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Abstract

Zipf’s law is one of the best-known empirical regularities of the city-
size distribution. There is extensive research on the subject, where each
city is treated symmetrically in terms of the cost of transactions with other
cities. Recent developments in network theory facilitate the examination
of an asymmetric transport network. Under the scale-free transport net-
work framework, the chance of observing extremes becomes higher than
the Gaussian distribution predicts and therefore it explains the emergence
of large clusters. City-size distributions share the same pattern. This pa-
per proposes a way to incorporate network structure into urban economic
models and explains the city-size distribution as a result of transport cost
between cities.
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1 Introduction

1.1 Cities on a Network

The transaction pattern between any two cities affects both the way cities are
populated and the overall city-size distribution. In reality, cities are tied to-
gether in various ways both topologically and economically. Some cities func-
tion as an intersection of major transportation routes and they trade and pro-
cess commodities frequently in large volume. Others are less active in the
interurban exchange of commodities. Differences among cities in terms of
exchange patterns reverberate in the city-size distribution. Cities heavily in-
terrelated to lots of other cities are likely to grow because they undertake
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lots of economic activities, whereas cities with sparse connections to a limited
number of cities are liable to remain small in size.

When we think through intercity exchange patterns, we can represent cities
by a set of vertices and the transport network by edges. Thus, networy theory
is important when constructing a model of cities in the national economy.

The recent seminal work by Barabási and Albert [BA99] has revitalized net-
work theory. Classical network theory pioneered by Erdős and Rényi [ER59]’s
model (ER network) cannot explain the emergence of a cluster or hub in a
network, which we usually observe in most real networks. In a classic ran-
dom graph, each node is linked with an equal probability to any other and
lacks distinctiveness, for the number of pre-existing links does not matter in
forming a network. Barabási and Albert (BA) add a dynamic feature and pref-
erential attachment to the classical random graph model so that the nodes are
no longer identical. Some nodes gather lots of links while others are wired to
just a few. The model has been applied to many fields, including the emer-
gence of web science, and has produced an improved description of the orga-
nization and development of networks. Most real-world networks have one
thing in common: the resulting distributions of links are scale-invariant, that
is, the distributions have fat tails. We can find nodes with an extremely large
numbers of links rather easily with these networks compared with classical
random graph theory.

The city-size distribution shares the same pattern of scale invariance: The
distribution of the 100 largest cities follows the same distribution as the one
for 1000 largest cities and so on, a property known as a power law. We will
come back to the fat-tail nature of the city size in Section 1.3. In the mean
time, the immediate question at hand is: "Which type of network explains the
city-size distribution?" We expect that the degree (the number of links each
node has) of a city is positively related to its population. And for that reason,
we imagine that the economy is based on a BA network rather than an ER
network. This turns out to be right, but selection of the appropriate network
structure depends on exactly how node degree is related to city size. We
decode their relation in Section 3.7.

Urban economic application of network theory is in its very early stage of
development and there is much room for advancement. Interaction between
individual cities has not caught much attention so far. Duranton [Dur05], for
example, provides a precise description of the way commodities are produced
and distributed, whereas transportation cost is not assumed to depend on the
location of a city in its commodity transport network. In contrast, transaction
and/or communication between hub cities is much easier than that of cities
on peripheries. Our goal in this paper is to bring to the fore the interaction
between transportation network structure and the city-size distribution. To
address this, we attempt to introduce (asymptotic) techniques from network
theory and merge them with a tractable economic model in a new way. We do
not intend this work to be the last word on this topic, but merely a suggestion
of a first step in a bigger research program.

1.2 Some Transportation Networks Are Scale Free

The United States has seen a number of changes in the mode of transporta-
tion over the 20th century. At the turn of the century, we saw trains before the

2



A Scale-Free Transportation Network Explains the City-Size Distribution

introduction of affordable trucks and the highly organized interstate highway
system, which has been partially supplanted by emerging low-budget airline
companies now. Figure 1 shows a simplified U.S. interstate system on the left
and a typical airline flight system map on the right. The existing literature
on the city-size distribution usually does not investigate the structure of an
underlying network in which economic activities take place. An organiza-
tional pattern generated and developed among cities connected by transport
links or network edges is, in the existing literature, not thought to be included
in conventional forces (positive and negative externalities) that serve a sig-
nificant role in determining the city-size distribution. Apparently a network
composed of interstates does not share its structure with that of airlines at
all. There is not much variance in degree in the Interstate network, whereas
the airline network has a limited number of highly connected cities. The BA
network explains the latter network better, as it follows a power law.

Figure 1. The U.S. interstate state system (left) and the U.S. airline system (right).
Source: Barabási and Bonabeau [BB03].

It should be noted, however, that what is geographically visible may not
represent the actual network that the economy relies on at work. The inter-
state highway network, for example, exhibits an ER-network type topology.
Nonetheless, the economy may operate a transportation network of a scale-
free class on it. Shipment from Memphis has to go through St. Louis even if its
final destination is Chicago, where the shipments from Memphis, as well as
shipments from St. Louis and Kansas City, are processed. In this case, Mem-
phis is connected to Chicago. It looks like Memphis is connected to St. Louis,
but that is a mere geographical representation of the visible, physical network.
An economically relevant network is buried beneath the easily noticeable sur-
face network.

1.3 City-Size Distribution Is Scale Free Too

As we mentioned earlier, the city-size distribution has a distinct feature. Fig-
ure 2 plots the frequency of the city-size distribution from U.S. Census 2000.
It is only when we take the log of population that the distribution exhibits re-
semblance to a Gaussian distribution. We can see the chance of the extremes
is high.

The fat-tailed distribution also makes its appearance on a map. Figure 3
illustrates the population density of each metropolitan statistical area in the
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Figure 2. Frequency plot of the city-size distribution. Data source: U.S. Census 2000.

Figure 3. Population density by MSA. Data source: Census 2000.

United States in 2000. Most of the cities have a low density and are painted
in blue; there are only few cities that are green and only two cities are colored
in red. If the city-size distribution followed a Gaussian distribution, most of
the cities should be green or its neighboring colors, and only a few should be
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painted in blue or red. In reality, a few large cities take up the lion’s share of
urban population and the majority of cities are left in blue.

Our main findings are as follows. City sizes are positively related to their
degree. A city with a high degree has good accessibility to other cities. Re-
duced transportation cost makes a city’s product inexpensive and stimulates
a large demand. As a consequence, the city creates large-scale employment.
However, a marginal increase in degree contributes less to the city size as the
degree increases. If a city is well-connected, then adding new link to the city
will not increase accessibility much because the city is readily accessible from
other cities through existing links.

We test implications of our model using US data. The BA network leads to
a result comparable to existing models, whereas the ER network fails to repli-
cate the empirical city-size distribution. This confirms that the BA transport
network is more consistent with reality.

The rest of the paper is organized as follows. In Section 2, we will go over
two types of network structures mentioned above as a preamble to the next
section. In Section 3 we introduce and develop a model of spatial equilibrium
with a transportation network woven into it. Particularly, in Section 3.7, we
connect the network structure to the city-size distribution. In Section 4, we
verify the prediction of our model using three kinds of data sets before we
draw conclusions from our research in Section 5.

2 Preliminaries

As a reminder, we will briefly review how ER and BA networks are built and
examine the qualitative differences in terms of their degree distributions.

2.1 ER Networks

The ER network is the simplest random graph of all. A pair of nodes are
connected with a fixed connection probability q. Two special degenerate cases,
where q = 0 or 1 is called a completely isolated graph and a complete graph,
respectively. These are the networks most commonly assumed in the literature
on city-size distributions.

The degree distribution of an ER network follows the Poisson distribution
(see Appendix A.1 for details). An important feature is that the degree distri-
bution is concentrated around its mean and we rarely observe a city with an
exceedingly large degree. All pairs of nodes share the same connection prob-
ability, which leads to a small variance, and the network is egalitarian in that
sense.

2.2 BA Networks

As we mentioned in the Introduction, the degree distribution of most real net-
work structures does not follow the Poisson distribution. Rather, it follows
a power law. This class of networks is called scale free. There are a number
of proposed generative models that lead to power-law degree distributions
(See Section VII of Albert and Barabási [AB02] for review). To get a feeling
for how the power-law type behavior emerges, we review a BA model [BA99]
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as an example. Two major characteristics of BA model is growth and prefer-
ential attachment. The model starts with a complete graph of x0 nodes. A
node with x(≤ x0) edges will be added sequentially to the existing network
(growth). The entering node connects to an existing node with a probabil-
ity proportional to its current degree (preferential attachment). In particular,
the probability that node i wins a new edge is ki/

∑J
j k j , where ki counts the

number of edges of node i.
As we can see from this mechanism, in general, older nodes are likely to

gain an excessively large number of edges. The rich get richer because they
are already rich. The rest of the nodes are merely mediocre in terms of degree.
They are poor because they are already poor. This type of variance in degree
barely arises with ER network. Compare the example networks in Figure
4. BA network is not egalitarian, as connection probability depends on the
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Figure 4. Networks with 30 nodes and 57 edges. The number in a node marks its
degree. We see that BA network exhibits a closer resemblance to Figure 3 than ER
network and we expect that the BA network explains the city-size distribution better.
This conjecture will be validated as we will see later.

number of acquired edges, which is path dependent. The BA model predicts
the Pareto exponent to be α = 3 at the stationary state, which is consistent
with the majority of real networks (α= 2 to 3).
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3 The Model

We propose a model where the trading costs of commodities among cities are
explicitly specified. The city-size distribution is derived as a result of gains
from trade and the underlying transport network configuration.

3.1 Location-Specific Commodities

In what follows, a superscript denotes a city of production or origin, whereas
a subscript denotes a city of consumption or destination. There are J cities in
the economy, with each indexed by j. The endogenous population of city j is
given by s j and in total, there are

J∑

j=1

s j = S (1)

households in the economy. Each household supplies a unit of labor inelas-
tically. City j produces consumption commodity c j in a competitive environ-
ment. We assume that technology exhibits constant returns to scale and that
one unit of labor produces one unit of commodity.

The delivered price of commodity j in city i is denoted by p j
i . The value of

marginal product p j
j · 1 coincides with the local wage w j in equilibrium:1

p j
j = w j (2)

Consumer preferences are represented by a Cobb-Douglas utility function
of the form u(ci) =

1
J

∑J
j=1 log(c j

i ). The set of consumption bundles is con-

strained by the budget w i ≥
∑J

j=1 p j
i c

j
i .

3.2 Network Infrastructure and Delivered Price

The economy has a network infrastructure Γ = (V, B), where V = {1, · · · , J}
denotes the set of vertices representing each city and B ⊆ V × V denotes a
set of edges. We assume that the network is unipartite (i.e., there is a path
between any pair of nodes) to avoid multiple equilibria. While consumers in
city j can consume any commodity in the economy, they have to incur an extra
iceberg transport cost to consume commodities brought in from other cities.
Transportation cost piles up as a commodity travels from city to city along the
path. To describe the exact transport cost structure, let us define a metric on
V × V . A metric l i

j : V × V → R+ measures a geodesic length (the shortest path
length) between node i and j. Delivered price of commodity j shipped to city
i is given by

p j
i = τ

l j
i p j

j , (3)

where τ(≥ 1) marks the iceberg transportation parameter. If you dispatch τ
units of commodity to your neighboring city, one unit of it will be delivered
and the rest melts en route. The delivered price snowballs as the package
travels from one city to another and the initial mill price is inflated by τl i

j by
the time the package reaches its final destination.

1Note that p j
j denotes the mill price.
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3.3 Equilibrium

Simple calculations yield the Marshallian demand for commodity c j
i :

ϕ
j
i (p

1
i , · · · , pJ

i , w i) = w i(τl j
i p j

j)
−1J−1.

The aggregate demand for commodity j is the sum of demand from all the
cities in the country: C j(p, w) =

∑
i∈V siϕ

j
i (·). 2 Recalling that each household

supplies one unit of labor inelastically and one unit of labor produces one unit
of output, the commodity market j clears when

s j = C j(p, w) =
�

p j
j

�−1
J−1
∑

i∈V

siw
i (4)

The indirect utility function is given by

v(p1
i , · · · , pJ

i , w i) = 1
J

∑J
j=1 logϕ j

i (·)
= log w i − log J − 1

J

∑
j∈V log p j

j − ai logτ,

where

ai =
1

J

J∑

j=1

l j
i (5)

measures accessibility of city i normalized by system size. Note that since ai
counts the number of edges that must be travelled to reach each and every city
from city i, the smaller the value, the better the accessibility. We will explore
the role of accessibility later.

Free mobility of consumers implies

v(p1
i , · · · , pJ

i , w i) = v(p1
j , · · · , pJ

j , w j) (6)

for all i, j ∈ V in equilibrium.
The equilibrium (s1, · · · , sJ ; p1

1, · · · , pJ
J ; w1, · · · , wJ ) satisfies (1), (2), (4) and

(6). Utility equalization (6) leads to

log pi
i − log p j

j = (ai − a j) logτ. (7)

Equation (7), together with (4), implies s j = τai−a j si . With the population
condition (1), we obtain the city-size distribution

si =
S

τai
∑

j∈V τ
−a j

. (8)

2 This expression may seem incredulous at first, for it does not include τ. A large τ discourages
demand but it also means that firms have to ship more commodities. A large portion of shipment
will melt on its way. They cancel each other in equilibrium. This propitious cancellation may not
occur with other preference specifications.
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3.4 How Does a Network Break Symmetry?

It is immediately obvious that the better the accessibility of a city is, the larger
the city population will be. Naturally, we are tempted to conclude that the
entire population will collapse into the city with the best accessibility and the
rest of the cities will be completely vacated. As it turns out, this is not the case.
The city-size distribution will not become degenerate. Let us break down (8)
both mathematically and economically to see why.

First, let us recast the relationship (8) to explore how accessibility trans-
lates to the population of a city. We can rewrite (8) as s(ai) = ŝτ−ai/τ−a, where
ŝ := S/J is a base city size (the size of the city if the city-size distribution were
uniform) and τ−a :=

∑
j τ
−a j/J gives the average of t−a j . In what follows x

denotes the average of a variable x . The city size spreads around the canonical
size ŝ. A better accessibility (i.e., small ai) contributes to the city by augment-
ing the baseline size ŝ by a factor of τ−ai/τ−a. The multiplier is large when
τ−ai is greater than the national average τ−a and vice versa. Put differently,
there is a semi-log-linear relationship between size and accessibility:

log s(ai) = log ŝ− ai logτ− logτ−a,

as can be seen in Figure 5(a). Furthermore, the multiplier grows more than pro-
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Figure 5. City-szie distributions based on a scale-free network of J = 100 cities.

portionally as accessibility improves (i.e., ai gets smaller), for τ−ai is monotone
decreasing and convex in ai (we will prove convexity in Proposition 3.1). Does
this mean New York City sweeps away all the population off the rest of the
cities? — Not really. And it calls for an economic exposition of (8).

Although restricted accessibility of a city raises its delivered prices, de-
mand for its produced commodity does not cease to exist. Eliminating a com-
modity from the basket will cost consumers a lot. They appreciate variety and
missing a single variety will push the utility level down to negative infinity.
Workers in a poorly connected city will have to pay a high price for imported
commodities due to a poor network infrastructure, but they are compensated
by a high nominal wage, as indicated by the wage (2) and utility equalization
(7). These two equations imply that the mill price (and ultimately, the nominal

9



A Scale-Free Transportation Network Explains the City-Size Distribution

wage) is positively related to the accessibility parameter in equilibrium, i.e.,
a sparsely connected city has a high mill price. The prices adjust to make it
worth living in cities like St. Louis in equilibrium. The scale of local produc-
tion is small, but each commodity is sold high to make up for increased cost
of living due to costly transport.

Variance in city sizes is solely due to the structure of network. The above-
mentioned trade-off entails two counteracting forces. One force is the trans-
port network, which tends to spread out the city-size distribution. The oppos-
ing force is preference for variety, which tends to push the distribution back
to a uniform distribution. Obviously, this trade-off disappears and there will
be no variance in city sizes if the first force is removed. This can happen when
shipment becomes costless (to be discussed in Proposition 3.1) or network
structure becomes redundant (to be discussed next).

Before we throw a couple of asymmetric networks int0 (8), let us consider
how our model compares to the existing models. In most urban models, net-
work structures take simple forms. The assumed structure (be it explicitly
stated or not) is either a complete graph or a completely isolated graph. The
New Economic Geography engages a complete graph as its transport struc-
ture whereas others (for example Eeckhout [Eec04]) use a completely isolated
graph. These symmetric networks lead to the uniform distribution of city
sizes because all the vertices hold the same accessibility value. commodities.
Although we introduced a location-specific technology, commodities are sym-
metric.. Technology is linear everywhere and consumer preferences are identi-
cal and they put the same weight on each commodity. If we take the network
structure out of the equation, the resulting city-size distribution is uniform
and all the cities share the same size ŝ and every household consumes an
equal amount of all the commodities available. To break the symmetry, some
introduce increasing returns to scale and others introduce random growth.
Our plan is to understand the mechanism generating city-size distributions
with a more graphic, lifelike transport network structure that affects the state
of local economies.

3.5 Transportation Cost Skews the City Size Distribution

Along with accessibility ai , transportation cost τ plays a leading role in the
determination of the city-size distribution. Depending on its magnitude, τ can
nullify or amplify the influence of a network structure over the economy. Fig-
ure 5(b) compares the relationship between accessibility and the city-size dis-
tribution under different transportation costs. In the extreme situation where
shipment is free (τ= 1), the city-size distribution becomes uniform regardless
of the network structure The city size s(ai) becomes constant against ai (See
the blue line in Figure 5(b)). The network becomes a complete graph, in ef-
fect, because the delivered price becomes independent of the geodesic length
between cities. The distance travelled is irrelevant for the system if τ= 1. For
τ > 1, city size (8) becomes a strictly convex function of accessibility.

The transportation network Γ starts to sink in as τ grows. A large τ implies
that the geodesic length exerts a more dominant influence on the size of a city.
With a small value of τ, a city with good accessibility does not distinguish
itself well from other cities because the effect of path length is limited due to
low transportation cost. On the other hand, a city with a good accessibility
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benefits from a low ai value because high transportation cost amplifies the
effect of accessibility. In other words, a high transportation cost reveals the
network structure and projects the network Γ onto the city-size distribution
in a more defined, clear-cut manner than with a low transportation cost. As
a result, holding the accessibility distribution constant, large τ skews the city
size distribution and makes the emergence of disproportionately large hubs
more likely. To measure how the cost of transportation τ bends the city-size
distribution, consider a measure

D(τ) =
s(aH) + s(aL)

2
− s
�

aH + aL

2

�
,

where aL and aH are the lowest and highest accessibility of a given network.
The first term is the average of the smallest and the largest city whereas the
second term is the city size of average accessibility. For a given distribution
of accessibility ai , D(τ) measures the convexity of s(ai), which gauges how
spread out the distribution of city size s(ai) is for each τ. See Figure 6. When
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Figure 6. D(τ) measures the convexity of s(ai). The midpoint (aH + aL)/2 is given by
aM above.

τ= 1, s(·) lays flat and D(τ) = 0. As τ grows, s(·) bends more and D(τ) grows
accordingly as can be seen in Figure 5(b).

We confirm the observation above as follows:

Proposition 3.1 Transportation Cost Skews the City Size Distribution
Suppose that the economy has a unipartite network Γ. The city size distribu-
tion si is a convex function of accessibility ai for τ ≥ 1. Moreover, the degree
of convexity measured in the difference D(τ) between the mid-sized city and
the mid-accessible city increases with τ.

Proof. See Appendix A.2. �

3.6 The Geodesic-Length Distribution

The city-size distribution (8) depends on the distribution of accessibility (5),
which, in turn, rests on the distribution of geodesic length. While most of the
research on network topology is focused on mean intervertex distance, we are
more interested in the geodesic length between individual nodes. That is, we
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would like to derive the city-size distribution, not the average size of cities.
Hołyst et al [HSF+05] measure the expected geodesic length between any pair
of nodes i and j as follows:

l i
j = A− B log(kik j), (9)

where A= 1+log(Jk)/ logκ and B = (logκ)−1. A number ki denotes the degree
of node i and κ denotes the average branching factor (to be explained later).
We briefly repeat their arguments to obtain (9). Consider a geodesic between
nodes vi and v j . Rearrange the nodes so that we have a tree with vi as its root.3

A tree is a sequence of nodes where each node except for the root node has
exactly one parent (or ancestor) node. Each node may or may not be followed
by (a) child node(s). There are no cycles on a tree. The average number of
children is called an average branching factor and denoted κ. If we pick a
random tree starting from vi , we will wind up at v j somewhere along the tree
k j/
∑

r∈V kr of the time and we will not reach vi 1− k j/
∑

r kr of the time. On
average, we will reach v j within

∑
r kr/k j trials. Suppose that the depth (the

number of parent nodes that you have to go through before reaching your
root node) of v j is l. There are kiκ

l−1 nodes whose depth is l. Therefore, on
average, we arrive at v j in l steps if

∑
r kr

k j
= kiκ

l−1,

from which we obtain (9).
The exact branching factor κ cannot be found until after the graph is gen-

erated. We can obtain a good estimate of κ by averaging the degree of ad-
jacent nodes [HSF+05]. Using a probability-generating function, Newman et
al [NSW01] compute the average degree of adjacent nodes (see Appendix A.3
for details) and we take this value as an approximation to κ.

3.7 City-Size Distribution

From (9), accessibility (5) is written as

ai = A− B log ki − Blog k. (10)

We observe that accessibility improves as a city acquires more edges, but only
on the logarithmic order. Taking the log of (8), we have

log si = log S− (A− B log ki − Blog k) logτ− log



∑

j

τ−a j


 .

3We ignore loops. The probability that a child node traces back to its ancestors via some
circumvention is proportional to 1/J . It becomes negligible as the system size J grows. As shown
in [HSF+05], the resulting error is minimal.
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The last term is approximated by log J − ā logτ 4 so that

log si = log
S

J
+ B logτ

�
log ki − log k

�
. (11)

A couple of observations are in order. The equation above answers two
questions concerning the relationship between a network structure and a sys-
tem of cities. The first one is "Does construction of an edge boost the lo-
cal economy?" The answer is "Apparently." The second, and more interesting
question is "How so?" The answer is twofold.

In terms of a linear scale, (11) can be rewritten as si =
S
J

�
ki

γ

�B logτ
, where

γ :=
∏J

i=1 k1/J
i is the geometric mean of the degree. It indicates that city size

is anchored around the base city size S/J (mark this size by ŝ as before 5),
multiplied by the deviation (ki/γ)B logτ. If a city has a large degree, then its
size becomes larger than the standard city size by a factor of (ki/γ)B logτ and
vice versa for a city with a small degree. The city size coincides with the
cornerstone size of ŝ exactly when its degree matches the national (geometri-
cal) average. The deviation is amplified as shipment becomes costly, which is
consistent with our observation in Proposition 3.1.

We also note that adding an edge to a city increases its size, but the change
in size is inversely proportional to the current degree. The first couple of
edges will greatly contribute to the production and consumption level of a
city. However, blindly connecting to other cities does not pay. Consider, for
example, the economy where city i and j are connected. For some other city
n, connection to either one of the cities will sharply increase its accessibility,
for it will gain access to not only city i or j but also all the cities that city i or
j is connected to. On the other hand, it does not improve an much if the city
n extends the second edge to connect to both cities. The first edge has already
established the path to v j via vi (or the other way around). The second edge
does reduce the transportation cost but its leverage is marginal compared to
the first edge. As we learned from (10), degree improves accessibility only on
the logarithmic order.

Based on the degree-size relationship (11) the city-size distribution is given
as follows:

Proposition 3.2 City-Size Distribution
Suppose that the economy has a unipartite network Γ with the associated
degree distribution G(k). The city-size distribution of this economy follows
the distribution function F(·), defined by

F(s) = G(k(s)), (12)

where k(s) = γ(s/ŝ)
logκ
logτ . Its probability density function (pdf) is

f (s) = k′(s)1[k(s)] =
logκ

logτ
k(s)s−11 [k(s)] ,

4 Taylor series expansion and law of large numbers imply

log
�∑

j τ
−a j
�
= log

�∑
j τ
−ā
�
+ (a− ā) · D log

�∑
j τ
−a j
�
+O [(a− ā) · (a− ā)]

≈ log J − ā logτ.

5The size ŝ is what the city size would be if all the cities had the same size. Our predicted city
sizes happen to drift around this baseline size.
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where 1(·) denotes the pdf of degree k.

3.8 City-Size Distribution under Different Network Systems

Now that we have the city-size distribution based on the city’s degree, we
can generate our predictions based on different transport network structures.
There are two network models of particular interest: Erdős-Rényi (ER) net-
work and Barabási-Albert (BA) network.

The degree distributions are known for both networks. We will obtain the
city-size distribution implied by each of the two types of network schemes.
Considering the prevalence of the scale-free network in reality, we expect that
the BA system fits the city-size distribution better than ER system. And as we
will see later, it does.

Note that empirical determination of the transport network relevant to the
formation of a system of cities is a tough job. We will discuss this in Section 5.
The task at hand is to find a network that is consistent with the real city-size
distribution (and we have already discarded complete and completely isolated
networks in Section 3.3). The most consistent network structure will give us a
clue as to the shape of a network that is germane to the formation of cities.

3.8.1 The City-Size Distribution in the ER Economy

The degree distribution of an ER network is given by the Poisson distribu-
tion with λ = qJ as its mean. With regard to the city-size distribution (12),
we supply two more parameters (κER and γER) as follows. Using the re-
sult of [NSW01], the probability-generating function of the degree of the first
neighbor is given by ψ1(x) = eλ(x−1). Then the branching factor is given by
κER =ψ′1(1) = λ.

We approximate the geometric mean γER by λe
−1
2λ . 6 The degree-size rela-

tionship (11) reduces to kER(s) = λe
−1
2λ

�
s
ŝ

� logλ
logτ . The pdf is

fER(s) = k′ER(s)1ER(kER(s)) = λe
−1
2λ

logλ

logτ

� s

ŝ

� logλ
logτ

s−1λ
k

k!
e−λ.

As we assume a unipartite network, the connection probability q cannot go
below the threshold value of log(J)/J (below which the graph falls apart;
see Erdős and Rényi [ER61]). This leads to λ = qJ > log J . Therefore, the
asymptotic degree distribution follows the normal distribution with mean and
variance λ. Hence, the pdf is

fER(s) = λe
−1
2λ

logλ

logτ

� s

ŝ

� logλ
logτ

s−1 1p
2πλ

exp

�
−(kER(s)−λ)2

2λ

�
.

6Using a Taylor expansion log k = logλ+ k−λ
λ
+ −1

2

�
k−λ
λ

�2
+O[(k−λ)3],

logγ ≈
∑∞

k=0

h
logλ+ k−λ

λ
+ −1

2

�
k−λ
λ

�2i
1(k)

= logλ+ E
�

k−λ
λ

�
+ −1

2
E
h�

k−λ
k

�2i
,

which leads to the value in the text. Inclusion of the moments of higher order do not seem
to improve approximation much in practice (See Young and Trent [YT69] for some empirical

experiments). Note that Jensen’s inequality is met with this approximation (λ > λe
−1
2λ ).
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3.8.2 The City-Size Distribution in the BA Economy

The degree distribution of BA network follows the power law 1BA(k) ∝ k−α.
Empirically, the Pareto index α of most networks (a relevant transportation
network that leads the city-size distribution is likely among them) falls be-
tween 2 and 3.

We represent the degree distribution by the Pareto distribution 1BA(k) =

α
kαm

kα+1 , where km marks the lowest value of k. We use an alternative method

to what we used in ER economy, based on Pastor-Satorras et al [PSVV01] to

find the branching factor κBA =
km

α−1

�
1
α−2
+α
�

(See Appendix A.4 for details).
If k follows the Pareto distribution, log(k/km) follows the exponential dis-

tribution with the reverse scale parameter α. Simple calculation leads to
logγBA =

∫∞
0

log(k/km)dG̃(log(k/km)) + log km
7 so that γBA = kme

1
α (note the

mean of the exponential distribution is 1
α

). The degree-size relationship (11)
becomes

kBA(s) = kme
1
α

� s

ŝ

� log km−log(α−1)+log( 1
α−2 +α)

logτ
.

Hence, the pdf is

fBA(s) =
logκBA

logτ
kme

1
α

� s

ŝ

� logκBA
logτ

s−1 αkαm
kBA(s)α+1 . (13)

4 Empirical Implementation

We tried maximum likelihood estimation first, which turns out to be problem-
atic,8 and then obtained alternative estimates that minimize the Kolmogorov-
Smirnov (KS) statistic (the largest gap between the empirical and predicted
CDF). We summarize our estimation in Table 1 and present distribution func-
tions for the USA using Soo [Soo05]’s data (Figure 7).

As expected, the BA economy is more consistent with the real city-size dis-
tributions. Eeckhout [Eec04] and Berliant and Watanabe [BW11] have testable
predictions and we compare our result to their results as representatives of
existing models. Note that each model leads to different distributions. Direct
comparison among their KS statistics or maximum likelihood values may not
be satisfactory to evaluate a model’s performance. The model’s fit to the data
can be made arbitrarily better by adding more parameters to the distribution
function. To account for the difference in the number of parameters, we report
Akaike and Bayesian information criteria along with the KS statistic in Table
1. These criteria penalize a distribution’s fit for having many parameters. A
lower value of Akaike or Bayesian information criteria means a better fit. The
BA economy is comparable to existing models in terms of these criteria.

Now, let us examine our findings in detail. First, the complete graph as
a candidate model is out of the question. Second, the ER network fails to
explain the city-size distribution, for it yields an economically unsustainable

7G̃(·) denotes the cumulative density function (CDF) of the exponential distribution.
8The likelihood function tends to explode. For the ER economy, the likelihood is increasing in

τ, and for the BA economy, α tends to 2.
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(a) ER Economy

10
5

10
6

0

0.2

0.4

0.6

0.8

1

City Size

E
m

pi
ric

al
 a

nd
 E

st
im

at
ed

 C
D

F

MinKS

 

 

Data
BA
Residual

10
5

10
6

0

0.2

0.4

0.6

0.8

1

City Size

E
m

pi
ric

al
 a

nd
 E

st
im

at
ed

 C
D

F

MinKS

 

 

(b) BA Economy
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(c) Complete Graph
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Figure 7. Soo [Soo05], USA
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estimate. In both methods of estimation, the objective function of estimation
explodes. The fit becomes marginally better by greatly increasing τ. There
is not enough variance in the ER degree distribution, certainly not power-
law type behavior. To generate the empirical city-size distribution, the ER
economy has to amplify and capitalize on what little variance its degree dis-
tribution has (c.f., Proposition 3.1). As a result, τ has to be ludicrously large.
We terminated the iteration in the midst of optimization. By the time of ter-
mination, τ had reached 2.557E + 96. A one-dollar pen in St. Louis would
cost 2.557E+96 dollars in Chicago, which is far beyond the US GDP. An ER
network is not capable of reproducing the empirical city-size distribution.

The BA network performs well in the mid range but worse than [BW11]
towards the left end of the tail, especially when more cities are included in
the data set. Our initial concern was that the BA degree distribution may be
too stable to generate city-size distributions, considering the apparent differ-
ence in Pareto exponents (α = 2 to 3 for most networks, whereas city-size
distributions usually have α = 1). It turns out to be the opposite. Lognormal
[Eec04] is too thin near the top, whereas BA is too thick,9 possibly for two rea-
sons. First, as mentioned in Appendix A.4, the power law in its purest form
is theoretically tractable but deviation near the top of the actual distribution
is not negligible. On the other hand, the power law with an exponential cut-
off is realistic, but theoretically not manageable. As a result, the tail of the
distribution becomes too fat. We computed the expected degree out of the
given city-size distribution in Table 2 (note that the upper tail is sensitive to
parametarization, so we provide the table only as a reference). It seems that
the degree is too thick near the top due to the lack of cutoff.

USA [Soo05] Belgium USA (MSA)
Rank City Size Degree City Size Degree City Size Degree

1 New York 8,008,278 36.1 Antwerpen 446,525 29.0 New York 18,323,002 26.0
2 Los Angeles 3,694,820 5.1 Gent 224,180 2.3 Los Angeles 12,365,627 5.2
3 Chicago 2,896,016 3.9 Charleroi 200,827 1.8 Chicago 9,098,316 4.1
4 Houston 1,953,631 3.4 Liège 185,639 1.6 Philadelphia 5,687,147 3.5
5 Philadelphia 1,517,550 3.0 Bruxelles 133,859 1.4 Dallas 5,161,544 3.2
6 Phoenix 1,321,045 2.8 Brugge 116,246 1.3 Miami 5,007,564 3.0
7 San Diego 1,223,400 2.6 Schaerbeek 105,692 1.2 Washington DC 4,796,183 2.8
8 Dallas 1,188,580 2.4 Namur 105,419 1.2 Houston 4,715,407 2.7
9 San Antonio 1,144,646 2.3 Mons 90,935 1.1 Detroit 4,452,557 2.5

10 Detroit 951,270 2.2 Leuven 88,014 1.1 Boston 4,391,344 2.4

Table 2. 10 Largest Cities and Their Expected Degree

Secondly, we assumed a unipartite network. Our estimation seems to sug-
gest that the US may be too large to be considered as a unipartite network.
And it can be "too large" in two senses: one in a physical sense and the other
in terms of truncation. There may be remote cities whose economy remains

9This implies that the network based economy with an Eeckhout-type externality may help im-
prove the fit. Note, however, that our research concerns how a network structure affects city sizes.
We keep our model to the bare minimum to isolate the network’s leverage. More complicated
models, such as Eeckhout’s with a network, might not have a closed form solution. Moreover, all
cities in Eeckhout’s model produce the same commodity, so there is no reason to trade.
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comparatively unaffected by the network configuration of other large cities.
Or there may be a dichotomy among the cities: Large cities are based on a
scale-free network and small cities have another kind of network. If this is the
case, filtering the data by removing small cities will improve the fit.
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(a) ER Economy
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Figure 8. Soo [Soo05], Belgium

To confirm our two hypotheses above, we took Belgian city-size data and
US metropolitan statistical area (MSA) level data as a follow-up exercise. Dis-
tribution functions are represented in Figures 8 and 9. Related statistics are
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(a) ER Economy
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(b) BA Economy
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Figure 9. MSA, USA
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reported in Table 1.
Belgium is one third of one hundredth of the area size of the US whereas

the total population is about 3.5% of the US population. Due to the size of
the country, it is harder to form a city off the grid in Belgium than in the US.
If physical proximity improves the connectivity of the network, Belgian data
would fit our story better, other economic factors being equal. The data seems
to support our conjecture on locational contiguity.

If truncation is the issue, then Soo’s data for the US (with J = 667) would
be more suitable to our model than the US MSA data (with J = 922). It is
likely that cities that are on the list of MSA’s but not on the primary network
of large cities are filtered out. The data appears to be in favor of our second
conjecture as well.

Modelling a multi-component network is challenging for economic and
tractability reasons. With our model, there will be multiple equilibria if the
cities are grouped into distinct subnetworks.

5 Conclusion and Extensions

We examined how the network of cities affects the city-size distribution. We
built a simple economic model with an explicit transport network. The bridge
between network structure and city size is represented in (11), where we have
learned that there is a log-linear relationship between city size and city degree.

We put two commonly studied network models to the test. The classical
ER random graph is too egalitarian to generate gravitationally large cities like
New York City or Los Angeles. When translating a degree distribution into
the city-size distribution, we need to do so in a way that adds more weight on
the extremes, if we were to explain the city-size distribution by an ER model.
This was only possible by raising the transportation cost to a very high level,
which is not realistic.

The BA model explains the city-size distribution better than ER model,
but there is room for improvement. BA model has a degree distribution that
follows a power law, and the resulting city-size distribution behaves similarly.
While we did obtain economically reasonable estimates, contrary to the BA
model, now the predicted city-size distribution is slightly too fat. We expect
that an adjusted power law and further inspection of actual transport net-
works will improve the fit.

We finish the discussion with one last remark. We argued that network
structures motivate the population to form a specific distribution of city sizes.
The structure of the network is pre-selected. Considering the fact that it is
easier to relocate people than to build transport infrastructure, this is not
an unreasonable assumption in the short run. New York City would have
been much smaller had it not been the port of entry to Europe. However,
the degree-city relationship is not a one-way street. It may be the other way
around: the relocation of people forces the transportation network to follow a
specific pattern. It can also be the case that the network structure and its asso-
ciated city-size distribution are in fact a product of some common underlying
causes. As we have mentioned in Section 1.2, the U.S. has seen a number of
drastic changes in its network structure. Tracing the historical co-development
of the network structure with the city-size distribution may reveal a clue to

21



A Scale-Free Transportation Network Explains the City-Size Distribution

identifying the direction of causality. Eventually, it will be important to de-
velop models where both the transport network and city size are endogenous,
and co-develop in a fashion where each is dependent on the other.
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A Appendix

A.1 ER Degree Distribution

Derivation of the ER degree distribution is twofold. First, we derive the dis-
tribution of Xk, the number of nodes with degree k. Suppose any two nodes
are connected with probability q. The probability of a node i wired to k other
nodes is given by

Pi(ki = k) = J−1Ckqk(1− q)J−1−k,

where aCb := a!
b!(a−b)!

. 10 The probability that Xk is equal to r ∈ {0, 1, · · · , J}
follows:

Pr(Xk = r) = J Cr Pi(ki = k)r
�

1− Pi(ki = k)
�J−r . (14)

We can approximate (14) by a Poisson distribution with mean λk = J P(ki =
k) = J J−1Ckqk(1− q)J−1−k so that Pr(Xk = r) = e−λk

λr
k

r!
. The random variable Xk

with a Poisson distribution clusters around its mean λk and we can approxi-
mate Xk by λk.

Next, we derive the degree distribution Pk(k): The fraction of nodes that
has k′ edges is given by Pk(k = k′) = Xk′/J ≈ λk′/J , i.e.,

Pk(k = k′) = J−1Ck′q
k′(1− q)J−1−k′ . (15)

If J is sufficiently large, we can replace (15) by

Pk(k) = e−qJ (qJ)k

k!
.

We conclude that the degree distribution of a random network follows a Pois-
son distribution with mean qJ .

A.2 Proof of Proposition 3.1

Proof. Note that s(ai) is monotone decreasing in ai : Suppose J > 2 and the
network is neither complete or completely isolated. We have

s′(ai) :=
ds(ai)

dai
=−(logτ)s(ai)S

−1(S− si)≤ 0

with equality iff τ= 1. The second derivative is, therefore,

d2s(ai)

da2
i

= [s′(ai)]
2 S− 2si

si(S− si)
≥ 0,

with equality iff τ= 1. Hence s(ai) is strictly convex in ai .
To show that s(ai) bulges as τ grows, first note ∂ s(ai)

∂ τ
=−τ−1s(ai)(ai−AB−1),

where A :=
∑

j a jτ
−a j and B :=

∑
j τ
−a j . Then

dD(τ)
dτ

=
1

2τ

¦
[s(aM )− s(aH)](aH − AB−1) + [s(aM )− s(aL)](aL − AB−1)

©
,

10The random variable ki is almost independent from k j : an edge from a node i to j shares
only 1/ki of all the edges from i.
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where aM := (aH + aL)/2. The first term in the curly braces is positive because
s(aM )− s(aH) > 0 and aH − AB−1 = B−1

∑
j,H(aH − a j)τ−a j > 0. Likewise, the

second term is positive because s(aM )− s(aL)< 0 and aL−AB−1 < 0. Therefore
dD(τ)

dτ
> 0, which establishes the claim. �

A.3 Probability-Generating Function

Newman et al [NSW01] took a generating-function approach to derive the de-
gree distribution. We recap their method with the aim of deriving a branching
factor.

A probability-generating function is a handy device that enables us to com-
pute a probability or moment of interest by taking derivatives of desired or-
ders. Suppose that the probability that a randomly chosen node has a degree
k is 1(k). Define the probability-generating function by

ψ0(x) :=
∞∑

k=0

1(k)x k.

With this function, the probability 1(k) is simply given by

1(k) =
1

k!
ψ
(k)
0 (x = 0).

The first moment is also readily available by taking the first derivative ofψ0(x)
and evaluating it at x = 1, i.e.,

∑

k

k1(k) =ψ′0(1).

To derive the adjacent neighbors’ degree distribution, first, pick a random
edge and walk towards one end. The probability that the end node has a
degree k, 11(k), is proportional to (k+ 1)1(k+ 1) (note that the edge that you
just walked on is excluded), that is,

11(k) =
(k+ 1)1(k+ 1)∑
m(m+ 1)1(m+ 1)

.

A gracious coincidence is that 11(k) happens to be the same as

1

k!
ψ
(k)
1 (0),

where ψ1(x) :=
ψ′0(x)

ψ′0(1)
.

A.4 Branching Factor for a BA Network

Suppose that k follows the Pareto distribution with the Pareto exponent α.
Recall from Appendix A.3 that the probability that the nearest neighbor has a
degree k (denote this by 1nn(k)) is proportional to the number of edges whose
other end has a degree k, i.e., 1nn(k) ∝ k1(k) (following the approximation by
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Pastor-Satorras et al [PSVV01]). Average degree of the nearest neighbors is
given by

κ=

∫
k

k1(k)

k̄
dk =

E[k2]
E[k]

=
V [k] + E[k]2

E[k]
,

where E[·] and V[·] denote the mean and variance. In particular, for the
Pareto distribution,

κBA =
km

α− 1

�
1

α− 2
+α
�

(16)

(Note E[k] = αkm

α−1
for α > 1 and V[k] = k2

mα

(α−1)2(α−2)
for α > 2).

As in the case of ER model, we could use the probability-generating func-
tion [NSW01]. However that is not useful for our purpose. To derive the
probability-generating function, we use the zeta distribution 1̃BA(k) = k−α/ζ(α),

where ζ(·) is the Riemann zeta function ζ(α) =
∑∞

x=1

1

xα
(this normalizes the

pdf so that it sums up to 1). The probability-generating function of the degree

of the immediate neighbors is given by ψ1(x) =
ζ(xα− 1)

xζ(α)
. Then the branch-

ing factor is κBA = ψ′1(x = 1)/ψ1(x = 1) =
ζ(α− 2)− ζ(α− 1)

ζ(α)
/
ζ(α− 1)
ζ(α)

.

Hence, BBA =
�
log[ζ(α− 2)− ζ(α− 1)]− logζ(α− 1)

	−1.
We replace the branching factor κBA above for empirical implementation

by (16). While estimation using (13) is technically accurate, it is problematic
for two reasons. First, BBA does not have a closed form, which makes its es-
timation computationally expensive. Second, BBA does not have a real value
for α < 3, i.e., we have to give up the region of interest 2 ≤ α ≤ 3. The actual
degree distribution (or any variables that are said to follow the power law
in general) are known to have an exponential cutoff. The upper end of the
empirical distribution cannot be modeled as the power law. Consider, for ex-
ample, the city-size distribution. The probability that New York City has size
strictly larger than the US population is zero. Or, for a degree distribution, the
probability that the largest degree is larger than J should be, and actually is,
zero as well (for more on this, see Newman [New05]). The degree distribution
of nearest neighbors with exponential cutoff is available [NSW01], but the lack
of the closed form will only be aggravated. As an alternative, we approximate
the branching factor with the Pareto distribution as in (16). In this formula,
α still cannot fall below 2, but the region of search does expand down to 2,
which covers most of the real degree distributions. Moreover, the formula has
a closed form.
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[ER61] Paul Erdős and Alfréd Rényi. On the strength of connectedness of
a random graph. Acta Mathematica Hungarica, 1961.

[HSF+05] Janusz A. Hołyst, Julian Sienkiewicz, Agata Fronczak, Piotr Fron-
czak, and Krzysztof Suchecki. Universal scaling of distances in
complex networks. Physical Review E, 2005.

[New05] M. E. J. Newman. Power laws, Pareto distributions and Zipf’s law.
Contemporary Physics, 2005.

[NSW01] M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs
with arbitrary degree distributions and their applications. Physical
Review E, 2001.

[PSVV01] Romualdo Pastor-Satorras, Alexei Vázquez, and Alessandro
Vespignani. Dynamical and correlation properties of the internet.
Physical Review Letters, 2001.

[Soo05] Kwok Tong Soo. Zipf’s law for cities: a cross-country investigation.
Regional Science and Urban Economics, 2005.

[YT69] William E. Young and Robert H. Trent. Geometric mean approxima-
tions of individual security and portfolio performance. The Journal
of Financial and Quantitative Analysis, 1969.

26


