
Downtown Parking and Traffi c Congestion

A Diagrammatic Exposition∗

Richard Arnott†

University California, Riverside

Eren Inci‡

Sabanci University

John Rowse§

University of Calgary

15 February 2012

Abstract

Through an extended numerical example, this paper develops a diagrammatic
analysis of steady-state parking and traffi c congestion in an isotropic downtown and
provides systematic policy analysis. Unlike our previous work, the model incorporates
curbside parking, garage parking, and price-sensitive travel demand in a unified setting.
We examine the deadweight loss associated with underpriced curbside parking, as well
as first- and second-best curbside parking capacities. We also explore the transient
dynamics and stability of various downtown traffi c equilibria.

∗Arnott would like to acknowledge financial support through the US Department of Transportation (grant
1DTRT07-G-9000) and the California Department of Transportation (grant 65A0216), both through the
University of California, Transportation Center (UCTC) at UC Berkeley, and Inci would like to acknowl-
edge financial support from the Scientific and Technological Research Council of Turkey (TUBITAK Career
Grant 111K051). The authors thank Ozan Bakis for helpful comments. Any remaining errors are authors’
responsibility.
†Address: Department of Economics, University of California, Riverside, 4106 Sproul Hall, Riverside, CA

92521-0427 USA. E-mail address: richard.arnott@ucr.edu
‡Tel.: 90-216-483-9340; fax : 90-216-483-9250. Address: Sabanci University - FASS, Orhanli / Tuzla

34956 Istanbul TURKEY. E-mail address: ereninci@sabanciuniv.edu.
§Address: Department of Economics, University of Calgary Calgary, AB T2N 1N4 CANADA. E-mail

address: rowse@ucalgary.ca

1



Keywords: cruising for parking, curbside parking, parking garages, parking policy,
traffi c congestion

JEL Classification: D04; L91; R41; R48

1 Introduction

For many years, urban transportation economists have analyzed downtown traffi c congestion

by applying economic and engineering tools developed in the 1960’s and 1970’s for the study

of freeway congestion. Over the last decade, however, there has been increasing recognition

that downtown traffi c congestion differs in important ways from freeway congestion. One of

the most important is parking. Parking is a major user of land downtown, curbside parking

reduces street capacity, and cars cruising for parking contribute to the congestion on city

streets. Another is that downtown travel takes place on a denser network, which increases

the importance of nodal (intersection) congestion relative to classical link flow congestion.

Yet another is that downtown traffi c congestion is more heterogeneous in character, entailing

queuing at intersections, spillbacks, traffi c jams, car-pedestrian interaction, double parking,

and congestion caused by cars entering and exiting curbside parking spaces and cruising for

parking, in addition to classical link flow congestion.

William Vickrey (1994) was the first urban transportation economist to develop a model

customized for the study of downtown traffi c congestion. The central departure from the

standard models is that, to avoid treating the complexity of downtown traffi c, travel speed

is assumed simply to be related to the density of traffi c per unit area. Vickrey conceived

of Manhattan as a bathtub. The height of water in the bathtub corresponds to traffi c

density per unit area; traffi c entering Manhattan, as well as trips initiated within Manhattan,

correspond to water flowing into the bathtub; and traffi c leaving Manhattan, as well as

trips terminating in Manhattan correspond to water flowing out of the bathtub. Traffi c

speed is negatively related to traffi c density; traffi c flow is the product of traffi c speed

and traffi c density; and trip termination is proportional to traffi c flow. Only recently have
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transportation engineers started to use traffi c sensors to study the empirical properties of

downtown traffi c congestion. The early results (Geroliminis and Daganzo, 2008; Daganzo,

Gayah, and Gonzales, 2011) provide strong support for Vickrey’s conception, documenting

the existence of a stable macroscopic fundamental diagram (relating average flow to average

density) at the level of downtown neighborhoods.

In a series of papers (Arnott and Inci, 2006, 2010; Arnott and Rowse, 2009, 2011), we

have been developing a sequence of models that build on Vickrey’s conception. However,

our models differ from Vickrey’s conception in that they put parking and the interaction

between downtown parking and downtown traffi c congestion at center stage. Arnott and

Inci (2006, 2010) examines steady-state equilibria in a bathtub model of downtown traffi c

congestion with curbside parking and price-sensitive demand, but without garage parking.

Arnott and Rowse (2009, 2011) extends that model to allow for garage as well as curbside

parking but to keep it analytically manageable assumes demand to be inelastic.

Building on our previous work, in this paper we develop an extended numerical exam-

ple of a synthesized steady-state model that incorporates curbside parking, garage parking,

and price-sensitive demand, presenting the results through a series of diagrams. Working

through an extended numerical example, with diagrams, circumvents the technical complex-

ity of the earlier papers and puts the economic intuition into sharper relief. We use the

diagrammatic exposition to examine the deadweight loss associated with the underpricing of

curbside parking (which is typical of US cities), as well as first-best and second-best (with

the underpricing of curbside parking and of traffi c congestion being the distortions) curbside

parking capacity, and to explore the multiplicity and stability of equilibria.

Our principal results are as follows. First, in both the first and second best, it is effi cient:

at low levels of demand intensity to have all parking curbside and as demand intensity

increases to expand curbside parking capacity; at intermediate levels of demand intensity,

to provide garage parking, as well as curbside parking and as demand intensity increases
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to expand garage parking and to contract curbside parking; and at high levels of demand

intensity, to provide all parking in garages and none curbside. Second, at those demand

intensities where it is second-best effi cient to provide no garage parking, curbside parking

should be provided to the point where cruising for parking is just eliminated, and the second-

best level of curbside parking is higher (lower) than the first-best level when curbside parking

is underpriced (overpriced). And third, when parking is underpriced, the range of demand

intensities over which it is effi cient to have both garage and curbside parking is narrower in

the second best than in the first best. The intelligent design of downtown parking policy

needs to take into account intra-day dynamics. We hope that the steady-state analysis of

this paper will provide a foundation for the construction of models that do so.

The paper is organized as follows. Section 2 develops the base model, setting the stage

by adapting Walters’(1961) landmark model of highway congestion to downtown congestion

without parking. Section 3 adds curbside parking to the base model, considering the first

best and then the second best, in the short run and then in the long run. Section 4 extends

the analysis by incorporating both curbside and garage parking. Section 5 investigates the

stability of the various equilibria of the previous sections. Section 6 discusses directions for

future research.

2 Downtown Traffi c Congestion with No Parking

To set the base for further analysis, we start by adapting the familiar diagrammatic analy-

sis of congested traffi c equilibrium with price-sensitive demand due to Walters (1961) to

downtown traffi c. For the moment, we ignore downtown parking, essentially assuming that

parking is costless. We assume that downtown is isotropic; one can imagine a boundless

Manhattan network of one-way streets. We also assume that drivers are identical and that

the demand for trips initiated per unit area-time is stationary and is a function of the full
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price of a trip, F :

D = D(F ) . (1)

For simplicity we ignore the money costs of travel. Therefore, the user cost of a trip,

UC, equals the travel time cost of a trip, which equals the trip length, m, times travel time

per mile, t, times the value of time, ρ:

UC = ρmt . (2)

Travel time per mile is an increasing, convex function of the density of traffi c per unit area,

V : t(V ), with t′ > 0, t′′ > 0, and with t(0) > 0 being free-flow travel time. In order

to distinguish between the full trip price and user cost, we assume that a toll of size τ is

applied, so that the full price of a trip equals user cost plus the toll:

F = UC + τ . (3)

In steady state, the number of trips initiated per unit area-time equals the number of

trips terminated per unit area-time. We refer to this as the steady-state condition, and the

steady-state number of trips per unit area time as throughput,1 and denote it by r. The

steady-state number of trips initiated per unit area-time is given by the demand function.

The steady-state number of trips terminated per unit area-time equals traffi c density divided

by the length of time each car spends in traffi c, mt. Thus, the steady-state condition is

D(ρmt(V ) + τ) =
V

mt(V )
, (4)

1Throughput has units of cars per unit area-time. In steady state, throughput is the same as the entry
flow and exit flow per unit area. We avoid the term flow to avoid confusion. The fundamental identity of
traffi c flow states that flow, f , equals density times velocity. Applying that identity in the current context
gives f = V/t(V ). Flow, therefore, equals throughput times trip length. Then, throughput measures the
exit rate (= entry rate) from the flow of traffi c, which equals flow divided by trip length.
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which gives steady-state equilibrium traffi c density.

Figure 1: The Fundamental Traffi c Diagram applied to downtown traffi c

This equilibrium can be derived geometrically using the four-quadrant diagram of Figure

1. Quadrant II plots the relationship between user cost and traffi c density (UC = ρmt(V ),

which combines (2) and t = t(V )). Quadrant III shows the 45-degree line. Quadrant IV

depicts the steady-state relationship between traffi c throughput and density,

r =
V

mt(V )
. (5)
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The user cost curve in Quadrant I, marked as UC, relates user cost to throughput.2 The

supply curve relates the full price of a trip to throughput, and is labeled S in the figure.

It is obtained as a vertical shift of the user cost curve by τ . The inverse demand function

provides the demand relation between the full trip price and throughput, and equilibrium is

given by the point of intersection of the demand and supply curves.

Figure 1 is plotted for specific functional forms and parameter values. The following are

maintained throughout the paper:

D(F ) = D0F
−a (6)

t(T ) =
t0

1− V
Vj

(7)

with parameter values

a = 0.2, t0 = 0.05, Vj = 1778.17, m = 2.0, ρ = 20.0 . (8)

The parameters chosen are the same as those assumed in Arnott and Inci (2006, 2010),

and the basis for their choice is given in Arnott and Inci (2006). Demand is assumed to be iso-

elastic, with demand elasticity equal to 0.2. The demand intensity parameter, D0, is allowed

to vary, in order to examine how equilibrium changes with demand. Travel congestion is

described by Greenshields’Relation, which specifies a negative linear relationship between

velocity and density,3 and hence the form of the relationship between travel time and density

depicted in Quadrant II. Free-flow travel time per mile, t0, is 0.05 hrs, which corresponds to

20 mph. Jam density, Vj, is 1778.17 cars/ml2. Trip distance is 2.0 mls and the value of time

is $20/hr. Figure 1 is drawn with the base case demand intensity of D0 = 3190.94.

Following Vickrey, travel on the upward-sloping portion of the user cost curve is termed

2From (2) and t = t(V ), V = t−1(UC/(ρm)). Substituting this into (5) gives r = t−1(UC/(ρm))/(UC/ρ).
3Greenshields’Relation has the property that travel is hypercongested if velocity is less than one-half

free-flow, or equivalently if travel time per ml is more than double free-flow travel time per ml.
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congested travel, and travel on the backward-bending portion is termed hypercongested

travel. With congested travel, travel time and user cost increase with throughput. With

hypercongested travel, travel time and user cost decrease with throughput. Congested travel

corresponds to normal travel, and hypercongested travel to traffi c jam situations.

Figure 1 shows two equilibria. At E1 traffi c flow is congested, at E2 traffi c flow is

hypercongested. There is also an equilibrium, E3, that cannot be shown in the diagram,

corresponding to gridlock —zero flow and an infinite full trip price. It is generally accepted

that E1 is a stable equilibrium. The stability of equilibria on the backward-bending portion

of the supply curve has been a matter of considerable dispute. Arnott and Inci (2010)

examined the issue for a somewhat different model4 that included curbside parking.

If the Arnott and Inci (2010) model had excluded curbside parking, the stability analysis

would have proceeded as follows. Stability is defined with reference to a particular adjustment

dynamic. The natural adjustment dynamic in this context is that the change in the density

of cars equals the demand inflow, D(F ), minus the outflow, T/(mt(T )). With demand based

on either myopic foresight (when a driver is deciding whether to take a trip, he bases his

expectation of the full price on current traffi c conditions) or perfect foresight, the analog of

E1 is indeed stable, while E2 is unstable5 and E3 stable. Which of the two stable equilibria

the traffi c network attains depends on the density at the time when the demand function

first became stationary.

Figure 2 focuses on the upward-sloping portion of the user cost curve. Aggregate user cost

can be calculated as a function of throughput. On this portion of the user cost curve, marginal

social cost is defined as the derivative of aggregate user cost with respect to throughput, and

at a particular throughput equals the corresponding user cost plus the congestion externality

cost (the cost to inframarginal users due to the increase in throughput slowing them down).

4Visit length is assumed to be Poisson distributed with mean length m.
5A steady-state equilibrium is unstable if the measure of initial traffi c conditions achieving this equilib-

rium is zero. One may call E2 saddle-path stable because it can be reached from initial traffi c conditions on
one of the arms of the steady state, which is a curve and thus of measure zero.
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Figure 2: Equilibrium and social optimum with no parking

Figure 2 displays the user cost curve and the marginal social cost curve, labeled MSC. In

social surplus analysis, the demand curve is interpreted as the marginal social benefit curve,

labeledMSB, so that optimal throughput occurs at the point of intersection of the marginal

social cost and demand curves, O.

The optimal throughput can be achieved by setting an optimal congestion toll equal to the

congestion externality cost, evaluated at the social optimum, τ ∗. In the no-toll equilibrium,

E1, too many cars travel on the road since travel is underpriced due to drivers not paying

for slowing other drivers down. The deadweight loss associated with having no toll is given

by the shaded area AE1O, and equals the loss in social surplus from travel at throughput

rE1 compared to throughput rO. These results are, of course, broadly familiar, but we have

been careful to derive them precisely in the context of steady-state traffi c congestion in an

isotropic downtown area, since we shall build on them in the sections that follow, which add

parking.6

6We could extend the analysis to solve for optimal road capacity. But, here and throughout the paper
we take road capacity as fixed, although the portion of it allocated for curbside parking may vary.
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3 Downtown Traffi c Congestion with Only Curbside

Parking

We now modify the model to take into account that drivers must park. In this section, we

rule out garage parking and consider only curbside parking. Curbside parking affects the

analysis in four ways. First, increasing the amount of curbside allocated to parking reduces

the road space available for traffi c flow, which reduces jam density.7 Second, the amount

of curbside parking constrains the throughput of the downtown traffi c network to be no

more than the curbside turnover rate, which we term curbside parking capacity constraint

(CPC); if there are P curbside parking spaces per unit area and if the visit duration is l,

then curbside parking capacity is P/l; it is the maximum throughput that curbside parking

can accommodate. Third, if there is insuffi cient curbside parking to ration the demand,

given the curbside parking fee, cruising for parking occurs, with travel time costs, including

cruising-for-parking time costs, adjusting to clear the market. And fourth, drivers pay a

curbside parking fee per unit time (meter rate)8, f .

To simplify, we provide a crude treatment of parking search. We assume that each driver

travels to his destination block. If a space is available, he takes it, and if it is not he drives

around the destination block until a space opens up. Thus, curbside parking involves no

walking. Furthermore, we ignore the random variation that occurs due to the small number

of parking spaces on each block, and assume that curbside parking is either saturated (fully

occupied) everywhere, or unsaturated everywhere.9

We shall first consider optimal curbside parking pricing. We shall then examine optimal

7We assume that curbside allocated to parking reduces jam density by the same amount whatever the
occupancy rate of the curbside parking. The rationale is that, under at least moderately congested conditions,
even if only one curbside parking space is occupied on one side of the block, traffi c flow is effectively excluded
from that lane for the entire block.

8To keep the analysis simple, we consider only linear curbside parking payment schedules.
9Realistically, at the level of the downtown area, there is a gradual transition between unsaturated and

saturated parking (Martens, Benenson, and Levy, 2010). As the demand for curbside parking increases,
curbside parking becomes saturated on an increasingly high proportion of blocks.
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curbside parking capacity, conditional on curbside parking being effi ciently priced (first-best

capacity) and ineffi ciently priced (second-best capacity). In all our analysis, we assume that

no congestion tolling is employed. Because the distance traveled and the visit duration are

fixed, the first best can be achieved just by effi ciently pricing curbside parking, even though

congestion tolling is not employed; the effi cient parking fee includes the optimal congestion

toll. This is why we refer to the optimal capacity with effi cient curbside parking pricing as

first-best.

We have already distinguished between throughput and flow. Steady-state throughput is

the rate at which trips are initiated and terminated per unit area-time. Steady-state flow is

the number of car-miles traveled per unit area-time. When cruising for parking occurs, there

is a further distinction between throughput and flow —flow includes cars that are cruising

for parking.

Two adjustments need to be made to the specification of the congestion technology to

accommodate curbside parking. First, it is necessary to account for the reduction in road

capacity due to curbside parking. We assume that effective jam density is related to the

amount of street space allocated to traffi c flow. In particular, where Ω is the jam density

with no curbside parking, effective jam density, Vj, equals jam density times the proportion

of street space allocated to traffi c flow, 1−P/Pmax, where P is the density of curbside parking

spaces per unit area and Pmax its maximum value. Thus,

Vj = Ω(1− P

Pmax
) . (9)

Second, the specification of the congestion technology needs to account for the congestion

interaction between cars in transit and cars cruising for parking. We make the simple as-

sumption that a car cruising for parking generates θ times as much congestion as a car in

transit. Thus, where C is the density of cars per unit area that are cruising for parking, the
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travel time function is

t(T,C, P ) =
t0

1− T+θC
Vj

. (10)

We maintain the following parameters for the rest of the paper:10

θ = 1.5, Ω = 2667.36, Pmax = 11136 . (11)

For the base case, we also assume that the curbside parking fee is $1/hr, so that the parking

fee for the trip is $2, and that curbside parking is permitted on one side of the street

everywhere, so that P = 3712 and P/l = 1856. In the analysis that follows, we start with

the short run, where the level of curbside parking is fixed, and then move to the long run,

where the level of curbside parking is a policy choice variable.

3.1 The short run with only curbside parking

We start with the first-best planning problem and its decentralization.

3.1.1 First-best optimum in the short run with only curbside parking

Consider a benevolent social planner who has direct control of the transportation system and

its users. She would never choose to have cruising for parking because the same throughput

(and hence the same social benefit) can be achieved at lower cost without it. Since the

amount of curbside parking is fixed, she chooses throughput to maximize social surplus.

10The parameters are drawn from Arnott and Inci (2006) and were chosen to be broadly consistent with
observation. A city block is assumed to be 1/8 ml long, the one-way streets to have three lanes, and roads
to be 33 ft wide. Then, each side of a block is 627 ft long. If parking is on one side of the street, so that
two sides of every city block have curbside parking, the maximum length of curbside around each city block
that could be devoted to parking is 1254 ft. But some of this curbside is used for crosswalks. On two sides
of a city block, there are four crosswalks. We assume that each crosswalk is 9 ft wide, so that the amount of
curbside around each city block allocated to parking is 1218 ft. With 21 ft devoted to each curbside parking
space, the number of curbside parking spaces on each block is 58. And since there are 64 blocks per ml2, the
number of curbside parking spaces per ml2 is 3712.
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Resource cost per unit time is ρT . Thus, where X(r) is the social benefit from throughput r

(which equals the area under the inverse demand curve up to throughput level r), she faces

the maximization problem

max
r,T

X(r)− ρT (12)

s.t.

r =
T

mt(T, 0, P )

r ≤ P

l
.

The first constraint is the steady-state condition and the second is the curbside parking

capacity constraint. Figure 3 displays the solutions with the functional forms for the con-

gestion and demand functions, as well as the base case parameters, specified earlier. Two

demand functions are considered, D1 and D2, which correspond to the demand function

given in (6) with different levels of demand intensity. The curbside parking capacity con-

straint is labeled CPC. We define the (unconstrained) short-run marginal social cost of

throughput as ρ[dT/dr], where dT/dr is calculated from the steady-state condition, holding

curbside parking capacity fixed and ignoring the curbside parking capacity constraint, and

label the corresponding locus as SRMSC(r;P ). It equals the user cost plus the congestion

externality cost.

With demand level D1, the curbside parking constraint does not bind, and the first-best

optimum, O1, is at the point of intersection of the demand and SRMSC curves. Since we

have assumed that the reduction in roadside capacity caused by curbside parking depends on

the amount of curbside that is allocated to curbside parking, independent of its occupancy

rate, the marginal driver generates no parking externality. Short-run marginal social cost

therefore equals user cost plus the congestion externality cost, so that the social optimum can

be decentralized by setting the parking fee equal to the congestion externality cost, which is
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Figure 3: First-best optimum in the short run with only curbside parking

calculated per Figure 2.

With demand level D2, the curbside parking capacity constraint binds, and the first-best

optimum, O2, is at the point of intersection of the demand curve and the curbside parking

capacity constraint. The short-run marginal social cost now equals the user cost plus the

congestion externality cost plus a parking scarcity rent.11 The social optimum can then be

decentralized by charging a congestion toll equal to the congestion externality cost, evaluated

at the social optimum, plus a parking scarcity rent. Since in the model each trip has a fixed

length and visit duration, the social optimum can also be decentralized without an explicit

congestion toll by charging a parking fee equal to the congestion externality cost and the

parking scarcity rent.

We may simplify the analysis by defining the capacity-constrained short-run marginal

11Let λ be the Lagrange multiplier on the steady-state condition and µ the multiplier on the curbside
parking capacity constraint. The first-order condition with respect to r is X ′(r)−λ−µ = 0. The first-order
condition with respect to T is −ρ+ λ(1/(mt)− TtT /(mt2)) = 0, so that λ = ρmt/(1− TtT /t). Here, ρmt is
the travel time cost of the marginal traveler and λ− ρmt is the congestion externality cost imposed by the
marginal traveler on inframarginal travelers. Thus, λ equals SRMSC(P/l;P ) and µ, the parking scarcity
rent, equals MSB − SRMSC(P/l;P ).
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social cost curve as the short-run marginal social curve up to the capacity constraint, com-

bined with that portion of the capacity constraint above its point of intersection with the

short-run marginal social cost curve. The short-run, first-best optimum then lies at the

point of intersection of the demand curve and the capacity-constrained short-run marginal

cost curve.

3.1.2 Second-best optimum in the short run with only curbside parking

There are two distortions in the second-best problem. No congestion toll can be charged, and

the parking fee is set suboptimally low. The second-best optimization problem in the short

run is degenerate in that the constraints determine the solution. The second-best optimum

is therefore the equilibrium that generates the highest social surplus.

An equilibrium may entail unsaturated or saturated parking. Consider first equilibria

with unsaturated parking. Since parking is unsaturated, there is no cruising for parking.

The user cost is UC = ρmt(T, 0, P ) and the full price is F = UC + fl, where T satisfies the

steady-state condition. From these results the unsaturated user cost curve for the exogenous

level of P , UC(r;P ) can be derived, which is completely analogous to the user cost curve

derived in the previous section, except that curbside parking reduces road capacity. At levels

of throughput where the curbside parking capacity constraint does not bind the supply curve

is obtained as the unsaturated user cost curve shifted up by the curbside parking fee, and

any point of intersection of the demand curve and this portion of the supply curve is an

unsaturated equilibrium.

Now consider equilibrium with saturated parking. Parking is saturated because the

curbside parking capacity constraint binds, and except in the situation where it just binds

there is cruising for parking. Equilibrium therefore entails two density variables, the density

of cars in transit and the density of cars cruising for parking. They are determined by two

equilibrium conditions. The first is the familiar steady-state condition but here modified to
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take into account cruising for parking:

D(F ) =
T

mt(T,C, P )
, (13)

where the full price equals the cost of in-transit time, plus the expected cost of cruising-for-

parking time, plus the parking fee:

F = ρmt(T,C, P ) +
ρCl

P
+ fl . (14)

Since C cars are cruising for parking and since the turnover rate of parking spaces is P/l,

the probability that a car cruising for parking gets a space per unit time is P/(Cl), so that

expected cruising-for-parking time is Cl/P . The second equilibrium condition, the cruising-

for-parking equilibrium condition, is that the rate at which cars enter cruising for parking,

which equals the rate at which they exit the in-transit pool, equals the rate at which cars

exit cruising for parking, which equals the parking turnover rate:

T

mt(T,C, P )
=
P

l
. (15)

The steady-state condition and the cruising-for-parking equilibrium condition provide

two non-linear equations in two unknowns, T and C. Their analysis is complex. Arnott

and Inci (2006) derive the conditions under which the two curves intersect in T -C space,

and for which therefore there exists a saturated equilibrium. Furthermore, they prove that,

if a saturated equilibrium exists, it is unique. Here, we derive the properties we need for

our diagrammatic analysis through heuristic argument. We ask: What are the minimum

and maximum full prices consistent with saturated parking, and therefore with (15) being

satisfied?12 The minimum full price involves congested travel with no cruising for parking, as

intuition suggests. For a given level of P , (15) has two roots for T , and the smaller (for which

12This entails minimizing and maximizing, respectively, (14) subject to (15).
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travel is congested) corresponds to the minimum full price. Less obviously, the maximum

full price corresponds to the larger root (for which travel is hypercongested). A higher price

corresponds to a worse traffi c jam, which is inconsistent with the level of throughput P/l.

Figure 4: Equilibria in the short run with only curbside parking

Turn to Figure 4. First, plot the unsaturated user cost curve for the level of P corre-

sponding to the curbside parking capacity constraint. Second, shifting this up by fl gives

the corresponding unsaturated full price curve. Third, draw in the curbside parking capacity

constraint, which constrains throughput to be no greater than P/l. The portions of the

unsaturated full price curve to the left of the curbside parking capacity constraint —where

it does not bind —form part of the supply curve. The portion to the right of the curbside

parking capacity constraint is drawn as a dashed line since it is not relevant to the analysis.

The minimum full price at which a saturated equilibrium can exist is the lower point of

intersection of the unsaturated full price curve and the curbside parking capacity constraint,

and the maximum full price is the upper point of intersection. Thus, a saturated equilibrium

must lie on the portion of the curbside parking capacity constraint above the upward-sloping
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portion of the unsaturated full price curve and below the backward-bending portion. This

is the third piece of the supply curve.

We may alternatively define the capacity-constrained user cost curve, in the same way

that we defined the capacity-constrained short-run marginal social cost curve in the previous

section, except that it contains only that portion of the curbside parking capacity constraint

between the lower and upper portions of the unsaturated user cost curve. We can then derive

the supply curve as the capacity-constrained user cost curve shifted up by the amount of the

parking fee.

Figure 4 shows three demand curves, each corresponding to a different demand intensity.

While not obvious from the diagram, for all three demand curves, gridlock is an equilibrium.

The steady-state condition is satisfied since the entry flow and the exit flow are both zero.

Since throughput is zero, the curbside parking capacity constraint does not bind, so that the

gridlock equilibrium is unsaturated. In section 5, we shall argue that, throughout the paper,

the gridlock equilibria are stable.

With low demand intensity (in the figure, D1, with demand intensity equal to 2000), there

are three equilibria: E1, which is unsaturated, congested, and stable; E2, which is unsatu-

rated, hypercongested and unstable; and the gridlock equilibrium. With medium demand

intensity (in the figure, D2, with demand intensity equal to 3000), there are again three equi-

libria: E ′1, which is saturated and stable, and may be either congested or hypercongested);

E ′2, which is unsaturated, hypercongested, and unstable; and the gridlock equilibrium. With

high demand intensity (in the figure, D3, with demand intensity equal to 4000), the equilibria

corresponding to E1 and E2 disappear, with only the gridlock equilibrium remaining. Later,

we shall display the various equilibria, as a function of demand intensity, in a bifurcation

diagram.

Let us consider the equilibrium E ′1 in more detail. In this saturated equilibrium, the
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stocks of cars cruising for parking and in-transit adjust to clear the market,13 such that

the full price is at the point of intersection of the demand curve and the curbside parking

capacity constraint. The equilibrium values of T and C are 444.28 and 394.02, so that travel

time is 0.1197 hrs per ml, which implies a velocity of 8.36 mph and hence hypercongested

travel. The full trip price equals $11.03, of which $4.78 is in-transit travel time cost, $4.24

is expected cruising-for-parking time cost, and $2.00 is the parking fee.

We now consider the deadweight loss associated with ineffi cient pricing in the equilibrium

E ′1. The deadweight loss equals social surplus at the optimum minus social surplus in the

equilibrium. In the example, the social optimum too is at E ′1. Since there is no cruising

for parking in the social optimum, the socially optimal level of T is the smaller root solving

T/(mt(T, 0, P )) = P/l, which is 210.74, so that travel time is 0.0567 hrs per ml, which

corresponds to a velocity of 17.64 mph and an in-transit travel cost of $2.27. Thus, the

deadweight loss due to ineffi cient pricing is $12, 528 per ml2-hr, corresponding to $6.75 per

driver. The social optimum could be decentralized by charging each driver $8.75 for curbside

parking for the two hours.

Since in the model both trip length and visit duration are fixed, it makes no difference

whether this charge takes the form of a congestion toll or a parking fee. But generally

it does. Determining the second-best optimal toll when the meter rate is set ineffi ciently

or the second-best optimal meter rate when the congestion toll is set ineffi ciently requires

enriching the model, making either trip length or visit duration a choice variable. While the

equilibrium full price can be decomposed into three shadow prices, the decomposition is not

particularly insightful.14

Figure 5 portrays the same space as Figure 4, but has a different focus. It plots the

13Without cruising for parking, the throughput demanded would exceed the throughput supplied (curbside
parking capacity). Cruising for parking serves as a dissipative rationing mechanism. Since individuals are
identical, it is consistent to assume that the aggregate demand is the sum of their identical demand curves.
Thus, there is no issue of whether the rationed commodity goes to those who value it the most.

14Even though the second-best optimum is degenerate, its shadow prices are nonetheless informative. We
may write the second-best optimum problem as
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Figure 5: Equilibrium and social optimum in the short run with only curbside parking

unsaturated user cost curve, UC(r;P ) and the demand function D2. The social surplus

at the optimum equals social benefit, the area below the demand curve and to left of the

curbside parking capacity constraint, minus aggregate user cost, 0JHI. It, therefore, equals

the area JAE ′1H plus the area above AE ′1 and below the demand curve. The former area

is the shadow curbside parking rent, which would accrue to the government if it were to

decentralize the social optimum by setting the parking fee at its first-best level, and the

second term is consumer surplus. The social surplus at the equilibrium with underpriced

max
r,C,T

X(r)− ρ(T + C)

s.t. r = T/(mt(T,C, P ) λ

r ≤ P/l µ

r = D(ρmt(T,C, P ) + ρCl/P + fl). φ

This is the same as the first-best optimization problem except for the addition of the third constraint. The
first-order conditions are r : X ′(r) − λ − µ − ρ = 0; T : −ρ + λ(1/(mt) − TtT /(mt2)) + φD′ρmtT ) = 0;
C : −ρ−λTtC/(mt2)+φD′(ρmtC+ρl/P ) = 0. The first-order condition with respect to T indicates that the
marginal social cost can be decomposed into the sum of three shadow prices. But, the first-order conditions
with respect to T and C suggest that the decomposition is not particularly insightful. If the parking fee is
a choice variable, φ is zero, and, as noted in footnote 11, the optimal parking fee can be decomposed into a
congestion externality cost and a parking scarcity rent.
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curbside parking (the degenerate second best optimum) equals consumer surplus plus parking

fee revenue, JBKH. Thus, the deadweight loss due to the underpricing of curbside parking

is BAE ′1K. Raising the meter rate does not alter consumer surplus but converts deadweight

loss dollar for dollar into tax revenue. Thus, the extra revenue is raised not just with no

excess burden but also with no burden at all. An obvious question is therefore why local

governments choose to forgo such an effi cient source of revenue.

3.2 The long run with only curbside parking

We now turn to the determination of first-best and second-best curbside parking capacity.

3.2.1 First-best curbside parking capacity in the long run with only curbside

parking

When curbside parking is saturated, increasing curbside parking capacity by a small amount

has two effects, one positive and one negative. The positive effect is to raise throughput and

hence the social benefit from travel, the area under the demand curve and to the left of the

curbside parking capacity constraint. The negative effect is to reduce the amount of road

space available to traffi c flow, which causes the unsaturated user cost curve to rise. These

effects are displayed in Figure 6. Increasing curbside parking capacity from P to P ′ causes

the curbside parking capacity constraint to shift to the right, which generates the surplus

to marginal drivers of HALJ , equal to the benefit they receive minus the user cost they

incur. But it also causes the unsaturated user cost curve to shift up, increasing the costs

of inframarginal drivers by KBHG, and reducing their surplus by the same amount. With

first-best optimal capacity the two areas are equal.

It will be instructive to determine first-best optimal capacity through an alternative

geometric construct. Figure 7 plots the short-run marginal social cost of throughput with
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Figure 6: The first-best optimal curbside parking capacity in the long run with only curbside
parking

parking capacity of 3712, which constrains throughput to be less that 1856. M indicates the

point of intersection of SRMSC(r;P ) and the curbside parking capacity constraint, r = P/l.

It, therefore, corresponds to the point SRMSC(P/l;P ). It is also at the kink point of the

capacity-constrained short-run marginal social cost curve with a curbside parking capacity

of P . If parking capacity is reduced slightly, the throughput of 1856 cannot be achieved.

If parking capacity is increased slightly, the throughput of 1856 can be achieved but at a

higher short-run marginal cost. Thus, M gives the minimum marginal social cost associated

with the throughput of 1856.

There is a point corresponding toM for every level of throughput, up to some maximum.

Joining these points gives the long-run marginal social cost curve, labeled LRMSC. This

curve is defined up to the throughput, rmax, at which the curbside parking capacity constraint

is tangent to the corresponding unsaturated user cost curve. rmax is the maximum level

of throughput that can be accommodated on downtown streets, which is attained when

P = lrmax. Note that LRMSC is the locus of the kink points of the capacity-constrained

short-run marginal social cost curves, and also the lower envelope of the capacity-constrained
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Figure 7: The short-run marginal social cost of throughput with only curbside parking

marginal social cost curves.

Long-run marginal social cost equals ρ(dT/dr), where dT/dr is the change in T induced

by a change in r such that: i) the steady-state condition is satisfied; and ii) parking capacity

is increased along with r such that the curbside parking capacity constraint just binds. The

expression for dT/dr is obtained by totally differentiating r = T/(mt(T, 0, rl). Thus,

LRMSC(r) = ρ
dT

dr
= ρ

∂T

∂r
+ ρ

∂T

∂P

dP

dr
= ρ

∂T

∂r
+ ρl

∂T

∂P
. (16)

Turn now to Figure 8. The long-run social optimum occurs where the demand curve inter-

sects the LRMSC curve,15 with throughput r∗, at point O (r∗ = 2007.65 and LRMSC(r∗) =

2.9941 with D0 = 2500). By construction, the parking capacity constraint “just binds”so

that P ∗ = lr∗; parking is saturated but has no scarcity rent. UC(r; lr∗) is the unsaturated

user cost associated with throughput r∗ and curbside parking capacity lr∗, and LRMSC(r)

the corresponding long-run marginal social cost.

Decentralization of the social optimum entails charging a parking fee equal to the differ-

15If the demand curve lies everywhere below the long-run marginal social cost curve, optimal throughput
is zero.
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Figure 8: First-best optimal curbside parking capacity in the long run with only curbside
parking

ence between long-run marginal social cost and user cost.16 Thus, the first-best parking fee

solves

f ∗(r)l = LRMSC(r)− UC(r; rl) =

[
ρ
∂T

∂r
− UC(r; rl)

]
+

{
ρl
∂T

∂P

}
. (17)

It was established earlier that the term in square brackets equals the congestion externality

cost. We label the term in curly brackets the parking externality cost. When throughput is

increased by one unit, the number of curbside parking spaces is increased by l units. This

reduces the road space available for travel and hence increases congestion. The parking

externality cost is the increase in in-transit travel time costs associated with this increased

congestion.

16Charging this fee supports the socially optimal allocation. Whether its application results in the social
optimum being attained depends on the initial allocation and the adjustment dynamics. Charging this fee
would not, for example, unlock a gridlock equilibrium.
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3.2.2 Second-best optimal curbside parking capacity in the long run with only

curbside parking

We now turn to the determination of optimal second-best capacity, where the distortion is

underpriced curbside parking. Start at a saturated equilibrium. Increasing curbside parking

capacity a small amount unambiguously increases social surplus. With underpriced curbside

parking, social surplus equals consumer surplus plus parking fee revenue. Increasing curbside

parking causes the equilibrium to move down the demand curve, which causes both consumer

surplus and parking fee revenue to increase. Now, start at an unsaturated, stable equilibrium.

Reducing parking capacity a small amount unambiguously increases social surplus. There are

two cases to consider, that where the initial equilibrium lies on the upward-sloping portion

of the supply curve, and that where it lies on the backward-bending portion.

Consider first the case where the initial equilibrium lies on the upward-sloping portion of

the supply curve. Reducing parking capacity lowers this portion of the supply curve, which

increases social surplus. Consider next the case where the initial equilibrium lies on the

backward-bending portion of the supply curve. Stability of the equilibrium requires that the

demand curve be flatter than the supply curve. Reducing parking capacity raises this portion

of the supply curve, which causes the equilibrium to move down the demand curve, which

again increases social surplus. Thus, a second-best optimum entails the capacity constraint

just binding.

This line of reasoning points to a method for determining second-best optimal throughput

and capacity. Plot the UC(r; rl) curve, along which the capacity constraint just binds.

Shifting the curve up by the amount of the parking fee generates the long-run supply curve,

which we label LRS(r) in Figure 9. The second-best optimal throughput, r∗∗, corresponds

to that point of intersection17 of the demand curve and the long-run supply curve with the

highest level of throughput18 (and hence the highest level of social surplus), which occurs at

17If the demand curve lies everywhere below the long-run supply curve, second-best capacity is zero.
18The second-best optimum is supported by the level of parking capacity P ∗∗ = lr∗∗. Provision of P ∗∗
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Figure 9: Second-best optimal curbside parking capacity in the long run with only curbside
parking

r∗∗ = 1869.83 and LRS(r∗) = 4.2726 when D0 = 2500.

The relationship between first- and second-best optimal capacities is shown in Figure

10, which plots the long-run marginal social cost curve, the long-run supply curve, and the

demand curve. With both first- and second-best optimal capacities the curbside parking

capacity constraint just binds. Thus, parking capacity equals throughput times visit length,

so that the analysis can be conducted in terms of throughput. The first-best optimum is at

the point of intersection of the long-run marginal social cost curve and the demand curve.

The second-best optimum lies at that point of intersection of the demand curve and the

long-run supply curve with the highest level of throughput.

Consider first the case where demand is “low”, so that the demand curve intersects the

long-run supply curve on its upward-sloping portion. There are two sub-cases. In the first,

which corresponds to D1, E1, and O1 in the figure, at a price of $1/hr curbside parking is

curbside parking spaces does not however guarantee that the second-best optimum will be achieved. For
example, if the economy starts in the gridlock equilibrium, adjusting the amount of parking provided will
not unlock the gridlock.
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Figure 10: The relationship between first- and second-best optimal parking capacity in the
long run with only curbside parking

over priced, so that the long-run supply curve lies above LRMSC. The first-best optimum

is given by O1, for which the amount of parking is P ∗. With this amount of parking capacity,

equilibrium would entail excess curbside parking capacity. The second-best optimum occurs

at E1. Thus, P ∗∗ < P ∗ and r∗∗ < r∗. In the second sub-case, which is not displayed in

the Figure, demand is “moderate”. At the level of throughput at which the demand curve

intersects LRMSC, the long-run supply curve lies below LRMSC, so that at P ∗ parking

is underpriced and there is cruising for parking. The second best therefore entails a higher

level of parking than P ∗; P ∗∗ > P ∗ and r∗∗ > r∗.

Consider next the case where demand is “high”, so that the demand curve intersects the

long-run supply curve but not on the upward-sloping portion of the LRS curve. This case

corresponds to D2 in the figure. In addition to the gridlock equilibrium, which entails zero

parking capacity, there are two equilibria on the backward-bending portion of the long-run

supply curve. The upper equilibrium (shown as an unlabeled dot) is unstable. The lower

equilibrium marked as E2 is the second-best optimum. At this equilibrium, the long-run
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supply curve may lie above or below the LRMSC curve. If it lies below the LRMSC curve

(the situation shown in the diagram) at the price of $1/hr, curbside parking is underpriced

and second-best optimal capacity exceeds first-best optimal capacity. If it lies above the

LRMSC curve, second-best capacity falls short of first-best optimal capacity. Note that over

the range of demand intensities for which this case applies, as demand intensity increases,

second-best parking capacity falls.

At “very high” levels of demand intensity, the demand curve intersects the long-run

supply curve only with gridlock, and the second-best level of curbside parking capacity is

zero.

4 Dowtown Traffi c Congestion with Both Curbside and

Garage Parking

In the downtowns of small towns, the suburbs of small cities, and the residential neighbor-

hoods of medium-sized cities, there is typically enough parking space curbside to accom-

modate demand without severely impeding traffi c flow. But in most locations where traffi c

congestion is a serious problem, curbside parking needs to be supplemented by off-street

parking, whether in a parking lot or garage.

We shall treat off-street parking – which we shall refer to generically as garage parking

—in the simplest possible way, by assuming that it is provided continuously over space by

the private sector at a constant cost of c = $2.5/hr. In fact, in the downtowns of major

metropolitan areas, because of economies of scale in garage construction,19 there is typically

19There are other reasons. Because of the weight of cars, garage parking above the ground floor of a
general purpose building typically does not conform to code, and garage parking on the ground floor is
typically uneconomical because that space has its highest use in retail. Also, because of the cost of vertically
transporting cars, high-rise parking structures are not observed, which makes them economical on back
streets. Finally, parking structures are viewed by many planners as unsightly, and so are often zoned off
major streets. Parking lots, meanwhile, are typically irregularly spaced because they are a temporary land
use, while a developer is waiting for a favorable time to build on a vacant lot.

28



an irregular grid of parking garages, some public, some private, which engage in spatial

competition with one another. Arnott and Rowse (2009) model this spatial competition,

taking into account the technology of garage construction. But here we provide a simpler

treatment20 ,21 in order to focus on the interaction between curbside and garage parking. As

we shall see, analysis of even this simplest model is complex.

4.1 First-best optimal parking capacity with both curbside and

garage parking

In the first best, effi cient supply can be analyzed independently of the level of demand.

In the first stage, for each level of throughput, the planner decides on the combination of

curbside and garage parking that minimizes total cost. And in the second, she decides

on the surplus-maximizing level of throughput. The third step in the analysis is to derive

alternative mechanisms whereby the first-best optimum can be decentralized. The full first-

best problem is to maximize social surplus subject to the steady-state condition. Social

surplus equals social benefit minus social cost. Social benefit equals the area under the

demand curve up to the chosen level of throughput and social cost equals total in-transit

travel time cost and total garage parking costs.22 The effi cient supply problem, which we

20We could alternatively assume that there is an upward-sloping supply schedule, as was done in Arnott,
Rave, and Schöb (2005), chapter 2. If the schedule starts at the origin, then some garage parking is always
provided, and the dichotomy between low-demand situations where garage parking is not provided and
higher-demand situations where it is disappears.

21Our modeling also ignores minimum parking requirements, whereby property owners are required to
provide a minimum amount of off-street parking depending on the land use and floor area. Minimum parking
requirements were originally introduced in the downtown areas of US cities in the 1950’s, in response to a
widespread perception that the market did not provide enough private parking downtown, and their use
rapidly spread to suburban areas (Jakle and Sculle, 2004). The literature provides no economic analysis of
the validity of this perception. Curbside parking was at the time provided free, and observers may have in-
correctly attributed the excess demand this generated (in the form of cruising for parking) to a market failure
on the supply side. Currently the mainstream view is that the minimum parking requirements introduced at
that time were excessive, encouraging travel by car rather than mass transit, and some cities, notably San
Francisco and Boston, have replaced their minimum parking requirements with maximum parking constraints
on new developments.

22The planning problem is maxP,r,T X(r)−ρT − (rl−P )c subject to r = T/(mt(T, 0, P )) and 0 ≤ P ≤ rl.
Each of the garage parking spaces is provided at a cost of c. The first constraint is the steady-state condition.
The second one imposes the constraints that neither the number of garage spaces nor the number of curbside
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consider first, is to minimize social cost, holding throughput fixed.

Figure 11: User cost for a given level of curbside parking capacity (Panel A) and the full
first-best optimum (Panel B) with both curbside and garage parking

parking spaces can be negative. Holding r fixed, the planning problem is minP,T ρT + (rl − P )c subject to
the same pair of constraints.
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Panel A of Figure 11 plots user cost for the example’s first-best level of curbside parking

capacity (which entails both curbside and garage parking). Total resource costs equal total

user costs plus garage parking costs. Consider increasing curbside parking capacity a small

amount, holding throughput fixed. Doing so has two effects. The first is to decrease effective

jam density, causing the user cost curve to shift up, from UC(r, P ∗) to UC(r, P ∗ + ∆P ) in

the figure, and total user costs to increase by the area HGML. The second is to decrease

the number of garage parking spaces that need to be provided, which is given by the area

AJKB, which equals (∆P/l)cl = c∆P .

For the given number of travelers, with an interior (both curbside and garage parking are

used) optimum, first-best optimal capacity is such that a unit increase in curbside parking

capacity causes total user cost to increase to increase by cl, the saving in garage parking

costs. Corner optima are possible too. At low levels of throughput, when everyone parks

curbside, the decrease in total user cost from reducing the number of curbside parking spaces

by one unit is less than c. At high levels of throughput, when everyone parks in a garage,

the increase in total user cost from reducing the number of curbside parking spaces is greater

than c.

We now determine optimal throughput. At an interior first-best optimum, the change in

social surplus from an extra traveler is the same whether he is accommodated by increas-

ing the amount of curbside parking or the amount of garage parking. Assume the latter.

The marginal social cost of the added traveler, MSC, is then the marginal travel cost,

MTC(r;P ), plus the garage cost, cl. And the optimal number of travelers is such that the

marginal social cost of an added traveler equals the marginal social benefit. Panel B of Figure

11 displays the full first-best optimum. With the base case parameters, first-best optimal

curbside parking capacity is P ∗/l = 1252, and first-best optimal throughput is r∗ = 4816.

When throughput is suffi ciently low that providing only curbside parking is cost minimizing,

marginal social cost equalsMTC(r; rl). When throughput is suffi ciently high that providing

only garage parking is cost minimizing, marginal social cost is MTC(r; 0) + cl.
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Figure 12: Regimes in the first-best optimum with both curbside and garage parking

Figure 12, Panel A displays these results diagrammatically, using the base-case supply-

side parameters. Three marginal social cost curves are drawn: MSC1 is the marginal social

cost for régime 1, where only curbside parking is provided; MSC2 is the marginal social cost

for régime 2, where both curbside and garage parking are provided, with the amount of each

chosen to minimize total cost; andMSC3 is the marginal social cost for régime 3, where only

garage parking is provided. MSC2 is defined only for those levels of throughput at which it
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is effi cient to provide both curbside and garage parking. The marginal social cost curve is

then the lower envelope of MSC1, MSC2, and MSC3.

For low levels of throughput, below r′ = 2936, providing only curbside parking is effi cient;

for high levels of throughput, above r′′ = 6213, providing only garage parking is effi cient;

and in between it is effi cient to provide both curbside and garage parking. Resource costs are

RC = ρT+c(rl−P ), so that the marginal social cost of throughput is ρdT/dr+c(l−dP/dr).

In the case of accommodating the marginal throughput via curbside parking, dP/dr = l; in

the case via curbside parking, dP/dr = 0; and in the case where both curbside and garage

parking is provided, dP/dr depends on the details of the congestion technology (with the

congestion technology we assume, dP/dr is a negative constant).

It is noteworthy thatMSC2 is constant over the interval of throughput where it is defined.

The result is due to the form of the congestion function assumed.23 When throughput is

increased by one unit, the number of curbside parking spaces is reduced by an amount such

that travel time remains fixed, which implies from the steady-state condition that T increases

in the same proportion as r. Furthermore, the reduction in the number of curbside parking

spaces associated with a unit increase in throughput, remains constant, Thus, the marginal

social cost equals the marginal travel time cost, which remains constant, plus the cost due

to the increase in the number of garage spaces needed, which is also constant.24

Figure 12, Panel B displays the social optimum at three different levels of demand in-

23In this region, the minimization problem reduces tominT,P ρT+c(rl−P ) subject to r = T/(mt(T, 0, P )).
The first-order condition for T is ρ−λr(1/T−tT /t) = 0 and for P is −c+λrtP /t = 0 where λ is the Lagrange
multiplier on the constraint. Recall that t = t0/(1−T/Vj) = t0Vj/(Vj −T ) where Vj = Ω(1−P/Pmax). The
steady-state condition and the first-order conditions remain satisfied, if, as r increases, T and Vj increase
in the same proportion. t remains the same; the steady-state condition remains satisfied; and t/tT =
(Vj − T ) and t/tP = PmaxVj(Vj − T )/(TΩ) increase in the same proportion as T and Vj , so that the
first-order conditions remain satisfied. Now, Vj increasing in the same proportion as r is equivalent to the
condition that dVj/Vj = dr/r, so that dVj/dr = Vj/r. dVj/dr = (dVj/dP )(dP/dr) = −(Ω/Pmax)dP/dr.
Hence, dP/dr = −VjPmax/(rΩ), which is a constant.

24For the example, when P = 0, r′′ = 6213, and Vj = Ω. Thus, dP/dr = −VjPmax/(r′′Ω) = −Pmax/r′′ =
1.79, which implies that in régime 2 a unit increase in throughput is accompanied by a reduction in the
number of curbside parking spaces of 1.79, and hence an increase in the number of garage spaces of 3.79.
When the stock of curbside parking spaces is so adjusted, the marginal social cost of the marginal traveler
equals his travel cost ($3.17) plus the cost of the extra garage spaces that need to be supplied ($9.48).
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tensity, a low demand intensity social optimum where only curbside parking is optimal, Ofb
1 ,

a medium demand intensity social optimum where a mix of curbside and garage parking

is optimal, Ofb
2 , and a high demand intensity social optimum where only garage parking is

optimal, Ofb
3 . Figure 13 displays how the social optimum changes as a function of demand

intensity in D0-P , P -r, and D0-r space.

Note: Highlighted paths denote optimal regimes.

Figure 13: Regimes in the first-best optimum with both curbside and garage parking

We now turn to decentralization of the social optimum. We assume that garage parking

is provided by the private sector at cost and that there is no congestion tolling in place.

Decentralization of the optimum then requires that the curbside parking fee be set equal to

the difference between the marginal social cost of a trip and the user cost (which equals the

conventional congestion externality cost, as well as the curbside parking externality cost),
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and that the garage parking fee be set equal to the difference between the marginal social cost

of a trip and the user cost, inclusive of the garage parking fee, which equals the congestion

externality cost.

4.2 The second best with both curbside and garage parking

Analysis of second-best pricing and capacity when there is both curbside and garage parking

is complicated by cruising for parking.

4.2.1 The short run with both curbside and garage parking

We consider the short-run situation where no congestion tolling is applied, where curbside

parking is priced below the unit cost of garage parking (which is generally the case in US

cities though apparently not in all of Western Europe), and where the government does

not subsidize garage parking.25 Again, since the government has no policy instruments at

its disposal, the optimization problem is degenerate, and the optimum coincides with the

equilibrium.

When both curbside and garage parking are available, drivers will choose whichever is

cheaper. Thus, the stock of cars cruising for parking adjusts so that the full prices of curbside

and garage parking are equalized: fl + ρCl/P = cl. We term this the full (parking) price

equalization condition. Rearranging, we have that

C = Ĉ ≡ (c− f)
P

ρ
; (18)

thus, when both curbside and garage parking are provided in equilibrium, the stock of cars

25Subsidizing garage parking would reduce cruising for parking when curbside parking is provided but
would result in excessive travel. The second best would entail lowering the garage fee to the point where
the marginal decrease in cruising-for-parking costs were exactly offset by the marginal deadweight due to
excessive travel.
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cruising for parking increases in proportion to the differential between curbside and garage

parking rates and to the amount of curbside parking. This yields the obvious but important

result that cruising for parking can be eliminated by providing no curbside parking.

Figure 14: Equilibria with both curbside and garage parking

Figure 14 is like Figure 4 but adds garage parking. We start by defining two different

short-run full price curves for the same level of curbside parking, P . The first corresponds

to the situation where a driver pays the curbside parking fee but experiences no cruising for

parking, so that the full price of travel is F1 = ρmt(T, 0, P ) + fl. The second corresponds to

the situation where curbside parking is saturated and garage parking occurs, so that there

is cruising for parking with the stock of cars cruising for parking given by (18), so that the

full price of travel is F2 = ρmt(T, Ĉ, P ) + cl (= ρmt(T, Ĉ, P ) + ρCl/P + fl).

Since the stock of cars cruising for parking reduces effective jam density, the second

full price line has a lower rmax. And since garage parking is more expensive than curbside

parking, the second full price line has a higher y-intercept. In the example, the second full

price line lies inside and to the left of the first, but this need not be the case. Now add the

curbside parking capacity constraint of P/l = 1856. To the left of the constraint, parking is
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unsaturated and the stock of cars cruising for parking is zero, so that the first full price line

applies. To the right of the constraint, garage parking is provided, so that the (18) holds

and the second full price line applies. There is also an intermediate régime where curbside

parking is saturated but the stock of cars cruising for parking that clears the market without

garage parking is not suffi ciently large to make the provision of garage parking profitable.

The supply curve, shown as the bold line S in the Figure, contains five portions: (i)

the portion of the second full price line to the right of the parking constraint; (ii) the two

portions of the first full price line to the left of the parking constraint; and (iii) two segments

of the curbside parking capacity constraint, each joining the first and second full price lines.26

On (i), the scarcity rent on curbside parking is zero and there is no cruising for parking;

on (ii) the scarcity rent on curbside parking is cl, and this rent is dissipated by cruising for

parking, given by (18); and on (iii) the scarcity rent on curbside parking is between 0 and cl,

and this rent is dissipated by cruising for parking, with the stock of cars cruising for parking

varying between 0 and Ĉ.

The demand curve in Figure 14 is drawn for D0 = 3300. In this example, there are

five equilibria, one of which, the gridlock equilibrium, cannot be displayed on the diagram.

As expected, these equilibria alternate between stable and unstable. There are three stable

equilibria. One is the gridlock equilibrium, which as before we label E3; the second, E7,

is a hypercongested equilibrium with saturated curbside parking, cruising for parking, and

no garage parking; and the third, E5, is a congested equilibrium with saturated curbside

parking, cruising for parking, and garage parking. How the set of equilibria changes as

demand intensity increases will be considered later.

Figure 15, which is analogous to Figure 5, displays the deadweight losses associated with

the two stable equilibria (other than the gridlock equilibrium). The short-run marginal social

cost curve with the curbside parking capacity constraint P/l = 1856, MSC(r;P ) is given

26If the garage parking fee is increased, first the top segment and then the bottom segment disappear.
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Figure 15: Deadweight losses associated with the two stable equilibria

by the locus AYXO, where O is the short-run social optimum. Notice the discontinuous

increase in the locus at curbside parking capacity, which indicates that the level of curbside

parking is suboptimal. The social surplus at the optimum is given by the area between the

demand and marginal social cost curves up to the first-best optimal level of throughput, rO.

The social surplus at the equilibrium E5 equals consumer surplus plus the curbside park-

ing fee revenue, 0ABC. Thus, the deadweight loss associated with the equilibrium E5 is

given by the area ARE5OXY − 0ABC, which is $8488/hr. The deadweight loss at the

equilibrium E7 is determined analogously and is given by the area ASE7OXY − 0ABC,

which is $26474/hr. The Figure reinforces a point made in discussing Figure 5, that the

deadweight loss due to underpricing curbside parking can be substantial. It also illustrates

another source of possible deadweight loss. If, when demand is first stationary, traffi c is

hypercongested, downtown traffi c may end up at an inferior stable equilibrium. In the ex-

ample, ending up at equilibrium E7 rather than E5 generates additional deadweight loss of

RSE7E5, which in the example equals $17986.

Figure 16 examines the social benefit from increasing the curbside meter rate such that
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Figure 16: Social benefit from increasing the curbside meter rate

the price differential between garage and curbside parking is halved, in the example raising

the parking fee from $1.00 to $1.75/hr. Doing so changes the value of Ĉ. Denote the

corresponding supply curves by S$1 and S$1.75, and the corresponding type-5 equilibria by

E$15 and E$1.755 . The gain in parking meter revenue is given by the area ABJH, while the

gain in consumer surplus equals the area LE$15 E
$1.75
5 K. Thus, in contrast to the previous

section where the gain in social surplus from increasing the meter rate equals the increase

in meter revenue, here the gain in social surplus may be several times the increase in meter

revenue. The marginal burden of curbside parking fee revenue is then negative. In the

previous section, the increase in the meter rate simply converted travel costs dollar for dollar

into meter revenue. Here, the increase in the meter rate converts cruising-for-parking time

costs dollar for dollar into dollar into meter revenue, with the added gain that the decrease

in the stock of cars cruising for parking reduces traffi c congestion, benefiting everyone.

Figure 17 displays a bifurcation diagram, indicating the equilibrium throughputs at each

level of demand intensity with the base-case parameter values. Equilibria of type 4 are

congested, stable, and unsaturated, and correspond to equilibria of type 1 in Figure 4.
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Figure 17: Bifurcation diagram

Equilibria of type 1 occur if the demand curve intersects the curbside parking capacity

constraint below the portion of the supply corresponding to the full price line with garage

parking, and correspond to equilibria of type 1’in Figure 4. With both these equilibrium

types, there is no garage parking. The other equilibrium types are illustrated in Figure 14.

Start at low levels of demand intensity. There is more than enough curbside parking to

accommodate the demand. All three equilibria are unsaturated. E4 is the most effi cient of

the equilibria and is congested; E2 is hypercongested and unstable; and E3 is the gridlock

equilibrium, which is an equilibrium for all levels of demand intensity. As demand intensity

increases, a level is reached at which the effi cient equilibrium becomes saturated, switching

from a type-4 equilibrium to a type-1 equilibrium. There is cruising for parking but not

enough to make garage parking economically viable. For an interval of higher demand

intensities, the type 1 equilibrium coexists with equilibria of types 2 and 3.

As demand intensity increases even further, another level of demand intensity is reached

at which the scarcity rent on curbside parking becomes suffi ciently high to make garage
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parking profitable, and the type 1 equilibrium switches to a type 5 equilibrium, which was

described above, and coexists with equilibria of types 2 and 3. As the level of demand

intensity increases further, another level of demand intensity is reached at which two new

types of equilibria emerge, types 6 and 7. A type 6 equilibrium has both saturated curbside

parking and no garage parking, and is hypercongested and stable. As demand intensity

increases further, another critical level of demand intensity is reached at which the type

2 and type 7 equilibria disappear, leaving only equilibria of types 3, 5, and 6. Finally,

the demand intensity becomes so high that downtown street use can be rationed only with

gridlock.

4.2.2 Second-best optimal capacity with both curbside and garage parking

As in the previous subsection, we work with three régimes. In régime 1 there is only curbside

parking, in régime 2 there is both curbside and garage parking, and in régime 3 there is only

garage parking. As we shall see, the second-best analysis is considerably more complex than

the first-best analysis. The way we shall proceed is, for each D0, to first determine second-

best optimal curbside parking capacity in each of the three régime and then to determine

which of the three régimes is optimal. Subscripts 1, 2, and 3 denote the three régimes.

Start with the analysis of régime 1. We have already solved for second-best optimal

curbside parking capacity when there is only curbside parking, in section 3.2.2. It is second-

best optimal to choose curbside parking capacity such that it is saturated without generating

cruising for parking. Thus, P ∗∗1 = r∗∗1 l and D(UC(r∗∗1 , r
∗∗
1 l) + fl;D0) = r∗∗1 , which gives an

implicit function relating r∗∗1 (and hence P ∗∗1 ) to D0. For the numerical example, these

functions are displayed in Figure 18. Two points are worthy of note. First, for D0 > 4341,

the only equilibrium is the gridlock equilibrium; with only curbside parking, such high levels

of demand require a very high price to ration the demand, which can be achieved only via

gridlock. Second, for a small interval of demand intensities below D0 = 4341, second-best
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throughput and curbside parking capacity falls as demand intensity rises; this corresponds

to the stable, hypercongested equilibrium identified in section 3.2.2.

Note: Highlighted paths denote optimal regimes.

Figure 18: Regimes in the second-best optimum

Turn to régime 2. Now, the second-best curbside capacity analysis of the previous section

must be substantially modified. Expanding curbside parking has four effects. First, curbside

parking revenue increases; second, fewer garage spaces need to be constructed; third, per

(18) the stock of cars cruising for parking increases; and fourth, the amount of road space

for traffi c circulation is reduced. We shall provide two different analyses, the first which is

more intuitive, the second more technical.

Here is the first analysis. Social surplus can be decomposed into consumer surplus,

government surplus, and producer surplus. Since garage parking is priced at cost, there is

no producer surplus, and government surplus is simply the curbside meter revenue. Thus,
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second-best curbside parking capacity is that which maximizes the sum of consumer surplus

and curbside meter revenue.

Note: Please note that the bottom part of the supply curve corresponding
to P + ∆P becomes indistinguishable from the bottom part of the
supply curve corresponding to P in this figure.

Figure 19: The second-best optimal curbside parking capacity with curbside and garage
parking

Figure 19 displays two short-run supply curves, one with curbside parking capacity P ,

S(r, P ), the other with curbside parking capacity P + ∆, S(r, P + ∆P ). The shape of

the supply curves is similar to that shown in Figure 14. The expansion of curbside parking

capacity causes the curbside parking capacity constraint to shift to the right, and the portion

of the supply curve to the right of the curbside parking capacity constraint to shift to the

left. The latter causes equilibrium throughput to fall from rL to rM , resulting in a loss of

consumer surplus of BAML. The increase in curbside parking revenue is given by NGHR.

At an interior optimum of curbside parking capacity, the two areas are equal.

One result follows immediately. There should be no curbside parking when it is provided

free; providing curbside parking reduces consumer surplus with no offsetting increase in curb-
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side parking revenue. Another result is that, with reasonable restrictions on demand27 and

when the second-best level of curbside parking is interior, the second-best level of curbside

parking is decreasing in demand intensity. The social benefit from raising curbside parking

capacity by one unit equals the increase in parking fee revenue,28 lf , independent of demand.

The social cost from raising curbside capacity by one unit equals the loss in consumer surplus,

which is29 lrρm(dt/dP ). As demand intensity rises, equilibrium traffi c congestion worsens.

Due to the convexity of the congestion technology, the loss in travel time from the unit

increase in curbside parking capacity increases with congestion, and hence with the level

of demand intensity. Normally, an increase in demand should be associated with a higher

marginal social cost of curbside parking capacity locus and hence a lower second-best op-

timal level of curbside parking. This can be seen from the diagram. As the demand curve

shifts out, the vertical distance between S(r, P +∆P ) and S(r, P ) increases due to increased

congestion, which will normally cause the area BAML to increase. A related result is that

above some level of demand intensity, no curbside should be allocated to parking.

27We have proved the result with constant demand elasticity less than 4.0.
28Raising curbside parking capacity (P/l) by one unit increases P by l units.
29Consumer surplus is CS =

∫ r
0
MWP (r′, D0)dr

′−MWP (r,D0)r, where r is the equilibrium throughput
and MWP is the marginal willingness to pay. The change in consumer surplus from increasing parking
capacity by one unit is dCS/d(P/l) = l(dCS/dP ) = −lr(dMWP (r,D0)/dP ). Now, at equilibrium, the
marginal willingness to pay equals full price,F = ρmt + cl. Thus, the marginal social cost from raising
curbside parking capacity by one unit equals lrρm(dt/dP ).
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Our second analysis builds on the second-best optimization problem for regime 230

max
r,T,C,P

X(r;D0)− ρ(T + C)− c(rl − P ) (19)

s.t.

r =
T

mt(T,C, P )

r = D(ρmt(T,C, P ) + cl)

C =
(c− f)P

ρ

The maximand is social surplus, which equals social benefit, X(r;D0), minus social cost,

which equals the total cost of time in transit, ρT , plus the total cost of cruising for parking,

ρC, plus garage parking costs, c(rl − P ). The first constraint is the steady-state condition;

the second constraint is that throughput equal the demand for travel when the full price

equals the trip cost of a garage parker; and the third constraint is the full price equalization

condition, that the parking cost of a garage parker equal that for a curbside parker (which

includes cruising for parking), or equivalently that the trip price for a garage parker is the

same as that for a curbside parker.

A solution to this maximization with P < 0 or with P > rl are not economically sensible.

To treat this, we say that régime 2 occurs only over that interval of demand intensities for

which rl > P > 0.

Note first that, for each r, the second constraint determines a unique trip time, which

allows the first constraint to be solved for a unique value of T . Furthermore, an increase in

r requires that t fall, which can be shown to imply that P fall (holding trip time fixed, since

travel is congested, throughput is increased by decreasing the amount of curbside parking,

and hence the stock of cars cruising for parking as well). In this way, we can determine the

30We have defined régime 2 to exist over only the range of demand intensities for which it is second-best
optimal to have both curbside and garage parking. We could alternatively add a fourth constraint to the
second-best maximization problem, that 0 ≤ P ≤ rl, and say that régime 2 is defined for that range of
demand intensities for which this constraint does not bind.
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equilibrium values of T , C, and P as functions of r, T2(r;D0), C2(r;D0), and P2(r;D0), from

which we obtain resource costs as a function of r and D0, RC2(r;D0). dRC2(r;D0)/dr is the

régime 2 long-run marginal social cost curve. The régime 2 second-best optimum occurs at

the point of intersection of the régime 2 long-run marginal social curve and the demand curve,

over that range of demand intensities for which P ∗∗2 (D0) satisfies r∗∗2 (D0)l > P ∗∗2 (D0) > 0.

Figure 18 displays régime 2 second-best optimum as a function of D0. Two points bear

note. First, régime 2 is defined only for an interval of demand, fromD0 = 2980 toD0 = 8369.

Below this interval, the social welfare maximization solution gives P > rl, which corresponds

to its being second-best optimal to provide no garage parking; and above this interval, the

social welfare maximization solution gives P < 0, which corresponds to its being second-best

optimal to provide only garage parking.

Finaly consider régime 3. In this regime, P = 0, and D(UC(r∗∗3 , 0) + cl;D0) = r∗∗3 gives

the implicit function r∗3(D0) relating r∗∗3 to D0. These results are displayed in Figure 18.

We shall now put the pieces together. The most straightforward way to determine the

full second-best optimum is to solve for social surplus as a function of D0 for each of the

three régimes (taking into account that régime 2 is defined over only an interval of D0), and

then for each level of D0 to choose that régime which maximizes social surplus. Figure 18

displays the results, by highlighting the optimal régime for each level of demand intensity.

One result is particularly striking. With the parameters of the numerical example, the

full second-best optimum never entails having both curbside and garage parking; that is,

it is never second-best optimal to operate in régime 2. The intuition is straightforward.

Cruising for parking occurs only in régime 2. The price differential between garage and

curbside parking is suffi ciently large that it generates so much cruising for parking that it is

more effi cient to have either only curbside parking or only garage parking. The second-best

optimum entails only curbside parking (régime 1) up to demand intensity D0 = 4395, and

only garage parking (régime 3) above this level of demand intensity.
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This result illustrates that the underpricing of curbside parking can generate a noncon-

vexity that results in a discontinuity in second-best optimal parking policy. As demand

intensity crosses the critical level of demand intensity, it becomes optimal to switch from

providing as much curbside parking as the street system can sustain (viz., as long as the

demand can be rationed without gridlock occurring) to providing none at all.

The second major result is that, with the parameters of the numerical example, curbside

parking is second-best optimal as long as the street system can sustain it. This result occurs

because of the large cost differential between curbside and garage parking.

The third major result, which is again specific to the parameters of the numerical example,

is that there is no level of demand intensity for which it is second-best optimal to have parking

on both sides of the street (which corresponds to P = 7424). The reason is that with so

much curbside parking the street system cannot accommodate the traffi c flow that would

be needed to keep the curbside parking saturated, and gridlock becomes the only means to

ration the demand.

We have assumed that garage parking is provided by the private sector at cost. The

second-best optimum would be the same if garage parking were provided by the public

sector at cost. But it would be different if garage parking were subsidized. Start with the

situation where garage parking fee is set equal to the curbside meter rate. The second-best

optimal amount of curbside parking would be such that social surplus would be unchanged if

one more curbside parking space were provided. This would result in more congested travel,

hence a higher trip price, and hence reduced throughput, but also a reduction in the number

of garage spaces that would need to be provided. From a different perspective, the fall in

consumer surplus would be exactly offset by the increase in government revenue —a rise in

the revenue from curbside fees and a fall in the subsidy to garage parking. The underpricing

of parking would give rise to excessive travel, associated with which would be a deadweight

loss. Reducing the garage parking subsidy would reduce the size of this source of deadweight
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loss, but would introduce another source of deadweight loss — cruising for parking. The

second best would involve minimizing the sum of these two deadweight losses.

4.3 Comparison of first- and second-best optimal capacities

In the previous section, we showed that, when there is only curbside parking, second-best

capacity exceeds first-best capacity when curbside parking is underpriced, and falls short of

it when parking is overpriced. Furthermore, the second best never entails curbside parking

being saturated without cruising for parking. When both curbside and garage parking may

be provided, the results are considerably more complex. Since obtaining general results

appears diffi cult, we shall focus on the numerical example.

Figure 20 plots first- and second-best curbside parking capacity, as a function of demand

intensity. All three régimes are present in the first best. For low levels of demand intensity,

up to D0 = 4878, it is effi cient to provide only curbside parking; for intermediate levels

of demand intensity, between D0 = 4878 and D0 = 10321, it is effi cient to have both

curbside and garage parking, with the amount of curbside parking declining monotonically

with demand intensity; and for high levels of demand intensity, above D0 = 10321, it is

effi cient to have only garage parking. In the second best, in contrast, régime 2, with both

curbside and garage parking, is second-best effi cient for no interval of demand intensity.

Cruising for parking occurs only in régime 2, and, with the parameters of the numerical

example, generates cruising-for-parking costs that make operation in régime 2 too costly for

it to be second-best effi cient. Only curbside parking is provided for demand intensities up

to D0 = 4395, and above that no curbside parking is provided.

Several other points bear note. First, the curbside parking fee of $1/hr results in the

overpricing of curbside parking for demand intensities below 3454, so that over this interval

second-best curbside parking capacity falls short of the first-best level; while for levels of

demand intensity between 3454 and 4395, curbside parking is underpriced, so that second-
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Figure 20: Comparison of the first-best and the second-best optima

best curbside parking capacity exceeds the first-best level. Second, in the interval of demand

intensities between 4395 and 4878, only curbside parking is provided in the first best and

only garage parking in the second best. The reason is that it is effi cient for the planner

to respond to the underpricing of curbside parking by expanding curbside parking capacity

so that no cruising for parking occurs, which reduces throughput. Third, it is effi cient to

eliminate curbside parking for a larger interval of demand intensities in the second best than

in the first best.

Figure xxxx displays the deadweight loss per ml2-hr from underpricing curbside parking,

as a function of demand intensity. It starts at zero with zero demand intensity, rises to a

maximum per unit throughput of xxxx at a demand intensity of xxxx, and to an aggregate

maximum of xxxx at a demand intensity of xxxx, and then declines to zero for high demand

intensities for which only garage parking is provided.

It would be imprudent to generalize from a specific numerical example. Nevertheless,

the numerical example does illustrate some general policy insights. First, for high levels of

demand intensity, it is ineffi cient to provide curbside parking. The reason is that the social

value of road space is higher for traffi c flow than for curbside parking. This important yet
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rather obvious insight is applied in practice. In congested cities, curbside parking is virtu-

ally never provided along major arterial roads during peak periods. Second, underpricing

curbside parking can introduce considerable distortion, even when the amount of curbside

parking is optimized. In our numerical example, the maximum distortion was $xxxx per

unit throughput. Furthermore, holding fixed demand intensity, deadweight loss is a convex

function of the extent of underpricing. From an alternative perspective, raising curbside

meter rates may generate effi ciency gains that are several times the increased curbside meter

revenue generated.

Underpricing curbside parking makes it considerably more diffi cult to determine optimal

curbside parking capacity. Our model abstracted from many important aspects of curbside

parking —variation in demand over time and space, and user heterogeneity in trip distance,

value of time, parking duration, curbside parking time limits, and stochasticity —and pro-

vided a very simplified treatment of garage parking. Yet even in our model the determination

of second-best policy was challenging. In our model, underpricing curbside parking is always

dysfunctional in the sense of lowering social surplus, and often dysfunctional in the sense of

lowering consumer surplus as well. In our analysis, we have deliberately ignored a potentially

valuable, second-best policy tool —the subsidization of garage parking by the public author-

ity. In practice, much garage parking is subsidized privately, through employer-provided

subsidized or free parking, and parking validation for shopping.

5 Stability Analysis

Arnott and Inci (2010) provided a thorough stability analysis of equilibria in a variant of

the model presented above with only curbside parking. In this section, we extend their

analysis to investigate the stability of equilibria when both curbside and garage parking are

present, and when only garage parking is present. Stability analysis of traffi c congestion

has proved diffi cult since it requires solving for the out-of-equilibrium dynamics of traffi c
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flow over time and space. The treatment of downtown as isotropic simplifies the analysis

considerably since at any point in time traffi c flow is the same throughout the downtown area;

the analysis then entails solving ordinary rather than partial differential equations. Arnott

and Inci further simplified the problem by making some special assumptions31 that render

the differential equation system autonomous (time does not enter the analysis explicitly),

which permits phase-plane/state-space analysis. The arrows give the direction of motion,

under the assumption that drivers decide whether to travel based on myopic expectations

(more precisely, the entry rate at time t is assumed to depend on the perceived full price of

a trip, which depends only on traffi c conditions at time t.

We first introduce a new piece of notation to facilitate geometric presentation of the

stability analyis in 2D space. We define

R =

 C for R ≥ 0

Q− P for R ≤ 0 ,
(20)

where Q is the stock of occupied curbside parking spaces. In words, when R is positive, which

corresponds to saturated curbside parking, it equals the stock of cars cruising for parking,

and when R is negative, which corresponds to unsaturated curbside parking, it equals minus

the stock of unoccupied curbside parking spaces. This allows us to depict the transition

between saturated and unsaturated parking in a single phase plane. As R increases from

being negative to being positive, the stock of unoccupied curbside parking spaces shrinks,

until at R = 0 parking is saturated with no cruising for parking, and then remains saturated

with the stock of cars cruising for parking increasing.

Figure 21 displays the stability analysis with only curbside parking for the base case

31They assume that trip lengths are negative exponentially distributed, which implies that the exit rate
from the in-transit pool at time t depends only on the stock of cars in transit and cruising for parking at
that point in time, and not on the history of congestion. They also assume that visit durations are negative
exponentially distributed, which implies that the exit rate from curbside parking depends only on the amount
of curbside parking.
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Figure 21: Transient dynamics of downtown traffi c when there is only curbside parking

level of curbside parking, P = 3712, and for the demand intensity indicated by D2 = 3000

in Figure 4. The state of the system is characterized by T and R, with T on the horizontal

axis and R on the vertical axis. Above R = 0, parking is saturated and there is cruising for

parking, and below R = 0 parking is unsaturated and there are unoccupied curbside parking

spaces. The arrows indicate the direction of motion of the two state variables. Three loci

are displayed in T -R space. The first, the dashed line, is the jam density line; combinations

of T and R to the right of the line are infeasible.

The second locus is the Ṙ = 0 locus. For R ≥ 0, the locus corresponds to the cruising-

for-parking equilibrium condition Ċ = 0 = T/(mt(T,C, P ))− P/l, along which the stock of

cars cruising for parking remains unchanged; below this locus, the stock of cars cruising for

parking is increasing, and above it the stock is decreasing. For R ≤ 0, the locus corresponds

to Q̇ = 0 = T/(mt(T,C, P ))−Q/l; below this locus, the stock of occupied curbside parking

spaces is increasing, and above it the stock is decreasing.

The third locus is the steady-state condition that Ṫ = 0 = D(F ) − T/(mt(T,C, P )) =

D (ρmt(T,C, P )) + ρCl/P + fl) − T/(mt(T,C, P )). When curbside parking is saturated,
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the Ṫ = 0 locus is a curve in T -C space, above which the stock of cars in-transit is increasing

and below which it is decreasing. When curbside parking is unsaturated, C = 0, the Ṫ = 0

corresponds to those levels of T for which the stock of cars in transit remains unchanged.

There are three such levels of T , all corresponding to points of intersection of the unsaturated

user cost curve, shifted up by the curbside parking fee, and the demand curve. The one

furthest to the left corresponds to the the upward-sloping portion of the user cost curve,

the middle one to the backward-bending portion of the curve, and the one on the right to

gridlock. The stock of cars in transit is increasing for T lower than the T furthest to the left

and between the middle T and the gridlock T , and is decreasing between the T furthest to

the left and the middle T .

Consistent with Figure 4, there are three equilibria. The equilibrium E1 in Figure 21

corresponds to the equilibrium E ′1 in Figure 4, and is saturated, stable, and congested. The

equilibriumE2 in Figure 21 corresponds to the equilibriumE ′2 in Figure 4, and is unsaturated,

stable, and hypercongested. The equilibrium E3 in Figure 21 corresponds to the gridlock

equilibrium, which cannot be displayed in Figure 4.

In the remainder of the section we show the stability analysis can be adapted to the situ-

ation with both curbside and garage parking, and then apply the adapted stability analysis

to determine the stability of the equilibria analyzed in section 4.

In the analysis of section 4, since the curbside parking fee is lower than the garage parking

fee, garage parking occurs only when curbside parking is saturated. Thus, allowing for garage

parking does not affect the stability analysis when curbside parking is unsaturated, and hence

the portion of the phase plane with negative R. The addition of garage parking adds the

full price equalization condition that R ≤ Ĉ = (c− f)P/ρ. When R < Ĉ, curbside parking

is cheaper than garage parking so that no one parks in a garage, and the stability analysis

of Figure 21 continues to apply. When R > Ĉ, however, the stability analysis of Figure 21

needs to be modified. If R > Ĉ, garage parking is cheaper than curbside parking. We assume
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that when this occurs the number of cars cruising for parking falls instantaneously such that

R = Ĉ is satisfied. Thus, above C = Ĉ, the direction of motion is vertically downward.

Otherwise, the direction of motion in the phase plane is unchanged.

Figure 22: Transient dynamics of downtown traffi c when there are curbside and garage
parking
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Figure 22 portrays the phase plane for six different levels of demand intensity. Recall

that an increase in demand intensity has no effect on the Ṙ = 0 but causes the Ṫ = 0

locus to shift downward. Start with Panel A, which has the lowest level of demand intensity.

Qualitatively, this corresponds to the situation shown in Figure 4 with demand intensity D1.

All three curbside parking equilbria are unsaturated, so that there is no demand for garage

parking. Turn next to Panel B, with the next lowest level of demand intensity. Qualitatively,

this panel corresponds to the situation shown in Figure 4 with demand intensity D2. The

equilibrium corresponding to E ′1 in that figure is saturated. Cruising for parking occurs, but

the stock of cars cruising for parking is not suffi cient to make the provision of garage parking

profitable. In Panel B, this corresponds to the equilibrium E1 lying below the R = Ĉ locus.

Now turn to Panel C. The demand intensity is the same as that used in the construction

of Figure 21. Thus, comparison of Panel C, Figure 22, and Figure 21 shows how admitting

garage parking alters the equilibria of Figure 21. Now the stock of cars cruising for parking

in equilibrium E ′1 in Figure 4 is suffi ciently high to make garage parking profitable. Garage

parking is provided, and the equilibrium E ′1 in Figure 4 is replaced by the equilibrium with

the same qualitative properties as E5 in Figure 14, which is saturated, stable, and congested.

The other two equilibria remain unsaturated.

In Panel D, demand intensity is close to that for the demand curve drawn in Figure 14

so that the equilibria are qualitatively the same. There are now five equilibria. In the stable,

congested equilibrium E5, garage parking is provided and curbside parking is saturated.

In the unstable, hypercongested equilibrium E6, garage parking is provided and curbside

parking is saturated. In the stable, hypercongested equilibrium E7, curbside parking is

saturated but the stock of cars cruising for parking is insuffi cient for garage parking to be

profitable. In the unstable, hypercongested equilibrium E2, curbside parking is unsaturated.

Finally, there is the gridlock equilibrium. Panel E corresponds to Figure 14 but with a

higher level of demand intensity such that the equilibria E7 and E2 disappear. Panel F

corresponds to Figure 14 with an even higher level of demand intensity such that only the
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gridlock equilibrium remains. Thus, the stability analysis of Figure 22 confirms the stability

properties of the various equilibria asserted in the bifurcation diagram of Figure 17.

The above discussion has been mechanical. It will be useful to provide some intuition,

which can be done by describing the process of adjustment along three sample trajectories

in Panel D. Let us start with a situation in which downtown is empty. Then the demand

is turned on at the demand intensity D0 = 3330, and remains at that level forever. Cars

start entering the city streets, traffi c density builds, and an increasing number of curbside

parking spaces become occupied.32 With unsaturated parking, the trajectory lies between

the Ṙ = 0 and Ṫ = 0 loci. In due course, parking becomes saturated and cruising for parking

commences. The stock of cars in-transit and cruising for parking continue to increase, which

corresponds to the trajectory continuing to lie between the Ṙ = 0 and Ṫ = 0 loci, but now

with saturated parking and cruising for parking. In due course, the stock of cars stock of cars

cruising for parking becomes suffi ciently large that it becomes profitable for garage parking

to be provided. The stock of cars in transit continues to increase and the stock of garage

parking spaces to be expanded until the equilibrium E5 is reached.33

Consider the unstable equilibrium E6. Since the equilibrium is saddlepoint stable, its

stable arms are the boundary between E5 and E7’s zones of attraction. Start slightly to the

left of E6 on R = Ĉ. There is both curbside and garage parking, and cruising for parking

satisfies the full price equalization condition, which continues to be satisfied throughout the

adjustment process. The stock of cars in transit is slightly lower than at E6. Turn to Figure

14, which describes the same situation as Panel D, but in another space. On the demand side,

a stock of cars in transit slightly below that at E6 results in the trip price being somewhat

lower than at E6 and the entry rate therefore being somewhat higher.

32Recall that the adjustment process assumes, first, that trip lengths are negative exponentially distributed
with mean m, so that parking spaces start becoming occupied as soon as there is traffi c on the road, and,
second, that the entry rate at time t depends upon the stock of cars in transit and cruising for parking at
that point in time.

33This adjustment process ignores the durability of garage parking spaces.
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On the supply side, because traffi c is hypercongested, the lower stock of cars in transit

implies a higher exit rate (throughput). Because the demand curve is steeper than the supply

curve at E6, the quantity of trips supplied is higher than at E6 by more than the quantity

of trips demanded, which results in a fall in the stock of cars in transit. In due course,

the reduction in the stock of cars in transit becomes suffi ciently large that travel becomes

congested, and continued reductions in the stock of cars in transit causes throughput to fall,

while the quantity of trips demanded continues to rise. This eventually results in achievement

of the stable equilibrium at E5.

The story is similar if the starting point is slightly to the right of E6 in Figure 22, Panel

D. The initial stock of cars in transit is slightly higher than at E6. On the demand side, a

stock of cars in transit slightly above that at E6 results in the trip price being somewhat

higher than at E6, and the entry rate therefore being somewhat lower. On the supply side,

because traffi c is hypercongested, the higher stock of cars in transit implies a lower exit rate.

Because the demand curve is steeper than the supply curve, the quantity of trips supplied is

lower than at E6 by more than the quantity of trips demanded, which results in an increase

in the stock of cars in transit, and traffi c become increasingly hypercongested. The reduced

throughput causes a reduced demand for garage parking and eventually zero demand.

6 Concluding Remarks

This paper provides a diagrammatic analysis of downtown parking and traffi c congestion

policy. Diagrammatic analysis is insightful since it draws on geometric intuition, but it

can only go so far. The above analysis omits a number of important considerations, which

cannot be easily handled via diagrammatic analysis. First, households are assumed to be

identical, but of course driver heterogeneity is important. Arnott and Rowse (2011) explore

how drivers who differ in their visit durations and values of the time sort themselves between

curbside and garage parking, and how, when drivers differ, curbside parking time limits can
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be used to reduce cruising for parking.

Second, only steady-state equilibria are explored but the demand for parking spaces

varies systematically over the course of the day. Ideally the meter rate would be adjusted

over the day to clear the market for curbside parking. However, most cities apply single-

step curbside parking fees, in which the curbside parking fee is fixed over the business day

and free at other times, with the result that cruising for parking occurs during peak hours.

Third, mass transit is ignored. Via the Envelope Theorem, our analysis carries through if

mass transit is organized effi ciently, treated implicitly in the demand function. But if mass

transit is not organized effi ciently, welfare analysis should take into account how parking

policy affects the deadweight losses in the mass transit market.

Fourth, our analysis assumes that garage parking is supplied and priced at constant

cost. Extending the analysis to treat an upward-sloping supply curve for garage parking

is straightforward, but extending it to treat spatial competition between garage parking

operators is not. The spatial competition model presented in Arnott (2006) and Arnott

and Rowse (2009) is coherent but its behavior is likely unrealistic since it ignores capacity

constraints. The market power exercised by garage parking operators is likely suffi ciently

important that it should be explicitly treated in the analysis of downtown parking policy.

Fifth, the analysis assumes downtown to be isotropic, but of course spatial variation in

parking policy reflecting spatial variation in traffi c is important; resident parking regulation

in residential neighborhoods is one example.34

Sixth, our analysis pays no attention to land use, except for the allocation of exogenous

road space to parking. This may be a reasonable short-run assumption in the context

of downtown traffi c congestion, but over longer periods the allocation of downtown space

to roads is an important aspect of downtown traffi c policy, and the effects of downtown

parking policy on land use both inside and outside the downtown area may be significant.

34For reasons explained earlier, treating spatial variation analytically is likely to prove intractable. In
policy analysis it can be treated by employing a downtown traffi c and parking microsimlutor, such as VISSIM.
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Seventh, our models ignore two important aspects of downtown parking, heavily subsidized

employer-provided parking35 and minimum parking requirements. These may be treated as

exogenous in a model of downtown parking, and better yet should be derived as properties

of equilibrium. Hasker and Inci (2011) obtains minimum parking requirements as a property

of an equilibrium in the context of shopping mall parking.

Eighth, our analysis assumes that downtown traffi c congestion is appropriately modeled

using classic traffi c flow theory, which was developed from freeway traffi c. One alternative

is to model congestion using intersection queuing theory. Another is to employ a traffi c and

parking microsimulator. Ninth, much of our second-best analysis takes the underpricing of

curbside parking to be an exogenous distortion. This can reasonably be challenged since

typically the downtown parking authority determines both meter rates and the allocation

of curbside to parking. Also, there seems to widespread agreement that downtown curbside

parking is underpriced due to lobbying by downtown merchant associations, who argue that

it is needed to compete with free suburban shopping center parking and to keep downtown

vital. If this is correct, then parking policy should be evaluated either taking these objectives

into account or taking them into account via political economy constraints.
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