementation from the outset and
tailors approaches to those tools.

A number of Bayesian statisticians, ourselves included, find that we are now on the
cusp of a major change in the computing environment. We anticipate that this change
will strongly affect the evolution of Bayesian methodology and applications, and will
improve models and decision-making.

1.1 Background

The methods developed here are motivated by recent innovations in computer hardware
and software that bring massively parallel desktop computing within the reach of the
academic research sector. The innovation in hardware consists of a device with many
cores (processing units) connected to a host (conventional desktop or laptop computer
with one or a few central processing units) through a bus (for data transfer between host
and device). The device used for the applications in this paper is a graphics processing
unit (GPU), which provides hundreds of cores at a cost well under one dollar (US) each.
Multiple devices can be attached to a single host, making possible a desktop system
with literally thousands of cores available at a cost within the budget of the typical aca-
demic researcher. Accompanying innovations in software efficiently manage host-device
data transfers and device instruction code in ways that are largely transparent to the
programmer. The software used in the applications in this paper is the CUDA extension
of the C programming language (Nvidia, 2011), which is freely available. Section 2.1
provides more detail on relevant aspects of hardware and software (see also Hendeby et
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al., 2010; Lee et al., 2010; Suchard et al., 2010).
The device is designed for single instruction multiple data (SIMD) processing. In

its purest form this means that exactly the same machine instructions are executed in
lockstep on the device processors, but the data on which the instructions operate differ
from one device core to another. Some algorithms, for example linear algebra, are well
suited to this restriction. Algorithms that are sequential or incorporate data dependent
branching, like acceptance sampling and Gibbs sampling, are not well suited and can
lead to bottlenecks that preclude any significant gains from parallel computing (Amdahl,
1967).

The sophistication of current hardware and software, including GPU’s and the CUDA
extension, significantly reduces the cost of some bottlenecks. Nevertheless, in order to
realize the potential gains in computing speed on the order of several orders of magnitude
made possible by the massively parallel environment, algorithms that conform to SIMD
constraints in the bulk of their computations are needed. We refer to such algorithms
and code as SIMD-compatible. The algorithm presented in this paper conforms to this
standard and realizes the attendant increases in computing speed.

1.2 Approach

The approach taken here draws on a vibrant literature on sequential Monte Carlo meth-
ods for filtering and smoothing in state space models, adapting those methods to generic
Bayesian inference in ways that are well suited to desktop parallel computing. It incor-
porates sound theoretical foundations, numerical efficiency for a wide variety of models
and data, and requirements for implementation suited to applied scientists who do not
specialize in computational approaches to Bayesian inference. The algorithm explored
in this paper builds on existing work, and we provide evidence and specific recommen-
dations regarding aspects that we have found to be particularly effective in the very
demanding applications we provide as illustrations.

When implemented for applications at a level of complexity comparable to those
presented in this paper, the algorithm is highly computationally intensive. It is the
algorithm’s amenability to implementation in the massively parallel CUDA environment
that makes it particularly appealing.

The algorithm starts with a sample of parameter vectors, called particles, drawn
from the prior distribution. It then introduces data incrementally, representing the
updated posterior density by means of a sample of particles and importance weights. The
essential computation in updating particles and weights is the evaluation of the likelihood
function for each particle. Predictive likelihoods, and therefore marginal likelihood, are
by-products of the importance weights. Expectations of other functions of interest are
also easily obtained, and the applications in Sections 3–5 provide illustrations.

Each cycle of the algorithm moves through three successive phases: correction (C),
selection (S), and mutation (M), that modify the particles. This C, S, M nomenclature
is due to Chopin (2004), which is most similar to the algorithm developed here.

The C phase of each cycle successively adds observations to the information set.
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At each observation predictive densities are evaluated and importance weights are up-
dated. Evaluations of the predictive likelihood are SIMD-compatible and executed on
the device (each particle corresponds to a thread which can be evaluated on a single core
independently of all other particles). The updated weights provide a means to estimate
the effective sample size (ESS ; Kong et al., 1994; Liu and Chen, 1995) subsequent to
each added observation. Transition to the S phase (CS transition) occurs when the
ESS falls below a pre-specified threshold or when the data are exhausted, a criterion
well-established in the literature (e.g., Del Moral et al., 2006; Chopin and Jacob, 2010).
The ESS itself is computed on the device. Evaluating the decision rule requires minimal
data transfer to the host and constitutes a trivial fraction of the total computational
burden.

Low ESS indicates that the importance weights have become unbalanced with the
addition of information into the posterior: a few particles have large weights while
others have little weight. The S phase uses residual resampling (Baker, 1985, 1987; Liu
and Chen, 1998) to extract an identically but not independently distributed sample of
unweighted particles from the existing collection of particles. This phase is performed
on the device and involves little computational effort relative to the balance of the
algorithm.

After resampling, the particles are equally weighted, but there are multiple copies of
particles that had large weights before resampling, and the number of distinct particles
has been reduced (some particles with low weights disappear from the sample). The M
phase addresses this attrition problem, which is ubiquitous with particle filters (Doucet
et al., 2000; Fearnhead, 2002; Andrieu et al., 2010), by iterating over Metropolis steps
with target density equal to the posterior density of the parameter vector at the current
observation (Metropolis et al., 1953; Gilks and Berzuini, 2001; Chopin, 2002). The
particles already represent a sample from the target distribution upon entry into the M
phase; the goal here is diversification of the sample (mixing). Diagnostics indicating the
degree to which this mixing has been successful are available at each iteration of the
Metropolis step.

Each Metropolis iteration involves evaluating the posterior density kernel of candi-
date particles. This is where most of the computational cost of the algorithm occurs.
However, this work is performed on the device, with each particle corresponding to a
thread that can be evaluated independently (as in the C phase). The precise nature
of the sampler used in the Metropolis steps is not important in principle (although it
makes a great deal of difference in practice). Our approach uses a Gaussian random-walk
sampler whose variance matrix is that of the existing collection of particles scaled by a
step-size factor that is updated adaptively. This approach is simple, robust and generic,
making it possible to use the algorithm in a wide variety of models with little effort.
Generally speaking more efficient variants can be tailored to any given applications, but
we conjecture that the approach introduced here will prove sufficient for most, as is the
case for the applications in Sections 3 through 5.

Transition to the next cycle (MC transition) occurs at the end of the M phase if the
sample is not yet exhausted. The particles at the end of the last cycle provide the final
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representation of the posterior distribution conditional on all available information.
One of the innovations introduced in this paper is the classification of particles into

several distinct groups which are operated on largely independently of each other (as
detailed in Section 2.3). This strategy is natural in the massively parallel computing
environment in which we are working, and has the important by-product of providing
reliable numerical standard errors for posterior moments, log marginal likelihoods, and
other quantities of interest as an inherent element of the procedure. Reporting informa-
tion about the numerical errors associated with simulation-based statistical methods is
important, yet such information can be costly to obtain and is often neglected.

There are several tuning parameters involved in the algorithm: number of groups,
number of particles per group, number of Metropolis steps per M phase, and CS tran-
sition threshold. In application one executes the algorithm with fixed settings. If the
numerical standard errors in the approximation of functions of interest are too large for
the purposes at hand, one executes the algorithm again with revised settings. Further-
more, there are trade-offs involving some of these parameters. For example, one might
try using fewer particles but mixing more thoroughly (more Metropolis iterations) in the
M phase to achieve sufficient accuracy at lower computational cost. We provide some
experimental results in the application sections and make recommendations regarding
typical settings.

Section 2.3 presents a simplified version of this algorithm, with no adaptations de-
pendent on the distribution of particles realized in a particular run of the algorithm, and
uses results in Chopin (2004) to show that the distribution of the particles at the end of
the last cycle satisfies a central limit theorem. It also shows how the particle grouping
can be used to approximate the variance in this central limit theorem. A central dif-
ficulty in the literature is the paucity of limit theorems for adaptive sequential Monte
Carlo. Section 2.4 exploits the structure of the parallel computing environment and a
novel but simple argument that obviate these lacunae and place the adaptive algorithm
on a sound theoretical footing.

1.3 Context and contribution

This paper pursues an agenda well established in the literature on sequential Monte Carlo
methods for Bayesian inference. Its goal is to provide a generic approach to Bayesian
inference with solid theoretical foundations that is practical and well suited to massively
parallel desktop computing. It does this building on the work of many others. For some
of the relevant lines of research in this field the contribution of this paper is incremental
and for others it is discrete. We believe it is the first paper to tie these strands together
in pursuit of this goal.

1. The algorithm is generic. The desirability of an algorithm that is reliable and
ready to use, or “black box,” has long been recognized in this literature, dating
back to at least Liu and West (2001) and Chopin (2002) through very recent work
like Fulop and Li (2011) and Chopin et al. (2011).
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The algorithm presented here obviates the need for tedious tuning, blocking and
monitoring that can be obstacles to applied Bayesian inference, and our imple-
mentation of the algorithm using the massively parallel CUDA framework greatly
enhances computational tractability. These claims are supported by Section 2.4
and the examples in Sections 3, 4 and 5.

The algorithm has minimal requirements for its application.

(a) The prior distribution must be proper and there must be code that simulates
from this distribution and evaluates the prior density. Given a proper prior
distribution, writing code is typically trivial and there is little reason for it
to be SIMD-compatible. The algorithm is incompatible with improper prior
distributions, an irrelevant limitation from a subjective Bayesian perspective.

(b) There must be SIMD-compatible code that evaluates the conditional data
density. This is a straightforward matter for likelihood-based inference that
constitutes the great bulk of day-to-day application. This standard can also
be met for models in which likelihood function evaluations are themselves
subject to simulation error, as illustrated in the many papers taking up full
Bayesian inference for nonlinear state space models (e.g., Liu and West, 2001;
Carvalho et al., 2010) and by the example in Section 4 of this paper.

We believe that the approach explored in this paper will significantly shorten the
development cycle for Bayesian inference in new models, and that it will prove
more reliable and easier to implement than the optimization methods that are the
foundation of non-Bayesian approaches and will thereby accelerate the adoption
of Bayesian inference in applied statistics.

2. There is a sound limiting distribution theory that can be used in a practical way to
reliably assess the accuracy of sequential Monte Carlo approximations of posterior
moments. There is an established literature on limiting distributions (e.g., Gilks
and Berzuini, 2001; Chopin, 2004; Künsch, 2005; Del Moral et al., 2006, 2011),
and we draw specifically on Chopin (2004) in this work. This paper builds on this
literature in two directions.

(a) It is universally recognized and perhaps tautological that a generic algorithm
must be adaptive. The transitions from the C to the S phase and from the S
to the M phase described in the previous section are both adaptive. However,
adaptation raises significant challenges for the derivation of central limit the-
orems. Chopin (2004) deals with resampling in the S phase and Del Moral
et al. (2011) provides a central limit theorem for the case in which effective
sample size drives the C to S phase transition, but to our knowledge these are
the only such contributions. Moreover, the prospect that substantial theoret-
ical work would be required for each variant on adaptation is daunting. This
work introduces, in Section 2.4, an approach to formulating sound limiting
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distribution theory that obviates this prospect and grows out of the parallel
computing environment. We believe this approach is novel.

(b) Practical application of a central limit theorem requires consistent estima-
tion of its variance term. This is straightforward for importance sampling
(Geweke, 1989), but proved substantially more difficult for Markov chain
Monte Carlo (e.g., Flegal and Jones, 2010). This question has been addressed
only occasionally in the sequential Monte Carlo literature, e.g., Gilks and
Berzuini (2001). Chopin (2004) discusses but does not implement the main
idea used here, which is to enforce conditional independence across groups
of particles in a way that an elementary central limit theorem and attendant
variance approximation can be used to assess numerical accuracy. Section 2.3
gives the details and Sections 3 through 5 provide examples.

The paper supplements these contributions with carefully stated conditions suffi-
cient for practical assessment of numerical accuracy based on the limiting distri-
bution theory. These conditions are not necessary, but the set of cases in which
the conditions we state are violated and yet these procedures are still reliable is
not likely to be of much practical relevance, and users are more likely to check the
simpler stated conditions.

We believe that sequential Monte Carlo methods are likely to grow in importance
and application along with the penetration of massively parallel desktop comput-
ing, and it is important to avoid implementations that lead to users simply spinning
numbers rather than computing reliable results.

3. The algorithm is robust to irregular posterior distributions. Sequential Monte Carlo
methods inherently provide data point tempering (Chopin, 2002, 2004; Jasra et
al., 2007b) through the sequential accumulation of information as the algorithm
passes through the sample. Modifications of these algorithms lead to classical tem-
pering that preserves this robustness (Jasra et al., 2007a; Duan and Fulop, 2011).
While this is well established in the sequential Monte Carlo literature, it is less
well recognized in the significant applied Bayesian community that uses Markov
chain Monte Carlo and importance sampling methods almost exclusively. This
community should be receptive to a generic algorithm that routinely handles ir-
regularities like multimodality or weak identification. The applications in Sections
3 and 5 are chosen in part to illustrate the potential of sequential Monte Carlo in
these dimensions.

4. The algorithm provides marginal likelihoods and other indicators of model perfor-
mance as routine byproducts. Importance sampling produces marginal likelihood
as a byproduct (Kloek and van Dijk, 1978; Geweke, 2005, Section 8.2.2) and
the C phase inherits this property, as widely recognized in the sequential Monte
Carlo literature (e.g., Del Moral et al., 2006). This is important for applied work
because marginal likelihood computations are more awkward for Markov chain
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Monte Carlo. Section 2.5 details how this is accomplished and shows that with
modest supplementary computation predictive likelihoods and probability integral
transform diagnostics can also be produced as byproducts of the algorithm. The
examples in Sections 3 through 5 provide illustrations and show that the numer-
ical accuracy is substantially lower than that generally reported for other purely
computational approaches to these measures.

The relevant evaluation of these advantages resides in application to problems that
are characteristic of the scale and complexity of serious disciplinary work. The balance of
the paper provides three such applications, reflecting the backgrounds of the authors in
economics and finance. The first application (Section 3) is a suite of extended exponential
generalized autoregressive conditional heteroskedasticity (EGARCH) models (Nelson,
1991; Durham and Geweke, 2011) applied to over twenty years of daily financial asset
returns, a sample of roughly 5,000 observations. Asset return models of this kind are
widely used in the academic and financial sectors for assessing volatility and pricing
derivative contracts like options. The distribution of conditional returns is described by
a mixture of normals with up to four mixture components. Models include up to four
EGARCH factors. The larger models exhibit strong multimodality and many parameters
are weakly identified, features that can pose difficulties for conventional methods. Since
it is the first in our series of examples, we use it to illustrate some of the aspects of
the algorithm that are common to all applications. The second application (Section
4) is the dynamic multinomial probit model (Geweke et al., 1993, 1997; Rossi et al.,
2005), using an artificial longitudinal data set for 500 individuals and 4 time periods.
Models like this are used, for example, in understanding discrete choices of individuals
over their lives. We include it here in part to show that the algorithm remains effective
when likelihoods cannot be evaluated exactly but unbiased simulation approximations
are available. The final application (Section 5) is the vector autoregression (VAR) model
for predicting macroeconomic activity (Sims, 1980). This model is highly competitive
with alternatives, and is widely applied by central banks and private forecasting firms.
We include it here in part to explore the performance of the algorithm in a model with
hundreds of parameters.

2 A generic algorithm for Bayesian inference

This section details the methodological contribution of this work. It begins (Section 2.1)
with the features of the computing environment that guide the design of all aspects of the
algorithm. That section also indicates the specific hardware and software environment
of the applications that follow in Sections 3 through 5. Section 2.2 sets out much of
the notation used in the balance of the section. It also enumerates a set of conditions
that can be checked readily and are sufficient for the algorithm to reliably represent
the posterior distribution as well as the accuracy of that representation. Section 2.3
provides a first version of the algorithm that is congruent with established limit theory
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for sequential Monte Carlo but impractical for application. It lays the groundwork for
claim 2b of Section 1.3. Section 2.4 modifies the algorithm in several ways that render
it flexible and robust, supporting claim 1. There are imposing analytical obstacles to
the application of limit theory that can be applied directly to this modified algorithm.
Section 2.4 shows how this limitation can be circumvented so as to render established
limit theory applicable in a massively parallel computing environment.

2.1 Computing environment

The particular device used in the applications in this paper is the graphics processing
unit (GPU). As a practical matter several GPU’s can be incorporated in a platform
with no significant complications, and desktop computers that can accommodate up to
eight GPU’s (four cards with two GPU’s each) are readily available. The single- and
multiple-GPU environments are equivalent for our purposes. A single GPU consists of
several multiprocessors, each with several cores. The GPU has global memory shared
by its multiprocessors, typically one to several gigabytes (GB) in size, and local memory
specific to each multiprocessor, typically on the order of 50 to 100 kilobytes (KB) per
multiprocessor. (For example, this research uses a single Nvidia GTX 570 GPU with
15 multiprocessors, each with 32 cores. The GPU has 1.36 GB of local memory, and
each multiprocessor has 49 KB of memory and 32 KB of registers shared by its cores.)
The bus that transfers data between GPU global and local memory is significantly faster
than the bus that transfers data between host and device, and accessing local memory
on the multiprocessor is faster yet. Optimizing memory access patterns is critical for
achieving good performance in this hardware environment.

This hardware has become attractive for scientific computing with the extension of
scientific programming languages to allocate the execution of instructions between host
and device and facilitate data transfer between them. Of these the most significant has
been the computation unified device architecture (CUDA) extension of the C program-
ming language (Nvidia, 2011). CUDA abstracts the host-device communication in a
way that is convenient to the programmer yet faithful to the aspects of the hardware
important for writing efficient code.

Code executed on the device is contained in special functions called kernels that are
invoked by the host code. Specific CUDA instructions move the data on which the code
operates from host to device memory and instruct the device to organize the execution
of the code into a certain number of blocks with a certain number of threads each. The
allocation into blocks and threads is the virtual analogue of the organization of a GPU
into multiprocessors and cores.

While the most flexible way to develop applications that make use of GPU par-
allelization is through C/C++ code with direct calls to the vendor-supplied interface
functions, it is also possible to work at a higher level of abstraction. For example, a
growing number of mathematical libraries have been ported to GPU hardware (e.g.,
Innovative Computing Laboratory, 2011). Such libraries are easily called from standard
scientific programming languages and can yield substantial increases in performance for
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some applications. In addition, Matlab (2011) provides a library of kernels, provides
interfaces for calling user-written kernels, and provides functions for host-device data
transfer from within the Matlab workspace.

Both single-precision (four-byte) and double-precision (eight-byte) arithmetic are
available, though double precision is several times slower than single (depending on the
exact hardware used). The applications in this paper use a mix of single and double
precision based on storage constraints and performance considerations.

2.2 Notation and conditions

We augment standard notation for data, parameters and models. The relevant observ-
able random vectors are Yt (t = 1, . . . , T ) and Yt1:t2 denotes the collection {Yt1 , . . . , Yt2}.
The observation of Yt is yt, yt1:t2 denotes the collection {yt1 , . . . , yt2}, and therefore y1:T

denotes the data. This notation assumes ordered observations, which is natural for time
series. If {Yt} is independent and identically distributed (i.i.d.) the ordering is arbitrary.

A model for Bayesian inference specifies a k×1 unobservable parameter vector θ ∈ Θ
and a conditional density

p (Y1:T | θ) =
T∏
t=1

p (Yt | Y1:t−1, θ) (1)

with respect to an appropriate measure for Y1:T . The model also specifies a prior density
p (θ) with respect to a measure ν. The posterior density p (θ | y1:T ) follows in the usual
way from (1) and p (θ).

Central to the algorithm is a collection of particles θjn (n = 1, . . . , N ; j = 1, . . . , J),
where J indicates the number of groups and N is the number of particles per group.
The algorithm executes L cycles (indexed by `). Cycle ` processes observations yt`−1+1

through yt` , where 0 = t0 < t1 < · · · < tL−1 < tL = T . Each cycle operates on the
set of particles in three phases: C, S, and M . The C phase adds observations and
updates importance weights. The S phase resamples. The M phase of cycle ` performs
R` Metropolis iterations (indexed by r).

In the C phase of cycle `, denote the particles θ
(`−1)
jn . In the first cycle, ` = 1, θ

(0)
jn

iid∼
p (θ); in subsequent cycles, ` > 1, the particles θ

(`−1)
jn ∼ p

(
θ | y1:t`−1

)
are identically but

not independently distributed. When the C phase terminates, these are the particles
that enter into the S phase of cycle `. After execution of the S phase denote the selected
particles θ

(`,0)
jn . These are the particles that enter the M phase. Note that for each θ

(`,0)
jn

there exists some n′ such that θ
(`,0)
jn = θ

(`−1)
jn′ . At the completion of iteration r of the

Metropolis steps in the M phase of cycle ` denote the particles θ
(`,r)
jn . The final step of

this phase (step R`) defines θ
(`)
jn = θ

(`,R`)
jn . If ` < L then θ

(`)
jn is carried to the start of

the next cycle. If ` = L then the entire data set has been processed; in this case define
θjn = θ

(L)
jn . The collection {θjn} represents the posterior distribution conditional on the
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full sample. Occasionally reference is made to a generic moment or function of interest

g (θ), and we then denote gjn = g (θjn), g
(`)
jn = g

(
θ

(`)
jn

)
and g

(`,r)
jn = g

(
θ

(`,r)
jn

)
.

Several conditions come into play at various stages in the development of the algo-
rithm and its application.

Condition 1 (Prior distribution). The model specifies a proper prior distribution. The
prior density kernel can be evaluated with SIMD-compatible code. Simulation from the
prior distribution must be practical but need not be SIMD-compatible.

It is well understood that a model must take a stance on the distribution of likely
outcomes a priori if it is to have any standing in formal Bayesian model comparison.
This requirement is functionally related to the successive predictive structure of many
sequential Monte Carlo algorithms, including the one developed here, because these
algorithms require a distribution for θ before the first observation is introduced. Given
a proper prior distribution the evaluation and simulation conditions are weak.

Condition 2 (Likelihood function evaluation) The sequence of conditional densities

p (yt | y1:t−1, θ) (t = 1, . . . , T ) (2)

can be evaluated with SIMD-compatible code. Alternatively, if this cannot be done, there
exists a random variable u ∈ U , jointly distributed with θ and Y1:T , with the property∫

U
p (Y1:t, u, θ) du = p (Y1:t, θ) ∀ (θ, Y1:t) (t = 1, . . . , T ) . (3)

Condition 2 is important to computational efficiency because evaluation of (2) consti-
tutes almost all of the floating point operations in typical applications of the algorithm.
In many cases the sequence Y1:T is completely observed and there are analytical ex-
pressions for (2) that can be evaluated with SIMD-compatible code. The alternative (3)
introduces the possibility of simulated likelihood so long as the simulations are unbiased,
a point also recognized by Chopin et al. (2011) and Fulop and Li (2011). Section 2.3
discusses the handling of simulated likelihood in the algorithm and Section 4 provides a
worked example.

Condition 3 (Bounded likelihood) The sequence of densities (2) is bounded above by
p <∞ for all θ ∈ Θ.

This is one of two sufficient conditions for the central limit theorem invoked in Section
2.3. It is not trivial, and in particular it is violated in mixture of normals models and
other mixture models unless the support of the prior distribution is suitably truncated.
On the other hand these conditions are sufficient, not necessary, and we have worked
with cases in which Condition 3 is violated but the central limit theorem is still a
reliable indicator of the accuracy of simulation approximations of posterior moments.
The example in Section 3 is one such instance.
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Condition 4 (Existence of prior moments) If the algorithm is used to approximate

E [g (θ) | y1:T ], then E
[
g (θ)2+δ

]
<∞ for some δ > 0.

In any careful implementation of posterior simulation the existence of certain poste-

rior moments must be verified analytically. The condition E
[
g (θ)2+δ

]
< ∞, together

with Condition 3, is sufficient for the existence of E [g (θ) | y1:T ]. Condition 4 also comes
into play in establishing a central limit theorem.

Condition 5 (Parameterization) The support Θ of θ is Θ = Rk and var (θ) <∞.

This is a desirable but not an essential condition. Because the M phase employs
a Metropolis random walk with a Gaussian proposal, it is likely to be more efficient if
Condition 5 is satisfied than if it is not. In applications where the model under consid-
eration does not satisfy Condition 5, we have found it useful to transform the parameter
vector so that it conforms with this condition. The principle analytical demands in these
cases are finding a parameterization with unbounded support but finite variance, and
evaluating the Jacobian of the transformation. These are typically routine tasks.

2.3 Sequential Monte Carlo with predetermined sampling

This preliminary variant of the algorithm assumes predetermined values for some of the
constants involved in adapting the algorithm to the particular data and model under
consideration. In particular, L, {t`, ` = 1, . . . , L}, {R`, ` = 1, . . . , L}, and a doubly-
indexed sequence of k × k variance matrices {Σ`r, ` = 1, . . . , L, r = 1, . . . , R`} are
all predetermined. That is, these constants are all determined independently of the
simulation algorithm that generates the particles. This is the sense in which sampling
is predetermined in this algorithm.

The following pseudo-code defines the algorithm. It employs the notation φ (x;µ,Σ)
for the multivariate N (µ,Σ) probability density function and MH (p, q) for a Metropolis-
Hastings step with proposal density q and target density p. The parameter vector θ
should be transformed, if need be, so that it satisfies Condition 5.

θ
(0)
jn

iid∼ p (θ) (n = 1, . . . , N ; j = 1, . . . , J) ; ` = 0

For ` = 1 : L

Correction (C) phase, applied to all particles θjn (n = 1, . . . , N ; j = 1, . . . , J)

wt`−1

(
θ

(`−1)
jn

)
= 1

For s = t`−1 + 1 : t`

ws

(
θ

(`−1)
jn

)
= ws−1

(
θ

(`−1)
jn

)
· p
(
ys | y1:s−1, θ

(`−1)
jn

)
(4)

End
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w
(
θ

(`−1)
jn

)
:= wt`

(
θ

(`−1)
jn

)
Selection (S) phase, applied to each group j = 1, . . . , J

Using residual sampling based on
{
w
(
θ

(`−1)
jn

)
(n = 1, . . . , N)

}
, select{

θ
(`,0)
jn (n = 1, . . . , N)

}
from

{
θ

(`−1)
jn (n = 1, . . . , N)

}
.

Mutation (M) phase, applied to all particles θjn (n = 1, . . . , N ; j = 1, . . . , J)

For r = 1 : R`

θ
(`,r)
jn ∼ MH

(
p
(
θ| y1:t`

)
, φ
(
θ; θ

(`,r−1)
jn ,Σ`r

))
(5)

End

θ
(`)
jn := θ

(`,R`)
jn (n = 1, . . . , N ; j = 1, . . . , J)

End

θjn := θ
(L)
jn (n = 1, . . . , N ; j = 1, . . . , J)

Floating point operations are almost entirely concentrated at points (4) and (5)
in the algorithm. From Condition 2 these computations are SIMD-compatible. As a
consequence computational speed scales well according to the number of cores available.

The C phase operates on a group of observations rather than a single observation,
an idea that dates at least to Chopin (2002), which terms this procedure “iterated
batch importance sampling.” The S phase has its origins in the sampling-importance-
resampling algorithm of Rubin (1988). Note that resampling is carried out independently
within each group rather than across all particles, an idea that may be traced to Chopin
(2002).

This algorithm is close to being a special case of the algorithm in Theorem 2 of
Chopin (2004). There are three points of difference.

1. In our notation Chopin’s algorithm takes L = T and t` = ` (` = 1, . . . , L). The for-
mulation here amounts to scarcely more than a change in notation in the statement
and proof of Chopin’s Theorem 2.

2. The S phase of this algorithm is applied separately within each of J groups rather
than to the entire set of particles. As discussed in Chopin (2004) the essential
feature of the S phase is the independence of the random components of residual
selection, and that is preserved here.
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3. The final representation of the posterior distribution in Chopin (2004) consists of

the particles θ
(L−1)
jn and weights w

(
θ

(L−1)
jn

)
at the end of the C phase of cycle L.

The limiting normal distribution is not compromised by the final S and M phases
of our algorithm.

From Theorem 2 of Chopin (2004), the Metropolis random walk algorithm in the M
phase can be replaced with any MCMC algorithm with a unique invariant distribution
whose p.d.f. is p (θ | y1:t`). The algorithm just described uses the Metropolis random walk
because it is generic and has worked well for us in a wide variety of applications. We
have found that when k is large (i.e., θ is of high dimension) then it may be advantageous
to execute Metropolis steps sequentially over subsets of parameters. Section 5 provides
an example.

In the case of unbiased likelihood simulation, the contingency addressed in Condition
2, let u index the sequence of random variables used to simulate the likelihood function,
for example, the seed of the random number generator. This leads to no essential changes
in the algorithm as recognized in the literature for the case of importance sampling
(Shephard and Pitt, 1997; Koopman et al., 2009) and the Metropolis-Hastings algorithm
(Andrieu et al., 2010; Flury and Shephard, 2008). Indeed, (3) implies∫

U
p (θ, u | Y1:t = y1:t) du =

∫
U p (y1:t, u, θ) du∫

Θ

∫
U p (y1:t, u, θ) dudθ

=
p (y1:t, θ)

p (y1:t)
= p (θ | y1:t) , (6)

so the seed u of the random number generator is, functionally, the same as that of a
particularly simple latent variable. Hence the range of posterior simulation methods
available is undiminished when the likelihood function cannot be evaluated exactly but
an unbiased simulator is available.

Operationally the particles θjn are each augmented with a seed for the random num-

ber generator u
(`)
jn , with u

(0)
jn drawn from a uniform distribution at the start of the algo-

rithm. For simplicity, suppose that the unit interval (0, 1) represents the set of potential

seeds. Like θ
(`)
jn , the seed u

(`)
jn associated with a given particle does not change during

the C phase of the algorithm. The S phase is likewise unmodified from the pseudo-code
presented above. In the M phase, each Metropolis step r consists of two sub-steps, the
first operating on seeds

MH
(
p
(
u | y1:t` , θ

(`,r−1)
jn

)
, I(0,1) (u)

)
(7)

and the second on parameters

MH
(
p
(
θ | y1:t` , u

(`,r)
jn

)
, φ
(
θ; θ

(`,r−1)
jn ,Σ`r

))
. (8)

Thus, the seed associated with a particle may or may not change during the M phase.
The acceptance rate can vary as the algorithm passes through the sample because the
suitability of U(0, 1) as a candidate distribution changes systematically. Section 4.2
elaborates on these technical points in the context of a particular example.
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Conditions 3 and 4 imply the conditions of Chopin’s Theorem 2. Hence for any
function of interest g satisfying Condition 4 we may define

g = E [g (θ) | y1:T ] , g(J,N) = (JN)−1
J∑
j=1

N∑
n=1

g (θjn) ,

and conclude
(JN)1/2 (g(J,N) − g

) d−→ N (0, v) . (9)

The three points of difference between this algorithm and Chopin’s, just enumerated,
all imply that v in (9) does not share the analytical expression of Chopin (2004) for the
variance parameter of the central limit theorem. We do not have a similar analytic result
for v in (9), but these expressions provide little foundation for numerical approximation
of v in any event.

The algorithm organizes particles into groups in order to address this issue. Consider
the N × 1 vectors θ∗j (j = 1, . . . , J), each comprised of the N particles in group j, in any
phase or cycle of the algorithm. The J vectors {θ∗1, . . . , θ∗J} are mutually independent in
every phase of every cycle, and in particular this is so at the conclusion of the algorithm.
Define the within-group sample means

gNj = N−1

N∑
n=1

g (θjn) (j = 1, . . . , J) . (10)

The same central limit theorem applies to each gNj as to g(J,N), but with variance Jv.
Hence a reasonable estimate of v is

v̂(J,N) = N
J∑
j=1

[
gNj − g(J,N)

]2
/ (J − 1) (11)

and more precisely, as N →∞,

(J − 1) v̂(J,N)/v
d−→ χ2 (J − 1) . (12)

Thus var
(
g(J,N)

)
= E

[
g(J,N) − g

]2 u v̂(J,N)/(JN). The numerical standard error (NSE )

of g(J,N) is
[
v̂(J,N)/(JN)

]1/2
. The numerical approximation of var [g (θ) | y1:T ] is

(JN)−1
J∑
j=1

N∑
n=1

[
g (θjn)− g(J,N)

]2
.

Therefore the relative numerical efficiency (RNE ; Geweke, 1989) of g(J,N) is

J∑
j=1

N∑
n=1

[
g (θjn)− g(J,N)

]2
/v̂(J,N).
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While the approximation g(J,N) of g is simulation (JN) consistent, from (12) v̂(J,N) is
not a consistent estimator of v. We do not think this is of any practical concern. The
assessment of numerical accuracy in this algorithm, based on independent replications, is
based on the Lindberg-Levy central limit theorem. Consistent with our experience this
suggests that the assessment of numerical accuracy (11) is substantially more reliable
than similar approximations in either importance sampling or single-chain MCMC.

2.4 Sequential Monte Carlo with adaptive sampling

The sequential Monte Carlo algorithm just described does not work, as a practical
matter. While a given set of the constants and sequences indicated in the first two
paragraphs of the previous section might work well for one particular model and data
set, they cannot work well for all (or even very many). The need to adapt sequential
Monte Carlo algorithms to the characteristics of each application is well recognized in the
literature. Many established particle filtering algorithms, for example, are comprised of
a C phase and an S phase, monitoring the particles as t advances to determine whether
to proceed with C or a CS transition. This transition is often couched in terms of an
increasing particle attenuation problem and the need for renewal, and the transition is
usually based on simple properties of the particles like the ESS criterion of Liu and
Chen (1995).

Adaptations of this kind complicate the convergence theory. A series of papers,
including Chopin (2002, 2004), Künsch (2005), Douc and Moulines (2008) and Andrieu et
al. (2010), have wrestled with the loss of independence induced by adaptive transitions in
various settings. Chopin (2004) introduces the M phase but at the cost of deterministic
CS transitions, which in practical terms means that renewal typically takes place well
before it is warranted by particle attrition. There is an even richer variety of adaptations
that can take place in the M phase, as indicated for the algorithm summarized in Section
1.2. It is well recognized that such adaptations are critical to the efficiency of sequential
Monte Carlo.

There is a simple and straightforward way to bridge this gap between theory and
practice that, to our knowledge, has not been exploited in the literature. First, modify
the algorithm presented in Section 2.3 so that some or all of the constants and sequences
are adaptive, with values chosen based on the distribution of particles at the time each
element of a sequence comes into play. (That is what the algorithm summarized in
Section 1.2 does.) Record all of the constants and sequences chosen in this way. Then,
repeat the exercise (with different seeds for the random number generator) using exactly
the algorithm described in Section 2.3. In this repetition the constants and sequences are
predetermined, precisely as required. While the adaptive algorithm is not theoretically
defensible, the repetition with fixed constants and sequences is. Moreover, given the large
values of N that are feasible in the context of massively parallel desktop computing, the
outcome from the repetition is likely to be of practical value—that is, numerical standard
errors will be sufficiently small for the purposes at hand.

Of course, given the parallel computing environment this exercise need not be carried
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out sequentially: half the blocks could be adaptive, with the other half utilizing the el-
ements of the sequences {t`}, {R`}, and {Σ`r} as they become available. This preserves
the SIMD-compatibility at points (4) and (5) and leads to negligible reduction in effi-
ciency of the entire algorithm. At the end, one could confine attention to the outcome
from the non-adaptive blocks. One can also compare the results from the adaptive and
non-adaptive blocks. We have carried out this exercise for a number of applications,
including those presented in Sections 3 through 5. The results are not only similar, but
in many cases a test of the null hypothesis of identical results in the two sets of blocks
fails to be rejected at conventional significance levels. Less formally, differences of ap-
proximations of posterior moments are within the range implied by numerical standard
errors—and these are small, given the number of particles now feasible with desktop
parallel computing.

This approach to the extension of relatively rigid sequential Monte Carlo algorithms,
for which limiting distribution theory has been established, to adaptive versions that
are essential to a generic approach but for which the theory would be more challenging
to establish directly, is itself generic. In particular it applies not only to the specific
adaptive scheme outlined in the rest of this section, but also to variants on this scheme
including improvements that should emerge in future research. Likewise, it need not
begin with Chopin (2004) but could just as well build on other limit theory like that in
Del Moral et al. (2011). This is the essence of claim 2a made in Section 1.3.

We have experimented with many possible adaptations for the determination of L
and the sequences {t`}, {R`} and {Σ`r}. These experiments have been conducted in the
context of scaled-up applications typical of substantive research, like those in Sections
3 through 5. In comparing different adaptations we find that those that are better or
worse tend to be uniformly so across these applications. We have found the following to
be effective.

1. Following each computation of (4) in the C phase, determine the effective sample
size

ESS =

[∑J
j=1

∑N
n=1ws

(
θ

(`−1)
jn

)]2

∑J
j=1

∑N
n=1ws

(
θ

(`−1)
jn

)2

and proceed to the CS transition if ESS/(JN) < D1, where D1 ∈ [0, 1] is pre-
specified and fixed. This transition in each cycle determines the sequence {t`}
and the number of cycles L. We have found that any choice D1 ∈ [0.1, 0.9] makes
little difference. Larger (smaller) values of D1 increase (decrease) L but reduce
(increase) the number of Metropolis steps required to achieve a given level of nu-
merical accuracy. Section 3.2 illustrates this trade-off.

2. In the S phase, residual resampling (Baker, 1985, 1987; Liu and Chen, 1998) and
systematic resampling (Whitley, 1994; Carpenter, et al., 1999) are equally efficient
and are superior to multinomial resampling (Gordon et al., 1993). Since limit
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theory for systematic resampling is problematic (Chopin, 2004) we use residual
resampling.

3. In the M phase, for some fixed R > 0 and D2 ∈ [0, D1) execute R` = R Metropolis
random walk steps if ESS/(JN) > D2 at the preceding CS transition, and execute
R` = 3R steps otherwise. The efficiency of the algorithm is not particularly sensi-
tive to either the choice of D2 or the number of additional Metropolis steps taken
if this criterion is triggered. For the applications in this paper, this is a factor only
in the VAR model, as described in Section 5.2.

4. Immediately preceding each Metropolis step r, compute the sample variance of
the current collection of particles {θ(`,r)

jn } and let Σ`r be equal to this matrix times
a scaling factor, h`r. The scaling factor is initialized at h11 = 0.5. After the
Metropolis step is completed, compute the acceptance rate across all particles in
all groups. If this exceeds 0.25, increase the scaling factor by 0.01, and otherwise
reduce it by 0.01, unless this change would cause the scaling factor to be less than
0.10 or exceed 1.0. In the applications in Sections 3 through 5 these barriers are
rarely operational.

The adaptive algorithm requires that the constants N , J , D1, D2 and R be specified.
For the applications we always use J = 16 groups of N = 212 particles each. As
documented in Sections 3 through 5 we find that the choices D1 = 0.5 and D2 = 0.2
work well across applications, whereas the accuracy of the simulation approximation is
sensitive to the choice of R.

2.5 Model evaluation and comparison

The algorithm provides the marginal likelihood (ML) of the model directly. This stems
from the expression

ML =
L∏
`=1

p
(
yt`−1+1:t` | y1:t`−1

)
(Geweke, 2005, Section 2.6.2). At the conclusion of the C phase in cycle `, w

(
θ

(`−1)
jn

)
=

p
(
yt`−1+1:t` | y1:t`−1

, θ
(`−1)
jn

)
, E
[
w
(
θ

(`−1)
jn

)]
= p

(
yt`−1+1:t` | y1:t`−1

)
, and

N−1

N∑
n=1

w
(
θ

(`−1)
jn

)
as−→
∫

Θ

p
(
yt`−1+1:t` | y1:t`−1

, θ
)
dν (θ) = p

(
yt`−1+1:t` | y1:t`−1

)
.

A simulation-unbiased and simulation-consistent approximation of ML is

ML(J,N) = J−1

J∑
j=1

MLNj , where MLNj =
L∏
`=1

[
N−1

N∑
n=1

w
(
θ

(`−1)
jn

)]
.
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Then following the procedure of Section 2.3, the numerical standard error associated

with this approximation is
(
v̂(J,N)

)1/2
with

v̂(J,N) =
J∑
j=1

(
MLNj −ML(J,N)

)2

/ (J − 1) .

The alternative approximation

ML∗N =
L∏
`=1

[
(JN)−1

J∑
j=1

N∑
n=1

w
(
θ

(`−1)
jn

)]
is also simulation-unbiased and simulation-consistent and has the same asymptotic vari-
ance. If one were to report marginal likelihood there would be little to choose between

MLN and ML∗N , and numerical standard error would be
(
v̂(J,N)/(JN)

)1/2
in either case.

It is much more common to report log marginal likelihoods, and these reports are
sometimes used in subsequent model comparison. By Jensen’s inequality the approxima-
tion log MLN or log ML∗N of log ML incurs negative simulation bias. A standard Taylor
series expansion shows that the bias in log

(
ML∗N

)
is approximately−v̂(J,N)/

[
2JN (ML)2]

and that the numerical variance (due to Monte Carlo simulation) is approximately
v̂(J,N)/

[
JN (ML)2]. The latter variance can be estimated from log

(
MLNj

)
(j = 1, . . . , J)

in the same way as was described in Section 2.3 for any function of interest. The bias
adjustment for log (ML∗N) is then simply to add half its numerical variance.

A simple side computation at this point in the algorithm provides simulation-consistent
approximations to the sequence of predictive likelihoods.∑J

j=1

∑N
n=1ws

(
θ

(`−1)
jn

)
∑J

j=1

∑N
n=1 ws−1

(
θ

(`−1)
jn

) = (13)

∑J
j=1

∑N
n=1ws−1

(
θ

(`−1)
jn

)
p
(
ys | y1:s−1, θ

(`−1)
jn

)
∑J

j=1

∑N
n=1ws−1

(
θ

(`−1)
jn

) as−→ p(ys | y1:s−1).

These are central to the optimal pooling of models to maximize the log score of prediction
(Geweke and Amisano, 2011; Durham and Geweke, 2011). Numerical standard errors for
these quantities, and numerical standard errors and bias adjustment for their logarithms,
follow in exactly the same way as for marginal likelihood and log marginal likelihood.

The C phase of the algorithm, in the computation (4), represents each posterior dis-
tribution p (θ | y1:s) (s = 1, . . . , T ) by means of an importance sample. If at this point one

executes the auxiliary simulations Y
(`−1)
sjn ∼ p

(
Ys | y1:s−1, θ

(`−1)
jn

)
(n = 1, . . . , N ; j = 1, . . . , J)

then as simulation-consistent approximation of the cumulative distribution of a function
of interest f (Ys), evaluated at the observed value f (ys), is∑J

j=1

∑N
n=1 ws

(
θ

(`−1)
jn

)
I(−∞,f(ys)]

(
f
(
Y

(`−1)
sjn

))
∑J

j=1

∑N
n=1 ws

(
θ

(`−1)
jn

) .
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These evaluations are the essential element of a probability integral transform test of
model specification (Rosenblatt, 1952; Smith, 1985; Diebold et al., 1998; Berkowitz,
2001; Geweke and Amisano, 2010).

3 Example: Exponential generalized autoregressive

conditional heteroskedasticity model

The predictive distributions of returns to financial assets are central to the pricing of
their derivatives like futures contracts and options. The literature modeling asset return
sequences as stochastic processes is enormous and has been a focus and motivation
for Bayesian modelling in general and application of sequential Monte Carlo methods in
particular. One of these models is the exponential generalized autoregressive conditional
heteroskedasticity (EGARCH) model introduced by Nelson (1991). The example in this
section works with a family of extensions developed in Durham and Geweke (2011) that
is highly competitive with many stochastic volatility models.

In the context of this paper the EGARCH model is also of interest because its likeli-
hood function is relatively intractable. The volatility in the model is the sum of several
factors that are exchangeable in the posterior distribution. The return innovation is
a mixture of normal distributions that are also exchangeable in the posterior distribu-
tion. Both features are essential to the superior performance of the model (Durham and
Geweke, 2011). Permutations in the ordering of factors and mixture components induce
multimodal distributions. Models with these characteristics have been widely used as a
drilling ground to assess the performance of simulation approaches to Bayesian inference
with ill-conditioned posterior distributions (e.g., Jasra et al., 2007b). The models stud-
ied in this section have up to (4!)2 = 576 permutations, and potentially as many local
modes. We make no efforts to optimize the algorithm for these characteristics. Nonethe-
less, the irregularity of the posteriors turns out to pose no difficulties for the algorithm,
illustrating the robustness that derives from its implicit data point tempering.

Most important, in our view, this example illustrates the potential large savings in
development time and intellectual energy afforded by the algorithm presented in this
paper, compared with other approaches that might be taken. We believe that other ex-
isting approaches, including importance sampling and conventional variants on Markov
chain Monte Carlo, would be substantially more difficult. At the very least they would
require experimentation with tuning parameters by Bayesian statisticians with particu-
lar skills in these numerical methods, even after using the approach of Geweke (2007)
to deal with dimensions of posterior intractability driven by exchangeable parameters in
the posterior distribution. The algorithm replaces this effort with the learning embedded
in data point tempering, thereby releasing the time of investigators for more productive
and substantive efforts.
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Table 1: Parameters and prior distributions for the EGARCH models

All parameters have Gaussian priors with means and standard deviations indicated below
(the prior distribution of θ8i is truncated below at −3.0). Indices i and k take on the values
i = 1, . . . , I and k = 1, . . . ,K.

Mean Std Dev Transformation

θ1 0 1 µY = θ1/1000
θ2 log(0.01) 1 σY = exp(θ2)
θ3k tanh−1(0.95) 1 αk = tanh(θ3k)
θ4k log(0.10) 1 βk = exp(θ4k)
θ5k 0 0.2 γk = θ5k

θ6i 0 1 p∗i = tanh(θ6i) + 1
θ7i 0 1 µ∗i = θ7i

θ8i 0 1 σ∗i = exp(θ8i)

3.1 Model and data

An EGARCH model for a sequence of asset returns {yt} has the form

vkt = αkvk,t−1 + βk

(
|εt−1| − (2/π)1/2

)
+ γkεt−1 (k = 1, . . . , K) , (14)

yt = µY + σY exp

(
K∑
k=1

vkt/2

)
εt. (15)

The return disturbance term εt is distributed as a mixture of I normal distributions,

p(εt) =
I∑
i=1

piφ(εt;µi, σ
2
i ) (16)

where φ( · ;µ, σ2) is the Gaussian density with mean µ and variance σ2, pi > 0 (i =
1, . . . , I) and

∑I
i=1 pi = 1. The parameters of the model are identified by the conditions

E (εt) = 0 and var (εt) = 1; equivalently,

I∑
i=1

piµi = 0,
I∑
i=1

pi(µ
2
i + σ2

i ) = 1. (17)

The models are indexed by K, the number of volatility factors, and I, the number of
components in the return disturbance normal mixture, and we refer to the specification
(14)–(15) as egarch KI. The original form of the EGARCH model (Nelson, 1991) is
(14)–(15) with I = K = 1.

The algorithm operates on transformed parameters, as described in Condition 5 of
Section 2.2. The vector of transformed parameters is denoted θ. The prior distributions
for the elements of θ are all Gaussian. Priors and transformations are detailed in Table
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1. The intermediate parameters p∗i , µ
∗
i and σ∗i are employed to enforce the normalization

(17) and undergo the further transformations

pi = p∗i /

I∑
i=1

p∗i , µ∗∗i = µ∗i −
I∑
i=1

piµ
∗
i , c =

[
I∑
i=1

pi((µ
∗∗
i )2 + (σ∗i )

2)

]−1/2

, (18)

µi = cµ∗∗i , σi = cσ∗i (i = 1, . . . , I) . (19)

The truncation of the parameters θ8i (i = 1, . . . , I) bounds the likelihood function above,
thus satisfying Condition 3. The initial simulation from the prior distribution is trivial,
as is evaluation of the prior density.

Evaluation of p (yt | y1:t−1, θ) entails the following steps, which can readily be ex-
pressed in SIMD-compatible code, satisfying Condition 2.

1. Transform the parameter vector θ to the parameters of the model (14)–(15) using
the fourth column of Table 1 and (18)–(19).

2. Compute vkt (k = 1, . . . , K) using (14), noting that εt−1 and vk,t−1 (k = 1, . . . , K)
are available from the evaluation of p (yt−1 | y1:t−2, θ). As is conventional in these
models the volatility states are initialized at vk0 = 0 (k = 1, . . . , K).

3. Compute ht = σY exp
(∑K

k=1 vkt/2
)

and εt = (yt − µY ) /ht.

4. Evaluate p (yt | y1:t−1, θ) = (2π)−1/2h−1
t

∑I
i=1

{
pi

1
σi

exp
[
− (εt − µi)

2 /2σ2
i

]}
.

The observed returns are yt = log (pt/pt−1) (t = 1, . . . , T ) where pt is the closing
Standard and Poors 500 index on trading day t. We use returns beginning January 3,
1990 (t = 1) and ending March 31, 2010 (t = T = 5100).

3.2 Performance

All of the inference for the EGARCH models is based on 216 = 65, 536 particles in
J = 24 = 16 groups of N = 212 = 4, 096 particles each. Except where specified other-
wise, R = 55 (the base number of Metropolis iterations in each M phase), D1 = 0.50
(ESS threshold for CS transition), and D2 = 0.20 (the ESS threshold below which ad-
ditional Metropolis steps are taken). The exercise begins by comparing the log marginal
likelihood of the 10 variants of this model indicated in column 1 of Table 2. The format
of this table is similar to that of several that follow. The number of cycles (L) varies
from application to application because it is determined by the sequential Monte Carlo
algorithm with adaptive sampling detailed in Section 2.4. The log marginal likelihood
is bias adjusted and its numerical standard error (NSE ) is computed as described in
Section 2.5. “Log score” is the log predictive likelihood p (y505:5100 | y1:504); observation
505 is the return on the first trading day of 1992. Log score is also bias adjusted.
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Table 2: Comparison of EGARCH models

Compute Log Numerical Numerical
time Cycles Marginal Standard Log Standard

Model (seconds) L Likelihood Error Score Error

egarch 11 177 53 16,641.84 0.04 15,009.21 0.04
egarch 12 318 68 16,712.50 0.08 15,075.43 0.07
egarch 21 231 60 16,669.34 0.07 15.038.38 0.08
egarch 22 384 76 16,735.80 0.10 15,099.73 0.09
egarch 23 499 77 16,750.83 0.13 15,114.28 0.11
egarch 32 447 75 16,733.99 0.12 15,099.44 0.11
egarch 33 561 77 16,748.81 0.13 15,113.76 0.14
egarch 34 748 82 16,748.42 0.10 15,113.33 0.08
egarch 43 673 78 16,745.50 0.10 15,112.17 0.10
egarch 44 881 81 16,745.19 0.12 15,111.94 0.11

J = 16, N = 4096, D1 = 0.5, D2 = 0.2, R = 55.

Bayes factors strongly favor the egarch 23 model, as do log scores. In comparison
with all the models that it nests, the Bayes factor is at least exp (15). In comparison with
all the models that nest egarch 23, the Bayes factor ranges from exp (2) to over exp (5).
This pattern is classic: the data provide strong diagnostics of underfitting, while the
evidence of overfitting is weaker because it is driven primarily by the prior distribution.
The 95% confidence intervals for log Bayes factors are generally shorter than 0.3. As
will be seen, the length of these confidence intervals can be reduced by increasing R.

Compute time increases substantially as a function of I and K. This is mainly due to
the greater number of floating point operations required to evaluate likelihood functions
in the M phase of the algorithm. To a lesser extent it is caused by faster reduction
of effective sample size in the C phase, increasing the number of cycles L and thereby
the number of passes through the M phase. Going forward, all examples in this section
utilize the egarch 23 model.

Table 3 compares compute time and NSE for log marginal likelihood and log score
for some alternative choices of R. The M phase accounts for most of the compute time
when R is large, over 90% for R > 50. The number of cycles is little affected by the size
of R.

Reported values for NSE should be regarded as rough approximations when the
number of groups J is as small as it is in the examples in this paper (J = 16). From
one execution of the algorithm to another (with identical settings but different seeds
for the random number generator), the distribution of the ratio of squared NSE ’s is
approximately F (15, 15), implying that the probability of a 2:1 ratio of NSE ’s in the
two executions is about 6%. As J is increased, while reducing N proportionately to keep
the total number of particles JN fixed, the approximate normal distribution of within
group sample means gj in (10) becomes less reliable. At this point we do not have a
generic recommendation for combinations of J and N that produce the most reliable
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Table 3: Sensitivity to number of Metropolis steps R in phase M

Metropolis Compute Log Numerical Numerical
steps time Cycles Marginal Standard Log Standard
R (seconds) L Likelihood Error Score Error

5 88 73 16,750.85 0.70 15,114.28 0.70
8 114 75 16,750.53 0.39 15,113.99 0.39
13 157 76 16,750.89 0.25 15,114.35 0.26
21 225 76 16,750.79 0.14 15,113.31 0.15
34 335 76 16,751.19 0.14 15,114.56 0.14
55 500 74 16,750.90 0.10 15,114.40 0.09
89 800 76 16,750.92 0.07 15,114.28 0.06
144 1358 76 16,750.80 0.04 15,114.19 0.05

egarch 23, J = 16, N = 4096, D1 = 0.5, D2 = 0.2.

NSE ’s.
Potential improvements in NSE are subject to diminishing returns with respect to the

computational cost associated with increasing the value of R. As R→∞, the NSE for
the Monte Carlo approximation of E [g (θ) | y1:T ] approaches {var [g (θ) | y1:T ] /(JN)}1/2.
At some point it becomes more efficient to increase N rather than R in pursuit of greater
accuracy. This point is model-dependent and cannot be identified with much precision
with only J = 16 groups. But the evidence in Table 3 suggests that for the moments
studied there the break-even point is above R = 100.

Table 4 illustrates the impact of changing the threshold D1 at which CS transition is
triggered. (All of the results in this Table use D2 = 0; that is, the number of Metropolis
iterations in each M phase is always R.) A weaker criterion (smaller D1) lengthens the C
phase, resulting in fewer cycles L. But the number of distinct points resampled in the S
phase is then smaller, implying that for fixed R the expected NSE will be higher. There
is a trade-off between smaller values of D1 and larger values of R that keep NSE about
the same. Among pairs D1 and R that yield similar NSE, there is not much difference
in compute time. For example, from Table 4, (D1 = 0.8, R = 34), (D1 = 0.6, R = 55)
and (D1 = 0.4, R = 89) all have a compute time of about 600 seconds and NSE around
0.07. This is characteristic of all the models and functions of interest we have studied.
For this reason we maintain a fixed value of D1 (0.5) and do not provide further detail
on the impact of changing D1 going forward.

In many situations—in particular, those that satisfy the conditions for asymptotic
normality of posterior distributions (Chen, 1985; Sweeting and Adekola, 1987; Geweke,
2005, Theorem 3.4.3)—an additional observation has less impact on the posterior dis-
tribution when sample size is large than when it is small. At the start of the algorithm
the contribution of each observation to information about the parameter vector θ is
relatively large, substantially reducing the probability assigned to large regions of Θ by
the prior. Consequently ESS/(JN) falls below the threshold D1 triggering S and M
phases more frequently in the early part of the sample than it does later on. Figure
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Table 4: Interaction between choices of D1 and R

ESS Metropolis Compute Log Numerical Numerical
threshold steps time Cycles Marginal Standard Log Standard

D1 R (seconds) L Likelihood Error Score Error

0.2 34 180 32 16,751.12 0.26 15,114.57 0.26
0.4 34 261 56 16,751.01 0.11 15,114.43 0.12
0.6 34 389 91 16,750.70 0.09 15,114.14 0.08
0.8 34 737 184 16,750.87 0.07 15,114.31 0.07

0.2 55 250 31 16,750.92 0.15 15,114.32 0.15
0.4 55 393 56 16,750.10 0.12 15,114.48 0.13
0.6 55 618 93 16,750.86 0.08 15,114.24 0.07
0.8 55 1111 178 16,750.88 0.04 15,114.32 0.03

0.2 89 387 32 16,750.82 0.12 15,114.22 0.11
0.4 89 608 56 16,750.78 0.07 15,114.19 0.09
0.6 89 967 93 16,750.79 0.08 15,114.22 0.06
0.8 89 1835 183 16,750.74 0.05 15,114.21 0.04

egarch 23, J = 16, N = 4096, D2 = 0.0.
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Figure 1: Effective sample size in the C phase as a function of sample size t. Vertical lines
indicate CS transition (egarch 23, J = 16, N = 4096, D1 = 0.5, D2 = 0.2, R = 55).
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Figure 2: Relative numerical efficiency for the function of interest p (y1:t` | θ) in the M
phase. A pair of points connected by a line segment shows the average RNE in the first
10 Metropolis steps (left point) and in the last 10 Metropolis steps (right point) of the
M phase executed following the observation date indicated along the lower edge of the
figure (egarch 23, J = 16, N = 4096, D1 = 0.5, D2 = 0.2, R = 55).

1 illustrates this for the egarch 23 model and the 20-year daily return data set. It is
characteristic of patterns in the other applications in this paper, and has been noted in
the literature (e.g., Chopin, 2002; Fulop and Li, 2011). In general, cycle length is an
increasing function of the number of observations t in the sample. For a given function
form—for example, if the posterior distribution is nearly Gaussian—it is a decreasing
function of the number of parameters in the model.

Although S and M phases occur less frequently as sample size increases, the compu-
tational cost of each successive M phase increases roughly in proportion to sample size.
Thus, in the example shown in Figure 1 there are 7 passes through the M phase as the
sample grows from 500 to 1000 observations and only 2 as it grows from 4500 to 5000,
but this latter portion of the algorithm requires more compute time than the former.

The Metropolis steps in the M phase reduce the dependence between particles and
thereby provide a more efficient representation of the posterior distribution. This is an
expectation, not a feature of every realized step of the random-walk Metropolis stochastic
process. Expected relative numerical efficiency (RNE ) increases, with a limiting value
of 1 as R → ∞. Using the same values of J , N and R as in Table 2 and Figure 1,
Figure 2 shows some aspects of this pattern within each M phase, exhibiting the RNE
for Monte Carlo approximation of the posterior expectation of a function of θ that is
calculated as part of the Metropolis arithmetic and therefore can be monitored at very
little additional cost in computing time.

Although RNE tends to increase within each M phase, Figure 2 shows a systematic
trend toward lower RNE as the sample progresses. This can be mitigated by increasing
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Figure 3: Relative numerical efficiency for the function of interest p (y1:t` | θ) in the M
phase. A pair of points connected by a line segment shows the average RNE in the first
10 Metropolis steps (left point) and in the last 10 Metropolis steps (right point) of the
M phase executed following the observation date indicated along the lower edge of the
figure (egarch 23, J = 16, N = 4096, D1 = 0.5, D2 = 0.2, R = 144).

R. Figure 3 reports exactly the same computations for a different execution of the
posterior simulator, except that here R = 144 rather than R = 55 as was the case in
Figure 2. The patterns of RNE in these two figures are consistent with the comparisons
made in Table 3. In both cases the user has reliable information about the accuracy of
the approximation. The user who finds the degree of accuracy with R = 55 insufficient
can improve the approximation by increasing either R or the number of particles. In
principle the algorithm can be modified to monitor RNE and adjust the number of
Metropolis iterations R` executed in each cycle so as to meet a target for RNE or
numerical accuracy. We have experimented with various such modifications, but for this
paper we use the simple rule described in Section 2.4: R` = R if ESS/(JN) > D2 = 0.2
and R` = 3R otherwise.

3.3 Some specific aspects of the application

Models for asset returns, like the EGARCH models considered here, are primarily of
interest for their predictive distributions. The cumulative predictive distribution func-
tion of an asset return is relevant for the pricing of derivative assets like options. To
illustrate this application, consider the conditional probability of a return of less than
−3% on date t + 1 conditional on information through observation t. This conditional
probability is obtained by Monte Carlo approximation of the expectation E [g(θ) | y1:t]
over the posterior distribution of θ with g(θ) = P (yt+1 < −0.03 | θ) as described in
Section 2.3. Table 5 reports details on this approximation for t corresponding to two
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Table 5: Moment of interest, 100 · E [P (Yt+1 < −0.03 | y1:t, θ)]

t = March 31, 2009 t = March 31, 2010
Posterior Posterior

R mean NSE RNE mean NSE RNE

5 9.6044 0.1098 0.0008 0.0627 0.0023 0.0019
8 9.7580 0.0714 0.0014 0.0672 0.0016 0.0042
13 9.7181 0.0371 0.0053 0.0697 0.0015 0.0057
21 9.7241 0.0370 0.0052 0.0742 0.0010 0.0122
34 9.7536 0.0192 0.0192 0.0757 0.0008 0.0216
55 9.7678 0.0165 0.0272 0.0763 0.0003 0.1623
89 9.7793 0.0096 0.0811 0.0766 0.0003 0.1284
144 9.7712 0.0087 0.0987 0.0768 0.0003 0.1633

egarch 23, J = 16, N = 4096, D1 = 0.5, D2 = 0.0.

different days in the sample: March 31, 2010 (the last day of the sample) and March 31,
2009. Volatility is much higher on the earlier date than it is on the later date.

These approximations are based on the collection of particles operational at the time
the expectation is computed. After the last observation of the sample, we always execute
S and M phases. In accordance with the discussion in Section 2.3, we also execute S
and M phases immediately before evaluating the expectation for the earlier date.

In both cases, the NSE of the approximation declines substantially as R increases.
The results for t = March 31, 2009, are mostly unremarkable. Posterior moments are
the same, up to NSE, for all values of R. Pairing the results with the compute times
from Table 3, increases in R up to 89 are efficient, but the incremental compute time
required for R = 144 would have been better allocated to more particles.

The results for t = March 31, 2010 are more striking. The posterior means increase
monontonically with R, and values for R = 5, 8 and 13 are too small even after taking
into account limitations on the reliability of NSE due to just J = 16 groups of particles.
To understand this feature, note first from the RNE entries in Table 5 that the effective
sample sizes are about 8 to 25 particles per group for these small values of R. Second,
most of the probability associated with very low returns in the less volatile environment
of March 2010 arises from tails of the posterior distribution of θ. The result is a positively
skewed distribution of the function of interest g (θ) = P (yt+1 < −0.03 | y1:t, θ), with the
important right tail poorly (if at all) represented with these very small effective sample
sizes. This does not imply a systematic bias in posterior moment approximation, but it
does imply that more often than not the computed posterior moment will be too low.
(The NSE will be low as well.) This phenomenon arises again in Section 5.2 in a different
context. In general, very small effective sample sizes imply skewed sampling distributions
of computed posterior moments when the corresponding functions of interest themselves
have skewed posterior distributions. Since the shape of the posterior distribution of a
function of interest can be less than obvious, the practical implication is that the user
should beware very small effective sample sizes.
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Figure 4: Relative numerical efficiency for the posterior moment E [P (yt+1<−0.03 | y1:t, θ)]
in the M phase. A pair of points connected by a line segment shows the average RNE
in the first 10 Metropolis steps (left point) and in the last 10 Metropolis steps (right
point) of the M phase executed following the observation date indicated along the lower
edge of the figure (egarch 23, J = 16, N = 4096, D1 = 0.5, D2 = 0.2, R = 55).

Figure 4 shows RNE for the function of interest E [P (yt+1 < −0.03 | y1:t, θ)] in the
same way that Figure 2 did for p (y1:t | θ). Again, the patterns are similar, and again
the RNE of other functions of interest we have studied behaves in much the same way.

In the egarch 23 model there are 2 permutations of the factors vkt and 6 permuta-
tions of the components of the normal mixture probability distribution function of εt.
This presents a severe challenge for single-chain Markov chain Monte Carlo as discussed
by Celeux et al. (2000) and Jasra et al. (2007b), and for similar reasons importance sam-
pling is also problematic. The problem can be mitigated (Fruhwirth-Schnatter, 2001)
or avoided entirely (Geweke, 2007) by exploiting the special “mirror image” structure
of the posterior distribution. But these models are still interesting as representatives
of multimodal and ill-behaved posterior distributions in the context of generic posterior
simulators. We focus here on the 6 permutations of the normal mixture in egarch 23.

Consider a parameter vector θ with three distinct values of the triplets (ps, µs, σs)
(s = A,B,C). There are six distinct ways in which these values could be assigned
to components i = 1, 2, 3 of the normal mixture (16). These permutations define six
points θu (u = 1, . . . , 6). For all sample sizes t, the posterior densities p (θu | y1:t) at
these six points are identical. Let θ′ be a different parameter vector with analogous
permutations θ′u (u = 1, . . . , 6). As the sample adds evidence p (θu | y1:t) /p (θu′ | y1:t)

as→
0 or p (θu | y1:t) /p (θu′ | y1:t)

as→ ∞. Thus, a specific triplet set of triplets (ps, µs, σs)
(s = A,B,C) and its permutations will emerge as pseudo-true values of the parameters
(Geweke, 2005, Section 3.4).

These properties will be exhibited in the marginal distributions, as well. Consider the
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Figure 5: Scatterplots of a subset of particles (log σ1, log σ2) from selected posterior
distributions conditional on y1:t (J = 16, N = 4096, D1 = 0.5, D2 = 0.2, R = 34).
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pair (σ1, σ2), which is the case portrayed in Figure 5. The scatterplot is symmetric (up
to the random sampling in the simulator) about the axis σ1 = σ2 in all cases. As sample
size increases six distinct and symmetric modes in the distribution gradually emerge.
These reflect the full posterior distribution for the normal mixture components of the
egarch 23 model (i.e., marginalizing on all other parameters) that is roughly centered
on the components (p = 0.17, µ = 0.16, σ = 0.40), (p = 0.85, µ = 0.01, σ = 1.01) and
(p = 0.01, µ = −1.36, σ = 1.96). The progressive decrease in entropy with increasing
t illustrates how the algorithm copes with ill-behaved posterior distributions. Particles
gradually migrate toward concentrations governed by the evidence in the sample. Unlike
Markov chain Monte Carlo there is no need for particles to migrate between modes, and
unlike importance sampling there is no need to sample over regions eliminated by the
data (on the one hand) or to attempt to construct multimodal source distributions (on
the other). The algorithm proposed in this paper adapts to these situations without
specific intervention on a case-by-case basis.

Figure 6 presents the same analysis, for the probability components of the normal
mixture. Symmetry and increasing concentration with t are again evident, as are six
distinct modes at t = 4800. Similar study of the parameters µ of the normal mixture
also shows symmetry, but six modes are not so evident.

4 Example: Dynamic multinomial probit model

This model describes choices made by individuals in a sequence of time periods, for
example whether to commute between home and work by automobile, public trans-
portation or autonomously (walking or cycling). As applied to human behavior this
model has the key strategic advantage of not imposing independence of irrelevant alter-
natives, which is inconsistent with microeconomic theory and is a property of the simpler
and more widely applied multinomial logit model. Evaluating the likelihood function
entails computing the probability that a vector with a multivariate normal distribution
will simultaneously satisfy several linear inequality constraints, a problem that can only
be solved by simulation except in simple illustrative cases not typical of research appli-
cations. Alternatively, likelihood function evaluation can be avoided by augmenting the
data with the latent utilities in Bayesian approaches to inference, at the cost of being
unable to assess marginal or predictive likelihoods. Both approaches demand substantial
computing time as detailed in Geweke et al. (1997).

This section applies the algorithm of Section 2 using a reliable simulator to assess the
intractable probabilities in the likelihood function. The simulator provides an unbiased
evaluation of the entire likelihood function. As detailed in Section 2.3 this property is
sufficient for quite a few approaches to posterior simulation, including the one taken
here. In common with other unbiased probability simulators this one requires that the
user select a tuning parameter (here, in the form of the number of iterations), but the
only consequence of an imprudent choice is a poor approximation that will be indicated
reliably by the numerical standard errors provided by the algorithm. The illustration
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Figure 6: Scatterplots of a subset of particles (p1, p2) from selected posterior distributions
conditional on y1:t (J = 16, N = 4096, D1 = 0.5, D2 = 0.2, R = 34).
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here supports the assertion of claim 1 in Section 1.3 that the algorithm can be extended
to situations in which direct evaluation of the likelihood function is not possible.

4.1 Model and data

The dynamic multinomial probit model pertains to a set of individuals i = 1, . . . , I observed
in time periods t = 1, . . . , T . Each individual i in each time period t chooses exclu-
sively from alternatives c = 1, . . . , C. For each individual i and time period t there is
an observed personal characteristic xit (e.g., income) and observed choice characteris-
tics zict (c = 1, . . . , C) (e.g., prices of the alternative choices) and an observed choice
yit ∈ {1, . . . , C}. Choices are conditionally independent across individuals i but condi-
tionally dependent across time periods t for each individual i. The fundamental unit of
observation is the individual, i, and in this example i plays the same role as t in the
description of the algorithm in Section 2. As the algorithm proceeds all T observations
for an individual are always introduced as a group.

Consistent with microeconomic theory, individual i derives utility uict from choice c
at time t, and makes that choice yit that maximizes utility. It will turn out shortly that
P (uict = uic′t) = 0, so we may write

yit =arg maxuict ⇐⇒
c

ui,yit,t ≥ uic′t (c′ = 1, . . . , C) . (20)

A linear probability model specifies

µict = β0c + β1cxit + γczict − γCziCt, uict = µict + εict (21)

for i = 1, . . . , I; t = 1, . . . , T ; c = 1, . . . , C − 1 and uiCt = 0. The asymmetric treatment
of the last alternative is a conventional normalization recognizing the fact that (20) is
invariant to the addition of terms ait to uict.

The multinomial probit model specifies

εit = (εi1t, . . . , εi,C−1,t)
′ ∼ N (0,Σ∗) ,

with

Σ∗ =

 σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 1

 (22)

in the case C = 4. The asymmetric treatment of var (εi,C−1,t) is a conventional normal-
ization recognizing the fact that (20) is invariant to the multiplication of uict by positive
constants bit. The dynamic multinomial probit model (Geweke et al., 1997) specifies

R
T×T

= [rst] , rst = ρ|s−t|, Σ = R⊗ Σ∗, εi = (ε′i1, . . . , ε
′
iT )
′ ∼ N (0,Σ) . (23)

The choices yit are observed but the utilities uict are latent. Conditional on covariates
xit and zict the choice sequences yi = (yi1, . . . , yiT )′ are mutually independent whereas
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yis and yit (s 6= t) are not independent unless ρ = 0. Conditional on covariates,

P (yi) =

∫
Si

φ (ε; 0,Σ) dε (24)

where
Si = {εit : ui,yit,t ≥ uict (c = 1, . . . , C; t = 1, . . . , T )} .

From (20) and (21) Si is a function of covariates and the parameters β0c, β1c and γc
(c = 1, . . . , C). Hence the expression (24) is a function of all of the parameters of the
model.

The integral (24) cannot be evaluated analytically, and quite a few simulation algo-
rithms have been proposed for its approximation. Of these the Geweke-Hajivassilliou-
Keane (GHK ) probability simulator (Börsch-Supan and Hajivassiliou, 1993; Geweke and
Keane, 2001) is generally considered the most reliable (Hajivassilliou et al., 1996). The
GHK simulator works with a linear transformation of the random variables uict to a
random vector v in which the set Si becomes a hyper-rectangle defined by the endpoints
(ac, bc) (c = 1, . . . , C). It draws ṽc ∼ p (vc | ṽ1, . . . , ṽc−1) (c = 1, . . . , C − 1) recursively,
and then computes the random variable

p̃ = P (a1 < v1 ≤ b1) ΠC
c=2P (ac < vc ≤ bc | ṽ1, . . . , ṽc−1) .

This describes a single iteration of the GHK probability simulator. Since

E (p̃) = P [ac < vc ≤ bc (c = 1, . . . , C)] (25)

(Börsch-Supan and Hajivassiliou, 1993; Geweke and Keane, 2001), the mean of indepen-
dent executions of the simulator is strongly consistent for P (yi) in (24). In the context
of the description of the algorithm in Section 2, u in (3) is the randomly selected seed
of the random number generator at the time a new proposal ujn is drawn in (7). The
property (25), and the fact that the likelihood function is the product of the terms (24)
over i = 1, . . . , I, together imply (3).

The number of iterations H used in the GHK simulator is an additional design
parameter in implementing the entire algorithm. This is true of simulated likelihood
methods generally, as is the fact that the accuracy of approximation and execution time
both increase with the number of iterations. The methods introduced in Section 2.3 for
evaluating the accuracy of approximation of posterior moments remain valid. Numerical
standard errors calculated in this way appropriately reflect the additional uncertainty
introduced by the simulation noise surrounding likelihood function approximation. In-
creasing the number of simulations, especially when that number is small, leads to a
verifiable reduction in the numerical standard errors of the algorithm’s approximation
of posterior moments.

The algorithm operates on transformed parameters θ. Priors and transformations are
detailed in Table 6. Priors are all Gaussian with the indicated means and standard devi-
ations. The evaluation of the likelihood function closely follows Rossi et al. (2005) and in
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Table 6: Parameters and prior distribution in the multinomial probit model.

Mean Std Dev Transformation

θ1c 0 0.1 β0c = θ1c (c = 1, . . . , C − 1)
θ2c 0 0.1 β1c = θ2c (c = 1, . . . , C − 1)

θ3c −2−1/2 0.1 γc = θ3c (c = 1, . . . , C)
θ4c 0 0.1 σcc = exp (θ4c) (c = 1, . . . , C − 1)
θ5cd tanh−1(0.5) 0.1 σcd = tanh (θ5cd) (c, d = 1, . . . , C; c 6= d)
θ6 tanh−1(0.5) 0.1 ρ = tanh (θ6)

particular the baysm R package that accompanies that book. The essential operations
in the GHK algorithm involve linear algebra, generation of normal random numbers,
and the evaluation of the univariate normal cumulative distribution function, but there
is no data-dependent branching. All three of these operations are SIMD-compatible.

The data set is constructed. The unconditional distribution of all covariates xit and
zijt is standard normal. Covariates are independent across individuals and choices, and
all covariates follow first-order autoregressive processes with correlation coefficient 0.5.
The choice vectors yi are generated using (20)–(23) with β0c = β1c = 0, γc = −2−1/2

(c = 1, . . . , C), σii = 1 (i = 1, . . . , C − 1), σij = 0.5 (i 6= j), and ρ = 0.5, following the
experimental design in Geweke et al. (1997). There are C = 4 choices, T = 4 time
periods and I = 500 individuals in the artificial sample.

4.2 Performance

All of the inference for the MNP model is based on 216 = 65, 536 particles in J = 24 = 16
groups of N = 212 = 4, 096 particles each. Table 7 compares execution time and
algorithm performance in computing log marginal likelihood for some alternative choices
of R and H. As is the case generally, cycle length increases with the size of the sample.
In this example effective sample size deteriorates more rapidly in the C phase than was
the case for the EGARCH example in Section 3, resulting in more cycles relative to the
sample size. From the compute times in Table 7 it is easy to see that the M phase
accounts for almost all the compute time, even when R = 1.

In the approximation of log marginal likelihood the algorithm performs poorly when
the number of iterations H of the GHK simulator is small. (This is consistent with
conventional wisdom about the GHK algorithm, noted as long ago as Geweke et al.,
1994.) In particular there appears to be a noted downward bias in reported log marginal
likelihood for H = 25, reduced but still evident for H = 50, and undetectable for H =
100. Fulop and Li (2011) have noted a similar phenomenon for a simulated likelihood
function in a nonlinear state space model. It is important to understand systematic
anomalies of this kind in any algorithm.

Figures 7 and 8 provide further evidence. As described in Section 2.3, each Metropolis
iteration in the M phase is executed in two steps: the first step (7) operates on seeds
for the random number generator used in the GHK simulator and the second step (8)
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Table 7: Sensitivity to number of Metropolis steps R and GHK iterations H

Metropolis GHK Compute Log Numerical
steps iterations time Cycles Marginal Standard
R H (seconds) L Likelihood Error

1 25 746 77 -1892.83 0.35
1 50 1060 68 -1890.55 0.24
1 100 1683 61 -1890.00 0.18
1 200 2724 55 -1888.95 0.29

2 25 1548 79 -1892.11 0.25
2 50 2089 68 -1890.05 0.24
2 100 3197 61 -1889.48 0.16
2 200 5142 55 -1889.74 0.13

3 25 2408 80 -1891.99 0.19
3 50 3127 68 -1889.84 0.18
3 100 4878 62 -1889.88 0.08
3 200 7784 55 -1889.69 0.07

5 25 4111 82 -1891.92 0.17
5 50 5346 69 -1889.98 0.14
5 100 8067 62 -1889.71 0.07
5 200 13,255 57 -1889.75 0.05

8 25 6749 83 -1890.09 0.27
8 50 8535 69 -1889.62 0.13
8 100 13,363 63 -1889.75 0.06
8 200 21,056 57 -1889.64 0.05

13 25 10,692 81 -1891.10 0.16
13 50 14,237 70 -1889.75 0.15
13 100 20,805 62 -1889.67 0.05
13 200 34,049 57 -1889.71 0.04

21 25 18,059 82 -1890.52 0.21
21 50 22,940 69 -1889.99 0.04
21 100 35,333 63 -1889.78 0.04
21 200 54,205 56 -1889.72 0.05

J = 16, N = 4096, D1 = 0.50, D2 = 0.20.
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Figure 7: Average acceptance rates in Metropolis steps operating on GHK seeds. Mark-
ers indicate observations at which M phases were executed (J = 16, N = 4096,
D1 = 0.50, D2 = 0.20, R = 5).

operates on parameter vectors. As depicted in Figure 7, the acceptance rate in the first
step (over seeds) deteriorates steadily as t increases. For H = 25 acceptance rates drop
to near zero in the last third of the sample. Acceptance rates improve with larger values
of H, though at the end of the sample the acceptance rate is still below 0.2 even for
H = 200. Figure 8 documents the implications of this phenomenon for the number of
unique seeds at time t in one group of 4096 particles. The S phase resamples multiple
copies of particles that have high weights. Each copy has the same seed. If acceptance
rates in the Metropolis steps are low, the number of unique seeds deteriorates over
successive S phases. There may still be many unique parameter vectors. This depends
on acceptance rates in the second step of the Metropolis iterations, where we experience
no difficulties in maintaining the target acceptance rate of 0.25.

To obtain good approximations of the likelihood function (6) either large H or a large
sample of unique seeds is needed. As H → ∞ it makes little difference if each particle
uses the same seed. When H is small, a single seed may produce a poor approximation
of the likelihood surface, but the problem is mitigated when we are able to integrate
across many seeds.

In the extreme situation where all particles use the same seed, the algorithm pro-
duces a sample of parameter vectors from the posterior distribution corresponding to
the approximate likelihood associated with that particular seed. If, as is the case here,
the exact likelihood reflects the true data generating process, the approximate likeli-
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Figure 8: Number of unique GHK seeds ujn in a single group of N = 4096 particles at
observation t (J = 16, N = 4096, D1 = 0.50, D2 = 0.20).
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hood corresponds to a misspecified model and the reported marginal likelihood will be
systematically too low.

Ideally, one would like to adapt the Metropolis sampler to maintain some target
acceptance rate. While we are able to do this when sampling parameter vectors (as
described in Section 2.4), this does not appear to be feasible when sampling seeds. We do
not at present know of any solution to this problem other than to increase the number of
GHK simulations to attain acceptance rates sufficient to maintain an adequate diversity
of seeds. By design, random number generators are highly sensitive to the choice of seed.

Fortunately this does not present an overwhelming problem for applications. At
runtime the most important diagnostic for this problem is the number of unique particles
and acceptance rates, which our software provides for both the parameter component of
the particle, θjn, and the seed component of the particle, ujn. The user effectively has
access to the information in Figures 7 and 8 and can discern, at early cycles, that the
selected combination of R and H will not be adequate for the evaluation of log marginal
likelihood in the problem at hand. Furthermore, the problem appears confined largely
to this specific task. As illustrated in the next section, it seems virtually nonexistent for
posterior moments.

4.3 Some specific aspects of the application

The MNP model described in Section 4.1 is often used to predict the impact on choice
probabilities of changes in alternative-specific characteristics zict. For example, in an
application to retail sales the model could be used to predict the effect on market share
of a change in the price in one or more of the alternative products. The prediction
depends on the values of all of the covariates as well as the parameters of the model.
Here we use the model to infer these effects from the posterior distribution of the change
in choice probabilities corresponding to the covariate values in the sample. Whether or
not this would be reasonable in an actual application depends on whether the covariate
values in the sample are representative of the population, as might in fact be true if the
sample were randomly selected from that population. Otherwise the application would
be complicated by the need to model the population distribution of covariates.

Covariate distributions and model parameters are symmetric across the C = 4 alter-
natives in our artificial data set, and therefore these choice probabilities are 0.25 for each
alternative, up to sampling variability in the covariates. We include the choice proba-
bility for the first alternative as our function of interest (a) in this section. A second
function of interest (b) is the choice probability for the first alternative if its price zi1t is
reduced by one unit for each individual i in each time period t, as might the the case (for
example) if a coupon were available each period. This change will increase the choice
probability from its value in the first function of interest. A third function of interest
(c) is the same choice probability if the price zi2t of the second alternative were also
reduced at the same time. This will reduce the choice probability, compared with the
second function. In the fourth function (d) the prices of the first three alternatives are
all reduced by one unit, further reducing the choice probability for the first alternative.
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In the fifth and final function (e) prices of all four alternatives are reduced by one unit.
By symmetry the population choice probabilities return to their symmetric values of
0.25, but because the new configuration of prices is less typical of the sample we expect
the posterior variance to be greater in the fifth case than in the first.

Since the functions of interest all involve probabilities—as will generally be the case
with this model—it is necessary to approximate the integral (24) associated with each
particle θjn. In this evaluation there is no need to use the final seed ujn associated with
θjn in the sequential Monte Carlo algorithm, because (1) the choice of seed is now not
part of the evolution of particles in the algorithm and (2) the distribution of seeds ujn
is not particularly attractive for this purpose, especially for small H and R. Instead
we run the random number generator continuously in evaluating functions of interest,
so that the approximation error is now independent across particles. There is also no
particular reason to use the same number of GHK iterations H as in the algorithm, but
we do that for the results reported here.

Table 8 documents the relevant aspects of posterior moment approximation in the
case R = 5, for alternative values of H. Numerical variance due to simulation error in
the approximation of choice probability is roughly proportional to 1/H. Even as H →∞
simulation error due to finite J , N and R will remain, so returns to increasing H are
diminishing. The evidence in this table shows substantial returns in moving from H = 25
to H = 50, but suggests that returns to increasing H are largely exhausted by H = 100.
As anticipated the probability of the first choice increases in moving from alternative (a)
or (e) to (d), again from (d) to (c), and again from (c) to (b). Price promotion for the
first choice alone increases market share from 25% to about 46%. Market shares for (a)
and (e) are about the same, but (again, as anticipated) the posterior standard deviation
is substantially greater for case (e) than for case (a). These findings are the same across
all variants in H and R of the algorithm explored here, as one would expect given that
they are all simulation-consistent.

Table 9 provides the same information for alternative values of R, using the value
H = 100 suggested by these results. In any application of the algorithm a sufficiently
large number of iterations R in the M phase will eventually generate particles that are
very nearly independently as well as identically distributed. Further iterations cannot
improve this situation, and in every application there will come a point, before the
particles are nearly independently distributed, where the returns to computing time in
pursuit of accuracy are greater from increasing the number of particles JN than from
increasing R. With J = 16 groups this point is not particularly well identified due to the
error in approximating the relevant simulation variance as detailed in Section 2.3. In this
example, Table 9 clearly indicates that there is little point in increasing R beyond 21,
given that relative numerical efficiency at that point is close to the value 1.00 associated
with independently distributed particles.
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Table 8: Probability of Choice 1 given some alternative conditions

GHK Compute
iterations Time Posterior Posterior

H (seconds) Mean Std Dev NSE RNE

(a) No change in price
25 4111 0.26058 0.00998 0.00025 0.02406
50 5346 0.25988 0.00997 0.00012 0.10573
100 8067 0.26000 0.00982 0.00012 0.10930
200 13,255 0.25997 0.00987 0.00011 0.12805

(b) Price of choice 1 reduced by 1 unit
25 4111 0.46117 0.01491 0.00033 0.03176
50 5346 0.46031 0.01487 0.00016 0.13220
100 8067 0.46044 0.01464 0.00017 0.11181
200 13,255 0.04606 0.01476 0.00016 0.12987

(c) Price of choices 1 and 2 reduced by 1 unit
25 4111 0.36567 0.01612 0.00042 0.02293
50 5346 0.36507 0.01603 0.00023 0.07490
100 8067 0.36495 0.01581 0.00015 0.17491
200 13,255 0.36528 0.01607 0.00016 0.15433

(d) Price of choices 1, 2 and 3 reduced by 1 unit
25 4111 0.29761 0.01168 0.00048 0.01853
50 5346 0.29704 0.01672 0.00023 0.07835
100 8067 0.29689 0.01649 0.00014 0.20679
200 13,255 0.29728 0.01671 0.00016 0.17172

(e) Price of all choices reduced by 1 unit
25 4111 0.25251 0.01699 0.00054 0.01493
50 5346 0.25211 0.01678 0.00027 0.05772
100 8067 0.25195 0.01656 0.00014 0.22741
200 13,255 0.25234 0.01680 0.00016 0.16134

J = 16, N = 4096, D1 = 0.5, D2 = 0.2, R = 5.
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Table 9: Probability of Choice 1 given some alternative conditions

Metropolis Compute
steps Time Posterior Posterior
R (seconds) Mean Std Dev NSE RNE

(a) No change in price
5 8067 0.2600 0.0982 0.00012 0.10930
8 13,363 0.25999 0.00993 0.00007 0.35273
13 20,805 0.25987 0.00991 0.00004 0.806290.
21 35,333 0.25984 0.00988 0.00005 0.72275

(b) Price of choice 1 reduced by 1 unit
5 8067 0.46044 0.01464 0.00017 0.11181
8 13,363 0.46048 0.01477 0.00009 0.39364
13 20,805 0.46038 0.01475 0.00009 0.43056
21 35,333 0.46039 0.01476 0.00005 1.37777

(c) Price of choices 1 and 2 reduced by 1 unit
5 8067 0.36495 0.01581 0.00014 0.17491
8 13,363 0.36513 0.01595 0.00009 0.53050
13 20,805 0.36501 0.01596 0.0009 0.48796
21 35,333 0.36507 0.01591 0.00006 1.11836

(d) Price of choices 1, 2 and 3 reduced by 1 unit
5 8067 0.29689 0.01649 0.00014 0.20679
8 13,363 0.29710 0.01664 0.00009 0.52617
13 20,805 0.29605 0.01662 0.00010 0.38526
21 35,333 0.29704 0.01654 0.00007 0.92350

(e) Price of all choices reduced by 1 unit
5 8067 0.25195 0.01656 0.00014 0.22741
8 13,363 0.25218 0.01673 0.00009 0.52617
13 20,805 0.25198 0.01670 0.00010 0.46086
21 35,333 0.25209 0.01662 0.00007 0.99389

J = 16, N = 4096, D1 = 0.5, D2 = 0.2, H = 100.
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5 Example: Vector autoregression model

This model was proposed by Sims (1980) for research in support of macroeconomic
policy, including prediction of macroeconomic aggregates. Many central banks include
the vector autoregression model in a suite of models that are regularly updated and use
it to produce predictions over horizons of one or two years. The model is linear but
typically has many parameters relative to the data available for inference. The model
studied in this section has 231 parameters. The data in the application consists of seven
time series, all with strong serial correlation, observed for 243 quarters.

The structure of the model is simple, that of a multivariate regression, but classical
point estimates of the parameters produce inferior predictions due to the meagre data
set and the failure to allow for parameter uncertainty. There is also substantive prior
information about the model parameters, and even approximate Bayesian inference in-
corporating this information leads to competitive forecasts, as detailed in Litterman
(1986) and Geweke and Whiteman (2006, Section 4). Contemporary approaches usually
employ Gibbs sampling (Primiceri, 2005), which is attractive given the structure of the
posterior distribution.

This section takes up the challenge of applying the algorithm developed in Section 2
to a model with a large number of parameters in a situation where it is not clear that
it would be superior to a conventional MCMC algorithm. The important finding in this
section is that the generic approach set forth in Section 2 works well, with some minor
modification. As by-products it produces accurate evaluations of marginal likelihood as
well as the evolution of the posterior distribution through the sample.

5.1 Model and data

A vector autoregression specifies the distribution of a K-dimensional time series {yt}
conditional on its history:

yt = c+
S∑
s=1

Asyt−s + εt; εt
iid∼ N (0,Σ) . (26)

The matrices As = [akis] are K × K and altogether the model has K (1 +KS) +
K (K + 1) /2 parameters. In the application here K = 7 and S = 4. The model admits
the possibility of nonstationarity, and therefore the distribution of yt (t = 1, . . . , T ) con-
ditions on S presample observations y1−S, . . . , y0. Because the same lagged values of yt
appear on the right side of all K equations in (26) the likelihood function is that of a
multivariate regression model, which is bounded above.

The prior distribution is a modification of the “Minnesota prior” proposed in Doan
et al. (1984) and Litterman (1986) with two components. The prior distribution of Σ is
Wishart,

Σ ∼ WK(D, ν), (27)
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where D is a K ×K diagonal matrix and ν is the degrees of freedom parameter. The
prior distribution of the K (1 +KS) coefficients, conditional on Σ, is comprised of the
independent components

ck ∼ N
(
0, κ2σkk

)
(k = 1, . . . , K) (28)

akks ∼ N
(
0, (λ/s)2

)
(s = 1, . . . , S; k = 1, . . . , K) (29)

akis ∼ N
(
0, (γλ/s)2 · (σkk/σii)

)
(k 6= i). (30)

The conditional variances of the coefficients in (29)–(30) specify that effects of lagged
covariates decay with time. Consistent with prior distributions employed in the litera-
ture and in practice, the intercept tightness hyperparameter in (28) is κ = 1, the overall
tightness hyperparameter in (29)–(30) is λ = 0.2, and the relative tightness hyperparam-
eter in (30) is γ = 0.7. These hyperparameters are typical of those used in applications
of this model (Doan et al., 1984; Litterman, 1986; Geweke and Whiteman, 2006, Section
4). In (27) ν = 30 and D/ν is a diagonal matrix with entries detailed below.

The algorithm operates on the vector of transformed parameters θ. The diagonal
elements of the variance matrix Σ are mapped to 1

2
log(σkk) (k = 1, . . . , K) and the

off-diagonals are mapped to atanh(σki/
√
σkkσii) (k = 2, . . . , K; i = 1, . . . , k − 1). The

coefficients require no transformation. The algorithm requires the prior density evaluated
with respect to θ. This is a straightforward calculation given the prior density with
respect to the model parameters and the Jacobian of the transformation. Since p(y1:t | θ)
is the likelihood function of a multivariate regression model, evaluation of it is SIMD-
compatible, as are the relatively minor computations involved in the transformation
from θ to Σ.

A direct implementation of the algorithm described in Section 2.4 involves a random
walk sampler over the 231-dimensional parameter vector θ in the M phase. We have
found it more efficient to subdivide the parameter vector into several components and
then subject each component, in turn, to a random walk Metropolis update, the vari-
ance of each component being computed in the usual way from the JN particles. For
the results reported here the parameter vector was divided into eight components: the
coefficients in each of the seven equations of the model, and (as the eighth component)
the parameters of the variance matrix Σ. There is nothing especially important about
this particular division into components; other choices may have performed just as well.

The composition of yt is conventional for applications to the United States economy,
following Smets and Wouters (2007): the logarithms of per capita real consumption,
investment and gross domestic product (GDP); the logarithm of per capita weekly hours
worked; the logarithms of the GDP deflator (price index) and the average real wage; and
the federal funds interest rate. The data are quarterly, extending from 1951:1 through
2010:3; t = 1 corresponds to 1951:1 and t = T = 239 corresponds to 2010:3. All series
except per capita hours worked and the federal funds rate are first differenced. Figure
9 presents the data from four of the time series. Inflation peaked in 1980:4 (t = 120),
the “dot com bubble” peaked in 2000:1 (t = 197) and burst late in that quarter, and
2008:4–2009:2 (t = 232–234) marked the depth of the global financial crisis. Volatility
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Figure 9: Data from 1951:1 to 2010:3 for four of the time series used in the VAR
application: (a) first differences of log real GDP; (b) first differences of log GDP deflator;
(c) first differences of log average real wage; and (d) federal funds rate.

of most of these series was notably lower in the period from about 1985:1 (t = 137)
to about 2007:4 (t = 228) known to macroeconomists as “the great moderation.” From
inspection of similar graphs for all elements of yt, we set the elements of the diagonal
matrix D/ν in (27) to (1, 9, 1, 1, 1, 1, 1).

5.2 Performance

All of the inference for the VAR model is based on 216 = 65, 536 particles in J =
24 = 16 groups of N = 212 = 4, 096 particles each, with D1 = 0.5 and D2 = 0.2.
Table 10 compares compute time and algorithm performance in computing log marginal
likelihood and log score for some alternative choices of R. The log score is the numerical
approximation of log p (y61:339 | y1:60); observation t = 61 corresponds to 1966:1. For
all values of R, the number of cycles is large compared to the sample size (T = 239),
indicating rapid deterioration in effective sample size as observations are introduced
in the C phase. Furthermore, ESS/(NJ) often drops below the threshold D2 = 0.2,
especially in the early part of the sample, triggering additional Metropolis steps in the
subsequent M phase. In general effective sample size is less adversely affected later in
the sample and in quarters (like most of those in the great moderation) in which the
time series exhibit less volatility. Figure 10 shows ESS/(NJ) at each observation date
for the case R = 55. That run of the algorithm involved L = 137 cycles (of which the
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Table 10: Sensitivity to number of Metropolis steps R in phase M (VAR model)

Metropolis Compute Log Numerical Numerical
steps time Cycles Marginal Standard Log Standard
R (seconds) L Likelihood Error Score Error

5 1645 127 -1556.37 1.20 -1059.79 0.78
8 2779 134 -1537.94 1.08 -1058.19 0.52
13 4546 135 -1535.21 0.61 -1058.69 0.38
21 7387 136 -1531.37 0.32 -1059.05 0.20
34 12,047 136 -1528.12 0.36 -1058.68 0.24
55 19,402 137 -1527.17 0.29 -1059.18 0.15
89 31,344 137 -1526.93 0.32 -1059.16 0.22

J = 16, N = 4096, D1 = 0.5, D2 = 0.2

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
S

S
/(

N
J
)

t

Figure 10: Effective sample size in the C phase of the algorithm in the VAR application.
J = 16, N = 4096, D1 = 0.5, D2 = 0.2, R = 55.
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Figure 11: Numerical approximations of log p (y1:t) for various values of R, relative to
R = 89. J = 16, N = 4096, D1 = 0.5, D2 = 0.2.

threshold ESS/(NJ) < D2 was hit 46 times) and a total of 12,595 Metropolis iterations.
Log score and log marginal likelihood approximations do not achieve the accuracy

here that they did in the EGARCH or MNP models. In view of the large number of
parameters involved in this model, this is not surprising. For log score the numerical
approximations reported in Table 10 are mutually consistent for all values of R, as
indicated by the associated numerical standard errors. Numerical standard errors of log
marginal likelihoods approximations are half again to twice as large as those of log scores.
The approximations themselves increase monotonically with R, and the discrepancies
for small values of R are dramatic both absolutely and in comparison with NSE.

Figures 11–13 provide more perspective on the evident unreliability in the log marginal
likelihood approximations. Figure 11 compares the approximations of log p (y1t) for each
value of R with those for R = 89. Most of the discrepancy arises early in the sample,
though for R = 5 and R = 8 there are important changes later in the sample as well.
For the choice R = 55, Figure 12 exhibits the approximations of log p (yt | y1:t−1) and
Figure 13 shows the corresponding NSE ’s. The approximations and the NSE ’s show a
strong inverse relationship. Small values of log p (yt | y1:t−1), with attendant high NSE ’s,
occur early in the sample and again during quarters when there were significant macroe-
conomic shocks: t = 120 (peak inflation), t = 197 (burst of the dot-com bubble), and
t = 232–234 (depth of the global financial crisis).

This behavior is driven by the fact that the Monte Carlo sampling distribution of the
function of interest g (θ) = p (yt | y1:t−1, θ) is positively skewed when only a few of the
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Figure 12: Log predictive likelihoods log p (yt | y1:t−1). J = 16, N = 4096, D1 = 0.5,
D2 = 0.2, R = 55.
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Figure 13: Numerical standard error of log predictive likelihoods log p (yt | y1:t−1). J =
16, N = 4096, D1 = 0.5, D2 = 0.2, R = 55.
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points in the Monte Carlo sample are drawn from that part of Θ accounting for most of
the mass of the kernel g (θ). It is the same phenomenon noted for the EGARCH model
in assessing tail probabilities of asset returns in Section 3.3. The problem is mitigated
by increasing R because this also increases effective sample size. The problem is greater
when sample size is smaller because of greater entropy in the posterior distribution, an
effect exacerbated by high-dimensional parameter spaces like the one in this model. It
also emerges for outlying observations yt, which (by definition) are most plausible condi-
tional on parameter values θ that are not characteristic of the posterior distribution and
therefore represented by fewer particles. It is perhaps worth emphasizing that in these
circumstances Monte Carlo moment approximations of probability are still unbiased,
but they are more likely to be too low than to be too high.

The prescription for applied work is straightforward. A trial run of the algorithm
with a large value of R and a small value of T , together with a spreadsheet indicating
approximations of log p (y1:t) and their numerical standard error as a function of r and t,
will clearly indicate both the extent of the problem and choices of R that will reduce the
problem to a manageable level. Inspection of these results will also indicate situations
in which increasing the number of particles JN is necessary or preferable to increasing
R. Including these procedures in generic software for Bayesian inference should be
straightforward.

5.3 Some specific aspects of the application

The sequence of log predictive likelihoods {log p (yt | y1:t−1)} embodies the record of the
model in predicting the events that actually transpired. It is central in both conven-
tional Bayesian model averaging and in model pooling to optimize log predictive score
(Geweke and Amisano, 2011). The numerical approximation of these log scores at each
observation date t is shown in Figure 12. Since the predictive distribution in this model
is unimodal, higher values of log p (yt | y1:t−1) indicate realizations yt that are closer to
the mode, whereas realizations yt in the tails of the distribution lead to low values of
log p (yt | y1:t−1). The most remarkable of these are associated with the events previously
noted with respect to Figure 9: peak inflation, and the associated response in the Federal
funds rate, in 1980:4 (t = 120); the end of the dot-com boom in 2001:1 (t = 197); and
the global financial crisis 2008:4–2009:2 (t = 232–234). In such periods it is also the case
that p (θ | y1:t−1) provides a poor source distribution for sampling p (yt | y1:t−1, θ), and
this is evident in the numerical standard errors for log p (yt | y1:t−1) provided in Figure
13. Conversely accuracy is highest in tranquil periods. For reasons discussed in the
previous section approximation error is also high when sample size is small.

The implications for the accuracy of log marginal likelihood through the sample are
not immediate from Figures 12 and 13, because approximation errors in successive evalu-
ations of log p (yt | y1:t−1) are not independent. Figure 14 shows all of these intermediate
log marginal likelihoods, together with ±10 numerical standard error bands. Consistent
with the observations and analysis of Section 5.2, most of the error accumulates early in
the sample. Much more important is controlling for the possibility that approximation
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Figure 14: Numerical approximations of log p (y1:t) + 6t (solid line) and bands of ±10
numerical standard errors (dashed lines). J = 16, N = 4096, D1 = 0.5, D2 = 0.2,
R = 55

errors for log p (yt | y1:t−1) may be systematically negative early in the sample for small
R, as discussed in the previous section.

The many individual coefficients in a vector autoregression—the elements of the
matrices As and the vector c in (26)—are not directly of interest in most applications
of the model. Instead, the dynamic behavior implied by the model is often summarized
in terms of the response of the observable time series vector yt to changes in the vector
of shocks to the system, εt. Following standard practice, we rewrite (26) in the form

yt = c+
S∑
s=1

Asyt−s + Pηt, (31)

where P is the lower triangular Cholesky factor of Σ = PP ′ and ηt
iid∼ N (0, IK). For

each j = 1, . . . , K, let the shock η
(j)
0 be the K-dimensional vector with a one in the

jth component and zeros elsewhere; let f
(j)
r (r = −S, . . . ,−1) be K-dimensional zero

vectors; let f
(j)
0 = Pη

(j)
0 ; and let f

(j)
r =

∑S
s=1 Asf

(j)
r−s (r = 1, 2, . . .). The vector f

(j)
r can

be interpreted as the change in the conditional expectation of the vector yt+r due to the

shock η
(j)
0 at time t.

This creates aK×K array Fr of impulse response functions, Fr =
[
f

(1)
r · · · f

(K)
r

]
=[

f
(i,j)
r

]
. Using the Anderson (1984, Section 7.2) construction of the Wishart prior dis-
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Figure 15: Matrix of impulse response functions. Solid line is posterior mean, dotted
lines indicate ± one posterior standard deviation. J = 16, N = 4096, D1 = 0.5,
D2 = 0.2, R = 55.

tribution of Σ in (27) it is straightforward to show that the elements of Fr have finite
prior means and variances. Since the likelihood function is bounded this condition also
guarantees the existence of these moments in the posterior distribution.

In general impulse response functions are sensitive to the ordering of variables in
yt. In the example worked here the ordering is the one given at the end of Section
5: consumption, investment, output, weekly hours worked, inflation, the real wage and
the federal funds rate. Figure 15 shows the posterior means of these functions for
r = 0, . . . , 20 together with posterior standard deviation bands. Bands for±10 numerical
standard errors are indistinguishable from the posterior means on the scale of the figure
and are not shown. We present these results here because they are characteristic of the
highly nonlinear functions of interest in applications of this model.
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Table 11: Posterior moments in the VAR model

Metropolis Compute Functions of interest
steps time 1

2 log σ22
1
2 log σ55

R (seconds) Mean NSE RNE Mean NSE RNE

5 1645 0.7436 0.0017 0.0097 -0.9855 0.0022 0.0078
8 2779 0.7444 0.0009 0.0341 -0.9879 0.0011 0.0304
13 4546 0.7438 0.0006 0.0966 -0.9892 0.0005 0.1703
21 7387 0.7441 0.0002 0.6766 -0.9883 0.0003 0.3333
34 12,047 0.7441 0.0002 0.7308 -0.9883 0.0002 0.6081
55 19,402 0.7440 0.0001 1.3608 -0.9883 0.0003 0.4763
89 31,344 0.7442 0.0002 0.9563 -0.9886 0.0001 1.7344

Mean is posterior mean; NSE is numerical standard error; RNE is relative
numerical efficiency. J = 16, N = 4096, D1 = 0.5, D2 = 0.2.

Table 12: Posterior moments in the VAR model

Metropolis Compute Functions of interest

steps time f
(2,2)
4 f

(5,5)
4

R (seconds) Mean NSE RNE Mean NSE RNE

5 1645 -0.0258 0.0026 0.0160 0.1313 0.0007 0.0208
8 2779 -0.0098 0.0020 0.0277 0.1308 0.0005 0.0364
13 4546 -0.0033 0.0012 0.0802 0.1307 0.0002 0.1663
21 7387 -0.0036 0.0006 0.3652 0.1303 0.0001 0.5363
34 12,047 -0.0027 0.0006 0.3372 0.1304 0.0001 0.4196
55 19,402 -0.0016 0.0004 0.8635 0.1303 0.0001 1.4848
89 31,344 -0.0024 0.0004 0.6257 0.1305 0.0001 1.1166

Mean is posterior mean; NSE is numerical standard error; RNE is relative
numerical efficiency. J = 16, N = 4096, D1 = 0.5, D2 = 0.2.
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Tables 11 and 12 provide more analytical detail on the success of the algorithm in
providing reliable numerical approximations to posterior moments of this kind. The
results shown pertain to four moments. The first two (Table 11) indicate the scale
of shocks

(
1
2

log σii
)

in the original parameterization (26) of the model. The last two
(Table 12) are the values of impulse response functions of variables to their own shocks
at a one-year (r = 4) horizon. These functions were chosen from among the many that
we examined and indicate the range of numerical accuracy and reliability of numerical
standard errors for posterior moments typically of interest.

In interpreting these tables it is important to bear in mind, as discussed in Sections
2.3 and 3.2, that reported NSE is a rough approximation to the true standard error of
approximation due to the fact that it is based on comparisons across J = 16 groups of
particles. Nevertheless, in the case of the moments 1

2
log σii there are no indications of

any problems. Discrepancies in the approximation of posterior mean, across different
choices of R, are all within the range that might be anticipated given NSE. Relative
numerical efficiency is consistent with decreasing dependence among the particles as R
increases, and with independence for R = 89. Over the range of R displayed in Table 11
the return in accuracy to the additional compute time for increasing R is greater than
it would have been pursuing the alternative of increasing the number of particles.

In the case of the impulse response functions, Table 12, there is evidence of some
unreliability in numerical standard errors for R = 5 and R = 8. However the problems
are not of the order of magnitude noted in Section 5.2 for log marginal likelihood. As
emphasized in Section 5.2, those evaluations reflect the reliability of numerical standard
error in all samples, back to t = 1, whereas the results here pertain entirely to the full
sample T = 239. Decreasing dependence among the particles with increasing R is again
evident, as is the conclusion that increases in R over the range shown are preferable to
the alternative of increasing the number of particles.

6 Conclusion

This paper constructs an algorithm for Bayesian inference that is generic, requiring no
special adaptation for a wide class of models and applications; is robust to irregular
posterior distributions; is much faster than existing approaches to posterior simulation;
is very accurate, because of the number of simulations feasible with massively paral-
lel desktop computing; provides reliable assessment of the degree of accuracy attained;
and provides marginal likelihoods and model specification diagnostics as by-products.
It does this, in the main, by combining “off the shelf” technologies of several kinds:
hardware devices that make possible massively parallel desktop computing at reason-
able cost; software that makes it convenient to write computationally efficient code for
these devices; sequential Monte Carlo algorithms that combine particle filtering and
Markov chain Monte Carlo; and the comparatively simple asymptotics of independent
chains for assessing the accuracy of approximation. There are many alternative ways
these technologies could have been combined, and the one presented here is the out-
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come of much experimentation with the theory and wide-ranging applications. These
experiments demonstrated to us the importance of adaptive sequential Monte Carlo in
any algorithm that would be both generic and practical; others have come to the same
conclusion, e.g. Chopin et al. (2011). Limit theory for single chains of adaptive se-
quential Monte Carlo is difficult, but the ability to execute sequential Monte Carlo on
large and independent groups of particles provides an alternative approach that imme-
diately extends the theory to much more flexible adaptations. That is the sole strictly
methodological contribution of this paper.

We believe that this approach, and improvements on this approach, have far-reaching
implications for applied statistics. With the algorithm developed in this paper, the
fundamental integration problems of Bayesian statistics are easier to solve than are
the fundamental optimization problems of non-Bayesian statistics. For a wide class of
models, bridging the gap between formulating a new model and having reliable code
that meets the practical requirements of the practicing statistician becomes a routine
matter much less demanding of long development time and specialized talent. The main
step is to produce code that simulates from the prior distribution, evaluates the prior
density, and evaluates the data density conditional on parameter values. The density
function evaluation code must be written for device cores; existing and widely available
software makes this a task that can be delegated to many graduate students and scientific
programmers. We suggest augmenting this software with code that simulates from the
distribution of observable data conditional on parameters, typically a simple task. This
allows the investigator to study prior predictive distributions that in turn can provide
comprehensive understanding of the entire model, including the prior distribution (Box,
1980; Lancaster, 2004, Section 2.4.2; Geweke, 2005, Section 8.3.1).

For the applied Bayesian statistician the essential barriers to entry for this technology
are modest: one or more graphics processing units, at several hundred dollars per unit;
and the aforementioned code, which can be written efficiently using the CUDA extension
of the C programming language as well as a growing number of higher-level scientific
programming languages. For some, the most significant barrier will be the requirement
of a proper prior distribution that is central to the algorithm. Sequential Monte Carlo
algorithms replicate Bayesian learning beginning from a proper prior distribution. This
leads to robustness for the same reason that Bayesian learning has been successful in
so many applications, even when it has had to proceed in disguise, as documented in
McGrayne (2011). The ease of using prior predictive distributions in this setting, and
the large practical returns to massively parallel sequential Monte Carlo for Bayesian
inference, should ease this transition for those who have not yet made it.

The algorithm provided in this paper is more than a proof of concept: the examples
in Sections 3, 4 and 5 show that it can be applied directly to models at the level of
sophistication found in state-of-the-art substantive research. At the same time further
study and experimentation in various dimensions can undoubtedly improve it. One
such dimension is the degree of flexibility in the algorithm. Examples here include
adapting the number of Metropolis steps in the M phase to performance, and using
more general proposal distributions in both the C and M phases, both on our research
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agenda. There are very significant categories, such as hierarchical models and state space
models, to which the algorithm presented in this paper can be modified generically and
to substantial practical advantage, and these modifications are also on the research
agenda. An important strategic issue in this research is identifying particular categories
of models and generic approaches that provide orders of magnitude improvement that
will have practical benefits for many applications. We hope that the results presented
here will encourage these lines of research.
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