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Abstract

We introduce and develop a general approach to dynamic sparsity modelling in multivariate

time series analysis. Time-varying parameters are linked to latent processes that are thresh-

olded to induce zero values adaptively, providing natural mechanisms of dynamic variable in-

clusion/selection. We discuss Bayesian analysis and prediction in dynamic regressions, time-

varying vector autoregressions and multivariate volatility models using latent thresholding. Ap-

plication in analyses of topical macroeconomic time series problems shows the utility of this

approach in terms of statistical and economic interpretations as well as improved predictions.

KEY WORDS: Dynamic graphical models; Macroeconomic time series; Multivariate volatility;

Sparse time-varying VAR models; Time-varying variable selection.
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1 Introduction
For analysis of increasingly high-dimensional time series in many areas of business and eco-

nomics, dynamic modelling strategies are pressed by the needs to appropriately constrain and

reduce parameter dimensions. Approaches to introducing parsimonious structure into increasingly

highly parametrized models for multivariate time series are in particular needed to reflect com-

mon contexts in which relationships between variables and latent processes may change over time,

being practically relevant in some time periods yet irrelevant or redundant in others.

We address these general questions with a new approach based on latent threshold models

(LTMs), that defines a strategy of fairly broad utility. A first example is dynamic regression mod-

elling, itself an already broadly used applied time series framework as well as an illustration of the

LTM strategy for the richer class of dynamic linear models (DLMs – West and Harrison 1997; Prado

and West 2010). From this basis, we develop the LTM ideas and methodology in time-varying

vector autoregressive (TV-VAR) models including time-varying multivariate volatility matrix analy-

sis (Aguilar and West 2000). In applications of such modelling approaches, the latent, time-varying

parameter processes they involve grow quickly in dimension with the number of time series re-

sponse variables; this often leads to increased uncertainty in estimation that degrades predictive

performance. Modelling strategies that induce data-driven shrinkage of elements of parameter pro-

cesses, collapsing them fully to zero when redundant or irrelevant while allowing for time-varying

non-zero values when supported by the data, can reduce estimation uncertainties substantially and

lead to improved predictive ability and model interpretation. The LTM approach is explicitly de-

signed to encourage such dynamic sparsity. Examples in macroeconomic time series analysis illus-

trate this, as well as highlighting connections with other approaches, open questions and potential

extensions.

Much progress has been made in recent years in the general area of Bayesian sparsity mod-

elling: developing model structures via hierarchical priors that are able to induce shrinkage to zero

of subsets of parameters in multivariate models. Among developments of most relevance here are

the nowadays standard use of sparsity priors for regression model uncertainty and variable selec-

tion (George and McCulloch 1993, 1997; Clyde and George 2004) in areas including sparse factor

analysis (West 2003; Carvalho et al. 2008; Lopes et al. 2010; Yoshida and West 2010) and inher-

ently sparse graphical modelling (Jones et al. 2005); they have also been applied to traditional

time series models including constant coefficient VAR models (e.g. George et al. 2008; Chen et al.

2010). In both dynamic regression and Bayesian approaches in multivariate volatility models, these

general strategies have been usefully applied to induce full shrinkage to zero of effects globally –

that is, zeroing out regression coefficients in a time series model for all time (e.g. Carvalho and
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West 2007; George et al. 2008; Korobilis 2010; Wang 2010). We build on these earlier works but

go much further to address the much more general question of time-varying inclusion of effects,

i.e. dynamic sparsity modelling; the LTM strategy provide flexible, local and adaptive (in time)

data-dependent variable selection for dynamic regressions and autoregressions, and for volatility

matrices as components of more elaborate multivariate dynamic models.

There are, of course, at least superficial connections with previous work on time series using

threshold ideas for as mechanisms in regime switching and tobit/probit models (e.g. West and

Mortera 1987; Polasek and Krause 1994; Wei 1999; Galvao and Marcellino 2010), and with time

series mixtures and Markov-switching models (Chen et al. 1997; West and Harrison 1997; Kim and

Nelson 1999; Kim and Cheon 2010; Prado and West 2010) that describe discontinuous shifts in

dynamic parameters governed by latent indicator variables. The LTM approach differs fundamen-

tally from these approaches in that threshold mechanisms operate continuously in the parameter

space and over time based on the values of underlying latent parameter processes. This temporal

determination structure leads to a new paradigm and practical strategies for threshold modelling

in time series analysis, with broad potential utility as our examples indicate.

Some notation: We use f, g, p for density functions, and the distributional notation y ∼ N(a, A),

d ∼ U(a, b), p ∼ B(a, b), v ∼ G(a, b), for the normal, uniform, beta, and gamma distributions,

respectively. We also use, for example, N(y|a,A) to denote the actual density function f(y) when

y ∼ N(a, A), in cases where the specificity is needed. Further notation includes the following:

Φ(·) is the standard normal cdf; ⊗ denotes Kronecker product; ◦ stands for element-wise product,

e.g, the k−vector x ◦ y has elements xiyi; and s : t stands for indices s, s + 1, . . . , t when s < t, for

succinct subscripting such as in use of y1:T to denote {y1, . . . ,yT }.

2 Latent threshold modelling

2.1 Dynamic regression model: A key example context

The ideas are introduced and initially developed in the canonical class of dynamic regression

models (e.g. West and Harrison 1997, chap. 2 & 4), a subclass of dynamic linear models (DLMs).

Suppose a univariate time series {yt, t = 1, 2, . . .} follows the model

yt = x′tbt + εt, εt ∼ N(εt|0, σ2), bt = (b1t, . . . , bkt)′, (1)

bit = βitsit with sit = I(|βit| ≥ di), i = 1, . . . , k, (2)

where xt = (x1t, . . . , xkt)′ is a k × 1 vector of predictors, d = (d1, . . . , dk) is a latent threshold

vector with di ≥ 0, for i = 1, . . . , k, and I(·) denotes the indicator function. The time-varying

coefficients bt are governed by the underlying latent time-varying parameters βt ≡ (β1t, . . . , βkt)′
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and the indicators st ≡ (s1t, . . . , skt)′ via bt = βt ◦ st, subject to some form time series model

for the βt process. The idea is simply that the ith variable xit has time-varying coefficient whose

value is shrunk to zero when it falls below a thresholded, neatly embodying sparsity/shrinkage and

parameter reduction when relevant in the dynamic regression context; see Figure 1. The shrinkage

region (−di, di) defines what we can refer to as temporal variable selection; only when βit is large

enough does xit play a role in predicting yt. The relevance of variables is dynamic; xit may have

non-zero coefficient in some time periods but zero in others, depending on the data and context.

The model structure is thus flexible in addressing dynamic regression model uncertainty.
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Figure 1: Illustration of LTM concept: The dynamic regression coefficient process β1t arises as a
thresholded version of an underlying dynamic coefficient time series.

Any form of model may be defined for βt; one of the simplest, and easily most widely useful in

practice, is the vector autoregressive (VAR) model taken here for example. That is,

βt+1 = µ + Φ(βt − µ) + ηt, ηt ∼ N(0,Ση), (3)

a VAR(1) model with individual AR parameters φi in the k × k matrix Φ = diag(φ1, . . . , φk), inde-

pendent innovations ηt and innovation variance matrix Ση = diag(σ2
1η, . . . , σ

2
kη). With |φi| < 1 this

defines stationary models with mean µ = (µ1, . . . , µk)′ and univariate margins

βit ∼ N(µi, v
2
i ), v2

i = σ2
iη/(1− φ2

i ). (4)

Throughout we will denote the hyper-parameters of these univariate AR models by θi = (µi, φi, σi)

with Θ = {θ1, . . . ,θk}. We refer to the model of eqns. (1-3) as a Latent Threshold Model (LTM).

Note that if di ≡ 0, the LTM reduces to a standard special case of the DLM.
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2.2 Threshold parameters and sparsity

The LTM structure applies in multiple classes of dynamic models as developed and illustrated

below. First, we discuss the role of threshold parameters and specification of priors for them. We

continue in the dynamic regression model example in the special case of k = 1 for definiteness; this

loses no generality as the discussion applies to thresholding of time-varying parameters in all the

other classes of models. This simplest model is now yt = b1tx1t + εt where b1t is the thresholded

version of a univariate AR(1) β1t process.

2.2.1 Thresholding as Bayesian variable selection

Latent thresholding is a direct extension of standard Bayesian variable selection– better named

as “regression model uncertainty analysis”– to the time series context. Standard Bayesian model

selection methods assign a non-zero prior probability to zero values of regression parameters, and

continuous priors centered at zero otherwise. The extension to time-varying parameters requires

a non-zero marginal prior probability Pr(b1t = 0) coupled with a continuous prior on non-zero

values, but that also respects the time series context and the need to induce dependencies in the

b1t being zero/non-zero over time. A highly positively dependent AR model for β1t respects rel-

atively smooth variation over time in the parameters, while the thresholding mechanism induces

persistence over periods of time in the occurrences of zero/non-zero values in the effective coef-

ficients b1t. The threshold parameter defines the marginal probability of a zero coefficient at any

time, and– implicitly– the persistence in terms of joint probabilities over sequences of consecutive

zeros/non-zeros. In particular, it is useful to understand the role of the threshold d1 in defining

the marginal probability Pr(b1t = 0)– the key sparsity prior parameter analogous to a prior variable

exclusion probability in standard Bayesian variable selection in regression (George and McCulloch

1993; Clyde and George 2004; Carvalho et al. 2008).

2.2.2 Prior sparsity probabilities and thresholds

In the dynamic regression model with k = 1 and µ1 = 0, reflecting a prior centered at the “null

hypothesis” of no regression relationship between yt and x1t, set σ = 1 with no loss of generality. At

each instant t, marginalizing over β1t under eqn. (4) yields p(yt|d1) = π1g(yt) + (1− π1)N(yt|0, 1)

with π1 = Pr(|β1t| ≥ d1) = 2Φ(−d1/v1) where Φ is the standard normal cdf, and with density

function g(yt) = π−1
1 h(yt)N(yt|0, 1 + v2

1) where h(yt) = 1 − Φ((d1 − a2yt)/a) + Φ((−d1 − a2yt)/a)

with a2 = v2
1/(1 + v2

1). This continuous mixture density smoothly transitions from the zero-mean

normal component when d1 is large, to that from the regression model with the normal prior on

β1t when d1 is small or zero. The fundamental sparsity probability is now seen to be Pr(b1t = 0) =

1 − π1 = 2Φ(d1/v1) − 1. This also indicates the importance of the scale v1 in considering relevant

values of the threshold d1 and in specifying priors over thresholds generally; standardizing on this
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scale, we have Pr(b1t = 0) = 2Φ(k1)− 1 where d1 = k1v1. For example, a context where we expect

about 5% of the values to be thresholded to zero implies k1 = 0.063 and d1 = 0.063v1; a context

where we expect much higher dynamic sparsity with, say, 90% thresholding implies k1 = 1.65 and

a far higher threshold d1; and a value of k1 = 3 or above leads to a marginal sparsity probability

exceeding 0.99. In practice, we will assign priors over the threshold and use this line of reasoning

about the fundamental role of d1 to do so. A neutral prior will admit and support a range of sparsity

values in order to allow the data to inform on relevant values; the above indicates a relevant range

0 < d1 = k1v1 < Kv1 for some K value well into the upper tail of the standard normal. Unless a

context involves substantive information to suggest favoring smaller or larger degrees of expected

sparsity, a uniform prior across this range is the natural default, i.e., k1 ∼ U(0,K) for specified K.

Reverting to the more general model multiple regression parameter processes βit and mean

parameters µi, this prior specification extends to each of the thresholds di as follows and assuming

independence across thresholds. Conditional on the hyper-parameters θi = (µi, φi, σi) underlying

the stationary margins of eqn. (4),

di|θi ∼ U(0, |µi|+ Kvi)

for a given upper level K. As noted above, taking K = 3 or higher spans essentially the full range

of prior sparsity probabilities implied, and in a range of studies we find no practical differences in

results based on K = 3 relative to higher values; hence K = 3 is recommended as a default.

Importantly, we note that when combined with priors over the model hyper-parameters θi the

implied marginal prior for each threshold will not be uniform, reflecting the inherent relevance of

the scale of variation of the βit processes in constraining the priors. The marginal prior on each

threshold is

p(di) =
∫

U(di|0, |µi|+ Kvi)p(µi, vi)dµidvi (5)

with, typically, normal and inverse gamma priors on the µi and v2
i , respectively. The first example

on simulated data below provides illustration with priors for each of three thresholds displayed in

Figure 3. In each case the underlying scales of the βit processes are vi = 1, we have K = 3 and see

how the induced marginal priors have non-zero density values at zero and then decay slowing over

larger values of di, supporting the full range of potential levels of sparsity. The corresponding prior

means of the resulting marginal sparsity probabilities are Pr(bit = 0) ≈ 0.85 in this example.

2.2.3 Posteriors on thresholds and inferences on sparsity

There is no inherent interest in the thresholds di as parameters to be inferred; the interest is

wholly in their roles in inducing data relevant sparsity in the posterior for primary time-varying
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parameters and the resulting predictive distributions. Correspondingly, there is no interest in the

underlying values of the latent processes βit when they are below threshold; all that matters is

that we then know bit = 0. Depending on the model and data context, any one of the threshold

parameters may be well-estimated, or identified, in the sense of the posterior being rather precise

relative to the prior; in contrast, the data may be basically uninformative about other thresholds,

so that their posteriors are minor modifications of their priors. In the dynamic regression context,

as the running example, a data set in which there is little evidence of a regression relationship

between yt and xit, in the context of other regressors, will lead to very high levels of thresholding

on βit. Then posterior will suggest larger values of di while providing no information about the βit

process; we have no interest in the βit process values below threshold in this context, while the

posterior provides full inferences on the effective coefficient process bit. At the other extreme, a

strong relationship sustained over time is consistent with a low threshold and the posterior will

indicate such.

Figure 3 from the simulated data example illustrates this. There we have 3 regressors; for 2

of the regressors, the latent coefficient processes exceed thresholds for reasonable periods of time,

and the posterior shows clear and strong evidence for low threshold values. The third regression

coefficient process stays below threshold, and the posterior on the threshold d3 is appropriately

very close to the prior, favoring only very slightly larger values, indicating the lack of information

in the data about the actual value of d3. The further details of that example demonstrate the key

point that the model analysis appropriately identifies the periods of non-zero effective coefficients

and their values, in the posterior for the bit processes and the corresponding posterior estimates of

sparsity probabilities at each time point. These inferences, and follow-on predictions based on this

detection and estimation of time-varying shrinkage, are marginal with respect to thresholds; the

posteriors for primary model parameters integrate over the posterior uncertainties about thresholds

whatever the nature of prior-to-posterior updates for the threshold parameters themselves. Again,

the latter are simply vehicles to inducing relevant time-varying sparsity mechanisms, and whether

or not they are well-estimated from the data is of no intrinsic importance or interest.

2.3 Outline of Bayesian computation

Model fitting using Markov chain Monte Carlo (MCMC) methods involves extending traditional

analytic and MCMC methods for the dynamic regression model (West and Harrison 1997; Prado

and West 2010) to incorporate the latent threshold structure. Based on observations y1:T =

{y1, . . . ,yT } over a given time period of T intervals, we are interested in MCMC for simulation

of the full joint posterior p(Θ, σ,β1:T ,d|y1:T ). We outline components of the MCMC computations

here, and provide additional details in Appendix A, available as on-line Supplementary Material.
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First, note that sampling of the TV-VAR model parameters Θ conditional on (β1:T , d, σ,y1:T ) is

standard, reducing to the set of conditionally independent posteriors p(θi|βi,1:T , di). Traditional pri-

ors for θi can be used, as can standard Metropolis-Hastings (MH) methods of sampling parameters

in univariate AR models.

The second MCMC component is new, addressing the key issue of sampling the latent state

process β1:T . Conditional on (Θ, σ,d), we adopt a direct Metropolis-within-Gibbs sampling strategy

for simulation of β1:T . This sequences through each t, using a MH sampler for each βt given β−t =

β1:T \βt. Note that the usual dynamic model without thresholds formally arises by fixing st = 1; in

this context, the resulting conditional posterior at time t is N(βt|mt, M t), where

M−1
t = σ−2xtx

′
t + Σ−1

η (I + Φ′Φ),

mt = M t

[
σ−2xtyt + Σ−1

η

{
Φ(βt−1 + βt+1) + (I − 2Φ + Φ′Φ)µ

}]
.

For t = 1 and t = T a slight modification is required, with details in Appendix A. The MH algorithm

uses this as proposal distribution to generate a candidate β∗t for accept/reject assessment. This is a

natural and reasonable proposal strategy; the proposal density will be close to the exact conditional

posterior in dimensions such that the elements of βt are large, and smaller elements in candidate

draws will in any case tend to agree with the likelihood component of the exact posterior as they

imply limited or no impact on the observation equation by construction. The MH algorithm is

completed by accepting the candidate with probability

α(βt, β
∗
t ) = min

{
1,

N(yt|x′tb∗t , σ2)N(βt|mt, M t)
N(yt|x′tbt, σ2)N(β∗t |mt, M t)

}

where bt = βt ◦ st is the current LTM state at t and b∗t = β∗t ◦ s∗t the candidate.

It is possible to develop a block sampling extension of this MH strategy by using a forward-

filtering, backward sampling (FFBS) algorithm (e.g. de Jong and Shephard 1995; Durbin and

Koopman 2002) on the non-thresholded model to generate proposals for the full sequence β1:T .

This follows related approaches using this idea of a global FFBS-based proposal (Prado and West

2010; Niemi and West 2010). The main drawback is that the resulting acceptance rates decrease

exponentially with T and our experiences indicate unacceptably low acceptance rates in several

examples, especially with higher levels of sparsity when the proposal distribution from the non-

threshold model agrees less and less with the posterior under the LTM. We have also experimented

with a modified multi-block approach in which FFBS is applied separately within a block condi-

tional on state vectors in all other blocks, but with limited success in improving acceptance rates.

Although the simpler single-move strategy has the potential to mix less slowly, it is computationally
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very efficient and so can be run far longer than blocking approaches to balance mixing issues; fur-

ther, we have experienced practically acceptable acceptance rates and mixing in multiple examples

illustrated here, and hence adopt it as standard.

It is worth noting that TV-VAR coefficients can, at any time point, define VAR structures with

explosive autoregressive roots, depending on their values. In studies such as our macroeconomic

examples, this is unrealistic and undesirable (e.g., Cogley and Sargent 2001). This can be avoided

by modifying the structure to assign zero prior probability to explosive roots, corresponding to

constraints on the conditional posteriors for the βt. In the analysis of the LT-VAR models, we can

then apply this restriction in the single-move sampler for βt, adding a rejection sampling step in

generating the candidates. We note that this is trivial compared to adapting a multi-move sampler

like the FFBS to address this problem.

The final MCMC component required is the generation of thresholds d. We adopt a direct

MH approach with candidate drawn from the prior. The simulated example of the next section

illustrates this. Our experiences with the direct MCMC summarized here are that mixing is good and

convergence clean as in standard DLM analyses; adding the threshold processes and parameters

does not introduce any significant conceptual complications, only additional compute burden.

3 Simulation example
For illustration, a sample of size T = 500 comes from the LTM with k = 3 predictors and where

only the first two predictors are relevant. The xit’s are generated from i.i.d. U(−0.5, 0.5) and σ =

0.15, while for i = 1, 2 we take parameters (µi, φi, σiη, di) = (0.5, 0.99, 0.1, 0.4); for i = 3, β3t = 0

for all t. Figure 2 graphs the true values of the time-varying coefficients, indicating the within-

threshold sparsity periods by shading. The following prior distributions are used: µi ∼ N(0, 1),

(φi + 1)/2 ∼ B(20, 1.5), σ−2
iη ∼ G(3, 0.03), and σ−2 ∼ G(3, 0.03). The prior mean and standard

deviation of φi are (0.86, 0.11); those for each of σ2
iη and σ2 are (0.015, 0.015). The conditional prior

for thresholds is U(di|0, |µi| + Kvi) with K = 3. MCMC used J = 50, 000 iterates after discarding

a burn-in period of 5,000 samples. Computations are obtained using Ox (Doornik 2006); code is

available to interested readers.

True Mean Stdev. 95% C.I.
µ1 0.5 0.575 0.455 −0.502, 1.343
φ1 0.99 0.991 0.005 0.978, 0.998
σ1,η 0.1 0.089 0.012 0.067, 0.115
σ 0.15 0.154 0.006 0.148, 0.167
d1 0.4 0.220 0.128 0.008, 0.464

Table 1: Simulation example: Posterior estimates for selected parameters with credible intervals
based on 2.5%, 97.5%- quantiles of posterior MCMC draws.
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Figure 2: Simulation example: Trajectories of dynamic regression parameters. True values (top),
posterior means, 95% credible intervals (middle), and posterior probabilities of sit = 0 (bottom).
The shadows in the top panels refer to the periods when sit = 0. The thresholds in the middle
panels refer to their posterior means.
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Figure 3: Simulation example: Priors (solid lines) and posteriors (histograms) for thresholds. In
the lower row, the graphs are simply truncated on the di axes for visual clarity.
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Figure 2 shows some summary results. The posterior means of the time-varying coefficients

trace their true values, and the posterior probabilities of sit = 0 successfully detect the temporal

sparsity for β1t and β2t as well as the whole-sequence variable selection for β3t. Table 1 reports the

posterior estimates for selected parameters; posterior means are close enough to the true values

that the corresponding 95% credible intervals include them. Figure 3 displays priors, from eqn. (5),

and resulting posteriors for the thresholds. Repeat analyses with larger and moderately smaller

values of K yield substantially similar inferences on the dynamic state vectors and their sparsity

patterns over time, as well as for the underlying AR model parameters. Even taking lower values

such as K = 1 has limited impact on these primary inferences. As discussed in detail above, there is

no inherent interest in inferences on thresholds themselves; the interest is in their roles as defining

the ability to shrink parameters when the data support sparsity. Hence the expected differences

in priors and posteriors for di as we change K are of limited interest so long as the posteriors

for regression states and AR parameters remain stable. Taking K smaller than 1 or so does begin

to more substantially impact on primary inferences, inducing less sparse models in general. In

some applications, this may be of positive benefit and relevance, while for general application we

adopt K = 3 as a global, neutral default. Further computational details, including convergence

checks and performance of the MCMC sampler, appear in Appendix B of the on-line Supplementary

Material.

4 Latent threshold time-varying VAR models
We now consider the latent threshold strategy in multivariate time series analysis using time-

varying parameter vector autoregressive (TV-VAR) models. Traditional, constant coefficient VAR

models are of course central to applied time series analysis (e.g. Prado and West 2010, and refer-

ences therein), and various approaches to TV-VAR modelling are becoming increasingly prevalent in

econometrics (e.g. Cogley and Sargent 2005; Primiceri 2005) as in other fields. With increasingly

high-dimensional response series, the number of coefficients in VAR model autoregressive coeffi-

cient matrices escalates as does the need for parameter constraints. Recent Bayesian VAR analysis,

address this using shrinkage and sparsity-inducing priors of various forms (Fox et al. 2008; George

et al. 2008; Wang 2010) for traditional constant coefficient VAR models, but the induction of zeros

into increasingly sparse time-varying coefficient matrices, with allowance for time-variation in the

occurrence of non-zero values as well as local changes in coefficients when they are non-zero, is a

challenging and open problem. The LTM ideas provide an approach.
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4.1 Model structure

For the time series of m × 1 vector responses yt, (t = 1, 2, . . . , ), take the basic TV-VAR model

with autoregressive order p as

yt = ct + B1tyt−1 + · · ·+ Bptyt−p + ut, ut ∼ N(ut|0,Σt),

where ct is the m × 1 vector of time-varying intercept, Bjt is the m × m matrix of time-varying

coefficients at lag j, (j = 1, . . . , p), and Σt is the m × m innovations covariance matrix that is

also often time-varying. For each time t, define the m(1 + pm) × 1 vector bt by stacking the set

of ct and Bjt by rows and by order j = 1, . . . , p; define the corresponding m ×m(1 + pm) matrix

Xt = I ⊗ (1, y′t−1, . . . , y
′
t−p). Then the model can be written as a multivariate dynamic regression,

viz.

yt = Xtbt + ut, ut ∼ N(ut|0,Σt). (6)

The time-varying coefficient vector bt is often assumed to follow a VAR(1) process, the simplest

and often most useful model. We begin with this and then generalize to the LTM framework by

overlaying thresholds as in Section 2.1, eqns. (2)-(3). We refer to this specification as the LT-VAR

model; the LTM structure provides both whole-sequence and dynamic, adaptable variable selection

for time-varying coefficients, with the ability to switch a specific coefficient, or set of coefficients,

in/out of the model as defined by the threshold mechanism.

Posterior simulation of the full sequence β1:T and LTM model hyper-parameters Θ conditional

on the variance matrices Σ1:T is performed via a direct extension to the multivariate dynamic

regression of the ideas of Section 2.3.

4.2 Time-varying covariance matrix

Modelling time-varying covariance matrices, both residual/error matrices in observation equa-

tions of dynamic models and innovations/evolution variance matrices such as Σt in eqn. (6), is

key to many analyses financial and macroeconomic data. We build on prior Bayesian modelling

approaches here for the TV-VAR innovations volatility matrices.

Consider a triangular reduction of Σt, defined by AtΣtA
′
t = Λ2

t , where At is the lower trian-

gular matrix of covariance components with all diagonal elements equal to one and Λt is diagonal
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with positive elements. That is, Λt(A′
t)
−1 is the Cholesky component of Σt, viz.

Σt = A−1
t Λ2

t (A
′
t)
−1, At =




1 0 · · · 0

a21,t
. . . . . .

...
...

. . . . . . 0

am1,t · · · am,m−1,t 1




, Λt =




σ1t 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0

0 · · · 0 σmt




,

and ut = A−1
t Λtet, where et ∼ N(et|0, I).

Linked in part to developments in sparse factor modelling (e.g. West 2003; Carvalho et al.

2008), some recent innovations in sparsity modelling for variance matrices have adopted new pri-

ors on elements of triangular square-roots of variance matrices such as At defined here. George

et al. (2008) do this with priors allowing zero elements in Cholesky components of constant co-

variance matrices in a constant parameter VAR model context, building on previous, non-sparse

approaches utilizing such constructions (e.g. Pinheiro and Bates 1996; Pourahmadi 1999; Smith

and Kohn 2002). The construction has also appeared in time-varying variance matrix modelling in

VAR contexts (Cogley and Sargent 2005; Primiceri 2005; Lopes et al. 2010) which is one point of

departure for us; we use the above Cholesky structure and embed it in a novel LTM framework in

the following section, combining models for stochastic time-variation in variance matrices with the

natural threshold-based sparsity inducing mechanism to shrink subsets of the lower-triangle of At

to zero adaptively and dynamically.

The basic time-varying model for the Cholesky parameters is as follows Primiceri (2005). Let

at be the vector of the strictly lower-triangular elements of At (stacked by rows), and define ht =

(h1t, . . . , hkt)′ where hjt = log σ2
jt, for j = 1, . . . , k. The dynamics of the covariances and variances

are specified jointly with the time-varying VAR coefficients βt as

βt = µβ + Φβ(βt−1 − µβ) + ηβt, (7)

at = µa + Φa(at−1 − µa) + ηat, (8)

ht = µh + Φh(ht−1 − µh) + ηht, (9)

where (e′t, η′β, η′a,η′h)′ ∼ N [0, diag(I, V β, V a, V h)] and with each of the matrices (Φβ, Φa,

Φh, V β, V a, V h) diagonal. Thus all univariate time-varying parameters follow stationary AR(1)

models, in parallel to the latent VAR model for dynamic regression parameters of Section 2. Note

that the specific cases of the log variances hit define traditional univariate stochastic volatility

models for which the MCMC strategies are standard and widely used both alone and as components

of overall MCMC strategies for more complex models (Jacquier et al. 1994; Kim et al. 1998; Aguilar
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and West 2000; Omori et al. 2007; Prado and West 2010, chap. 7).

One key feature of the Cholesky-construction for time-varying variance matrices is that we can

translate the resulting dynamic model for Σt into a conditional DLM with at as the latent state

vector. Define ỹt = (ỹ1t, . . . , ỹkt)′ = yt −Xtβt and the m×m(m− 1)/2 matrix

X̃t =




0 · · · 0

−ỹ1t 0 0 · · · ...

0 −ỹ1t −ỹ2t 0 · · ·
0 0 0 −ỹ1t · · ·
...

. . . 0 · · · 0

0 · · · 0 −ỹ1t · · · −ỹk−1,t




.

From the model identity yt = Xtβt + A−1
t Λtet and using the lower triangular form of At we

deduce ỹt = X̃tat + Λtet for all t. This couples with the state evolution of eqn. (8) to define a

conditional DLM; the MCMC analysis will then extend to include a component to resample the a1:T

sequence at each iteration, using the efficient FFBS strategy for conditionally normal DLMs.

4.3 Latent threshold time-varying variance matrix

We now proceed to introduce the LTM structure for time-varying variance matrices, to enable

shrinkage to zero of subsets of the elements of at over periods of time consistent with sparse

structure. This simply directly adapts the LTM strategy from Section 2 into this context, applying

the latent thresholding ideas now to the state vector at in the reformulated model above. That is,

introduce a latent VAR process αt to substitute for at in the conditional model of the preceding

section. With αt having elements αij,t’s stacked as are the elements of at, define at = αt ◦ sat

with indicator vector sat of the form discussed in Section 2. That is, for each of the strictly lower

triangular elements i, j of At, we now have

aij,t = αij,tsaij,t, saij,t = I(|αij,t| ≥ daij), i = 1, . . . , m, j = 1, . . . , i− 1.

The LTM extension of Section 4.2 is then

ỹt = X̃tat + Λtet, (10)

at = αt ◦ sat, (11)

αt = µα + Φα(αt−1 − µα) + ηαt, ηαt ∼ N(ηαt|0,V α), (12)
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where Φα and V α are diagonal matrices, eqn. (8) is now deleted and replaced by at = αt ◦ sat,

while all other elements of the model in eqns. (7) and (9) are unchanged. The MCMC estimation

procedure developed in Section 2, extended as described above, can now be straightforwardly

applied to this time-varying, sparsity-inducing LTM extension of the AR(1) Cholesky based volatility

model. Computational details for the LT-VAR model with the LT time-varying variance matrix are

explained in Appendix A, available as on-line Supplementary Material.

One point of interest is that a sparse At matrix can translate into a sparse precision matrix

Ωt = A′
tΛ

−2
t At; the more zeros there are in the lower triangle of At, the more zeros there will

be in the precision matrix. Hence the LTM defines an approach to time-varying sparsity modelling

for precision matrices, and hence time-varying graphical models as a result. Graphical models

characterize conditional independencies of multivariate series via graphs and zeros in the preci-

sion matrix of a normal distribution correspond to missing edges in the graph whose nodes are

the variables (Jones et al. 2005). The LTM approach now clearly defines a new class of models

for time-variation in the structure of the graphical model underlying Σt, since the appearance of

zeros in its inverse Ωt is driven by the latent stochastic thresholding structure; edges may come

in/out the graph over time, so extending previous time series graphical models that require a fixed

graph (Carvalho and West 2007; Wang and West 2009) to a new class of dynamic graphs so induced.

Note finally that, from a full MCMC analysis of the model, we will recover posterior inferences

on sparsity structure. For each pair of elements i, j and each time t, the posterior simulation outputs

provide realizations of the indicators saij,t = 0 so that we have direct Monte Carlo estimates of the

posterior probability of saij,t = 0. This translates also to the precision matrix elements and the

implied graphical model at each time t, providing an assessment of the posterior probabilities of

edge inclusion at each time t as well.

5 Application to US macroeconomic data

5.1 Introduction and literature

The use of Bayesian analyses of TV-VAR models is becoming increasingly common in analy-

ses of macroeconomic data. Recent works such as Primiceri (2005), Benati (2008), Benati and

Surico (2008), Koop et al. (2009) and Nakajima et al. (2011), for example, involve studies that

aim to assess dynamic relationships between monetary policy and economic variables, typically

focusing on changes in the exercise of monetary policy and the resulting effect on the rest of the

economy. Structural shocks hitting the economy and simultaneous interactions between macroe-

conomic variables are identified by TV-VAR models. Here we use the LTM strategy for TV-VAR

models and volatility matrices with stochastic volatility as described above in analysis of a topical

time series of US data. A parallel study of Japanese macroeconomic data with similar goals, but
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some additional features related to Japanese monetary policy, is detailed in the Appendix C, avail-

able as on-line Supplementary Material. In terms of broad summaries, we note that in each of the

two applications we find that: (i) there is strongly significant evidence for dynamic thresholding

when compared to the models with no thresholding; (ii) the LTM analyses yield intuitive and in-

terpretable results, particularly with respect to inferred impulse response functions; and (iii) again

relative to the standard, non-thresholded models, the LTM analyses yield practically significant im-

provements in multi-step, out-of-sample predictions, these being particularly relevant to policy uses

of such models. The consonance of results across the US and Japanese studies can also be regarded

as additionally indicative of the relevance of the LTM concepts in these kinds of applications.

Since Cogley and Sargent (2005) and Primiceri (2005) developed the nowadays standard TV-

VAR approach to macroeconomic analysis, various structures have been examined for time-varying

parameters. Koop et al. (2009) examined whether parameters in TV-VAR models are time-varying

or not at each time by incorporating a mixture innovation structure for time-varying parameters,

where innovation errors can take either zero or non-zero value depending on Bernoulli random

variables. Korobilis (2010) developed Bayesian variable selection for TV-VAR coefficients as well as

structural breaks. Chan et al. (2011) exploited Markov switching indicator variables for innovation

errors of time-varying regression coefficients to explore a temporal variable selection mechanism.

These works clearly relate to our LTM structure in some of their goals and also technically. How-

ever, the LTM is a general, natural framework where dynamic sparsity/variable selection occurs via

gradual transitions of the underlying time-varying latent processes, applicable to a broad range of

models as previously described. Comparisons are of interest with, in particular, Markov switch-

ing structures as in some of the above references, and popular in econometric studies of regime

changes in particular. Though such models share similar technical aspects with the LTM approach,

they are inherently focused on very different questions of identifying regime changes or “sudden

breaks” at discrete times. The LTM approach is not focused on that at all; its goal is dynamic

sparsity for model parameter reduction and the improved precision and predictions that can yield.

It is certainly of interest to explore commonalities and differences between the approaches, and

possibly direct comparisons in specific data analyses, and this may be anticipated in future work as

the novel LTM approach becomes more widely explored. We focus here on developing and eval-

uating the LTM approach compared to the standard, non-thresholded model, which is the critical

comparison of interest in the applied context where the TV-VAR models are accepted standards.

5.2 Data and priors

We analyze the m = 3 time series giving the quarterly inflation rate, unemployment rate and

short-term nominal interest rate in the US economy during 1963/Q1–2001/Q3; this is a time series
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that is of some topical interest and has been previously studied by a number of authors (Cogley

and Sargent 2005; Primiceri 2005; Koop et al. 2009). The 3 variables are ordered this way to

define yt for t = 1, . . . , T = 155 quarters, The inflation rate is the annual percentage change in a

chain-weighted GDP price index, the unemployment rate is seasonally adjusted (all workers over

16), and the interest rate is the yield on three-month Treasure bills; see Figure 4.

1965 1970 1975 1980 1985 1990 1995 2000

5

10
Inflation (p)

1965 1970 1975 1980 1985 1990 1995 2000

5.0

7.5

10.0 Unemployment (u)

1965 1970 1975 1980 1985 1990 1995 2000

5

10

15 Interest rate (r)

Figure 4: US macroeconomic time series (indices ×100 for % basis).

For all model analyses reported we take the following prior components. With v2
βi

, v2
αi and v2

hi

denoting the ith diagonal elements of V β, V α and V h, respectively, we use v−2

βi
∼ G(20, 0.01),

v−2
αi ∼ G(2, 0.01) and v−2

hi
∼ G(2, 0.01). For µh we assume exp(−µhi) ∼ G(3, 0.03). The other prior

specifications for the LTM models and the simulation size are as in Section 3.

5.3 Forecasting performance and comparisons

We fit and compare predictions using both the new LT-VAR and the standard, non-threshold

(NT) TV-VAR models; in each case, we use the LT/NT time-varying variance matrices of Section 4.3.

Specifically, we consider four TV-VAR models with the following settings: (1) NT for both bt and

at, (2) NT for bt and LT for at, (3) LT for bt and NT for at, and (4) LT for both bt and at; all the

models have stochastic volatility {ht}. Model (1) is almost equivalent to a commonly used TV-VAR

of Primiceri (2005); the only difference is that Primiceri (2005) assumes random walk process for

the time-varying parameters rather than the stationary AR processes we adopt.

The MCMC analyses were applied to each of the resulting models, and analysis was repeated

across models with different maximum lags p = 1, 2, 3 or 4 in the VAR for the series. We evaluated

each of the resulting suite of models by fitting each model to the data from 1963/Q1–2000/Q3
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and then forecasting (by simulation from the posterior predictive distributions implied) over the

final 1, 2, 3 and 4 quarters. Based on evaluation of root mean squared forecast errors (RMSFE)

across these out-of-sample forecasts, we found that all the VAR models perform best when p = 3 is

assumed, which is taken in the following analysis

Model Horizon (quarters)
bt at 1 2 3 4

RMSFE
(1) NT NT 0.234 0.336 0.491 0.687
RMSFE relative to Model (1)
(2) NT LT 0.995 0.995 0.996 0.993
(3) LT NT 0.957 0.979 0.984 0.916
(4) LT LT 0.946 0.912 0.911 0.864

Table 2: Forecasting performance for US macroeconomic data: RMSFE for one- to four- quarter
ahead prediction. NT and LT refer to the non-threshold and latent threshold models, respectively.

Extensive predictive evaluation and model comparisons are summarized in Table 2. We evalu-

ated the competing models based on their forecasting performance for twenty different selections

of subsets of data to hold-out for prediction. We begin with the sample period from 1963/Q1–

1995/Q4, fit the model and then forecast one- to four-quarters ahead over 1996/Q1–Q4. We next

use the sample period 1963/Q2–1996/Q1 and forecast the following four quarters. We repeat this

rolling estimation, moving ahead one quarter at time to obtain twenty sample periods and sets of

forecasts over the following year for each. This tests the predictive ability of the various models

in different time periods to generate a detailed set of comparisons under different economic con-

ditions and regimes. The table reports the resulting average RMSFE measures for each forecast

horizon. The LT-bt models (Models 3 and 4) uniformly outperform the NT-bt models (Models 1 and

2), indicating that the time-varying shrinkage structure on coefficients evidently contributes to the

forecasting performance of time-varying VARs. The LT-(bt,at) model (Model 4) performs the best,

with as much as 14% improvement from the standard TV-VAR model (Model 1) of Primiceri (2005)

at four-quarter horizon. Some additional insights into contributions to the model fit and forecasting

edge generated by the LTM strategies, for both predictive model parameters and volatility matrices,

can be seen in the posterior summaries that follow.

5.4 Some summaries of posterior inferences

We report results from the LT-VAR model where both bt and at follow the LT structure with

stochastic volatility process ht (Model 4). Figure 5 displays the posterior probabilities of sit = 0

for coefficients bt. This comes from a full MCMC analysis of the entire time series. In the figure,

bij,`,t denotes the (i, j) element in the coefficient matrix B`t. Time-varying sparsity is observed for
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several coefficients, with estimated values shrinking to zero for some time periods but not others,

whereas other coefficients are automatically selected out over the entire time-frame.

Figure 6 plots the posterior means, the 95% credible intervals of the time-varying Cholesky co-

variance elements aij,t, as well as the posterior probabilities of saij,t = 0. The a21,t is entirely shrunk

to zero, whereas the other two covariances, associated with interest rates, are roughly 80-90% dis-

tinct from zero over most of the time frame with stable time variation in their values based on the

posterior means. Considerable sparsity for only one covariance element leads to relatively smaller

improvements in predictive performance than that for bt; the notable time-varying shrinkage across

the latter coefficients drives more significant predictive improvements.

In the LT-VAR model, setting sit = 1 for all (i, t) and saij,t = 1 for all (i, j, t) reduces to the

standard NT-VAR model. Across the full set of MCMC iterations, in this analysis and in a more

extensive MCMC of millions of iterates, such a state was never generated. This indicates significant

lack of support for the NT-VAR model as a special case. This is also directly evident in the summaries

of posterior sparsity probabilities s∗,t in the figures, which very strongly indicate high levels of

sparsity within the full LT-VAR model and the irrelevance of a model with no thresholding at all.

Figure 7 graphs the posterior means of the stochastic volatility, hit and exp(hit/2), together

with their 95% credible intervals. Several volatile periods are observed for three series reflect-

ing non-systematic shocks hitting the economy. After volatile periods in the 1970s, the stochastic

volatility clearly decays, implying a possible source of the Great Moderation as discussed in the

literature (Cogley and Sargent 2005; Primiceri 2005).

A final summary of practical interest relates to impulse response analysis. We evaluate this to

compare the LT-VAR and NT-VAR models. For models with time-varying coefficients, we need to

compute impulse responses repeatedly for each quarter as we move the time window across a sam-

ple period. There are several ways to explore impulse responses; here we consider the responses to

shocks that are innovations to each of the three time series, with shock levels set at the average of

the stochastic volatility level for each time series across the time frame. The impulse responses thus

summarize the effects of average-sized structural shocks hitting the VAR system. The comparative

NT-VAR analysis has both bt and at following non-thresholded models and with stochastic volatility

{ht} (Model 1).

Figure 8 displays posterior means of the impulse response for one-, two- and three-year ahead

horizons. The NT-VAR provides similar responses to Primiceri (2005); a slight difference arises

due to different values of hyperparameters for priors and specification on time-varying parameter

process, although the essence of economic interpretation remains unchanged. Our focus here is

in comparing the NT-VAR and LT-VAR models. First, the trajectory of the response from the LT-

VAR model is smoother than that of the NT-VAR. Effective shrinkage in the TV-VAR coefficients and

19



0.5

1.0 β1t (c1t)

1980   2000

0.5

1.0 β2t (b11,1,t)

0.5

1.0 β3t (b12,1,t)

0.5

1.0 β4t (b13,1,t)

0.5

1.0 β11t (c2t)
1980   2000 1980   2000

1980   2000

0.5

1.0
β12t (b21,1,t)

0.5

1.0 β13t (b22,1,t)

1980   2000

0.5

1.0
β14t (b23,1,t)

0.5

1.0 β21t (c3t)

1980   2000 1980   2000 1980   2000 1980   2000 1980   2000

0.5

1.0
β22t (b31,1,t)

0.5

1.0
β23t (b32,1,t)

0.5

1.0 β24t (b33,1,t)

0.5

1.0 β5t (b11,2,t)

0.5

1.0
β6t (b12,2,t)

0.5

1.0
β7t (b13,2,t)

0.5

1.0
β8t (b11,3,t)

0.5

1.0
β9t (b12,3,t)

0.5

1.0
β10t (b13,3,t)

0.5

1.0
β11t (b21,2,t)

0.5

1.0
β12t (b22,2,t)

0.5

1.0 β13t (b23,2,t)

0.5

1.0
β14t (b21,3,t)

0.5

1.0 β15t (b22,3,t)

0.5

1.0 β16t (b23,3,t)

0.5

1.0
β17t (b31,2,t)

0.5

1.0
β18t (b32,2,t)

0.5

1.0
β19t (b33,2,t)

0.5

1.0
β20t (b31,3,t)

0.5

1.0 β21t (b32,3,t)

0.5

1.0
β22t (b33,3,t)

Figure 5: Posterior probabilities of sit = 0 for US macroeconomic data. The corresponding indices
of ct or B`t are in parentheses.
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Figure 6: Posterior trajectories of aij,t for US macroeconomic data: posterior means (solid) and
95% credible intervals (dotted) in the top panels, with posterior probabilities of saij,t = 0 below.
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Figure 7: Posterior trajectories of hit and exp(hit/2) for US macroeconomic data: posterior means
(solid) and 95% credible intervals (dotted).

innovation covariance elements leads to less volatile estimates, and this plays a role in smoothing

the time-variation of the projected economic dynamics. Second, the sizes of the responses from the

LT-VAR model analysis are smaller than that from the NT-VAR analysis, being clearly shrunk towards

zero due to the LTM structure. Based on the significant improvements in step-ahead predictions

discussed above, these findings indicate that the impulse responses from the NT-VAR model can

represent over-estimates, at least to some extent, that are “corrected” via the induced time-varying

shrinkage in the LTM analysis. We note that these features are replicated in the analysis of the

Japanese data from the parallel econometric context, discussed in detail in the Appendix in the

on-line Supplementary Material.

6 Summary comments
By introducing latent threshold process modelling as a general strategy, we have defined a ap-

proach to time-varying parameter time series that overlays several existing model classes. The LTM

approach provides a general framework for time-varying sparsity modelling, in which time-varying

parameters can be shrunk to zero for some periods of time while varying stochastically at non-zero

values otherwise. In this sense, the approach defines automatic parsimony in dynamic models,

with the ability to dynamically select in/out potential predictor variables in dynamics regression,

lagged predictors in dynamic VAR models, edges in dynamic graphical models induced in novel

multivariate volatility frameworks, and by extension other contexts not explicitly discussed here in-
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Figure 8: Impulse response trajectories for one-, two- and three-year ahead horizons from the VAR
model (upper) and LT-VAR model (lower) for US macroeconomic data. The symbols εa↑ → b refer
to the response of the variable b to a shock to the innovation of variable a. The shock size is set
equal to the average of the stochastic volatility across time for each series.
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cluding, for example, dynamic simultaneous equations models and dynamic factor models. Global

relevance, or irrelevance, of some variables and parameters is a special case, so the model also

allows for global model comparison and variable selection.

The substantive example in analysis of a US macroeconomic time series, and a companion ex-

ample with related Japanese data, illustrate the practical use and impact of the LTM structure.

Data induced dynamic sparsity feeds through to substantial improvements in forecasting perfor-

mance and contextually reasonable shrinkage of inferred impulse response function. The Japanese

example investigates the dynamic relationship among three macroeconomic variables including the

zero interest rate periods. The LTM structure naturally adapts to these zero-value data periods by

eliminating unnecessary fluctuations of time-varying parameters that arise in standard time-varying

parameter models. This is a nice example of the substantive interpretation of the LTM concept, in

parallel to its role as an empirical statistical approach to inducing parsimony in dynamic models.

The LT-VAR model provides plausible time-varying impulse response functions that uncover the

changes in monetary policy and its effect on the rest of the economy. In a different context, the

roles of these kinds of models in short-term forecasting and portfolio analyses for financial time

series data are critical, and further application to detailed portfolio decision problems represents a

key future direction (Nakajima and West 2011).

In addition to such broader applications and extension of the LTM concepts to other models,

including to topical contexts such as Bayesian dynamic factor models in economic and financial

applications (e.g. Aguilar and West 2000; Carvalho et al. 2011; Wang and West 2009), there are a

number of methodological and computational areas for further investigation. Among these, we note

the potential of more elaborate state process models, asymmetric and/or time-varying thresholds,

as well as refined MCMC methods including potential reversible jump approaches.

Finally, we note that software implementing all analyses discussed in the paper is freely avail-

able from the authors to interested readers.
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Appendix

for
Bayesian Analysis of Latent Threshold Dynamic Models

Jouchi Nakajima & Mike West

A Posterior computation and MCMC algorithm

A.1 LT regression model

In the LT regression model defined by eqns. (1)-(3), we describe a MCMC algorithm for simu-

lation of the full joint posterior p(Θ, σ,β1:T ,d|y1:T ). We assume prior forms of the following: µi ∼
N(µi0, w

2
i0), (φi + 1)/2 ∼ π(φi), σ−2

iη ∼ G(v0i/2, V0i/2), σ−2 ∼ G(n0/2, S0/2), βi1|Θ ∼ N(µi, v
2
i ),

and di ∼ U(0, |µi|+ Kivi).

A.1.1 Sampling Θ and σ

Conditional on (β1:T , d, y1:T ), sampling of the VAR parameters Θ reduces to generation from

conditionally independent posterior p(θi|βi,1:T , di), for i = 1 : k. First, the conditional posterior

distribution of µi is given by

µi|φi, σiη, βi,1:T , di ∼ TNDi(µ̂i, ŵ
2
i ),

where TNDi denotes a truncated normal distribution that has a positive density in a region Di =

{µi : di < |µi|+ Kivi}, and

ŵ2
i =

{
1

w2
i0

+
(1− φ2

i ) + (T − 1)(1− φi)2

σ2
iη

}−1

,

µ̂i = ŵ2
i

{
µi0

w2
i0

+
(1− φ2

i )βi1 + (1− φi)
∑T−1

t=1 (βi,t+1 − φiβit)
σ2

iη

}
.

Second, the conditional posterior density of φi is

π(φi|µi, σiη, βi,1:T , di) ∝ π(φi)
√

1− φ2
i exp

{
−(φi − φ̂i)2

2σ2
φi

}
I(Di),

where φ̂i =
∑T−1

t=1 β̄i,t+1β̄it/
∑T−1

t=2 β̄2
it, σ2

φi
= σ2

iη/
∑T−1

t=2 β̄2
it with β̄it = βit − µi, and I(Di) is an

indicator function for Di = {φi : di < |µi| + Kiσiη/(1 − φ2
i )

1/2}. The Metropolis-Hastings algo-

rithm is implemented with a candidate generated as φ∗i ∼ TN(−1,1)×Di
(φ̂i, σ

2
φi

). The corresponding

1



acceptance probability

α(φi, φ
∗
i ) = min



1,

π(φ∗i )
√

1− φ∗2i

π(φi)
√

1− φ2
i



 .

Third, σiη values come from the conditional σ−2
iη |µi, φi, βi,1:T , di ∼ GDi(v̂i/2, V̂i/2), where the

gamma distribution is truncated to Di = {σiη : di < |µi|+ Kiσiη/(1− φ2
i )

1/2}, and

v̂i = v0i + T, V̂i = V0i + (1− φ2
i )β̄

2
i1 +

T−1∑

t=1

(β̄i,t+1 − φiβ̄it)2.

Finally, σ is drawn from σ−2|β1:T , d, y1:T ∼ G(n̂/2, Ŝ/2), where n̂ = n0 + T , and Ŝ = S0 +
∑T

t=1(yt − x′tbt)2.

A.1.2 Sampling β1:T

Conditional on (Θ, σ,d,y1:T ), we sample the conditional posterior at time t, p(βt|β−t), sequen-

tially for t = 1 : T using a Metropolis-Hastings sampler. The MH proposals come from a non-

thresholded version of the model specific to each time t, as follows. Fixing st = 1, take proposal

distribution N(βt|mt, M t) where

M−1
t = σ−2xtx

′
t + Σ−1

η (I + Φ′Φ),

mt = M t

[
σ−2xtyt + Σ−1

η

{
Φ(βt−1 + βt+1) + (I − 2Φ + Φ′Φ)µ

}]
,

for t = 2 : T − 1. For t = 1 and t = T , a slight modification is required as follows:

M−1
1 = σ−2x1x

′
1 + Σ−1

η0 + Σ−1
η Φ′Φ,

m1 = M1

[
σ−2x1y1 + Σ−1

η0 µ + Σ−1
η Φ {β2 − (I −Φ)µ}

]
,

M−1
T = σ−2xT x′T + Σ−1

η ,

mT = MT

[
σ−2xT yT + Σ−1

η

{
ΦβT−1 + (I −Φ)µ

}]
,

where Ση0 = diag(v2
1, . . . , v

2
k). The candidate is accepted with probability

α(βt,β
∗
t ) = min

{
1,

N(yt|x′tb∗t , σ2)N(βt|mt,M t)
N(yt|x′tbt, σ2)N(β∗t |mt,M t)

}
,

where bt = βt ◦ st is the current LTM state at t and b∗t = β∗t ◦ s∗t the candidate.
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A.1.3 Sampling d

We adopt a direct MH algorithm to sample the conditional posterior distribution of di, con-

ditional on (Θ, σ,β1:T , d−i, y1:T ) where d−i = d1:k\di. A candidate is drawn from the current

conditional prior, d∗i ∼ U(0, |µi|+ Kivi), and accepted with probability

α(di, d
∗
i ) = min

{
1,

N(yt|x′tb∗t , σ2)
N(yt|x′tbt, σ2)

}
,

where bt is the state based on the current thresholds (di, d−i), and b∗t the candidate based on

(d∗i , d−i).

A.2 LT-VAR model

We detail sampling steps for posterior computations in the LT-VAR model where both the VAR

coefficients and covariance components of Cholesky-decomposed variance matrices follow LT-AR(1)

processes; see eqns. (6)-(7), and (9)-(12). Let Θγ = (µγ ,Φγ , V γ) where γ ∈ {β,α, h}. Standard

MCMC algorithms for TV-VAR models are well documented; see, for example, Primiceri (2005),

Koop and Korobilis (2010), and Nakajima (2011). These form a basis for the new MCMC sampler

in our latent thresholded model extensions.

1. Sampling β1:T

Conditional on (Θβ,d, α1:T , h1:T , y1:T ), βt is generated using the MH sampler implemented

in Section A.1.2. Note that the response here is multivariate; the ingredients in the proposal

distribution are generalized to

M−1
t = X ′

tΣ
−1
t Xt + Σ−1

η (I + Φ′Φ),

mt = M t

[
X ′

tΣ
−1
t yt + Σ−1

η

{
Φ(βt−1 + βt+1) + (I − 2Φ + Φ′Φ)µ

}]
,

and the MH acceptance probability is

α(βt, β
∗
t ) = min

{
1,

N(yt|Xtb
∗
t ,Σt)N(βt|mt, M t)

N(yt|Xtbt,Σt)N(β∗t |mt, M t)

}
.

2. Sampling α1:T

Conditional on (Θα, da,β1:T ,h1:T , y1:T ) where da = {daij}, sampling α1:T requires the same

MH sampling strategy as β1:T based on the model (10)-(12).

3. Sampling h1:T

Conditional on (Θh, β1:T , α1:T , y1:T ), defining y∗t = At(yt −Xtβt) and y∗t = (y∗1t, . . . , y
∗
mt)

′
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yields a form of univariate stochastic volatility:

y∗it = exp(hit/2)eit,

hit = µhi + φhi(hi,t−1 − µhi) + ηhit,

(eit, ηhit)′ ∼ N
(
0, diag(1, v2

hi)
)
,

where µhi, φhi and v2
hi are the i-th (diagonal) element of µh,Φh and V h, respectively. As

in Primiceri (2005) and Nakajima (2011), we can adopt the standard, efficient algorithm for

stochastic volatility models (e.g., Kim et al. (1998), Omori et al. (2007), Shephard and Pitt

(1997), Watanabe and Omori (2004)) for this step.

4. Sampling (Θβ,Θα,Θh)

Conditional on (β1:T , d) and (α1:T , da), sampling Θβ and Θα, respectively, is implemented

as in Section A.1.1. Conditional on h1:T , sampling Θh also follows the same sampling strat-

egy, although it does not require the rejection step associated with the thresholds.

5. Sampling (d, da)

Conditional on all other parameters, we generate the latent thresholds d and da using the

sampler described in Section A.1.3.

B Empirical evaluation of MCMC sampling
This appendix reports performance of the MCMC sampler for the LTM in the simulation exam-

ple. Figure 9 plots autocorrelations and sample paths of MCMC draw for selected parameters of

the simulation example (Section 3). In spite of non-linearity of the model structure, the autocor-

relations decay quickly and sample paths appear to be stable, indicating the chain mixes well. In

addition, MH acceptance rates are empirically high: about 80% for the generation of βt and αt,

about 40% for d and da, and about 95% for (Θβ,Θα) in the application to macroeconomic data.

To check convergence of MCMC draws, the convergence diagnostic (CD) and relative numerical

efficiency measure (a.k.a., effective sample size) of Geweke (1992) are computed. Table 3 reports

the CDs (p-values for null hypothesis that the Markov chain converges) as well as inefficiency

factors (IFs) for the selected parameters. The CDs indicate the convergence of the MCMC run and

the effective sample size is fairy small relative to standard non-linear dynamic models.
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Figure 9: Performance of the MCMC: Autocorrelations (top) and sample paths (bottom) of MCMC
draws for selected parameters in simulation example.

CD IF
µ1 0.326 5.0
φ1 0.582 22.1
σ1,η 0.378 107.2
σ 0.150 26.6
d1 0.503 52.1

Table 3: MCMC diagnostics: Convergence diagnostic (CD) of Geweke (1992) (p-value) and ineffi-
ciency factor (IF) for selected parameters in simulation example.
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C Application to Japanese macroeconomic data

C.1 Data

We analyze the m = 3 time series giving the quarterly inflation rate, national output gap and

short-term interest rate gap in the Japanese economy during 1977/Q1–2007/Q4, following previ-

ous analyses of related time series data (Nakajima et al. 2010; Nakajima 2011); see Figure 10. The

inflation rate gap is the log-difference from the previous year of the Consumer Price Index (CPI),

excluding volatile components of perishable goods and adjusted for nominal impacts of changes in

consumption taxes. The output gap is computed as deviations of real from nominal GDP, defined

and provided by the Bank of Japan (BOJ). The interest rate gap is computed as log-deviation of

the overnight call rate from its HP-filtered trend. One key and evident feature is that the interest

rate gap stays at zero during 1999-2000, fixed by the BOJ zero interest rate policy, and again in

2001–2006 when the BOJ introduced a quantitative easing policy. Iwata and Wu (2006) proposed

a constant parameter VAR model with a Tobit-type censored variable to estimate monetary pol-

icy effects including the zero interest rate periods. In contrast to that customized model, the LTM

structure here offers a global, flexible framework to detecting and adapting to underlying structural

changes induced by economic and policy activity, including such zero-value data periods. We take

the same priors as previous analyses.

1980 1985 1990 1995 2000 2005

0

4

8

Inflation (p)

1980 1985 1990 1995 2000 2005

0

4

GDP gap (x)

1980 1985 1990 1995 2000 2005

0

5
Interest rate gap (i)

Figure 10: Japanese macroeconomic time series (indices ×100 for % basis).
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C.2 Forecasting performance and comparisons

We fit and compare predictions using the same four models as the previous application. Based

on evaluation of RMSFE across the out-of-sample forecasts for the final four quarters, it is clear that

the LT-VAR models perform best when p = 2 is assumed, while the non-threshold TV-VAR models

perform best with more elaborate models, taking p = 4. The fact that the LTM strategy leads to

improved short-term predictions based on reduced dimensional, and hence more parsimonious

models is already an indication of the improved fit and statistical efficiency induced by latent

thresholding.

Model Horizon (quarters)
bt at 1 2 3 4

RMSFE
(1) NT NT 0.253 0.387 0.525 0.633
RMSFE relative to Model (1)
(2) NT LT 1.016 1.018 1.006 1.008
(3) LT NT 0.949 0.721 0.611 0.594
(4) LT LT 0.889 0.680 0.592 0.507

Table 4: Forecasting performance for Japanese macroeconomic data: RMSFE for one- to four-
quarter ahead prediction. NT and LT refer to the non-threshold and latent threshold models, re-
spectively.

The model comparisons are summarized in Table 4. We computed RMSFE for ten different se-

lections of subsets of data, beginning with the sample period from 1977/Q1–2004/Q3, fit the model

and then forecast one- to four-quarters ahead over 2004/Q4–2005/Q3 and repeating the rolling

estimation as in the previous application. Interestingly, Model 2 (NT-bt, LT-at) marks slightly larger

RMSFEs than Model 1, which indicates little evidence of forecasting improvement by incorporat-

ing sparsity only in the covariance component of time-varying volatility matrix. This difference

of RMSFE is negligible, although this arises partly because shrinking covariance components may

leads to a bias in the time-varying coefficients bt that follows NT structure in this model. Again,

the LT-(bt,at) model (Model 4) dominates all others, confirming that the time-varying shrinkage

structure contributes to the forecasting performance of time-varying VARs. Improvement from the

standard NT model (Model 1) is much more distinctive than that of the US macroeconomic data,

providing almost half of RMSFE at four-quarter horizon. The Japanese data include zero interest

rate periods, therefore a benefit from time-varying shrinkage is considered to be larger than the US

data.
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Figure 11: Posterior means of βt for Japanese macroeconomic data. Posterior probabilities of
sit = 0 are plotted below each trajectory. The corresponding indices of ct or B`t are in parentheses.
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C.3 Some summaries of posterior inferences

Figure 11 displays the posterior means over time of the time-varying coefficients, as well as

the posterior probabilities of sit = 0 for the LT-VAR model. Some marked patterns of time-varying

sparsity are observed for several coefficients. Figure 6 plots the posterior means, the 95% credible

intervals of aij,t and the posterior probabilities of saij,t = 0. Here a21,t has a relatively distinctive

shrinkage pattern, with a coefficient that varies slightly and is roughly 50% distinct from zero over

most of the time frame, whereas the other two elements – that link directly to the interest rate

series – are shrunk to zero with posterior probability close to one across the entire period.

Figure 7 graphs the posterior means of the stochastic volatility, hit and exp(hit/2), together with

their 95% credible intervals. Several volatile periods are observed for the inflation and interest rates

series around 1980. It is quite understandable and appropriate that the volatility of the interest rate

gap series is estimated close to zero during the zero interest rate periods.

Figure 8 displays posterior means of impulse response for one-, two- and three-year ahead

horizons. In this comparison, we fitted both the non-threshold VAR model and the LT-VAR using

p = 2 lags. The LT-VAR model provides econometrically reasonable responses: the responses of

inflation and output to an interest rate shock shrinks to zero during the zero interest rate periods

for all horizons. This is not obtained from the NT-VAR model; there the associated time-varying

coefficients and covariance components are fluctuating in non-zero values. The responses from the

LT-VAR model indicate that the reactions of short-term interest rates to inflation and output decay

after the beginning of the 1990s, and afterwards stay at zero due to the zero interest rates. Since

the BOJ terminated the quantitative easing policy in 2006, small responses of interest rates are

estimated after 2006. The LT-VAR model also suggests that the responses of inflation decay more

dramatically to zero in the 1990’s than the VAR model indicates. The responses of output to interest

rates and to output itself decline more clearly in the LT-VAR model than in the VAR model. These

differences obviously result from the LTM structure, which provides these plausible implications

for the Japanese macroeconomic analysis as well as the improved step-ahead predictions already

discussed.

In addition, Figure 15 reports impulse response with credible intervals computed from posterior

draws from NT-VAR and LT-VAR models. Trajectories of posterior median and 75% credible intervals

are plotted for responses of the interest rate and inflation to a GDP shock. In both responses, the

credible intervals from the LT-VAR model are narrower than that from the NT-VAR and theirs spread

is more time-varying; the advantage of LTM structure is obvious particularly in the zero interest rate

periods. In addition to the improvements in forecasting performance, these findings confirm that

the posterior outputs from the LT-VAR provides more plausible evidences for the macroeconomic

dynamics.
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Figure 12: Posterior trajectories of aij,t for Japanese macroeconomic data: posterior means (solid)
and 95% credible intervals (dotted) in the top panels, with posterior probabilities of saij,t = 0
below.
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Figure 13: Posterior trajectories of hit and exp(hit/2) for Japanese macroeconomic data: posterior
means (solid) and 95% credible intervals (dotted).

10



(i) NT-VAR model
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(ii) LT-VAR model
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Figure 14: Impulse response trajectories for one-, two- and three-year ahead horizons from the VAR
model (upper) and LT-VAR model (lower) for Japanese macroeconomic data. The symbols εa↑ → b
refer to the response of the variable b to a shock to the innovation of variable a. The shock size is
set equal to the average of the stochastic volatility across time for each series.
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(i) Response of interest rate to GDP shock (εx↑ → i)
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(ii) Response of inflation to GDP shock (εx↑ → p)
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Figure 15: Impulse response trajectories with credible intervals from the NT-VAR (left) and LT-
VAR (right) models for Japanese macroeconomic data. Posterior median (solid) and 75% credible
intervals (dotted).
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