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1 Introduction

Few know who Inspector Sands is, and still fewer have met him. This is for good reason.

Theater companies in the United Kingdom are believed to use the code name ‘Inspector

Sands’ to alert ushers to pending emergencies, such as bomb threats and fires, without

inciting panic among their patrons.1 In emergency situations, managers of the theater page

Inspector Sands to the location of the emergency or ask that he escort people from the

premises in a safe and orderly manner.2 By hiding emergencies from the public eye, ushers

can complete their tasks without, at the same time, having to deal with hysterical crowds.3

While a policy that hides bomb threats has advantages,4 there are circumstances where

a public announcement of a threat is a more sensible policy. The number of patrons and

exits in the theater will determine the policy choice that gets the most patrons out safely

before a bomb explodes. When there are as many exits as patrons, the better policy is a

public announcement of the threat. Everyone will exit the theater safely. When there is one

exit and many patrons, the better policy is to page ‘Inspector Sands’. The stampede that

a public announcement causes would make it more difficult for patrons to exit the building

and, moreover, be a danger in and of itself. Because most emergency situations lie between

the two extremes, the challenge for theater companies is to determine the number of patrons

per exit that makes one policy better than the other.

The dilemma is one that policymakers often face.5 With privileged access to information

1Apparently, public transit authorities in the United Kingdom still use the code phrase to alert authorities
and their staff to presence of threats to public safety. Rumors of its use can be found in the popular press and
in second hand accounts. For more details, see http://www.telegraph.co.uk/comment/personal-view/

3599228/When-a-voice-calls-Inspector-Sands-terror-is-never-far-away.html.
2For example, a manager might announce “Inspector Sands please report to the control room”.
3People can die when crowds are made aware of life-threatening situations. For example, 168 people died

near a Hindu Temple in India because visitors became hysterical after finding out about a bomb threat in
the area (http://www.foxnews.com/story/0,2933,431285,00.html).

4As reasonable as the policy seems, it is not without controversy. A recent decision by authorities
in Bangkok to withhold information about a terrorist threat for fear of inciting panic caused consterna-
tion among some members of the media. See http://www.bangkokpost.com/opinion/opinion/275924/

keeping-quiet-about-a-threat-is-truly-scary for more details.
5The dilemma often arises in settings that are commonly studied by economists. For instance, [Stiglitz,
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about impending events, they must decide whether and how they should share the informa-

tion with the public. On one hand, sharing gives people a better sense of what they can

do to avoid harm. On the other, what they end up doing can endanger the lives of others.

When many lives are in endangered, the policymaker should either hide the information or

disseminate in some other way.6

In this paper, we study empirically the effects of providing the public with information

that reduces its uncertainty about impending events. Specifically, we draw on a natural

experiment that was conducted in a major urban center to study the effect of pedestrian

countdown signals - timers that warn road users about when the traffic light will change

from green to yellow - on the behavior and safety of road users.7 We exploit the setting to

further consider whether and how policymakers should share information about impending

events with the public.

The setting provides a natural laboratory for studying these issues for three main rea-

sons. The first is that road users face the prospect of light changes on a regular basis. In

other settings, drawing empirical conclusions about the response to information provision is

difficult because events such as bomb threats and fires are so rare. The second is that there

is natural variation in what road users know about light changes. Before countdown signals

2002] makes an analogy between announcing a fire in a crowded theater and bank runs. He identifies an
IMF announcement that they were closing several banks, without announcing which banks and with limited
insurance for depositors, as a cause of the run on banks that led to the 1997-1998 Indonesian banking crisis.
While the IMF announcement gave people a chance the withdraw their funds before the closures, it also
increased the chance that everyone would try to do so at the same time. Because banks only keep some of
their deposits on reserve, some people were left standing in line when the banks ran out of money.

6The dilemma is becoming more common as time passes because governments are increasingly adopting
systems that help them alert the public to critical situations. This is likely to be the case in the United
States, where in 2006 the President issued Executive Order 13047: “It is the policy of the United States to
have an effective, reliable, integrated, flexible, and comprehensive system to alert and warn the American
people in situations of war, terrorist attack, natural disaster, or other hazards to public safety and well-being
(public alert and warning system), taking appropriate account of the functions, capabilities, and needs of the
private sector and of all levels of government in our Federal system, and to ensure that under all conditions
the President can communicate with the American people.”

7Although pedestrian countdown signals are intended for pedestrian use, they are visible to all who transit
an intersection.

3



were introduced they were left to guess when the light would change. After the introduction,

they knew exactly when it would change. As a result, countdown signals provide road users

with a better sense of what needs to be done to avoid getting stuck waiting at an intersec-

tion for the next green light. The third is that the policy choice that saves the most lives is

unclear. In our setting, information provision can cause more harm than good. The good is

that road users can make more informed decisions. The bad is that the decisions they make

can come at the expense of others. If road users speed up when they know the light is about

to change, for example, it increases the chances that a collision occurs as well as the chances

of more severe collisions occurring. When many road users use the information in the same

way, countdown signals can reduce welfare overall.8

Our venue for assessing the impact of pedestrian countdown signals is the city of Toronto.

The venue has three features that are particularly useful for the present study. The first is

that decisions about where and when to install countdowns were based on cost considerations

rather than the collision history of each intersection. As a result, the installations provide

exogenous variation for identifying the effects on the behavior and safety of road users.

The second is that the installations were gradual and eventually covered every eligible

intersection in the entire city. We control for citywide trends in collisions because, at most

points in time, we observe some intersections with countdowns and some without. That

countdown signals eventually covered the entire city lessens concerns that intersections with

countdowns are, in some inadvertent and unseen way, different from ones without.

The third is that the decision to adopt pedestrian countdown signals was unrelated to

the collision history of the city as a whole. The decision to adopt the signals was incidental

to a citywide initiative to retrofit streetlights with more energy-efficient lamps. Because

8In addition to providing a natural testing ground for economic theory, what happens in this setting
affects the well-being of millions of people each day. For example, the U.S. Department of Transportation
estimates that 2.24 million Americans were injured in motor vehicle crashes in 2010 alone. They further
estimate that these crashes resulted in nearly 33,000 fatalities and that, among these, nearly 6,700 fatalities
happened at intersections. For more details, see http://www-nrd.nhtsa.dot.gov/Pubs/811552.pdf.
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there was nothing specific about the collision history of Toronto that led to the adoption,

our conclusions should apply to other settings where policymakers are deciding whether they

should share information with the public.

We complement the rich variation generated by the city’s natural experiment with de-

tailed retrospective monthly collisions data collected over a 5-year span. The data describes

every collision that occurred in the city, including injuries and fatalities to the involved par-

ties, the precise location of the collision, and which party was at fault and for what reason.

We exploit the wealth of detail to identify specific mechanisms that drive the increase in

collisions. We investigate whether whether countdowns provide road users with information

that they use to act more aggressively and whether increased acts of aggression harm others

on the road.

Our empirical analysis reveals that countdown signals resulted in about a 5 percent

increase in collisions per month at the average intersection. The effect corresponds to ap-

proximately 21.5 more collisions citywide per month. The data also reveals starkly different

effects for collisions involving pedestrians and those involving automobiles only. Specifically,

although they reduce the number of pedestrians struck by automobiles, countdowns increase

the number of collisions between automobiles. Additionally, we find that collisions rose

largely because of an increase in tailgating among drivers, a finding that implies drivers who

know exactly when traffic lights will change behave more aggressively.

To assess the welfare implications of countdown signals, we consider the effects on various

types of injuries, various types of accidents, and on the number of pedestrians and cars who

transit through intersections. We find that although countdowns reduced the number of

minor injuries among pedestrians, they increased the number of rear ends among cars. We

show that the number of pedestrians who transit intersections with countdowns is the same

as or more than the number who transit ones without. We also show that the number of

cars who transit intersections with countdowns is the same as or less than the number who
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transit ones without. Altogether, the findings imply that fewer pedestrians were injured or

struck by automobiles for every pedestrian on the road and that there were more collisions

and rear ends for every car on the road. We conclude that welfare gains can be attained by

disseminating information to pedestrians and hiding it from drivers.

The present study contributes to the empirical literature on the role of information in

markets. Most existing studies analyze the effect of policies that increase the information that

participants on one side of a market have about participants on the other side (Jin and Leslie

[2003], Dranove et al. [2003], and Ippolito and Mathios [1990]).9 We instead focus on the

impact of a policy which increases the information that participants on all sides have about

an event that is in their common interest.10 In these regards, our finding that countdowns

increase collisions between drivers complements the finding of [Dranove et al., 2003], who

show that on average cardiac surgery report cards worsen outcomes for at-risk patients.11

Our finding that information benefited pedestrians at the expense of drivers speaks to

questions about the role of transparency in public policy. Specifically, we provide an empirical

contribution to the philosophical debate over whether governments with privileged access to

information should share it with the public.1213 While the debate focuses on whether they

should share or hide information, our findings point to the importance of considering who

they share information with.14

9For papers that study the effect of these policies on consumer choice, see [Dellavigna and Pollet, 2009],
[Bundorf et al., 2009], [Dafny and Dranove, 2008], [Dranove and Sfekas, 2008], [Hastings and Weinstein,
2008], [Jin and Sorensen, 2006], [Wedig and Tai-Seale, 2002], and [Beaulieu, 2002]. For papers that study
their effect on the behavior of organizations or of their representatives, see [Jacob, 2005], [Jacob and Levitt,
2003]. [Dranove and Jin, 2010] provides an extensive review of these and other papers.

10In this way, our paper also relates to a large finance literature on the effects of macroeconomic
news on the behavior of investors. See [Tetlock, 2010], [Pasquariello and Vega, 2007], [Green, 2004], and
[Fleming and Remolona, 1999] for examples.

11The idea that public information can worsen outcomes is known to theorists. [Morris and Shin, 2002],
for example, shows that public information can have adverse welfare effects when agents also have private
information.

12An early summary of the broad debate can be found in [Stiglitz, 2002].
13There is a spirited debate about the role of transparency for monetary policy. These papers argue about

whether or not central banks should publicly disclose their goals and intentions. For a summary of arguments
from both sides, see [Morris and Shin, 2005].

14In general, political economy considerations make the role of transparency in public policy a difficult
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2 A Textbook Example

To better understand why intersections might be more dangerous with countdowns, we con-

sider a very simple textbook example of driver interaction,15 where drivers can choose to act

aggressively or cautiously. We modify the textbook example by introducing uncertainty, on

the part of all drivers, about the time until a light change, an impending event that matters

to all drivers. We show that under rather innocuous assumptions equilibrium collision prob-

abilities are larger when drivers know the time that remains. The intuition for why more

collisions are expected is as follows. A driver who is informed that the time remaining is

greater than what he expected becomes more aggressive in his approach, while one who is

informed that it is less becomes more cautious. However, the increased aggression of the

driver who learns he has more time is greater than the increased caution of the driver who

learns he has less. Consequently, drivers become more aggressive, on average, when they are

informed about the time until light changes.

2.1 The Setup

Suppose that two drivers approach an intersection from different directions.16 As they ap-

proach, each driver can choose either to proceed with caution (C) or to act aggressively (A).

A driver who acts cautiously either slows down or stops, yielding the right-of-way to the

other driver. A driver who acts aggressively either continues at the same speed or speeds

up without conceding the right-of-way. We assume each driver prefers the right-of-way to

waiting for the other to pass. However, if both drivers act aggressively costly collisions or

issue to study. The difficulty lies in the fact that governments often provide the public with information that
has a direct bearing on whether politicians get re-elected. The public uses the information to evaluate the
performance of incumbent politicians. As a result, incumbents have strong incentives to manipulate what
information gets provided to the public. In this sense, the advantage of our setting is that information about
light changes has no direct bearing on whether politicians get re-elected.

15See Approaching Cars on page 130 of [Osborne, 2004].
16To be precise, we suppose that pairs of randomly matched drivers are drawn from a single population.
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fines may occur.17

Let v > 0 be the payoff from obtaining the right-of-way without a fine, c > 0 the cost of

collision, and b > 0 be the cost of a fine to a driver caught crossing the intersection when the

light is red. We assume that c > b. Let p be the probability that an collision occurs when

both drivers act aggressively. Let PT (ω) be the probability that a driver is caught and fined

when he acts aggressively. ω is a random variable that represents the number of seconds

until a light change (from green to yellow). Its probability distribution is given by F (ω).

We assume that PT (ω) decreases as ω increases. We do so because the probability of a fine

when acting aggressively, PT (ω), naturally depends on the amount of time left before the

light changes from green to yellow. For example, driving through a red light is more likely

when the driver acts aggressively with little time remaining than when he acts aggressively

with lots of time remaining. In this way, the later the driver crosses (the smaller is ω) the

greater the chances of punishment.

ω is known to drivers when countdowns are installed and unknown to drivers when they

are not.18 When ω is known, drivers have better information about the chances of having

to wait for the next light change or of having to concede the right-of-way to another road

user. At times, this information demands that drivers act more aggressively in order to avoid

longer wait times.

The normal form for the simple game we consider is presented in Figure I, where one

driver chooses a row and the other a column. Payoffs are symmetric. The matrix lists the

payoffs for the row player. π(ω) is the payoff to acting aggressively when the other driver

17The setup describes several common interactions that occur at intersections. One such interaction occurs
when a driver who is traveling straight through an intersection meets another who is turning left from the
opposite direction. Another occurs when a driver is again traveling straight through but meets a driver who
is turning right from the adjacent street. In both cases, there is a common space both drivers will have pass
through to reach their destinations. A collision occurs if at least one driver fails to yield the right-of-way
and both are in the common space at the same time.

18In principle, the probability of an collision occurring p could depend on ω as well. However, it is unclear
why, conditional on both players being aggressive, collisions are more or less likely when little time remains
on the countdown.
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Cautious Aggressive
Cautious 0 0

Aggressive π(ω) p[−c] + (1− p)π(ω)

Figure I: The game when countdowns are active.

acts cautiously, where

π(ω) = PT (ω)[−b] + (1− PT (ω)))v. (1)

We assume that π(ω) ≥ 0. If π(ω) < 0 being cautions is the dominant strategy for both

players and we never observe collisions in equilibrium.

2.2 Informing the Public Increases Collision Probabilities

Under these assumptions, the game has three Nash equilibria: two asymmetric pure strategy

Nash equilibria where one driver is cautious and the other aggressive; a symmetric mixed

strategy Nash equilibrium (MSNE) where each player acts cautiously with probability

q∗(ω) =
pc− (1− p)π(ω)

p(c+ π(ω))
. (2)

We focus our analysis on the MSNE for three reasons. The first is that pure strategy

equilibria are at odds with what we observe in the data, as they suggest that collisions never

happen. On the other hand, when drivers use mixed strategies, the equilibrium probability

that an collision occurs is given by:

P ∗(a|ω) = (1− q∗(ω))2p (3)

=
1

p

[ π(ω)

c+ π(ω)

]2

. (4)

The second reason we focus on MSNE is that the MSNE is the only symmetric Nash equilib-
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rium of the game. The pure strategy equilibria each require one driver to defer to the other

by social convention. However, we are unaware of any social convention that would lead one

of these equilibria to be the norm. Third, we assume that drivers are drawn and matched

randomly from the same population, so that the MSNE is the ‘steady state’ of interactions

at intersections. Some fraction of the population of drivers act cautiously while the other

fraction acts aggressively (See pp.37-39 of Osborne and Rubinstein [1994]).19

Figure II describes the game where drivers are unable to observe countdown signals and

are therefore uninformed about the time until a light change. Eπ(ω) is the expected payoff

Cautious Aggressive
Cautious 0 0

Aggressive Eπ(ω) p[−c] + (1− p)Eπ(ω)

Figure II: The game when countdowns are inactive.

to acting aggressively, where the expectation is taken with respect to ω.20 Similar to the

case where drivers are informed about ω, the unique MSNE probability of being cautious is

given by:

q∗(F ) =
pc− (1− p)Eπ(ω)

p(c+ Eπ(ω))
. (5)

We can use the unique MSNE to solve for the collision probability when drivers are unin-

formed

P ∗(a|F ) = (1− q∗(F ))2p (6)

=
1

p

[ Eπ(ω)

c+ Eπ(ω)

]2

. (7)

To evaluate the role of information for driver-driver interactions, we can compare the

19In the language of evolutionary game theory, the MSNE is the unique evolutionarily stable strategy of
our game.

20We assume that driver beliefs about the time until a light change are consistent with the true distribution
F (ω).
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expected collision probability when drivers are informed about the next light change to the

expected probability when they are not. This comparison reveals that, when drivers are

informed, collisions are more likely if and only if:

E
[ 1

1− −c

π(ω)

]2

>
[ 1

1− −c

Eπ(ω)

]2

. (8)

In the theoretical appendix we show the inequality is always satisfied, so that more collisions

can be expected when pedestrian countdown signals are active. Mathematically speaking,

the result is driven by the fact that the MSNE probability a driver is aggressive is convex

and increasing in ω.

To fix intuition about the result, we suppose that 1 second remains before a light change.

We compare changes in the MSNE probability that a driver is aggressive when the time

remaining decreases to 0 seconds to changes when it increases to 2. The decrease in this

MSNE probability that comes with decreasing the timer to 0 is smaller in magnitude than

its increase when the timer increases to 2.21 As a result, by averaging over the possible

values of the countdown, the probability of aggressive behavior is larger in the presence of a

countdown than in its absence.

3 Data and Context

3.1 How Countdown Signals Inform Road Users

Figure III displays walk signals in the city of Toronto before and after pedestrian countdown

signals were introduced. The flashing hand indicates to all road users that a yellow light

21Alternatively, the MSNE probability that a driver is aggressive can be interpreted in steady state terms.
In this case, we compare changes in the share of drivers who are aggressive when the time remaining decreases
to 0 to that when it increases to 2. The reduction in the share that keeps a driver indifferent between being
aggressive and being cautious when the timer decreases to 0 is smaller in magnitude than the increase that
keeps them indifferent when the timer increases to 2.
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for adjacent vehicular traffic is imminent. The timer begins when the orange hand starts

to flash. It counts the time between the solid ‘Walk’ signal, as represented by a walking

stick figure, and the solid ‘Don’t Walk’ signal, as represented by a solid orange hand. The

time counted is independent of the time of day, but it is longer at wider crosswalks.2223

Importantly, the time counted at each crosswalk was unchanged when the countdowns were

introduced.

3.2 The Natural Experiment

The adoption of countdown signals was incidental to a citywide initiative that retrofits

pedestrian and vehicular displays with more energy-efficient LED lamps.2425 The city’s view

was that installing countdowns alongside LED lamp installations was more cost effective

than retrofitting the LED lamps with countdowns at a later date. As such, the original

motivation for the adoption of countdowns was unrelated to the city’s history of traffic

collisions, fatalities, and injuries.26

Because adopting countdowns was secondary to the city’s goal to reduce the energy costs

of traffic signals as well as CO2 emissions, the timing and locations of installations was

unrelated to the collision history at each intersection. The installation dates and locations

for the LED lamps were based on cost considerations and, moreover, were largely chosen

before countdowns were included in the city’s initiative. The first countdown was installed

22In Toronto, the duration of vehicular signals (green and red lights) is based on the time of day. These
durations are based on historical traffic volumes in each direction at different times of the day.

23At intersections with side streets, vehicles and pedestrians can affect countdown signals along side streets.
These intersections have sensors that detect the presence of vehicular traffic along side streets. Pedestrians
along side streets can use push buttons to initiate the timers.

24The initiative was actually part of broader program to retrofit all city streetlights with more energy-
efficient lamps.

25Originally, the streetlights were fitted with incandescent lamps. The program retrofits streetlights with
Light Emitting Diode (LED) lamps. LED lamps use fewer watts to produce the same luminescence as
incandescent lamps.

26These claims are supported by official city documents. These documents can be found at the city’s
website: http://www.toronto.ca.
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in November of 2006. In the period that we study the last countdown was installed in

December of 2008.

Figure IV graphically depicts the evolution of countdown installations over time. The

figure supports the idea that installation dates and locations were motivated by cost consid-

erations, as initial installations were geographically concentrated in a few central locations

and diffused outwards thereafter. It supports the idea because geographically concentrating

the installations is likely to reduce their costs.

3.3 A Description of the Data

Our sample is an extract from the internal collisions database maintained by the City’s

Transportation Services Division. The database contains information on all collisions that

occurred between January, 2004 and December, 2008.27 We restrict the sample to collisions

that occurred at an intersection with traffic signals. The collisions data includes information

on the parties involved, for example whether they were a cyclist, driver, or pedestrian and

whether they incurred and injury or fatality,28 which party was at fault and why, as well as

the precise time and location of the collision. Our analysis rests on monthly level observa-

tions. Overall, we observe 1794 intersections during a five-year period for a total of 107,640

observations.29

Table I provides summary counts for the main variables used in our empirical analysis,

which illustrate clear downward trends in several variables of interest. The total number of

collisions decreased from 5058 in 2004 to 4194 in 2008, seemingly driven by a sharp decline

in driver-driver collisions. While fatalities and major injuries are relatively stable, minor

27Collision information is retrospectively based on police reports.
28The data classifies fatalities as those persons who die within 366 days of a collision.
29We excluded intersections without traffic signals at the start of our sample period because the decision

to install signals is endogenous to collisions. We also excluded ones that never receive a countdown. These
intersections are typically located near emergency response operations, such as firehalls, where traffic signals
are fitted with preemptive systems that facilitate quicker response times. The intersections did not receive
countdowns because preemptive systems confuse the countdown’s timing.
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injuries decline from 267 in 2004 to 212 in 2008. Later we provide evidence which suggests

the trends in collisions and injuries simply reflect a downward trend in traffic volumes.

4 Empirical Specification and Identification

The baseline specification that we consider is given by:

yit = αi + βI(t ≥ τi) +XitΓ+ γt + ǫit. (9)

yit is the number of collisions at intersection i at time t. The index t counts months, starting

in January 2004 and ending in December 2008. αi controls for time-invariant differences

in the propensity for collisions across intersections, such as those that are generated by the

number of lanes or the posted speed limits. τi is the installation date for intersection i.

I(t ≥ τi) is a binary variable that indicates whether the current date equals or exceeds the

installation date, so that intersections with I(t ≥ τi) = 1 are in the treatment group. γt

is a time-specific intercept. It allows for intersection-invariant differences across time in the

propensity for collision, such as those that are generated by bad weather. ǫit is a random

variable that measures idiosyncratic changes in collisions.

The random variables αi and γt control for possible selection effects. For example, the city

may have (inadvertently) installed the first countdowns at locations with collision propensi-

ties that fail to represent the typical intersection. In this case, intersection specific factors

explain both observed installation decisions as well as observed collisions - excluding αi

would result in a biased estimate of the treatment effect. On the other hand, γt controls for

time-based selection effects, in addition to trends in collisions. Specifically, it controls for

the probability that an intersection receives a countdown, a probability that is increasing
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with time. Excluding γt would likely result in a (downward) bias in the estimated treatment

effect.

Finally, although the pattern of installation indicates otherwise, Xit includes controls

that allow for the possibility that intersections with a recent history of collisions are treated

earlier than others. In particular, Xit includes lagged collisions. We show in the next section

the evidence supports the city’s claim that installations were unrelated to collision histories

at intersections.

5 Results

5.1 Unintended Consequences

We study the unintended consequences of pedestrian countdown signals. We present es-

timates that suggest there were 5 percent more collisions per month (relative to the pre-

treatment average) when road users were informed about the time until light changes. We

also show that while, as intended, fewer pedestrians were struck by automobiles, there were

more collisions between drivers.

We provide evidence in support of the model’s main prediction, that collisions happen

more frequently when individuals have better information about the timing of light changes.

Table II presents estimates of the effect of countdown signals on collisions. The main finding

is that countdown signals result in more collisions, once intersection- and time-specific factors

are accounted for. The estimate in column (3) shows that there were 0.012 more collisions

per month at the average intersection, where the estimate is statistically significant at the 5

percent level against a two-sided alternative. The increase in collisions represents a more than

5 percent increase over the mean number of collisions, which was 0.229 before countdown

signals were introduced.

The sign change when we include time-specific controls (columns (2) and (3)) are consis-
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tent with a pre-existing downward trend in collisions30 as well as with an upward trend in

the probability that an intersection is assigned a countdown. Table II also shows that lagged

collisions matter little for the estimated effect of countdowns.31

To further understand why there were more collisions at intersections with a countdown,

we consider the countdown’s effect on three classes of collisions: ones involving only drivers;

ones involving drivers and pedestrians; ones involving drivers and cyclists. The estimates

can be found in Table III. The evidence in Column (1) suggests countdowns resulted in more

collisions between drivers. We estimate 0.012 (p < 0.05) more driver-driver collisions per

month at the average intersection after countdowns were introduced.

Table III also illustrates that countdowns resulted in fewer collisions between drivers and

pedestrians. The estimate in column (2) suggests that there were 0.0032 (p < 0.1) fewer

driver-pedestrian collisions per month at the average intersection after countdowns were

introduced. On the other hand, the estimate in column (3) suggests that countdowns had

a positive but statistically negligible (at the 10 percent level) impact on collisions between

drivers and cyclists.

Three explanations might justify the increase in collisions between drivers. The first,

which is closely related to our simple textbook example, is that being informed about the

precise time until a light change allows drivers to become selectively aggressive in their

approach to an intersection. Specifically, in the effort to avoid stop lights, drivers might

accelerate when they know just enough time remains than when they don’t. The second

explanation is that countdowns distract drivers. They divert the driver’s attention away

from the road and, in turn, increase the chances that a collision ensues. The third is that

countdowns do not directly cause collisions, rather they indirectly cause them through third-

30This result illustrates the benefits of a relatively long history of data from before the first installation.
These data allow us to more accurately capture time trends that existed before countdowns were introduced.

31In Appendix Table A.I, we show that the estimates are robust to the inclusion of more lags in our
empirical specifications.
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party responses to the countdown. Under this explanation, because countdowns induce

pedestrians or cyclists to act more aggressively they cause more collisions among drivers. In

their efforts to avoid these third parties, drivers collide with each other.

5.2 More Information Means More Aggression

We provide evidence in support of the model’s prediction that information about light

changes induced drivers to act more aggressively. Table IV provides estimates of the ef-

fect on collisions where at least one driver was exceeding the speed limit or tailgating.32 33

While the estimate of Column (1) suggests a small and statistically insignificant impact on

speeding, the estimate of Column (2) suggests countdowns resulted in 0.0074 (p < 0.05)

more collisions where at least one driver was tailgating another. As a result, the evidence

supports a story where drivers act more aggressively when they are informed about the time

until light changes.

5.2.1 It’s more than just Inattention

We consider the possibility that countdown signals distracted drivers. Specifically, we con-

sider whether collisions increase because countdown signals divert driver attention away from

the road. To do so, we compare and contrast the lasting effects of collisions with the more

immediate ones. Our hypothesis is that, if countdown signals distracted drivers, then their

positive effect on collisions should be more pronounced in the periods immediately after their

installation. Initially, because drivers are unsure as to how to best use the countdown signals,

it further distracts their attention from the road, and collision becomes more likely. As time

passes, countdowns impose less of a burden on driver attention because drivers adjust to the

32A driver is tailgating if they were reported as following another driver too closely.
33Tailgating is widely considered the model of aggressive behavior, and much effort, both by way of govern-

ment policy and non-government initiatives, has gone into reducing tailgating among drivers. Examples of
these efforts can be found at http://www.stopandgo.org/research/aggressive/tasca.pdf and http://

www.dot.state.mn.us/trafficeng/tailgating/Tailgating-finalreport.pdf.
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new environment they face. Consequently, the chance of a collision should decrease.

To evaluate these alternative models, we use the following specification to estimate short-

and long-run treatment effects:

yit = αi +
K
∑

k=0

βkI(t = τi + k) + βK+1I(t > τi +K) +XitΓ+ γt + ǫit. (10)

The coefficients {βk}
K+1
k=0 describe the collision trajectory that follows a countdown installa-

tion. The firstK terms describe the transition - they capture the average effect of countdowns

in a month following installation relative to the effect before the first installation. The last

term captures the ‘permanent’ effects. This specification is less restrictive than the base

specification, as I(t ≥ τi) =
∑

K

k=0 I(t = τi + k) + I(t > τi + K). We also include leads of

I(t = τi) in Xit to evaluate the role of collision histories in treatment effect estimates34 - the

leads describe the collision trajectory before a countdown installation.35

In the case where collisions increase because drivers are more distracted from the road,

we anticipate larger βk in the periods k immediately following the initial installation. We

also anticipate that βk diminishes as we approach the long run, as defined by K, and that the

permanent effect, βK+1, is small. Conversely, where more collisions arise because drivers be-

come more aggressive, we anticipate a large permanent effect and, when there are differences

between the short- and long-run, a small temporary one.

In Table V we present estimates of equation 10 for different values of K. Two things are

apparent from these estimates. The first is that, as we lengthen the short run, the count-

34Formally, the leads are I(t = τi − 1),I(t = τi − 2),...,I(t = τi − s) for some s ≥ 1.
35While this approach ostensibly resembles an event study, conceptually the two approaches differ. An

event study effectively evaluates the effects of a one time event that is temporary, but that may have lasting
effects. Examples of such events include worker displacement [Jacobson et al., 1993], which may adversely
affect future earnings, or EPA plant inspections [Hanna and Oliva, 2010], which may have lasting effects on
plant emissions. We evaluate the effects of a one time event that is permanent, where these effects may vary
from period to period. Specification 10 is appropriate for both cases.
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down’s estimated long run effect grows in magnitude. The estimated long run effect ranges

from 0.029 more collisions on average in Column (1) to 0.045 more in Column (5). Each of

these are statistically significant at the 1 percent level. The second is that the estimated

short run effects of countdowns, while varying in magnitude and statistical significance, ap-

pear somewhat smaller than those estimated for the long run. This is particularly true for

the periods immediately following the initial installations.

We plot the estimates from Column 5 of Table V in Figure V. The solid line plots the

estimates for leads to the left of the red line and the estimates for lags to the right. The

dashed lines plot the 90 percent confidence interval. Figure V illustrates that in all but

one case we fail to reject the hypothesis that collisions followed their usual patterns in the

months leading up to a countdown installation (because zero enters the confidence interval

only once). In contrast, it supports the hypothesis that collisions departed from their usual

pattern when road users were informed about the time until light changes.

The evidence fails to support the hypothesis that countdown signals distracted drivers.

The results are unsurprising, mostly because a situation where countdowns cause inattention

seems highly unlikely. This is because countdown signals and traffic lights are in the same line

of sight for approaching drivers and because, consequently, drivers can use the information

countdowns provide without having to look away from the traffic light. On the other hand,

the evidence is consistent with the hypothesis that collisions increased because drivers became

more aggressive when they were informed about the time until a light change. Specifically, if

the information enables road users to better respond to their circumstances, and road users

learn over time how timers can best be used to avoid getting caught waiting at intersections,

then we would expect a more pronounced permanent effect of countdown signals and a less

pronounced temporary one.
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5.2.2 It’s not just Third-Party Effects

We consider the possibility that changes in third-party behaviors explain the increase in

driver-driver collisions. In particular, using more detailed collision information, we explore

whether collisions among drivers increased because countdowns induced third parties to enter

intersections at inopportune times. We argue that the estimates from Column 2 of Table III

and Table VI suggest the increase in collisions is unrelated to the behavior of third-party

pedestrians.

If third-party pedestrians are the source of more driver-driver collisions, it should be

the case that pedestrians are placing themselves in more risky situations. The estimates

from Column (2) of Table III and from Table VI suggest otherwise. The estimates in Table

III, which show that countdowns resulted in fewer driver-pedestrian collisions, suggest that

pedestrians might act more cautiously after the countdown installation.36 The estimates

from Table VI provide further support for this idea, as they show that in interactions where

drivers are more likely to meet pedestrians (turns) the rise in collisions is smaller than in ones

where they’re not. Columns (1) and (2) suggest there were 0.0022 more collisions among

drivers when they make right or left turns, though only the coefficient for right turns is

statistically significant. Column (3) suggests there were 0.0075 more collisions (p < 0.1)

among drivers where at least one driver was traveling straight through the intersection, a

driving manoeuver that is unlikely to involve third parties.

6 Implications for Social Welfare

We approach the welfare effects of countdowns from three directions. First, we consider

the effect of countdowns on various types of collisions, such as rear ends and sideswipes.

36The particular piece of evidence is also consistent with an alternative hypothesis. Under the alternative,
drivers act more aggressively with each other, but less aggressively towards pedestrians, when informed
about the time until a light change.
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Second, we consider the impact on fatalities and injuries. Third, we study the effect on

traffic and pedestrian volumes at intersections. Our major findings are that countdowns

resulted in more rear ends, fewer minor injuries, and had a negligible effect on traffic and

pedestrian volumes. The findings suggest that the welfare impacts hinge on a comparison of

the additional costs of rear ends with the benefits of fewer minor injuries.

6.1 Injuries and Rear Ends

Columns (1)-(5) of Table VII suggests the costs of pedestrian countdown signals are com-

prised primarily by the costs of more rear ends. These columns provide estimates of the

countdown’s effect on various types of collisions, those where at least one driver: enters the

intersection; collides with another at an angle; rear ends another driver; sideswipes another

driver, or was turning when an collision occurred. The estimates show that countdowns

resulted in 0.0108 more collisions per month (p < 0.05) where one driver rear ends another

at the average intersection.

Columns (6)-(8) of Table VII suggests the benefits of pedestrian countdown signals are

comprised primarily by the benefits of fewer minor injuries. Column (8) shows countdowns

resulted in 0.0027 fewer minor injuries per month at the average intersection. This finding

is consistent with our finding in Column (2) of Table III of a reduction in collisions between

pedestrians and drivers, because most collisions involving pedestrians and drivers result in

minor injuries.

6.2 Traffic and Pedestrian Flows

In order to more properly assess the welfare implications of reducing road-user uncertainty

about light changes, we consider the effects of countdown signals on vehicular and foot traf-

fic at the intersections in our sample. The specific goal is to determine whether countdown
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signals resulted in fewer pedestrian-driver collisions for every pedestrian on the road and

whether they resulted in more collisions between cars for every car on the road. The finding

that countdowns reduced driver-pedestrian collisions has positive welfare implications when

the same or more pedestrians use intersections after countdowns were introduced. The im-

plications are ambiguous when fewer pedestrians use intersections with countdown signals.

Similarly, the finding that countdowns resulted in more driver-driver collisions has negative

welfare implications when the same or fewer cars use intersections after countdowns were in-

troduced. The implications are ambiguous when more cars use intersections with countdown

signals.

To quantify the rise in collisions, and reduction in minor injuries, relative to the flow of

road users, we draw on counts of pedestrian and automobile traffic at intersections through-

out the city.37. In both cases, we estimate specifications of the form:

Vit = δ0 + δ1Tit +Xitπ + υit (11)

where t is the time of the count, Vit represents volume (pedestrian or automobile) that passes

through intersection i at time t, Tit indicates whether a countdown is installed, and Xit con-

trols for time and geographic factors that might affect variation in Vit and Tit. We note that

counts are done at different (and irregular) points in time. In the case of pedestrians, counts

are done only once, while automobile counts are done repeatedly for most intersections.38

Table VIII provides estimates of the effect of countdown signals on the number of pedes-

trians transiting intersections. The data reveals three things. The first is that Columns (3)

and (4) show a downward trend in pedestrian traffic across years. This conclusion follows

37These counts were done for most of the intersections in our study.
38In fact, for many intersections we have multiple observations from the same time period. This is because

at separate counts are done for traffic flowing in various directions. At a minimum, this provides another
useful source of variation for identifying an effect of countdowns on traffic volume.
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because intersections are more likely to have a countdown installed in the later years of our

sample. The second is that Columns (5) and (6) demonstrate that excluding geographic

factors results in overestimates of the countdown’s effect on pedestrian traffic.39 The third

is that pedestrian traffic was unaffected by the presence of countdown signals once all of the

time and geographic factors are controlled for.

The results for pedestrian traffic as well as the reduction in pedestrian-driver collisions

(Table III) suggest that pedestrians benefited from the introduction of countdown signals.

The estimate in Column (7) shows that they benefited because fewer pedestrians were struck

by automobiles for every pedestrian on the road. A potential welfare improvement for pedes-

trians is unsurprising because a major motivation for introducing countdown signals is that

they “have been proven to improve pedestrian signal understanding, and have particular

benefit for vulnerable road users such as seniors, children and mobility-challenged pedestri-

ans.”40 Pedestrians who were initially reluctant to use intersections may now feel safer doing

so, and in fact are safer doing so.

We use Table IX to study the countdown’s effect on the number of cars transiting intersec-

tions. The estimates suggest at best that countdown signals had a statistically insignificant

effect on the number of automobiles per 24-hour period at the average intersection.41 As with

pedestrian flows, Table IX suggests that geographic and time factors matter for estimates of

the countdown’s effect on automobile flows. Specifically, a comparison of Columnes (3) and

(4) reveals a downward trend in automobile traffic across years. Similarly, a comparison of

Columns (5) and (6) demonstrates that excluding geographic factors results in overestimates

of the countdown’s effect on automobile traffic.42

39We view the estimates in Column 7 with caution. This is because of the significant burden that controls
for street type place on regressions that use cross-sectional data.

40http://www.transportation.alberta.ca/
41One caveat with this result is that with this data intersections are only observed with countdowns 6%

of the time. However, it’s likely that the number of observations more than compensates for the loss in
statistical power this asymmetry generates.

42In contrast with the pedestrian count data these street indicators fail to distinguish between main and
side streets. Instead they indicate the street along which the measured flow is traveling (street 1) as well as
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The results for automobile traffic as well as the increase in driver-driver collisions (Table

III) suggest that drivers suffered from the introduction of countdown signals. The estimate

in Column (7) shows that they suffered because of more collisions between drivers for every

driver on the road. As a result, the data reveals that countdowns may have had negative

implications for the welfare of drivers who visit an intersection.

7 Conclusion

Most existing studies analyze the effect of policies that increase the information that partic-

ipants on one side of a market have about participants on the other side. We instead focus

on the impact of a policy which increases the information that participants on all sides have

about an event that is in their common interest. We draw on a natural experiment conducted

in the city of Toronto to evaluate the impact that pedestrian countdown signals have on the

behavior and safety of road users. We find that the installation of countdown signals resulted

in approximately 21.5 more collisions citywide per month, a more than 5 percent increase

over the average without countdown signals. The data reveals starkly different effects for

collisions involving pedestrians and those involving automobiles only. Although they reduce

the number of pedestrians struck by automobiles, countdowns increased the number of col-

lisions between automobiles. We show that countdowns cause fewer minor injuries among

pedestrians for every pedestrian on the road and more rear ends among cars for every car

on the road. Overall, the findings show that reducing road user uncertainty about the time

until a light change makes life safer for pedestrians and more dangerous for drivers.

Our findings have important implications for public policy. The main implication is

that welfare gains can be attained by creating asymmetries in information. That is, by

disseminating information to pedestrians and hiding it from drivers. For example, in the

the intersecting street (street 2).
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context of our study, rather than making countdowns visible, municipalities can announce

the time until a light change through a speaker that only pedestrians can hear. While the

announcement makes it more difficult for drivers to use the information for their personal

gain, it continues to provide pedestrians with information that can make their lives safer.

Because there was nothing specific about the collision history of Toronto that led to the

adoption of pedestrian countdown signals, the implications should generalize to other settings

where policymakers are considering disseminating important information to the public.

A Appendix

A.1 Theoretical Appendix

We show the inequality in Relation (8) follows from the assumption c > b and Jensen’s

Inequality. Let h(r) = π(ω)
c+π(ω)

where r = PT (ω). We define f(t) ≡ 1
(1−t)

and g(r) ≡ c

r(b+v)−v

so that h(r) = f(g(r)). The functions f and g have the following properties: a) f(t)

is increasing and convex if t < 1; b) g is decreasing and convex in r. These properties

imply that h is convex in r for t < 1. Or, equivalently, h(r) is convex in r if and only if

−c < r(−b) + (1 − r)v. The inequality −c < r(−b) + (1 − r)v clearly holds when c > b.

It follows that the square h(r)2 is also convex in r. Since r is a monotone function of ω,

applying Jensen’s Inequality to h(r)2 yields V (F ) > 0, i.e. more collisions are expected

when countdowns are active.

A.2 Robustness Checks

We verify the robustness of our main result when more lags are included in our estimates

of Specification (9). Estimates that control for up to five lags are found in Appendix Table

A.I. The estimates each show that the installation of pedestrian countdown signals resulted
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in 0.010 more collisions. The estimate in column (5) is marginally insignificant at the 10

percent level.

The coefficient estimates are similar when more than six lags are included in the base

specification. However, as more lags are included, the statistical significance of our point

estimates decline. Two factors might explain the decline in statistical significance. The

first is that the statistical power of our estimator falls as we exchange more lags for fewer

observations. The decline in statistical power makes it more difficult to detect small but

statistically significant effects. The second is that the incidental parameters problem, which

arises because autoregressive parameters mechanically depend on intersection fixed effects,

is of greater concern as the cross-sectional dimension grows relative to the time-series dimen-

sion. This dimensionality problem reduces the chances of obtaining consistent estimates of

the countdown’s effect.
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Table I: Descriptive Statistics - Counts by Year

Year
2004 2005 2006 2007 2008

Collisions 5058 5166 4704 4500 4194

Driver-Pedestrian 266 322 301 296 295

Driver-Cyclist 124 127 136 128 129

Driver-Driver 4250 4185 3897 3740 3407

Fatalities 8 10 10 13 10

Major Injuries 67 95 76 82 63

Minor Injuries 267 244 232 243 212
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Table II: Collisions and Pedestrian Countdown Signals

(1) (2) (3) (4)

Pedestrian Countdown -0.055*** -0.022*** 0.012** 0.011*
Signal Activated (0.006) (0.004) (0.006) (0.006)

Controls
Intersection N Y Y Y

Month-Year N N Y Y

Lagged Collisions N N N Y

R2 0.001 0.001 0.002 0.012

Intersections 1794 1794 1794 1794

Observations 107640 107640 107640 105846

1. The dependent variable is number of collisions.
2. Robust Standard Errors clustered at the intersection level, *** for
p < .01, ** for .01 < p < .05, * for p < .1.
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Table III: Collision Involvements and Conditions

Collisions Involving
Driver-Driver Driver-Pedestrian Driver-Cyclist

Pedestrian Countdown 0.0117** -0.0032** 0.0014
Signal Activated (0.0052) (0.0015) (0.0011)

R2 0.002 0.002 0.003

Intersections 1794 1794 2075

Observations 107640 107640 107640

1. Robust Standard Errors clustered at the intersection level, *** for p < .01,
** for .01 < p < .05, * for p < .1.
2. All regressions include fixed effects for the intersection and month-year.
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Table IV: Driver Actions and Conditions

Collisions where a driver
Speeds Tailgates

Pedestrian Countdown 0.0001 0.0074**
Signal Activated (0.0002) (0.0020)

R2 0.0005 0.0028

Intersections 1794 1794

Observations 107640 107640

1. Robust Standard Errors clustered at the inter-
section level, *** for p < .01, ** for .01 < p < .05,
* for p < .1.
2. All regressions include fixed effects for the in-
tersection and month-year.
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Table V: Collisions and Pedestrian Countdown Signals - Dynamic Treatment Effects

(1) (2) (3) (4) (5)

Months after installation
0 months 0.015 0.017 0.019 0.018 0.023*

(0.012) (0.012) (0.012) (0.012) (0.012)

1 months 0.005 0.007 0.009 0.009 0.013
(0.013) (0.013) (0.013) (0.013) (0.013)

2 months -0.012 -0.010 -0.008 -0.008 -0.004
(0.011) (0.011) (0.011) (0.011) (0.011)

3 months 0.016 0.018 0.020* 0.020 0.024*
(0.012) (0.012) (0.012) (0.012) (0.012)

4 months 0.012 0.014 0.017 0.016 0.020
(0.013) (0.013) (0.013) (0.014) (0.014)

5 months 0.002 0.005 0.007 0.007 0.011
(0.013) (0.013) (0.013) (0.013) (0.014)

6 months 0.019 0.021 0.021 0.025*
(0.014) (0.014) (0.014) (0.015)

7 months 0.034** 0.033** 0.038**
(0.015) (0.015) (0.016)

8 months 0.038** 0.043**
(0.007) (0.017)

9 months 0.029*
(0.017)

After last month 0.029*** 0.034*** 0.038*** 0.037*** 0.045***
in specification (0.008) (0.009) (0.010) (0.010) (0.011)

Intersections 1794 1794 1794 1794 1794

Observations 107640 107640 107640 107640 107640

p-value for F -test 0.15 0.19 0.22 0.30 0.21
that leads don’t matter

1. The dependent variable is number of collisions.
2. Robust Standard Errors clustered at the intersection level, *** for p < .01, **
for .01 < p < .05, * for p < .1.
3. Regressions control for intersection and month-year fixed effects. They also
include leads for first installation date.
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Table VI: Third Party Effects

Collisions where driver
Turns Left Turns Right Not Turning

Pedestrian Countdown 0.0023 0.0024** 0.0075*
Signal Activated (0.0027) (0.0012) (0.0041)

R2 0.0014 0.0008 0.0017

Intersections 1794 1794 1794

Observations 107640 107640 107640

1. Robust Standard Errors clustered at the intersection level, ***
for p < .01, ** for .01 < p < .05, * for p < .1.
2. All regressions include fixed effects for the intersection and
month-year.
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Table VII: Collision Types and Injuries

Impact Type Injury Type
Entering Angle Rear End Sideswipe Turning Movement Fatalities Major Minor

Pedestrian Countdown 0.0003 0.0004 0.0108*** -0.0009 0.0021 -0.0003 0.0006 -0.0027*
Signal Activated (0.0007) (0.0022) (0.0032) (0.0015) (0.0030) (0.0003) (0.0009) (0.0016)

R2 0.0010 0.0006 0.0056 0.0010 0.0014 0.0005 0.0005 0.0007

Intersections 1794 1794 1794 1794 1794 1794 1794 1794

Observations 107640 107640 107640 107640 107640 107640 107640 107640

1. Robust Standard Errors clustered at the intersection level, *** for p < .01, ** for .01 < p < .05, * for p < .1.
2. All regressions include fixed effects for the intersection and month-year.
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Table VIII: Countdowns and Pedestrian Flow

(1) (2) (3) (4) (5) (6) (7)

Countdown 1030.50 *** 1017.06*** 992.32*** 1812.81*** 1281.43*** 137.48 -228.44
Activated (129.96) (130.02) (127.89) (293.55) (274.54) (260.47) (669.40)

Controls
Day of Week N Y Y Y Y Y Y

Month N N Y Y Y Y Y

Year N N N Y Y Y Y

N-S/E-W N N N N Y Y Y

Main Street N N N N N Y Y

Side Street N N N N N N Y

R2 0.02 0.02 0.08 0.11 0.17 0.52 0.81

Intersections 1912 1912 1912 1912 1912 1912 1912

(Observations)

1. The dependent variable is volume of pedestrians using the intersection over an 8-hour period.
2. Robust Standard Errors, *** for p < .01, ** for .01 < p < .05, * for p < .1.
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Table IX: Countdowns and Automobile Flow

(1) (2) (3) (4) (5) (6) (7)

Countdown -1079.74 *** -1097.60*** -996.12*** 1479.03*** 1456.83*** -655.97* -346.34
Activated (389.78) (363.41) (362.41) (459.51) (471.90) (340.79) (224.89)

Controls
Day of Week N Y Y Y Y Y Y

Month N N Y Y Y Y Y

Year N N N Y Y Y Y
N-S/E-W N N N N Y Y Y

Street1 N N N N N Y Y

Street2 N N N N N N Y
R2 0.002 0.008 0.05 0.08 0.08 0.65 0.83

Observations 28996 28996 28996 28996 28996 28996 28996

Intersections 1637 1637 1637 1637 1637 1637 1637

1. The dependent variable is volume of automobiles using the intersection over a 24-hour period.
2. Robust Standard Errors, *** for p < .01, ** for .01 < p < .05, * for p < .1.
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Table A.I: Collisions and Pedestrian Countdown Signals

(1) (2) (3) (4) (5)

Pedestrian Countdown 0.010* 0.010* 0.010* 0.010* 0.010
Signal Activated (0.006) (0.006) (0.006) (0.006) (0.006)

Controls
Collision Lags Two Three Four Five Six

Intersections 1794 1794 1794 1794 1794

Observations 104052 102258 100464 98670 96876

1. The dependent variable is number of collisions.
2. Robust Standard Errors clustered at the intersection level, *** for
p < .01, ** for .01 < p < .05, * for p < .1.
3. Regressions include intersection and time fixed effects as well as a
control for the months since the first installation.
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Figure III
Flashing Don’t Walk signal, with and without countdown
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(a) 2006 (b) 2007 (c) 2008

Figure IV
Countdown Installations in the City of Toronto
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Figure V
Pedestrian countdown signals and their effects on collisions
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