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Abstract

A perfect Bayesian equilibrium with monotone pure strategies exists in an indepen-

dent private value first-price auction followed by the winner’s choosing a mechanism

to offer resale. We allow for any number of ex ante different bidders and impose no

restriction on the choice of resale mechanisms. Since a bidder’s ex post valuation of

the auction outcome is derived from endogenous resale, the major conditions for the

fixed-point method on Bayesian games cannot be obtained through assumptions of the

valuation function. Based on a comparative static analysis of the mechanism-design

decision at resale, we obtain single-crossing and continuity properties at non-tying bids.

Tying bids are disentangled according to the direction of resale conditional on the tie.
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1 Introduction

Analyses of economic institutions are based on existence of equilibria of the underlying games.

Although Athey [1], McAdams [8], Reny and Zamir [13], Reny [12], and Jackson, Simon,

Swinkels and Zame [5] have established an ingenious fixed-point approach to equilibrium

existence for Bayesian games such as static auctions, the approach has not been applied to

dynamic games such as auctions with resale. The main difficulty is that, whereas a bidder’s

ex post valuation of the auction outcome is exogenous in the aforementioned works, in an

auction followed by possible resale, the valuation is derived from the associated continuation

equilibrium at resale, which in turn may be manipulated by actions taken during the auction.

In the auction-resale literature, the state of the knowledge regarding equilibrium exis-

tence in first-price auctions is that equilibrium exists in an independent private value model

where there are only two kinds of bidders ex ante, those whose use values are drawn from a

distribution say s, and the others whose use values drawn from a distribution say w. Garratt

and Tröger [2] handled the case where the w-distribution is degenerate and there is only one

w-bidder. Hafalir and Krishna [4] handled the 2-bidder case with one w-bidder and one

s-bidder and they proved an elegant symmetrization result. Lebrun [6, 7] handled similar

2-bidder models with more general bid-disclosure policies and resale-bargaining power alloca-

tions. Virág [14] proved existence in the multiple-bidder 2-distribution case and showed that

the symmetrization result of Hafalir and Krishna does not extend beyond 2-bidder models.

The methods of these works are based on explicit characterizations of the associated

continuation equilibrium at resale, which are plugged into a bidder’s objective function

viewed at the start of the auction. The differential equation obtained thereof pins down a bid

function required by the first-order necessary condition for an equilibrium. The second-order

condition is then verified by considerations of all on- and off-path cases at resale. Such a

procedure is feasible in these works due to their 2-distribution assumption. The assumption

implies that on the equilibrium path a reseller has only one kind of potential buyers to deal

with and, furthermore, conditional on almost every winning bid, only one kind of bidders

wants to offer resale upon winning. Neither properties would hold in a more general model

with more than two distributions of bidders. An alternative method would help.

The aforementioned fixed-point approach is an alternative though challenged by new

issues due to the possibility of resale. Take the issue of tying bids for example. In the
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fixed-point approach, ties cause troubles only at the limit of the sequence of equilibria in

the approximating finite-action games. With resale, ties may cause a bidder’s valuation of

the auction outcome, assumed to be a continuous function of one’s bid in the fixed-point

approach, to be discontinuous in his bid. That is because the valuation depends on the

bidder’s expected revenue at resale in case of winning the auction. If there is a mass of his

rivals’ types who bid x in the auction, then in outbidding them through switching his bid

from x− ε to x+ ε, the bidder adds a mass of bidder-types to his clientele for resale, thereby

generating a non-infinitesimal change in his expected revenue at resale.

The issue of ties is further complicated by the fact that a bidder who has lost in an

auction may buy the good from the reseller. Furthermore, if a bidder plays the role of a

speculator, some other bidders may prefer losing to winning in the auction. Thus, it is not

obvious that a bidder wants to win at all conditional on tying with his rivals.

As another example, the fixed-point approach would require in an auction-resale game

that a bidder’s valuation of the auction outcome should satisfy the single crossing condition

in his bid and use value. That in turn requires knowledge about the associated continuation

equilibrium at resale, since one’s bid has a learning effect on resale: the winning bid signals

upper bounds of the losing bidders’ use values, and these upper bounds affect the choice of

the resale mechanism.

This paper welds together the fixed-point approach for bidding equilibrium with a

mechanism-design approach for resale equilibria. Based on Myerson’s [11] characterization

of optimal auctions, we obtain fundamental comparative static properties of resale regarding

the choice of resale mechanisms and bidding behaviors in these mechanisms. These properties

imply a single crossing property, one of the two building blocks for the fixed-point approach.

The other building block, that a bidder prefers to win conditional on his bid’s tied or

(in the converging sequence of equilibria) clustered with his rivals’ bids, is more difficult to

establish. In the literature, this building block is established mainly by the assumption that

a bidder’s ex post valuation of the auction outcome is weakly increasing in his rivals’ types.

This assumption does not hold in my model, because a bidder’s payoff from losing need not

be decreasing in rivals’ types. To establish the building block, we disentangle the clustering

bidders according to who could possibly resell to whom conditional on the cluster, thereby

rendering immaterial the nonmononicity of the loser’s payoff (Proposition 8).

Another important assumption in the fixed-point literature is that a bidder’s ex post
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valuation is continuous in his bid. As the valuation is endogenous in our model, the continuity

has to be proved rather than assumed. We establish the property based on examinations of

a reseller’s problem of choosing an optimal resale mechanism (Proposition 5).

The result is that monotone pure-strategy equilibrium exists in an independent private

value first-price auction followed by the winner’s offering resale through a mechanism chosen

by the winner (Theorem 1).

This paper has significantly developed the mechanism-design approach to resale previ-

ously used by Zheng [15] and Garratt, Tröger and Zheng [3]. Reconciling a conflict between

the traditional optimal auction theory that assumes away resale and its typical implication

that players could gain from resale, Zheng proposed sufficient conditions for continuation

equilibria at resale based on which the initial seller can design an optimal auction that

incorporates resale possibilities. One of those sufficient conditions, “resale monotonicity,”

partially anticipated the learning effect proved in this paper (Proposition 1). Garratt, Tröger

and Zheng characterized the continuation equilibrium at resale, after an English or second-

price auction, through Myerson’s characterization of optimal auctions and the Miglrom-

Segal [9] envelope condition. They have found comparative statics results that anticipated

the monopoly effect obtained in this paper (Proposition 2 here).

In both papers, tying bids are nonissue as the initial auction does not have to be a first-

price auction, whereas this paper needs to handle the issue of ties because the occurrence

of ties is an unavoidable possibility of first-price auctions and the posterior beliefs and the

choice of resale mechanisms all depend crucially on the information about ties. The other

comparative static properties obtained in this paper, including the strict single crossing

(Proposition 3), the upper and lower bounds of the marginal expected payoff from winning

(Proposition 4) and continuity at nonatomic bids (Proposition 5), are new in the study of

auctions with resale.

2 The Model and the Theorem

Let us consider a two-period dynamic game of an auction with resale. In period 1, a good is

sold via first-price auction to one of finitely many bidders, constituting a set I. Each bidder i’s

use value of the good is independently drawn from a commonly known distribution. Privately

informed of his own use value, bidder i submits a sealed bid from Bi := {l} ∪ (ri,∞) ⊆ R,
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with reserve price ri ≥ 0 for bidder i and l < 0 being the losing bid that amounts to

nonparticipation in the period-1 auction. If bidder i’s bid does not exceed ri then it amounts

to l. Ties are broken randomly and uniformly with equal probabilities. At the end of the

auction, the highest bid and the identity of the the winner (after tie-breaking if a tie occurs)

are announced publicly and nothing else is disclosed. In period 2, the bidder who won in

period 1 offers resale to the other bidders (in the set I) by committing to a selling mechanism.

Every bidder is assumed risk-neutral in his net payoff, which is defined to be his use value,

if he is the final owner of the good, plus the net monetary transfer he receives from others.

Discounting is assumed away for notational simplicity.

Assume that every bidder i’s prior distribution of his use value is Fi, with positive

continuous density fi on its support Ti := [ti, ti] ⊆ R+, such that the hazard rate fi(ti)/(1−
F (ti)) is weakly increasing in ti on Ti. Denote T−i := Πk∈I\{i}Tk and T := Πk∈ITk.

Our solution concept is the standard notion of perfect Bayesian equilibrium with the

only modification that sequential rationality is not required at any node where the reseller has

just chosen a resale mechanism that precludes existence of equilibrium in the continuation

game. This notion has been formalized by Zheng [15].

Theorem 1 The auction-resale game defined thereof with the above-stated assumptions ad-

mits a perfect Bayesian equilibrium where each bidder’s period-one bid is a weakly increasing

function of the bidder’s use value.

The assumption that a bidder i’s non-l bids (called serious bids) constitute an open

set (ri,∞) is important. By contrast, the sets of serious bids in Athey [1] and Reny and

Zamir [13] are closed such as [ri,∞). This difference is driven by the fact that, due to

resale possibility in our model, a bidder’s ex post valuation of the auction outcome is not

necessarily an increasing function of his rivals’ types. To approximate a arbitrarily chosen

bid as an alternative to the equilibrium bid, the reasoning of Athey and Reny and Zamir

is that it does not hurt a bidder to bid slightly above a tying bid. Due to the problem of

nonmonotonicity, I need to give the bidder the option to drop slightly below the typing bid,

which requires the openness of the set of serious bids.

We can dispense with the assumption that the set of highest bidders is not announced,

but doing so would need more cumbersome notations. The hazard rate assumption is not

uncommon in the literature. It facilitates tractability of the endogenous resale mechanisms.
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3 Preliminaries

Denote bidder i’s use value, or type, by ti as the random variable and ti as the realized value.

Denote t−i := (tk)k∈I\{i} and t−i := (tk)k∈I\{i} as the random vector and the realization for

the type profile across rivals of i. Analogously, denote t := (ti, t−i) := (tk)k∈I , t := (ti, t−i) :=

(tk)k∈I , t¬{i,j} := (tk)k∈I\{i,j} and t¬{i,j} := (tk)k∈I\{i,j}. Denote E[g(x)] for the expected value

of any function g of the random variable or random vector x, with the random variable/vector

boldfaced, and E[g(x) | E] for the expected value conditional on event E. For any set S, |S|
denotes the cardinality of S. If a subset S of Ti is empty, we let supS := inf S := ti. Denote

1E for the indicator function for the event or statement denoted by E.

3.1 Monotone Bid Functions

For any bidder i, let βi : Ti → Bi denote i’s period-1 bid function. Throughout this paper

we consider only weakly increasing bid functions. Let

β−1
i (x) := {ti ∈ Ti : βi(ti) = x},

β−1
i (≤ x) := {ti ∈ Ti : βi(ti) ≤ x}.

By monotonicity of βk, β
−1
k (x) and β−1

i (≤ x) are intervals.

For any b ∈ R+ and any bidder i, we say that b is an atom of βi if and only if β−1
i (b)

is a nondegenerate interval, i.e., the cardinality of b’s inverse image
∣∣β−1
i (b)

∣∣ > 1. A bid b is

said to be atom of β−i if and only if b is an atom of βj for some j ∈ I \ {i}.

3.2 Posterior Beliefs and Virtual Utilities

The public history at the end of period one, commonly known, consists of the identity of the

winner w and the winning bid bw. In addition to the public history (w, bw), each bidder i

also privately knows, at the end of period one, his bid bi in period one. The list (w, bw; bi) is

called i’s personal history .

If bidder i is believed to have played according to bid function βi and lost in the auction,

then the posterior distribution of ti conditional on any public history (w, bw), denoted by

Fi(· | w, bw), is derived from Bayes’s rule based on the observation that i has been defeated

either because βi(ti) < bw or because βi(ti) = bw and i did not win the tie-breaking lottery.

Note that the support of Fi(· | w, bw) is β−1
i (≤ bw)], called posterior support .
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Lemma 1 For any distinct bidders i and w and any bw ∈ Bw, 1−Fi(ti|w,bw)
fi(ti|w,bw)

is weakly decreas-

ing in ti on its posterior support and is strictly increasing in sup β−1
i (≤ bw).

Proof For any bidder k 6= w, if β−1
k (bw) = ∅ then let ck := dk := sup β−1

k (≤ bw); else let

ck := inf β−1
k (bw), (1)

dk := sup β−1
k (bw) (= sup β−1

k (≤ bw)). (2)

Denote ψi(w, bw) for the probability of the event that bidder w, with bid bw, wins the tie-

breaking lottery conditional on tying with bidder i (and possibly with some others). Then

ψi(w, bw) =
1

2
+

∑
∅ 6=S⊆I\{i,w}

1

|S|+ 2
(Πk∈S(Fk(dk)− Fi(ck)))

(
Πj∈I\(S∪{i,w})Fj(cj)

)
. (3)

Note that ψi(w, bw) is independent of (ci, di, ti). By Bayes’s rule,

Fi(ti | w, bw) =


Fi(ti)

Fi(ci)+(Fi(di)−Fi(ci))ψi(w,bw)
If ti ≤ ci

Fi(ci)+(Fi(ti)−Fi(ci))ψi(w,bw)
Fi(ci)+(Fi(di)−Fi(ci))ψi(w,bw)

If ci ≤ ti ≤ di.
(4)

Then

1− Fi(ti | w, bw)

fi(ti | w, bw)
=


ψi(w,bw)Fi(di)+(1−ψi(w,bw))Fi(ci)−Fi(ti)

fi(ti)
If ti ≤ ci

Fi(di)−Fi(ti)
fi(ti)

If ci ≤ ti ≤ di.
(5)

Since Fi is assumed strictly increasing on its support and ψi(w, bw) > 0, it follows that
1−Fi(ti|w,bw)
fi(ti|w,bw)

is strictly increasing in di, i.e., sup β−1
i (≤ bw). To prove that 1−Fi(ti|w,bw)

fi(ti|w,bw)
is

decreasing in ti, note that ψi(w, bw)Fi(di) + (1−ψi(w, bw))Fi(ci) is less than or equal to one

and if ti < ci then ψi(w, bw)Fi(di)+(1−ψi(w, bw))Fi(ci) > Fi(ti). Thus, for any ti 6= ci there

is a constant e ∈ [Fi(ti), 1] such that

d

dti

(
1− Fi(ti | w, bw)

fi(ti | w, bw)

)
=

d

dti

(
e− Fi(ti)

fi(ti)

)
= −1− f ′i(ti)

fi(ti)2
(e− Fi(ti)) .

If f ′i(ti) ≥ 0 then this derivative is negative, as desired. Suppose f ′i(ti) < 0. Because

Fi(ti) ≤ e ≤ 1, −f ′i(ti)(e− Fi(ti)) ≤ −f ′i(ti)(1− Fi(ti)) and hence

d

dti

(
1− Fi(ti | w, bw)

fi(ti | w, bw)

)
≤ d

dti

(
1− Fi(ti)

fi(ti)

)
,

which is nonpositive due to the hazard rate assumption of the priors.
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Corollary 1 For any distinct bidders i and w and any bw ∈ Bw, the posterior virtual utility

defined by

Vi,w,bw(ti) := Vi(ti | w, bw) := ti −
1− Fi(ti | w, bw)

fi(ti | w, bw)

(
∀ti ∈ β−1

i (≤ bw)
)

(6)

is continuous in ti and sup β−1
i (≤ bw), strictly increasing in ti, and weakly decreasing in bw.

Proof It follows directly from Eq. (5) that Vi,w,bw(ti) is continuous in ti and sup β−1
i (≤ bw);

coupled with Lemma 1, Eq. (5) impies that Vi,w,bw(ti) is strictly increasing in ti. By Eq. (3),

ψi(w, bw) is weakly increasing in bw (through the dk); by Eqs. (5)–(6), Vi,w,bw(ti) is weakly

decreasing in ψi(w, bw) because Fi(di) ≥ Fi(ci). These combined with the fact that Vi,w,bw(ti)

is decreasing in sup β−1
i (≤ bw) and sup β−1

i (≤ bw) is weakly decreasing in bw, imply that

Vi,w,bw(ti) is weakly decreasing in bw.

3.3 Continuation Equilibria at Resale

Given any public history (w, bw), winner w’s optimal action in the continuation game is to

offer resale through a mechanism that maximizes w’s expected payoff based on the posterior

distributions given by Eq. (4). By the strict monotonicity of the posterior virtual utilities

(Corollary 1), Myerson’s [11] complete characterization of optimal auctions implies

Lemma 2 Given any history (w, bw), if the winner w believes that every bidder k 6= w

followed a weakly increasing bid function βk in period one, then a resale allocation can be

supported as a continuation equilibrium conditional on (w, bw) if and only if it satisfies—

a. for any tw ∈ Tw and for almost every t−w ∈ T−w, if

∃i 6= w : Vi(ti | w, bw) ≥ max

{
tw, max

k 6∈{w,i}
Vk(tk | w, bw)

}
(7)

then bidder i is the final owner of the good; else player w is the final owner; and—

b. for any i 6= w, the type-ti bidder i gets zero expected payoff.

Provisions (a) and (b) of Lemma 2 determine via the envelope formula a class of

payment schemes, all payoff-equivalent, that implement the optimal allocation. One of such

payment rules (constructed by Myerson) is that bidder i’s payment given t ∈ T is equal to

pi,w,bw(t) = inf

{
ti ∈ β−1

i (≤ bw) : Vi,w,bw(ti) ≥ max

{
tw, max

k∈I\{i,w}
Vk,w,bw(tk)

}}
(8)
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if i wins at resale and is equal to zero if otherwise.

Lemma 2 provides a sufficient and necessary condition for a continuation equilibrium at

resale. Moreover, it implies that a continuation equilibrium at resale exists and is effectively

unique (unique allocation almost surely and unique payment scheme in expected payoffs),

hence we shall refer to the continuation equilibrium in the sequel. Thus,

Lemma 3 If a profile (βi)i∈I of weakly increasing period-1 bid functions constitutes a Bayesian

Nash equilibrium (BNE) provided that the continuation play conditional on any public history

(w, bw) satisfies conditions (a) and (b) in Lemma 2, then (βi)i∈I coupled with the continuation

play constitutes a perfect Bayesian equilibrium (PBE) of the auction-resale game.

Therefore, existence of PBE of the dynamic game becomes existence of BNE in a

static game where bidders’ expected payoffs are endogenously derived from the continuation

equilibrium characterized in Lemma 2. To analyze these endogenous expected payoffs, we

establish in the next section properties of any continuation equilibrium at the resale stage.

4 The Strategy of the Proof

The building blocks for the fixed approach; problems due to resale possibilities; and solutions.

Next version.

5 Comparative Statics

5.1 Initial Bids and Resale Acquisition

Fix a profile (βi)i∈I of weakly increasing bid functions. For any i ∈ I and any bi ∈ Bi, define

τ−i(bi) := {t−i ∈ T−i : ∀j ∈ I \ {i} [bi ≥ βj(tj)]} . (9)

For any bidder i, any bi ∈ Bi and any t := (ti, t−i) ∈ T such that t−i ∈ τ−i(bi), define

Qi(bi, t) to be the probability with which i is the final owner of the good in the continuation

equilibrium (à la Lemma 2) conditional on the history (i, bi)—that i won with bid bi—

provided that everyone else abides by the period-1 bid functions β−i; if t−i /∈ τ−i(bi) then

define Qi(bi, t) := 0. By Lemma 2.a, for any bi, any ti ∈ Ti and for almost every t−i ∈ τ−i(bi),

Qi(bi, t) = 1ti≥maxk∈I\{i} Vk(tk|i,bi). (10)
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For any t := (ti, t−i) ∈ T and any j ∈ I \{i}, define qij(bi, t) to be the probability with which

i is the final owner of the good in the continuation equilibrium conditional on the personal

history (j, βj(tj); bi),
1 provided that everyone else abided by β−i. Lemma 2.a implies that,

for any bi, any ti ∈ T−i and almost every t−i,

qij(bi, t) = 1Vi(ti|j,βj(tj))≥max{tj ,maxk∈I\{i,j} Vk(tk|j,βj(tj))} =: qij(t), (11)

where the second equality follows from the first equality, which implies that qij(bi, t) is

independent of bidder i’s (privately known) period-1 bid bi.

Proposition 1 (learning effect) For any bidder i, any bi ∈ Bi, and any t ∈ T , if every

bidder k 6= i abides by a weakly increasing bid function βk and if b′′i > b′i, then for almost

every t−i ∈ T−i, Qi(b
′′
i , t) ≥ Qi(b

′
i, t).

Proof Let b′′i > b′j. If Qi(b
′
i, t) = 0 then Qi(b

′′
i , t) ≥ Qi(b

′
i, t). Suppose Qi(b

′
i, t) > 0. Then,

by definition of Qi, t−i ∈ τ−i(b′i); by Eq. (9), for each k 6= i, βk(tk) ≤ b′i < b′′i , so t−i ∈ τ−i(b′′i ).
Thus, for each bi ∈ {b′i, b′′i } Eq. (10) holds for almost every t−i ∈ τ−i(bi). Hence there is no

loss of generality to assume Eq. (10) for this t−i ∈ τ−i(bi). Then Qi(b
′
i, t) > 0 implies

k ∈ I \ {i} : ti ≥ Vk(tk | i, b′i).

Since Vk(tk | i, bi) is weakly decreasing in bi (Corollary 1),

k ∈ I \ {i} : Vk(tk | i, b′i) ≥ Vk(tk | i, b′′i ).

These two inequalities combined, Eq. (10) implies Qi(b
′′
i , t) = 1 ≥ Qi(b

′
i, t).

Proposition 2 (monopoly effect) For any bidder i, if every bidder k 6= i abides by a

weakly increasing bid function βk, then for any bidder j 6= i, any bi ∈ Bi such that for any

k ∈ I \ {i}, bi is not an atom of βk, and for almost every t−i ∈ τ−i(bi), Qi(bi, t) ≥ qij(t).

Proof Pick any t−i ∈ τ−i(bi). If qij(t) = 0 then the conclusion is vacuously true. Hence

suppose that qij > 0 and so Eq. (11) implies

Vi(ti | j, βj(tj)) ≥ max

{
tj, max

k∈I\{i,j}
Vk(tk | j, βj(tj))

}
.

1 I.e., bidder i has bid bi and lost (possibly due to the tie-breaking randomization) in period one while

bidder j has won with winning bid βj(tj).
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By Eqs. (10), it suffices to prove

ti ≥ max
k∈I\{i}

Vk(tk | i, bi).

By Eq. (6), ti ≥ Vi(ti | j, βj(tj)) and tj ≥ Vj(tj | i, bi). Thus, we need only to prove

∀k ∈ I \ {i, j} : Vk(tk | j, βj(tj)) ≥ Vk(tk | i, bi). (12)

To this end, pick any k /∈ {i, j}. By the hypothesis of the lemma, bi is not an atom of βk,

hence Eqs. (5) and (6) imply that

Vk(tk | i, bi) = tk −
Fk(sup β−1

k (≤ bi))− Fk(tk)

fk(tk)
.

Eqs. (5) and (6) also imply

Vk(tk | j, βj(tj)) =

 tk − ψk(j,βj(tj))Fk(dk)+(1−ψk(j,βj(tj)))Fk(ck)−Fk(tk)

fk(tk)
If tk ≤ ck

tk − Fk(dk)−Fk(tk)
fk(tk)

If ck ≤ tk ≤ dk,
(13)

where ck = inf β−1
k (βj(tj)) and dk = sup β−1

k (βj(tj)) if β−1
k (βj(tj)) 6= ∅, else ck = dk =

inf β−1
k (≤ βj(tj)). Since t−i ∈ τ−i(bi), βj(tj) ≤ bi, hence the monotonicity of βk implies that

sup β−1
k (≤ bi)) ≥ dk. Thus, the two equations displayed above imply (12), as desired.

Remark: While not needed in the sequel, generalization of the conclusion of Proposi-

tion 2 can be done except for the case where bi = βj(tj) is an atom of both βi and βk for some

k ∈ I \ {i, j}. In that case, I have not ruled out the possibility that ψk(i, bi) < ψk(j, βj(tj))

for some tk < ck and hence possibly Vk(tk | i, bi) > Vk(tk | j, βj(tj)) for such tk.

5.2 Envelope Conditions of the Payoffs for Winners and Losers

For any bidder i, suppose that everyone else abides by a profile β−i of weakly increasing

period-1 bid functions. For any bi ∈ Bi and any type profile t−i ∈ T−i, let j = hi(bi, t−i)

denote the event that bidder j turns out to be the winner in the period-one auction, either

because he is the only highest bidder or because he ties with some rival(s) and wins the

tie-breaking lottery; also denote j = hi(t−i) for the event that j is the winner conditional

on i’s not being the winner (possibly through tie-breaking lotteries). Formally, denote

j = hi(bi, t−i) ⇔ i’s personal history is

 (j, βj(tj); bi) if j 6= i

(i, bi; bi) if j = i;
(14)

j = hi(t−i) ⇔

 j ∈ arg maxj 6=i βj(tj)

|arg maxj 6=i βj(tj)| > 1 ⇒ j wins the tie-breaking lottery.

 (15)
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Since we assume the uniform tie-breaking rule, the realized outcome of tie-breaking lotteries

is stochastically independent of bidder-types and hence is omitted in the notation hi(bi, t−i).

For any ti ∈ Ti, any t−i ∈ T−i with t := (ti, t−i), and any bidder j 6= i, denote:

• Wi(bi, t) := type-ti bidder i’s expected payoff in the continuation equilibrium condi-

tional on the personal history (i, bi; bi) (which implies i = hi(bi, t−i)), provided that

everyone else abides by β−i;

• Lij(bi, t) := type-ti bidder i’s expected payoff in the continuation equilibrium given the

personal history (j, βj(tj); bi) (which implies j = hi(bi, t−i)), provided that everyone

else abides by β−i.

Lemma 4 For any distinct i, j ∈ I and any t ∈ T , Lij(bi, t) is constant to all bi and hence

is denoted Lij(t) in the sequel.

Proof Conditional on any public history (j, βj(tj)), the resale mechanism at the continu-

ation equilibrium, characterized in Lemma 2, is determined by the reseller w’s identity and

its winning bid βj(tj) and is independent of bidder i’s privately known bid bi. Given realized

type profile t, i’s expected payoff in the resale mechanism is uniquely determined.

Define:

W i(bi, ti) := E [Wi(bi, ti, t−i) | i = hi(bi, t−i)] , (16)

Lij(bi, ti) := E [Lij(ti, t−i) | j = hi(bi, t−i)] , (17)

Qi(bi, t) := E [Qi(bi, ti, t−i) | i = hi(bi, t−i)] ,

qij(bi, ti) := E [qij(ti, t−i) | j = hi(bi, t−i)] .

Lemma 5 For any bidder i, any bi ∈ Bi and any j 6= i, W i(bi, ·) and Lij(bi, ·) are absolutely

continuous and for any ti ∈ Ti,

W i(bi, ti) = W i(bi, ti) +

∫ ti

ti

Qi(bi, τi)dτi, (18)

Lij(bi, ti) =

∫ ti

ti

qij(bi, τi)dτi. (19)
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Proof Eq. (18) follows directly from the incentive compatibility of player i in the contin-

uation equilibrium conditional on the event that i is the period-1 winner.2 Analogously, in

the event where i loses and j wins, upon which i knows j’s period-1 bid βj(tj) and hence j’s

type tj, we have

Lij(bi, ti | tj) = Lij(bi, ti | tj) +

∫ ti

ti

qij(bi, τi | tj)dτi,

where

Lij(bi, ti | tj) := E
[
Lij(ti, tj, t¬{i,j}) | j = hi(bi, t−i)

]
,

qij(bi, ti | tj) := E
[
qij(ti, , t¬{i,j}) | j = hi(bi, t−i)

]
.

Since the resale mechanism in the continuation game is chosen by the reseller, the winner j,

for the mechanism to be optimal for the reseller, we have Lij(bi, ti | tj) = 0. Hence

Lij(bi, ti | tj) =

∫ ti

ti

qij(bi, τi | tj)dτi.

Integrating this equation across tj ∈ Tj gives Eq. (19).

Denote

Li(t) :=
∑
j 6=i

1j=hi(t−i)Lij(t), (20)

qi(t) :=
∑
j 6=i

1j=hi(t−i)qij(t). (21)

5.3 The Single Crossing Property

Denote Ui(bi, ti; β−i) for type-ti bidder i’s expected payoff from bidding bi in period one,

provided that everyone else abides by a profile β−i of weakly increasing period-1 bid functions

and the continuation play constitutes a continuation equilibrium. With the notations Wi

2 In choosing a resale mechanism, the winner-turned reseller player w effectively inputs an alleged type t̂w

into the formula in Lemma 2 that outputs a mechanism optimal for t̂w. Then w’s expected probability of

being the final owner (no resale) is Qw(bw, t̂w), and the expected revenue w receives is Rw(bw, t̂w). Then

w’s expected payoff in period 2 is twQw(bw, t̂w) + Rw(bw, t̂w). Picking the optimal resale mechanism means

setting t̂i = ti. Then (18) follows from the envelope theorem of Milgrom and Segal [9].
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and Li defined in §5.2, we have

Ui(bi, ti; β−i) = E

[
1i=hi(bi,t−i) (Wi(bi, ti, t−i)− bi) +

∑
j 6=i

1j=hi(bi,t−i)Lij(ti, t−i)

]
(22)

= E
[
1i=hi(bi,t−i)

] (
W i(bi, ti)− bi

)
+

∑
j 6=i

E
[
1j=hi(bi,t−i)

]
Lij(bi, ti), (23)

where the second line follows from Eqs. (16) and (17).

The strict single crossing condition in the literature is that if b′′i ≥ b′i and t′′i ≥ t′i then

Ui(b
′′
i , t

′
i; β−i) ≥ (resp. >)Ui(b

′
i, t

′
i; β−i) ⇒ Ui(b

′′
i , t

′′
i ; β−i) ≥ (resp. >)Ui(b

′
i, t

′′
i ; β−i).

The next proposition claims a stronger conclusion, increasing difference, provided that the

higher bid does not tie with rivals’ bids with strictly positive probabilities.

Proposition 3 (single crossing) For any bidder i, any profile β−i of weakly increasing bid

functions, and any b′i, b
′′
i ∈ Bi such that b′′i ≥ b′i, if for any k 6= i, b′′i is not an atom of βk,

then for any t′i, t
′′
i ∈ Ti such that t′′i ≥ t′i,

Ui(b
′′
i , t

′′
i ; β−i)− Ui(b

′
i, t

′′
i ; β−i) ≥ Ui(b

′′
i , t

′
i; β−i)− Ui(b

′
i, t

′
i; β−i). (24)

Proof Applying the envelope equations (18) and (19) to Eq. (23), we have

∂

∂ti
Ui(bi, ti; β−i) = E

[
1i=hi(bi,t−i)

]
Qi(bi, ti) +

∑
j 6=i

E
[
1j=hi(bi,t−i)

]
qij(bi, ti)

= E
[
1i=hi(bi,t−i)

]
E [Qi(bi, ti, t−i) | i = hi(bi, t−i)]

+
∑
j 6=i

E
[
1j=hi(bi,t−i)

]
E [qij(ti, t−i) | j = hi(bi, t−i)]

= E

[
1i=hi(bi,t−i)Qi(bi, ti, t−i) +

∑
j 6=i

1j=hi(bi,t−i)qij(ti, t−i)

]
.

If j 6= i then

1j=hi(bi,t−i) = 1i6=hi(bi,t−i)1j=hi(t−i), (25)

with the notation hi(t−i) defined in (15). Thus, the above calculation gives us

∂

∂ti
Ui(bi, ti; β−i) = E

[
1i=hi(bi,t−i)Qi(bi, ti, t−i) +

∑
j 6=i

1i6=hi(bi,t−i)1j=hi(t−i)qij(ti, t−i)

]
.

(21)
= E

[
1i=hi(bi,t−i)Qi(bi, ti, t−i) + 1i6=hi(bi,t−i)qi(ti, t−i)

]
.
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For any b′′i > b′i, the previous equation implies

∂

∂ti
Ui(b

′′
i , ti; β−i)−

∂

∂ti
Ui(b

′
i, ti; β−i) = E

[
1i=hi(b′′i ,t−i)Qi(b

′′
i , ti, t−i)− 1i=hi(b′i,t−i)Qi(b

′
i, ti, t−i)

]
+E

[
1i6=hi(b′′i ,t−i)qi(ti, t−i)− 1i6=hi(b′i,t−i)qi(ti, t−i)

]
.

Since b′′i > b′i, i = hi(b
′
i, t−i) ⇒ ∀k 6= i [βk(tk) ≤ b′i < b′′i ] ⇒ i = hi(b

′′
i , t−i). Thus,

∂

∂ti
Ui(b

′′
i , ti; β−i)−

∂

∂ti
Ui(b

′
i, ti; β−i) = E

[
1i=hi(b′i,t−i) (Qi(b

′′
i , ti, t−i)−Qi(b

′
i, ti, t−i))

]
+E

[
1hi(b′i,t−i) 6=i=hi(b′′i ,t−i) (Qi(b

′′
i , ti, t−i)− qi(ti, t−i))

]
≥ E

[
1hi(b′i,t−i) 6=i=hi(b′′i ,t−i) (Qi(b

′′
i , ti, t−i)− qi(ti, t−i))

]
,

where the inequality follows from Proposition 1. By Eq. (21),

Qi(b
′′
i , ti, t−i)− qi(ti, t−i) = Qi(b

′′
i , ti, t−i)−

∑
j 6=i

1j=hi(t−i)qij(ti, t−i)

=
∑
j 6=i

1j=hi(t−i) (Qi(b
′′
i , ti, t−i)− qij(ti, t−i)) ,

where the second line is due to the fact that the events j = hi(t−i) and j′ = hi(t−i) are

mutually exclusive for any j 6= j′. By Proposition 2 and the hypothesis of this proposition

that b′′i is not an atom of β−i, Qi(b
′′
i , ti, t−i)− qij(ti, t−i) ≥ 0 for each j 6= i; thus,

∂

∂ti
Ui(b

′′
i , ti; β−i)−

∂

∂ti
Ui(b

′
i, ti; β−i) ≥ 0. (26)

Note that Ui(b
′′
i , ·) − Ui(b

′
i, ·) is an absolutely continuous function, as Eq. (23) says that,

given any bi, Ui(bi, ·) is equal to the sum of functions W i(bi, ·) and Lij(bi, ·), each absolutely

continuous by Lemma 5. Thus, apply Ineq. (26) to Ui(b
′′
i , ·)−Ui(b′i, ·) and we obtain (24).

5.4 Estimating the Marginal Payoff from Winning

For any bidder i, any profile β−i of bid functions, and any x, y ∈ Bi with x ≤ y, denote

E(x, y) := {t−i ∈ T−i : ∃j 6= i [x ≤ βj(tj) ≤ y;∀k /∈ {i, j} [βk(tk) ≤ y]]} , (27)

i.e., the set of type profiles across i’s rivals such that bidder i’s status switches from losing to

winning in the auction when i’s bid switches from x to y. The next lemma says that E(x, y)

is essentially the shorthand for the event hi(x, t−i) 6= i = hi(y, t−i).
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Lemma 6 For any bidder i, x, y ∈ Bi, t−i ∈ E(x, y) if and only if there exist realized

outcomes ω, ω′ for tie-breaking lotteries such that hi(x, t−i) 6= i at ω and hi(y, t−i) = i at ω′.

Proof Suppose that t−i ∈ E(x, y). By Eq. (27), in bidding x, bidder i is not the unique

highest bidder and hence i is either outbid by some j 6= i or, if i ties with some rivals,

there exists a tie-breaking realized outcome such that i loses in the lottery. By contrast, in

biddingy, bidder i is one of the highest bidders by Eq. (27), hence either i outbids the rivals

or there exists a tie-breaking realized outcome at which i wins in the lottery. Thus, the “only

if” assertion holds. To prove the converse, suppose that there exist realized outcomes ω, ω′

for tie-breaking lotteries such that hi(x, t−i) 6= i at ω and hi(y, t−i) = i at ω′. Then for some

j 6= i βj(tj) is equal to the highest bid when i bids x, and y is the highest bid when i bids y.

Thus, βj(tj) ≥ x and βk(tk) ≤ y for all k 6= i. Hence t−i ∈ E(x, y) by (27).

Denote

W i(bi, ti | x, y) := E [Wi(bi, ti, t−i) | t−i ∈ E(x, y)] , (28)

Lij(ti | x, y) := E [Lij(ti, t−i) | t−i ∈ E(x, y)] , (29)

∆i(bi, ti | x, y) := E

[
Wi(bi, ti, t−i)−

∑
j 6=i

11j=hi(t−i)
Lij(ti, t−i)

∣∣∣∣∣E(x, y)

]
− bi. (30)

Hence ∆i(bi, ti | x, y) is the expected value of the net gain from winning in the auction with

bid bi conditional on the rivals’ types being in E(x, y) (though in picking a resale mechanism

upon winning, i does not know that event E(x, y) occurs).

Proposition 4 For any bidder i, any type ti ∈ Ti, any profile β−i of weakly increasing bid

functions, any bi, b
′
i, b

′′
i ∈ Bi, if b′i < bi < b′′i then (with the notation bi − l := bi)

Ui(b
′′
i , ti; β−i)− Ui(bi, ti; β−i) ≥ E

[
1E(bi,b′′i )

]
∆i(bi, ti | bi, b′′i )− (b′′i − bi)E

[
1i=hi(b′′i ,t−i)

]
,(31)

Ui(b
′
i, ti; β−i)− Ui(bi, ti; β−i) ≥ −E

[
1E(b′i,bi)

]
∆i(bi, ti | b′i, bi) + (bi − b′i)E

[
1i=hi(b′i,t−i)

]
.(32)

Proof By Eq. (25) and with the notation defined in Eq. (20), we have∑
j 6=i

1j=hi(x,t−i)Lij(ti, t−i) = 1i6=hi(x,t−i)Li(ti, t−i).

Hence Eq. (22) becomes

Ui(bi, ti; β−i) = E
[
1i=hi(bi,t−i) (Wi(bi, ti, t−i)− bi) + 1i6=hi(bi,t−i)Li(ti, t−i)

]
.
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Thus,

Ui(b
′′
i , ti; β−i)− Ui(bi, ti; β−i) = E

[
1i=hi(b′′i ,t−i) (Wi(b

′′
i , ti, t−i)− b′′i ) + 1i6=hi(b′′i ,t−i)Li(ti, t−i)

]
− E

[
1i=hi(bi,t−i) (Wi(bi, ti, t−i)− bi) + 1i6=hi(bi,t−i)Li(ti, t−i)

]
.

Noting the fact i = hi(bi, t−i) ⇒ i = hi(b
′′
i , t−i), we recombine the the previous terms.

Ui(b
′′
i , ti; β−i)− Ui(bi, ti; β−i)

= E
[
1i=hi(b′′i ,t−i)Wi(b

′′
i , ti, t−i)

]
− E

[
1i=hi(bi,t−i)Wi(bi, ti, t−i)

]
(33)

−E
[
1hi(bi,t−i) 6=i=hi(b′′i ,t−i)Li(ti, t−i) + bi

]
− (b′′i − bi) E

[
1i=hi(b′′i ,t−i)

]
.

To prove (31), note that

E
[
1i=hi(b′′i ,t−i)Wi(b

′′
i , ti, t−i)

]
= E

[
1i=hi(b′′i ,t−i)

]
E [Wi(b

′′
i , ti, t−i) | i = hi(b

′′
i , t−i)]

≥ E
[
1i=hi(b′′i ,t−i)

]
E [Wi(bi, ti, t−i) | i = hi(b

′′
i , t−i)] (34)

= E
[
1i=hi(b′′i ,t−i)Wi(bi, ti, t−i)

]
,

where the inequality is due to the fact that E [Wi(b
′′
i , ti, t−i) | i = hi(b

′′
i , t−i)] is equal to i’s

expected payoff in the resale mechanism that maximizes his expected payoff conditional on

the event i = hi(b
′′
i , t−i). It therefore follows from Eq. (33) that

Ui(b
′′
i , ti; β−i)− Ui(bi, ti; β−i)

≥ E
[
1hi(bi,t−i) 6=i=hi(b′′i ,t−i) (Wi(bi, ti, t−i)− Li(ti, t−i)− bi)

]
− (b′′i − bi) E

[
1i=hi(b′′i ,t−i)

]
= E

[
1hi(bi,t−i) 6=i=hi(b′′i ,t−i)

]
∆i(bi, ti | bi, b′′i )− (b′′i − bi) E

[
1i=hi(b′′i ,t−i)

]
,

where the equality follows from Eq. (30) and Lemma 6. Hence (31) is proved.

To prove (32), substitute (bi, b
′
i) for the (b′′i , bi) in Eq. (33) and we have

Ui(b
′
i, ti; β−i)− Ui(bi, ti; β−i)

= −E
[
1i=hi(bi,t−i)Wi(bi, ti, t−i)

]
+ E

[
1i=hi(b′i,t−i)Wi(b

′
i, ti, t−i)

]
+E

[
1hi(b′i,t−i) 6=i=hi(bi,t−i) (Li(ti, t−i) + b′i)

]
+ (bi − b′i) E

[
1i=hi(bi,t−i)

]
.

Analogous to (34), a revealed-preference argument from a reseller’s standpoint,

E
[
1i=hi(b′i,t−i)Wi(b

′
i, ti, t−i)

]
≥ E

[
1i=hi(b′i,t−i)Wi(bi, ti, t−i)

]
.
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Thus, the previous equation implies

Ui(b
′
i, ti; β−i)− Ui(bi, ti; β−i)

≥ −E
[
1i=hi(bi,t−i)Wi(bi, ti, t−i)

]
+ E

[
1i=hi(b′i,t−i)Wi(bi, ti, t−i)

]
+E

[
1hi(b′i,t−i) 6=i=hi(bi,t−i) (Li(ti, t−i) + b′i)

]
+ (bi − b′i) E

[
1i=hi(bi,t−i)

]
.

Hence (32) follows from Eq. (30) and Lemma 6.

5.5 Continuity at Nonatomic Bids

For any bidder i and any x ∈ R+ such that
∣∣β−1
i (x)

∣∣ ≤ 1, define:

ϕi(x) := sup β−1
i (≤ x). (35)

Lemma 7 If
∣∣β−1
i (x)

∣∣ ≤ 1, then for any neighborhood M of ϕi(x) in Ti there exists a

neighborhood N of x in Bi such that for any bi ∈ N ,

a. if β−1
i (bi) 6= ∅ then closure β−1

i (bi) ⊆M ,

b. if β−1
i (bi) = ∅ then ϕi(bi) ∈M .

Proof Pick any ε > 0. Since |β−1
i (x)| ≤ 1 and βi weakly increasing, by (35) we have

βi (ϕi(x)− ε/2) < x < β (ϕi(x) + ε/2) . (36)

Then

N(x; ε/2) :=

(
x+ βi(ϕi(x)− ε/2)

2
,
x+ βi(ϕi(x) + ε/2)

2

)
is a neighborhood of x in Bi. With βi weakly increasing and Eq. (36),

∀t′i ∈ β−1
i

(
x+ βi(ϕi(x)− ε/2)

2

)
: t′i ≥ ϕi(x)− ε/2,

∀t′i ∈ β−1
i

(
x+ βi(ϕi(x) + ε/2)

2

)
: t′i ≤ ϕi(x) + ε/2.

Thus, by monotonicity of βi,

x′ ∈ N(x; ε/2) ⇒ β−1
i (x′) ⊆ [ϕi(x)− ε/2, ϕi(x) + ε/2]

⇒ closure β−1
i (x′) ⊆ (ϕi(x)− ε, ϕi(x) + ε) .
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Hence claim (a) is proved.

To prove claim (b), we may assume without loss of generality that there is an infinite

sequence (xm)∞m=1 converging to x such that β−1
i (xm) = ∅ for each m (otherwise claim (b)

is vacuously true because there is a sufficiently small neighborhood of x that contains none

of such xm). If ϕi(x
m) → ϕi(x) then we are done. Suppose (ϕi(x

m))∞m=1 is bounded away

from ϕi(x), hence lim infm→∞ϕi(x
m) > ϕi(x) or lim supm→∞ϕi(x

m) < ϕi(x).

Consider the case

lim infm→∞ϕi(x
m) > ϕi(x). (37)

Let

ti :=
1

2
(ϕi(x) + lim infm→∞ϕi(x

m)) .

Since ti < lim infm→∞ϕi(x
m), monotonicity of βi implies that

βi(ti) ≤ βi

(
lim infm′→∞ϕi(x

m′
)
)
≤ xm

for all sufficiently large m. Since ti > ϕi(x), we have x ≤ βi(ti), otherwise x > βi(ti) leads to

a contradiction sup β−1
i (< x) ≥ ti > ϕi(x) = sup β−1

i (< x). Thus, for all sufficiently large m,

x ≤ βi(ti) ≤ βi

(
lim infm′→∞ϕi(x

m′
)
)
≤ xm.

Since xm → x, the above inequality implies that β(ti) is arbitrarily close to x. Then claim (a)

of this lemma implies that the entire closure of β−1
i (βi(ti)), including ti, is contained by an

arbitrarily small neighborhood of ϕi(x). But by its definition, ti is bounded away from ϕi(x).

This contradiction implies that (37) cannot be true. By the same token, it cannot be true

that lim supm→∞ϕi(x
m) < ϕi(x). Thus, claim (b) is proved.

Proposition 5 For any bidder i, if everyone else abides by a profile β−i of weakly increasing

bid functions, then for any ti ∈ Ti and any b∗i ∈ Bi such that
∣∣β−1
k (b∗i )

∣∣ ≤ 1 for all k 6= i,

W i(·, ti), Lij(·, ti) (∀j 6= i) and Ui(·, ti; β−i) are each continuous at b∗i .

Proof In the continuation equilibrium conditional on the the event that bidder i has bid bi

and won in period one, i’s best response, characterized by Myerson [11], is to maximize

E

[∑
k 6=i

πk(t−i) (Vk(tk | i, bi)− ti)

]
(38)
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among all allocations (πk)k 6=i : T−i → [0, 1]|I|−1 subject to the resource feasibility constraint∑
k 6=i

πk(t−i) ≤ 1 ∀t−i ∈ T−i (39)

and the incentive constraint that Eπk(tk, t¬{i,k}) is weakly increasing in tk for all k 6= i.

By Corollary 1, the posterior virtual utilities in the integral (38) is strictly increasing in tk

for every bidder k 6= i. Therefore, as in Myerson’s regular case, the incentive constraint is

automatically satisfied by any solution that maximizes (38) subject to (39). By Eqs. (5)

and (6), the objective (38) is equal to E
[∑

k 6=i gk(π, bi, ti, t−i)
]
, where

gk(π, bi, ti, t−i) :=

 πk(t−i)
(
tk − ψk(i,bi)Fk(dk)+(1−ψk(i,bi))Fk(ck)−Fk(tk)

fk(tk)
− ti

)
If tk ≤ ck

πk(t−i)
(
tk − Fk(dk)−Fk(tk)

fk(tk)
− ti

)
If ck ≤ tk ≤ dk,

where ck and dk, defined by Eqs. (1)–(2), are the lower and upper bounds of closure β−1
k (bi)

if β−1
k (bi) 6= ∅, else ck = dk = ϕk(bi), with ϕk(bi) defined in (35). Since ψk(i, bi)Fk(dk)+(1−

ψk(i, bi))Fk(ck) is a convex combination between Fk(dk) and Fk(ck) and Fk is continuous,

gk(π, bi, ti, t−i)

 ∈
{
πk(t−i)

(
tk − Fk(sk)−Fk(ti)

fk(tk)
− ti

)
: sk ∈ closure β−1

k (bi)
}

if β−1
k (bi) 6= ∅

= πk(t−i)
(
tk −

Fk(supβ−1
k (≤bi))−Fk(ti)

fk(tk)
− ti

)
if β−1

k (bi) = ∅.
(40)

Thus, for any bi ∈ Bi and any ti ∈ Ti,

W i(bi, ti) = max
(πk)k 6=i:T−i→[0,1]|I|−1

E
[∑

k 6=i gk(π, bi, ti, t−i)
]

(41)

subject to (39).

Claim 1: For any π, any ti, any t−i and any k 6= i, gk(π, ·, ti, t−i) is continuous at b∗i .

Recall from the hypothesis that
∣∣β−1
k (b∗i )

∣∣ ≤ 1. Then Eq. (40) implies that

gk(π, b
∗
i , ti, t−i) = πk(t−i)

(
tk −

Fk (ϕk(b
∗
i ))− Fk(ti)

fk(tk)
− ti

)
,

with ϕk defined in Eq. (35), and Lemma 7 applies. Thus, if bmi →m b∗i then the closure of

β−1
k (bmi ) (when ϕk(b

m
i ) 6= ∅) and ϕk(b

m
i ) (when ϕk(b

m
i ) = ∅) both converge to ϕk(b

∗
i ), hence

by Eq. (40) gk(π, b
m
i , ti, t−i) →m gk(π, b

∗
i , ti, t−i).

Claim 2: For any π, any ti, and any t−i, E
[∑

k 6=i gk(π, ·, ti, t−i)
]

is continuous at b∗i .

Claim 1 and the bounded convergence theorem implies that for each k 6= i, Egk(π, ·, ti, t−i)
is continuous at b∗i . Summing across k 6= i and switching positions between E and

∑
, we

get Claim 2.
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Claim 3: W i(·, ti) is continuous at b∗i . Let (bmi )∞m=1 converge to b∗i . For each m,

let πm be an optimal solution for the problem in Eq. (41). Since (39) defines a compact

set, the infinite sequence (πm)∞m=1 has an infinite subsequence converging to some π∗ that

satisfies (39). Relabeling if necessary, let πm → π∗. Pick any π that satisfies (39). For

each m, the fact that πm is an optimal solution given bmi implies that

E

[∑
k 6=i

gk(π
m, bmi , ti, t−i)

]
≥ E

[∑
k 6=i

gk(π, b
m
i , ti, t−i)

]
.

Taking the limit when πm → π∗ and bmi → b∗i and using Claim 2, we have

E

[∑
k 6=i

gk(π
∗, b∗i , ti, t−i)

]
≥ E

[∑
k 6=i

gk(π, b
∗
i , ti, t−i)

]
.

With π arbitrarily chosen, it follows that

W i(b
∗
i , ti) = E

[∑
k 6=i

gk(π
∗, b∗i , ti, t−i)

]
= lim

m→∞
E

[∑
k 6=i

gk(π
m, bmi , ti, t−i)

]
= lim

m→∞
W i(b

m
i , ti).

Thus, W i(·, ti) is continuous at b∗i .

Claim 4: Ui(·, ti; β−i) is continuous at b∗i . To prove the claim, note from Eq. (22) that

Ui(bi, ti; β−i) = E
[
1i=hi(bi,t−i)

] (
W i(bi, ti)− bi

)
+ E

[∑
j 6=i

1j=hi(bi,t−i)Lij(ti, t−i)

]
.

Let (bmi )∞m=1 be an infinite sequence in Bi that converges to b∗i . By hypothesis, |β−1
k (b∗i )| ≤ 1

for all k 6= i. Thus, Lemma 7.a implies that

lim
m→∞

Prob {∃k 6= i [βk(tk) = bmi ]} ≤ lim
m→∞

∑
k 6=i

Prob
(
closure β−1

k (bmi )
)

= Prob
(
β−1
j (b∗i )

)
= 0.

Thus,

lim
m→∞

Ui(b
m
i , ti; β−i) = lim

m→∞
E

[
1i=hi(bmi ,t−i) | ∀k 6= i [bmi 6= βk(tk)]

] (
W i(b

m
i , ti)− bmi

)
+ lim

m→∞
E

[∑
j 6=i

1j=hi(bmi ,t−i)Lij(ti, t−i)

∣∣∣∣∣ ∀k 6= i [bmi 6= βk(tk)]

]
.

By Claim 3 and the hypothesis that b∗i is not an atom of β−i, limm→∞W i(b
m
i , ti) = W i(b

∗
i , ti).

Hence

lim
m→∞

Ui(b
m
i , ti; β−i) = lim

m→∞
E

[
1i=hi(bmi ,t−i) | ∀k 6= i [bmi 6= βk(tk)]

] (
W i(b

∗
i , ti)− b∗i

)
+ lim

m→∞
E

[∑
j 6=i

1j=hi(bmi ,t−i)Lij(ti, t−i)

∣∣∣∣∣ ∀k 6= i [bmi 6= βk(tk)]

]
.
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Note that, for any bi ∈ Bi,

E
[
1i=hi(bi,t−i) | ∀k 6= i [bi 6= βk(tk)]

]
= E

[
1bi>maxk 6=i βk(tk)

]
,

E

[∑
j 6=i

1j=hi(bi,t−i)Lij(ti, t−i)

∣∣∣∣∣ ∀k 6= i [bi 6= βk(tk)]

]
= E

[∑
j 6=i

1βj(tj)≥maxk 6=i βk(tk)>biLij(ti, t−i)

]
.

As m → ∞, the indicator functions χm : t−i 7→ 1bmi >maxk 6=i βk(tk) converge to the function

t−i 7→ 1b∗i>maxk 6=i βk(tk) pointwise, hence by the bounded convergence theorem,

lim
m→∞

E
[
1bmi >maxk 6=i βk(tk)

]
= E

[
1b∗i>maxk 6=i βk(tk)

]
.

Likewise,

lim
m→∞

E

[∑
j 6=i

1βj(tj)≥maxk 6=i βk(tk)>bmi
Lij(ti, t−i)

]
= E

[∑
j 6=i

1βj(tj)≥maxk 6=i βk(tk)>b∗i
Lij(ti, t−i)

]
.

Thus,

lim
m→∞

Ui(b
m
i , ti; β−i) = E

[
1i=hi(b∗i ,t−i) | ∀k 6= i [b∗i 6= βk(tk)]

] (
W i(b

∗
i , ti)− b∗i

)
+E

[∑
j 6=i

1j=hi(b∗i ,t−i)Lij(ti, t−i)

∣∣∣∣∣ ∀k 6= i [b∗i 6= βk(tk)]

]

= E
[
1i=hi(b∗i ,t−i)

] (
W i(b

∗
i , ti)− b∗i

)
+ E

[∑
j 6=i

1j=hi(b∗i ,t−i)Lij(ti, t−i)

]
= Ui(b

∗
i , ti; β−i),

where the second equality follows from the hypothesis that b∗i is not an atom of β−i.

6 Existence of Equilibrium

We shall now apply the fixed-point approach based on the comparative statics results. The

general approach is to consider a sequence of approximation games and prove that a limit

point of the sequence of equilibria of these approximation games turns out to be an equilib-

rium of the original game.

For any m = 1, 2, . . ., define an m-finite approximation game by two conditions: first,

replace for any bidder i the bid space Bi with a finite subset Bm
i of Bi such that

i 6= j =⇒ Bm
i ∩Bm

j = {l}, (42)

m < m′ =⇒ Bm
i ⊆ Bm′

i , (43)

min {|bi − b′i| : bi, b′i ∈ Bm
i \ {l}; bi 6= b′i} = 2−m; (44)
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second, restrict each bidder i’s period-1 bid function by a 1/m-perturbation such that the

function associates the losing bid l to every type ti ∈ [ti, ti + 1/m).

The first condition was devised by Reny and Zamir [13]; it ensures that the single

crossing condition holds for each finite approximation, since our strict single results requires

a no-tie condition. The 1/m-perturbation was devised by Athey [1] and also used by Reny

and Zamir; it guarantees that any serious bid (non-l bid) has a positive probability of winning

in any approximation game.

Proposition 6 For any m,n ∈ {1, 2, . . .}, the m-finite approximation of the auction-resale

game defined above admits a PBE, subject to the 1/m-perturbation, such that every bidder’s

period-1 bid is a weakly increasing function of the bidder’s use value.

Proof By Lemma 3, it suffices to prove existence of a BNE of the auction game where each

player i’s interim expected payoff function Ui(bi, ti; β−i) is given by Eq. (22). By (42), the no-

tie condition of Proposition 3 is satisfied. Thus, the interim payoff function Ui(bi, ti; β−i) has

the strict single crossing property in (bi, ti) provided βk is weakly increasing for each k 6= i.

The rest of the proof is the same as Athey’s proof [1, Theorem 1; Lemma 4] of existence of

BNE in the finite-bid-space auction game.

Proposition 6 implies that for any m = 1, 2, . . ., there exists an equilibrium (βmi )ni=1

given the profile of bid spaces (Bm
i )i∈I such that each βmi is weakly increasing and satisfies

the 1/m-perturbation. Then, taking a convergent subsequence if necessary, for any bidder i

there exists a weakly increasing bid function β∗i : Ti → Bi such that βmi converges to β∗i

pointwise on Ti.

By Lemma 3, it suffices to show that (β∗i )i∈I constitutes a BNE given the interim payoff

functions (Ui)i∈I calculated in Eq. (22).

For any m = 1, 2, . . ., the fact that (βmi )ni=1 is a BNE in the (Bm
i )i∈I-discrete-bid game

implies that for any bidder i and any ti ∈ Ti,

∀bmi ∈ Bm
i : Ui(β

m
i (ti), ti; β

m
−i) ≥ Ui(b

m
i , ti; β

m
−i). (45)

We are done if for almost every ti ∈ Ti

∀bi ∈ Bi : Ui(β
∗
i (ti), ti; β

∗
−i) ≥ Ui(bi, ti; β

∗
−i). (46)
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6.1 Approachability of Tying Bids

In the sequel, we restrict attention to the continuation equilibrium where any reseller i

follows, at any realized profile t−i ∈ T−i, the provisions in Lemma 2 and uses the payment

scheme defined in Eq. (8). This continuation equilibrium exists by construction in Myerson.

Based on this resale mechanism, the ex post payoffs from winning and losing exhibit certain

monotonicity properties.

Lemma 8 For any bidder i, any ti ∈ Ti and any bi ∈ Bi,

a. Wi(bi, ti, t−i) is weakly increasing in t−i, and

b. for any j ∈ I \ {i} and any tj ∈ Tj, Lij(ti, tj, t¬(i,j)) is weakly decreasing in t¬(i,j).

Proof For any (ti, t−i) ∈ T , as the provisions in Lemma 2 are followed,

Wi(bi, ti, t−i) = max
(πk)k∈I∈[0,1]I

πiti + ∑
k∈I\{i}

πkVk(tk | i, bi)

 (47)

s.t.
∑
k∈I

πk = 1.

Thus, it follows from the envelope theorem that Wi(bi, ti, t−i) is increasing in the vector

(Vk(tk | i, bi))k∈I\{i}. As Vk(tk | i, bi) is strictly increasing in tk for each k (Corollary 1),

Wi(bi, ti, t−i) is increasing in (tk)k∈I\{i}. This proves claim (a).

For any j 6= i, by the provisions in Lemma 2 and the payment rule pi given in Eq. (8),

Lij(ti, t−i) =
(
ti − pi,j,βj(tj)(ti, t−i)

)+
,

where

pi,j,βj(tj) = max

{
V −1
i,j,βj(tj)

(tj), max
k/∈{i,j}

V −1
i,j,βj(tj)

(Vk,j,βj(tj)(tk))

}
and Vk,j,βj(tj)(tk) obeys Eq. (13) for all k ∈ I \ {j}. Thus, pi,j,βj(tj)(ti, t−i) is increasing in

(Vk(tk | j, βj(tj)))k∈I\{i,j}, which in turn is strictly increasing in t¬(i,j) (Corollary 1). Hence

Lij(ti, t−i) is weakly decreasing in t¬(i,j). Thus, claim (b) follows.

Lemma 9 If g : R → R is a weakly increasing function and g−1(y) is bounded, then for any

ε > 0 there exists δ > 0 such that the measure of g−1[(y − δ, y + δ)] \ g−1(y) is less than ε.
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Proof We may assume without loss of generality that g−1(y) 6= ∅; otherwise the claim is

trivial. As g is weakly increasing and g−1(y) is bounded, sup g−1(y) and inf g−1(y) exist and

g
(
inf g−1(y)− ε

2

)
< y < g

(
sup g−1(y) +

ε

2

)
.

Then

δ := min

{
g

(
sup g−1(y) + ε

2

)
+ y

2
− y, y −

g
(
inf g−1(y)− ε

2

)
+ y

2

}
works, again due to g’s being weakly increasing.

Proposition 7 For any bidder i, any ti ∈ Ti and any bi ∈ (ri,∞), if every other bidder

k 6= i abides by a profile β−i of weakly increasing bid functions and

∃b < bi : ∃π > 0 : Prob{∀k ∈ I \ {i, j} : βk(tk) ≤ b} = π, (48)

then there exists an infinite sequence (bni )
∞
n=1 in the bid space Bi such that, for each n, bni is

not an atom of β−i, and

lim
n→∞

Ui(b
n
i , t; β−i) ≥ Ui(bi, t; β−i). (49)

Proof If bi is not an atom of β−i, then the conclusion follows from the fact that a monotone

function has at most countable many atoms, which ensures existence of a sequence (bni )
∞
n=1

of nonatomic bids converging to bi, and Proposition 5, which ensures limn→∞ Ui(b
n
i , t; β−i) =

Ui(bi, t; β−i). Thus, suppose that bi is an atom of β−i, i.e., with the notation in Eq. (27),

∃µ > 0 : Prob(E(bi, bi)) = µ. (50)

Since bi ∈ (ri,∞) and since a monotone function has at most countable atoms, there

exist infinite sequences (cni )
∞
i=1 and (dni )

∞
i=1 in the bid space Bi such that cni ↑ bi, dni ↓ bi, and,

for each n, neither cni nor dni is an atom of β−i. Note that

E(cni , bi) = E(bi, bi) t
{
t−i ∈ T−i : cni ≤ max

k 6=i
βk(tk) < bi

}
,

E(bi, d
n
i ) = E(bi, bi) t

{
t−i ∈ T−i : bi < max

k 6=i
βk(tk) ≤ dni

}
.

Lemma 9 implies that

lim
n→∞

Prob

{
t−i ∈ T−i : cni ≤ max

k 6=i
βk(tk) < bi

}
= 0, (51)

lim
n→∞

Prob

{
t−i ∈ T−i : bi < max

k 6=i
βk(tk) ≤ dni

}
= 0. (52)
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Case 1: ∆i(bi, ti | bi, bi) = ρ > 0 for some ρ. For each n = 1, 2, . . ., Ineq. (31) implies

Ui(d
n
i , ti; β−i)− Ui(bi, ti; β−i)

≥ Prob{E(bi, d
n
i )}∆i(bi, ti | bi, dni )− (dni − bi)Prob{∀k 6= i : dni > βk(tk)}

≥ Prob{E(bi, bi))}∆i(bi, ti | bi, bi)− Prob

{
bi < max

k 6=i
βk(tk) ≤ dni

}
max
k∈I

tk

−(dni − bi)Prob{∀k 6= i : dni > βk(tk)}
(50)

≥ µρ− Prob

{
bi < max

k 6=i
βk(tk) ≤ dni

}
max
k∈I

tk − (dni − bi)Prob{∀k 6= i : dni > βk(tk)},

which is positive when n is sufficiently large, because when n → ∞ the second and third

terms in the last line converge to zero, with the secdon term does so due to Eq. (52).

Case 2: ∆i(bi, ti | bi, bi) ≤ 0. For each n = 1, 2, . . ., Ineq. (32) implies

Ui(c
n
i , ti; β−i)− Ui(bi, ti; β−i)

≥ −Prob{E(cni , bi)}∆i(bi, ti | cni , bi) + (bi − cni )Prob{∀k 6= i : cni > βk(tk)}

≥ −Prob{E(bi, bi))}∆i(bi, ti | bi, bi)− Prob

{
cni ≤ max

k 6=i
βk(tk) < bi

}
max
k∈I

tk

+(bi − cni )Prob{∀k 6= i : cni > βk(tk)}

≥ −Prob

{
cni ≤ max

k 6=i
βk(tk) < bi

}
max
k∈I

tk + (bi − cni )Prob{∀k 6= i : cni > βk(tk)},

which converges to zero when n→∞, with the first term in the last line converging to zero

due to Eq. (51).

Both cases considered, the lemma is proved.

Corollary 2 For any bidder i and any ti ∈ Ti \ ti, if β∗i (ti) = l or β∗i (ti) is not an atom

of β∗−i, then (46) holds.

Proof Pick any ti ∈ Ti and any bi ∈ Bi. If bi = l then for any m large enough for ti >

ti + 1/m, Ui(β
m
i (ti), ti; β

m
−i) ≥ Ui(bi, ti; β

m
−i) by revealed preference, as l ∈ Bm

i . Since β∗i (ti)

is either the isolated point l or not an atom of β∗−i, Ui(·, ti; β∗−i) is continuous at β∗i (ti) by

Proposition 5 and hence the left-hand side of the inequality converges to the left-hand side

of (46). Hence Ineq. (46) holds.

Now consider the case where bi 6= l, i.e., bi ∈ (ri,∞). Proposition 7 implies that there

is a sequence (bni )
∞
n=1 in the bid space Bi such that, for each n, bni is not an atom of β∗−i,

and (49) holds. Thus, for any ε > 0 there exists N such that for any integer n ≥ N ,

Ui(bi, ti; β
m
−i)− ε ≤ Ui(b

n
i , ti; β

m
−i).
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For any such n, since ∪∞m=1B
m
i is dense in Bi and (Bm

i )∞m=1 is nested, there exists an infinite

sequence (cmi )∞m=1 converging to bni such that cmi ∈ Bm
i for each m. For any m large enough

for ti > ti + 1/m,

Ui(β
m
i (ti), ti; β

m
−i) ≥ Ui(c

m
i , ti; β

m
−i)

by revealed preference. As in the previous case where bi = l, the left-hand side of the inequal-

ity converges to Ui(β
∗
i (ti), ti; β

∗
−i); the right-hand side converges to Ui(b

n
i , ti; β

m
−i) because bni

is not an atom of β∗−i so Proposition 5 applies. Therefore,

Ui(β
∗
i (ti), ti; β

∗
−i) ≥ Ui(b

n
i , ti; β

m
−i) ≥ Ui(bi, ti; β

m
−i)− ε.

Since ε can be arbitrarily small, Ineq. (46) follows.

6.2 Passing to a Limit through Disentangling Ties

By Corollary 2, it suffices to handle the atom bids that are not the losing bid l. Since there

are only countably many atoms of a monotone function, (46) holds for almost all ti ∈ Ti,

which means that we are done, if whenever a not-for-sure-losing bid β∗i (ti) is an atom of β∗−i

then β∗i (ti) is not an atom of β∗i . Thus, the next proposition suffices.

Proposition 8 (no tie at the limit) For any bid x 6= l, there is at most one bidder i such

that x is atom of β∗i .

Proof Suppose by negation

K :=
{
i ∈ I : |(β∗i )−1(x)| > 1

}
is nonempty and nonsingleton. For each i ∈ K, with β∗i monotone, (β∗i )

−1(x) is a nondegen-

erate interval in Ti with probability measure µi > 0. For any i ∈ I, let

ai := inf(β∗i )
−1(x),

zi := sup(β∗i )
−1(x).

Relabeling if necessary, list the bidders in K as 1, . . . , |K| such that

a1 ≤ a2 ≤ · · · ≤ a|K|. (53)

For any δ > 0, define the neighborhood Ni(x; δ) of the bid x for bidder i by

Ni(x; δ) := (x− δ, x+ δ) ∩ (ri,∞).
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Claim 1 For any i ∈ I, any ti ∈ Ti \ {ti}, and any m = 1, 2, . . . such that ti > ti + 1/m,

∆i

(
βmi (ti), ti; β

m
−i | l, βmi (ti)

)
≥ 0. (54)

Since l is always an option and the 1/m-restriction is not binding to type ti > ti + 1/m, we

have by revealed preference

0 ≤ E
[
1i=hi(βm

i (ti),t−i)Wi (β
m
i (ti), ti, t−i)− βmi (ti)− Li(ti, t−i)

]
= E

[
1i=hi(βm

i (ti),t−i)

]
E [Wi (β

m
i (ti), ti, t−i)− βmi (ti)− Li(ti, t−i) | i = hi(β

m
i (ti), t−i)]︸ ︷︷ ︸

=∆i(βm
i (ti),ti;βm

−i|l,βm
i (ti))

.

Since βm satisfies the 1/m-restriction, E
[
1i=hi(βm

i (ti),t−i)

]
≥ Πj∈I\{i}Fj(tj+1/m) > 0, hence (54)

follows. �

For any m = 1, 2, . . ., any δ > 0, any bi ∈ Bm
i ∩ Ni(x; δ), and any t−i := (tj)j∈I\{i} ∈

E(bi, x+ δ), define a projection

projbi(t−i) := (t′j)j∈I\{i}

such that

bi < βmj (tj) < x+ δ =⇒ t′j := inf{t′′j ∈ Tj : βmj (t′′j ) > bi}. (55)

Note that projbi(t−i) ∈ E(bi, x+ δ) and projbi(t−i) 5 t−i coordinatewise. Define

W ∗
i (βmi (ti), ti, t−i) :=

 Wi

(
βmi (ti), ti, projβm

i (ti)
(t−i)

)
if t−i ∈ E(βmi (ti), x+ δ)

Wi (β
m
i (ti), ti, t−i) else.

(56)

Since Wi (β
m
i (ti), ti, ·) is an increasing function on T−i by Lemma 8.a, so is W ∗

i (βmi (ti), ti, ·).
Thus, by Theorem 5 of Milgrom and Weber [10],

E [W ∗
i (βmi (ti), ti, t−i) | E(βmi (ti), x+ δ)] ≥ E [W ∗

i (βmi (ti), ti, t−i) | E(l, βmi (ti))]

= E [Wi (β
m
i (ti), ti, t−i) | E(l, βmi (ti))] . (57)

Denote projjbi(t−i) for the component of projbi(t−i) that corresponds to bidder j’s type.

Applying the Milgrom-Segal envelope theorem to the maximization problem (47), we have

for any (tj, t¬(i,j)) ∈ E(bi, x+ δ) such that bi < βmj (tj) < x+ δ,

Wi

(
bi, ti, tj, t¬(i,j)

)
−Wi

(
bi, ti, projjbi(t−i), t¬(i,j)

)
=

∫ tj

projjbi
(t−i)

πj(ti, t
′′
j , t¬(i,j))

∂

∂t′′j
Vj,i,bi(t

′′
j )dt

′′
j

=

∫ tj

projjbi
(t−i)

1t′′j>tidt
′′
j

=
(
tj −max

{
ti, projjbi(t−i)

})+
;
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the second line follows from the fact that projjbi(t−i) is above the posterior support of tj

conditional on the history (i, bi); this fact implies

∀t′′j ≥ projjbi(t−i) : Vj,i,bi(t
′′
j ) = t′′j

so ∂
∂t′′j
Vj,i,bi(t

′′
j ) = 1, and in the optimal resale mechanism conditional on the history (i, bi),

the good is resold to any j whose use value t′′j is above the reseller’s ti.

Thus, for any t−i ∈ E(bi, x+ δ),

Wi (bi, ti, t−i)−W ∗
i (bi, ti, t−i) = Wi (bi, ti, t−i)−Wi

(
bi, ti, projbi(t−i)

)
(58)

=
∑

j∈I\{i}

1bi<βm
j (tj)<x+δ

(
tj −max

{
ti, projjbi(t−i)

})+
.

Pick any η > 0. By Lemma 9, there exists a δ > 0 such that

Prob
{
∃j ∈ I \ {i} : β∗j (tj) ∈

(
x− δ, x

)
∪

(
x, x+ δ

)}
< η/max

i∈I
ti.

As βm → β∗ pointwise, βm → β∗ uniformly except on a set of arbitrarily small measure

(Littlewood’s third principle or Egoroff’s theorem). Thus, for any ε > 0 such that

ε < min

{
min
k∈K

µk,min
k∈K

(zk − ak)

}
, (59)

there exist for each i ∈ I an E∗
i ⊂ Ti such that

Prob (E∗
i ) < ε (60)

and βm converges uniformly to β∗ except on points in Πi∈IE
∗
i . For any δ > 0 such that

δ < δ (61)

there exists m∗(η, ε, δ) such that for every integer m ≥ m∗(η, ε, δ) and every i ∈ K, there

exist

ami := inf{ti ∈ Ti : x− δ < βmi (ti)},

zmi := sup{ti ∈ Ti : x+ δ < βmi (ti)}

such that

∀ti ∈ (ami , z
m
i ) : βmi (ti) ∈ (x− δ, x+ δ), (62)

∀i ∈ K : |ai − ami | < ε < 1
4
(zmi − ami ), (63)∑

i∈I Prob (([ai, zi] \ [ami , z
m
i ]) ∪ ([ami , z

m
i ] \ [ai, zi])) < ε/(2 maxi∈I ti), (64)

∀k ∈ K \ {1} : Prob ([amk , a
m
k + |ak − amk |+ |a1 − am1 |) < ε/(2 maxi∈I ti), (65)

Prob
{
∃j /∈ K

[
x− δ ≤ βmj (tj) ≤ x+ δ

]}
< (η + ε/2)/maxi∈I ti. (66)
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For any b ∈ R, any m = 1, 2, . . ., and any i ∈ I, define

dbei := min{b′ ∈ Bm
i : b′ ≥ b}.

Now consider bidder 1. Pick any t1 ∈ (am1 , z
m
1 ) such that

0 < t1 − am1 < ε. (67)

By definition of am1 and monotonicity of βm1 , βm1 (t1) ∈ N(x; δ). For any

t−1 := (tj)j∈I\{1} ∈ E(βm1 (t1), x+ δ)

with respect to βm, if bidder j ∈ K \ {1} wins, then

x+ δ > βmj (tj) = max
k∈K\{1}

βmk (tk) ≥ βm1 (t1) > x− δ,

hence the definition of amj implies tj ≥ amj ; conditional on tj ≥ amj , we know by Ineq. (65)

that with probability at least ε/(2 maxI ti),

tj ≥ amj + |amj − aj|+ |am1 − am1 |,

which implies

tj ≥ aj + |am1 − am1 |
(53)

≥ a1 + |am1 − am1 | ≥ am1
(67)
> t1 − ε,

hence bidder 1’s payoff from acquiring the good from this type tj of reseller j is at most ε.

Other than buying from a bidder j ∈ K \ {1} who is involved in the tie, the only other

possibility for bidder 1 to buy at resale is to buy from a bidder i /∈ K, which is an event of

probability less than (η + ε/2)/maxi∈I ti by Ineq. (66). Thus,

E
[
1t−1∈E(βm

1 (t1),dx+δe1)L1(t1, t−1)
]
≤ η + ε/2)

maxi∈I ti
max
I
ti +

ε

2 maxI ti
ε < η + ε, (68)

i.e., the type-t1 bidder 1’s expected payoff from losing is negligible conditional on the event

bidder 1 would have outbid the tying bidders had he raised the bid to dx + δe1. Denote
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b1 := βm1 (t1). We have

E
[
1t−1∈E(b1,dx+δe1) (W1 (b1, t1, t−1)− b1 − L1 (t1, t−1))

]
(68)
> E

[
1t−1∈E(b1,dx+δe1) (W1 (b1, t1, t−1)− b1)

]
− η − ε

= E
[
1t−1∈E(b1,dx+δe1) (W ∗

1 (b1, t1, t−1)− b1)
]

+E
[
1t−1∈E(b1,dx+δe1) (W1 (b1, t1, t−1)−W ∗

1 (b1, t1, t−1))
]
− η − ε

(57)

≥ E
[
1t−1∈E(b1,dx+δe1)

]
E [W ∗

1 (b1, t1, t−1)− b1 | E(l, b)]

+E
[
1t−1∈E(b1,dx+δe1) (W1 (b1, t1, t−1)−W ∗

1 (b1, t1, t−1))
]
− η − ε

≥ E
[
1t−1∈E(b1,dx+δe1)

]
E [W ∗

1 (b1, t1, t−1)− b1 − L1(t1, t−1) | E(l, b)]

+E
[
1t−1∈E(b1,dx+δe1) (W1 (b1, t1, t−1)−W ∗

1 (b1, t1, t−1))
]
− η − ε

(54)

≥ E
[
1t−1∈E(b1,dx+δe1) (W1 (b1, t1, t−1)−W ∗

1 (b1, t1, t−1))
]
− η − ε, (69)

where the third, unlabeled, inequality is uses the fact that one’s payoff from losing, L1(t), is

always nonnegative, as well as the lower branch of Eq. (56).

Claim 2 For any η > 0, any ε > 0 satisfying (59), any δ > 0 satisfying (61), any integer

m ≥ m∗(η, ε, δ), and any b1 ∈ Bm
1 ∩N(x; δ), if

E
[
1t−1∈E(b1,dx+δe1) (W1 (b1, a

m
1 , t−1)−W ∗

1 (b1, a
m
1 , t−1))

]
> η + ε+ 2δ (70)

then βm1 (t′1) > b1 for all t′1 ∈ (am1 , z
m
1 ).

To prove the claim, it suffices to prove βm1 (t1) > b1 for all t1 in some neighborhood

(am1 , a
m
1 + ε′). Monotonicity of βm1 then extends the claim to the other t1 in (am1 , z

m
1 ). Since

W1(b1, ·, t−1) is continuous, there is a neighborhood (am1 , a
m
1 + ε′) of am1 such that Ineq. (70)

remains true when we replace am1 there by any point t1 ∈ (am1 , a
m
1 + ε′). Thus, pick any t1

specified by Ineq. (67). By (62), βm1 (t1) ∈ N(x; δ). Therefore, βm1 (t1) > b1 is true if for

any b′1 ≤ b1 with b′1 ∈ N(x; δ), βm1 (t1) 6= b′1. Suppose by negation that βm1 (t1) = b′1. We

derive a contradiction by showing that the type-t1 bidder 1 strictly prefers bidding dx+ δe1
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to bidding b′1. Applying Ineq. (31) to the case of i = 1 and b′′i = dx+ δe1, we have

U1(dx+ δe1, t1; βm−i)− U1(b
′
1, t1; β

m
−i) ≥ E

[
1t−1∈E(b1,dx+δe1) (W1 (b1, t1, t−1)− b1 − L1 (t1, t−1))

]
−(dx+ δe1 − b′1)E

[
11=h∗1(dx+δe1,t−1)

]
(69)
> E

[
1t−1∈E(b′1,dx+δe1) (W1 (b1, t1, t−1)−W ∗

1 (b1, t1, t−1))
]

−η − ε− (dx+ δe1 − b′1)E
[
11=h∗1(dx+δe1,t−1)

]
(70)

≥ η + ε+ 2δ − η − ε− 2δ

= 0,

as desired. �

Claim 3 If tie occurs with strictly positive probability at x at the limit β∗ then

Prob {1 = h∗1(β
∗
1(t1), t−1) | ∀k ∈ K [β∗k(tk) = x]} = 1. (71)

To prove the claim, pick η, ε, δ and m as specified in Claim 2. Conditional on the event

t1 ∈ (am1 , z
m
1 ) and t−1 ∈ E(x − δ, x + δ) with respect to βm, the complement of the event

1 = h∗1(β
m
1 (t1), t−1) (i.e., bidder 1 wins) is contained in the event βm1 (t1) ≤ maxI\{1} β

m
i (ti),

which in turn is contained by the union of two events: (i) βm1 (t1) ≤ maxK\{1} β
m
k (ti) and

(ii) βm1 (t1) ≤ maxI\K β
m
i (ti). By Ineq. (66), the probability of event (ii) is at most (η +

ε/2) maxI ti. Let us consider event (i). For it to happen, there must be some t1 ∈ (am1 , z
m
1 )

such that βm1 (t1) = b1 for some b1 ∈ N(x; δ). Then the contrapositive of Claim 2 implies

E
[
1t−1∈E(b1,dx+δe1) (W1 (b1, a

m
1 , t−1)−W ∗

1 (b1, a
m
1 , t−1))

]
< η + ε+ 2δ.

I.e., by Eq. (58),

E

1t−1∈E(b1,dx+δe1)

∑
j∈I\{1}

1b1<βm
j (tj)<dx+δe1

(
tj −max

{
am1 , projjb1(t−1)

})+

 < η+ε+2δ. (72)

By (55), projjb1(t−1) ≤ t−1 and strictly so on the dimension j such that bi < βmj (tj) < x+ δ.

Furthermore, by Ineq. (63),

am1 ≤ a1 + ε
(53)

≤ aj + ε ≤ amj + 2ε ≤ 1

2
(amj + zmj ) < zmj .

Thus, am1 < tj for a positive measure of tj for some j. Thus, every term inside the integral on

the left-hand side of (72) is nonnegative and is positive on a positive measure. It follows that
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the probability of the event E(βm1 (t1), x+δ) is bounded from above by O(η+ε+2δ). Coupled

with the upper bound of the probability of event (ii), we have, for any m ≥ m∗(η, ε, δ),

Prob

{
βm1 (t1) ≤ max

k∈K\{i}
βmk (tk) | (am1 , zm1 )× E(x− δ, x+ δ)

}
< O(ε) +O(η + ε+ 2δ).

No matter how small η, ε and δ are, in any m-approximation game with m ≥ m∗(η, ε, δ),

Claims 1 and 2 are valid and hence the previous inequality is true. Thus, Eq. (71) follows. �

But then Eq. (71) contradicts the equal-probability uniform tie-breaking rule. Thus,

the probability of tying at any bid x > l according to the limit bid functions β∗ is zero .

7 Conclusion

Next version.
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ri, 5
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