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Abstract

This paper studies a principal-agent problem where the only commitment for the

uninformed principal is to restrict the set of decisions she makes following a report by

the informed agent. Compared to no commitment, the principal improves the quality

of communication from the agent. An ex ante optimal equilibrium for the principal

corresponds to a finite partition of the state space, and each retained decision is sub-

optimal for the principal, biased toward the agent’s preference. Generally an optimal

equilibrium does not maximize the number of decisions the principal can credibly retain.
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A principal needs to elicit information from an agent in order to make decisions, but

their inherent conflict of interest makes truthful communication difficult. When the principal

cannot credibly give up her authority to make the final decision, the seminal paper by ?

(hereafter CS) shows that the principal’s decisions suffer from the agent’s incentive to distort

his information in favor of his bias. When the principal can credibly delegate her decision-

making authority, the agent uses his information efficiently but his decision is biased. In

reality, however, the principal may be able to give up certain aspects of her decision-making

authority, but not all, due to institutional or technological reasons.

This paper presents a model of limited authority : ex ante, the principal can credibly rule

out certain decisions as infeasible; but for the remaining decisions, she cannot commit to

any particular decision rule such as adopting the agent’s recommendation without change

ex post. Real life examples of this type of limited authority abound. For instance, in a

typical university tenure system, the university has only two decisions given a department’s

recommendation on a tenure case: promote the assistant professor or fire him. In the US

House of Representatives, the Rules Committee can establish a set of special rules to limit

the amendment process when a bill is introduced. In particular, the committee can adopt

a structured rule that specifies the amendments to be considered and the time for debate.

Finally, in a factory setting, the owner’s choice of one type of an assembly line may make the

production of certain products impossible, but she can still choose the final product within

the capacity of the assembly line after hearing the manager’s recommendation.

Our model of limited authority presents an ex ante tradeoff for the principal in deciding

how much ex post authority to retain. On one hand, by retaining more decisions the principal

can make better use of the agent’s reported information. On the other hand, more retained

decisions creates a bigger credibility problem: the information content of the report is lower

because the agent anticipates the principal’s incentive to exploit it. Using the same general

framework as CS, we show that under the optimal limited authority, finitely many decisions

are retained. The agent partitions the state space and makes a recommendation from the

set of retained decisions for each partition element, and the principal always follows the
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recommendation and never randomizes. Moreover, the principal is strictly better off under

the optimal limited authority than in any CS equilibrium. Intuitively, by ruling out some

decisions, the principal reduces her incentives to distort decisions recommended by the agent,

which allows the biased agent to make more precise recommendations than in the cheap talk

game.

To better understand the tradeoff for the principal under limited authority, in particular

the properties of the retained decisions, we turn to the example with uniformly distributed

state and convex loss function, which is a slight generalization of the uniform-quadratic ex-

ample commonly used in the communication literature. We fully characterize the principal’s

optimal limited authority in this case. To begin with, in the optimal limited authority, all

the retained decisions are above the principal’s ex post optimal decisions—in the direction of

the agent’s bias—given that she learns the partitional elements. Second, retained decisions

are more evenly distributed under the optimal limited authority than the induced decisions

in a CS equilibrium. Intuitively, in a CS equilibrium each induced decision is ex post optimal

because the principal has no commitment power, and thus the agent induces decisions that

grow in distance between each other in the direction of his bias. In contrast, under the opti-

mal limited authority the principal restricts the set of decisions she can choose from, which

reduces the agent’s incentive to distort his recommendations due to their conflict of interest.

This increases the possible number of decisions that can be credibly retained, and decreases

the distance between them. Third, we show that, contrary to the predictions of both the

cheap talk and delegation models, the principal does not necessarily maximize the number

of decisions that can be credibly retained. Intuitively, allowing more decisions ex ante can

make the principal worse off by reducing the communication quality because the credibility

problem distorts the choices of the decisions. In particular, some decisions may be used with

almost zero probability, but their presence still forces the principal to move other retained

decisions away from the ex ante optimal ones.

This paper is directly related to the literature on delegation initiated by Holmstrom (1984).

He shows that the optimal outcome under full commitment of the principal is achieved by
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restricting the set of decisions and delegating decision-making authority to the agent. Our

paper analyzes the environment in which the principal cannot delegate authority to the agent,

but can restrict the set of decisions. Closely related are Dessein (2002) and Marino (2007),

who study the optimal delegation problem where the principal can veto the agent’s decision

and replace it with some default decision, and Mylovanov (2008), who instead assumes that

the principal can choose the default decision ex ante. Less related to our work, Milgrom and

Roberts (1988) and Szalay (2005) analyze how restricting the set of decisions affects influence

activities and information acquisition respectively. Sections 1.3 and 4.1 discuss the related

literature in greater detail.

The rest of this paper is organized as follows. Section 1 sets up the limited authority

model by adding to the cheap talk game a first move by the principal choosing the set

of retained decisions. Section 1.3 provides detailed motivations for our limited authority

assumption. Section 2 derives general properties about the optimal limited authority by first

characterizing it as a solution to a constrained maximization problem. This characterization

provides an equivalent interpretation of our limited authority model as a delegation game

in which the principal chooses the delegation set but cannot commit to not changing the

agent’s decision within the set. Section 3 provides a full characterization of the example

with uniformly distributed state, convex loss functions for both the principal and the agent,

and a state-independent bias for the agent. Section 4 compares the principal’s welfare under

optimal limited authority to various organizational forms studied in the existing literature.

We find that the principal’s ex ante expected payoffs are similar under the optimal limited

authority and optimal delegation, and both are significantly higher than that under the most

informative cheap talk equilibrium. Section 5 briefly discusses extensions of the model. All

proofs can be found in the appendix.
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1 The model

1.1 Setup

This paper analyzes the CS model with one modification. In CS the set of decisions is a real

line; we instead assume that, ex ante, the principal can credibly restrict the set of decisions

from which she makes decisions ex post. The model specified in this section is called a

model of limited authority throughout the paper. It has two natural interpretations suitable

for different environments, namely, the cheap talk game and the delegation game. We first

present the model using the cheap talk game, and then comment briefly on the delegation

game.

Formally, there is an informed agent A (he) and an uninformed principal P (she). Payoffs

of A and P , denoted by uA (y, θ) and uP (y, θ), are both functions of the decision y and the

state of the world θ. The timing of the cheap talk game is as follows:

1. P chooses a decision set Y , a compact subset of the real line.

2. A observes Y and privately learns θ, drawn from the interval (0, 1] according to a positive

probability density function f (θ).

3. A sends a cheap talk message m from the interval [0, 1].

4. P receives m and makes a decision y ∈ Y .

All aspects of the game are common knowledge. We make the CS assumptions on functions

uA (y, θ) and uP (y, θ), which are maintained throughout the paper:

Assumption 1 There exists a function u and a scalar b > 0 such that uA (y, θ) = u (y, θ, b)

and uP (y, θ) = u (y, θ, 0). Moreover,

1. u is twice continuously differentiable in all variables.

2. uyy (y, θ, β) < 0 for all y ∈ R, θ ∈ [0, 1], and β ∈ [0, b].
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3. uy(y
∗ (θ) , θ, β) = 0 for some function y∗ (θ), and for all θ ∈ [0, 1] and β ∈ [0, b].

4. uyθ (y, θ, β) > 0 for all y ∈ R, θ ∈ [0, 1], and β ∈ [0, b].

5. uyβ (y, θ, β) > 0 for all y ∈ R, θ ∈ [0, 1], and β ∈ [0, b].

Parts 2 and 3 imply that both A and P ’s preferences are single-peaked. Parts 1-3 together

imply that yi(θ) ≡ arg maxy∈R ui(y, θ) is well defined and continuous in θ for all θ ∈ [0, 1]

and i = A, P . Part 4 is a sorting condition, which ensures that both yA (θ) and yP (θ) are

increasing in θ for all θ ∈ [0, 1]. Finally, part 5 guarantees that yP (θ) < yA (θ) for all θ ∈ [0, 1].

In the delegation game interpretation of the model, first P chooses a delegation set Y , and

then A chooses some y from Y , which P can approve or change to some other ỹ in Y . The

only formal difference between this interpretation and the above cheap talk interpretation

is that in the delegation game A makes a choice y from Y , instead of sending a cheap talk

message. The reduction in A’s strategy space, from the set of messages [0, 1] in the cheap talk

game to the set Y in the delegation game, turns out to be immaterial to our characterization

of the optimal limited authority. This claim will be formally established as part of the proof

of Proposition 1 in the next section.1 As a result, the delegation game and the cheap talk

game are two interpretations of the same limited authority model.

1.2 Solution concept and definitions

The solution concept we use is Perfect Bayesian Equilibria (hereafter PBE). A PBE is P ’s

choice of Y , A’s report strategy σ : 2R×(0, 1] → ∆[0, 1], P ’s decision strategy ρ : 2R× [0, 1] →
∆Ỹ , and P ’s belief p : 2R × [0, 1] → ∆ (0, 1], such that strategies are optimal given players’

beliefs, and beliefs are derived from Bayes’ rule whenever possible.2 Formally, the equilibrium

1The claim is obviously true if we restrict the attention to equilibria where P uses a pure strategy on

the equilibrium path. The proof of Proposition 1 establishes the claim allowing for the possibility of random

decisions by P .
2A technical issue arises with the existence of the conditional distribution function, p (θ|Y, m), which can

be bypassed using the notion of distributional strategies (see Milgrom and Weber (1985)) and Theorem 33.3

of Billingsley (1995).
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conditions are, for all Ỹ ⊂ R, m ∈ [0, 1], for m∗ in the support of σ(·|Ỹ , θ), and for y∗ in the

support of ρ
(
·|Ỹ , m

)
:

Y ∈ arg max
eY ⊂R

∫

eY ×[0,1]×[0,1]

uP (y, θ) ρ
(
y|Ỹ , m̃

)
σ(m̃|Ỹ , θ)f (θ) dy dθ dm̃,

m∗ ∈ arg max
m̃∈[0,1]

∫

eY

uA (y, θ) ρ
(
y|Ỹ , m̃

)
dy,

y∗ ∈ arg max
y∈eY

∫ 1

0

uP (y, θ)p
(
θ|Ỹ , m

)
dθ,

p
(
θ|Ỹ , m

)
=

σ(m|Ỹ , θ)f (θ)
∫ 1

0
σ

(
m|Ỹ , θ

)
f(θ)dθ

.

A PBE of the delegation game is defined analogously, with the only difference being

that A’s mixed strategy is a mapping from the set of states [0, 1] to the set of probability

distributions over the set Y chosen by P , instead of to the set of distributions over the message

space [0, 1].3

Regardless of the interpretation of the limited authority model, we adopt the following

definitions. The decision y is induced by θ (or equivalently θ induces y) in a PBE if y is

chosen by P with positive probability when the state is θ in this PBE, or

∫

{m:ρ(y|Y,m)>0}

σ(m|Y, θ)dm > 0.

The decision y is induced in a PBE if y is induced in at least one state. A PBE is informative

if there are at least two induced decisions, and uninformative otherwise. The uninformative

decision yP is defined as yP ≡ arg max
y∈R

∫ 1

0
uP (y, θ) f (θ) dθ. Finally, a PBE is a partition

equilibrium ({θi}n
i=0 , {yi}n

i=1) if {θi}n
i=0 is a partition of (0, 1], and {yi}n

i=1 ⊂ Y is a set of

induced decisions where

0 = θ0 < θ1 < . . . < θn = 1,

y1 < . . . < yn,
(1)

such that any θ ∈ (θi−1, θi] induces decision yi for all i = 1, . . . , n. Condition (1) is called

the partition condition. Clearly, a partition equilibrium can be supported as a PBE of the

3In the cheap talk game, it is without loss of generality to restrict the set of messages to [0, 1], as in

CS. In the delegation game, we have implicitly assumed that A cannot choose lotteries. This assumption is

non-consequential to our analysis, as established later in Proposition 1.
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delegation game where the delegation set Y chosen by P on the equilibrium path has the

following properties. First, it is minimal, in that each decision y ∈ Y is induced; and second,

it is veto-free, in that P chooses the same y chosen by A.

Two remarks are in order. First, all CS equilibria can be supported as a PBE in this

framework. Indeed, consider any CS equilibrium. The following strategies and beliefs con-

stitute a PBE. If P chooses Ỹ = R, then both A and P ’s strategies and beliefs are given by

the CS equilibrium. If P chooses Ỹ 6= R, then A sends uninformative messages; P believes

so and makes the best decision out of Ỹ based on her prior belief. This observation implies

that a PBE always exists.

Second, similar to the CS model, for each PBE there exists an outcome equivalent PBE

in which all messages in [0, 1] are sent on the equilibrium path. Therefore, we cannot refine

the set of PBE using standard equilibrium refinements such as those of Cho and Kreps (1987)

which restrict out-of-equilibrium beliefs.4 This paper mostly focuses on PBE that maximizes

P ’s expected payoff, which we refer to as the optimal PBE. Such a refinement is natural if

P does not only choose Y at the first stage, but also announces the outcome she plans to

implement with the chosen decision set Y .

1.3 Discussion of the model

The imperfect commitment assumption that ex ante the principal can credibly restrict the

set of decisions available to her ex post, but she cannot commit to any specific decision rule

deserves further discussion. Below we provide three motivations. Our first motivation is

formal, and is based on the incomplete contracting approach initiated by Grossman and Hart

(1986) and Hart and Moore (1988). Our limited authority model describes a contracting

environment in which the authority to make final (irreversible) decisions resides with the

4Some refinements for cheap talk games have been proposed in the literature but they do not generally select

a unique equilibrium. A notable exception is due to Chen et al. (2008), which selects the most informative

equilibrium under some regularity conditions.
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principal, but only these final decisions are verifiable.5 In this environment, all the principal

can do is to ex ante exclude some decisions from what she may choose ex post. In the

same spirit of the observable-but-not-verifiable assumption in the incomplete contracting

literature, our restrictions on contractibility are certainly severe. In particular, in our limited

authority model neither communication by the agent to the principal, such as reports on his

information or recommendations to the principal, nor decision rights is verifiable. Allowing

reports or recommendations by the agent to be verifiable would of course turn our model

into an exercise in mechanism design without transfers; likewise, allowing the decision rights

to be contractible would change our model into an optimal delegation problem. Both these

problems have been extensively studied in the literature; see for example the more recent

works by Kovac and Mylovanov (2009) and Alonso and Matouschek (2008). The innovation

in our paper is instead to study a more primitive contracting environment than the full-

commitment framework initiated by Holmstrom (1984), while at the same time demonstrate

what “simple” contracts can achieve relative to the no-contracting, cheap talk framework of

CS. Furthermore, from an applied point of view, there are contracting situations for which

our limited authority model is appropriate. For example, it may be prohibitively costly for

the agent to present physical evidence of his communication with the principal in the court.

Similarly, to delegate formal authority to the agent, the principal may need to sell relevant

productive assets to the agent, which may be impractical because the same assets are used

by the principal for other purposes.

The second motivation for the imperfect commitment assumption is technological, and

presumes a contracting environment where verifiability of any reports or decisions is com-

5Hart and Moore (2004) impose a similar contractibility assumption. They assume that ex ante the parties

can restrict the set of outcomes over which they bargain ex post. However, the parties cannot commit to any

specific mechanism according to which the outcome from this restricted set is chosen ex post. Also, Hermalin

et al. (2007) propose a similar approach to model situations in which a contract has ambiguous provisions.

That is, each contingency in a contract is associated with a set of outcomes from which the final outcome is

chosen. In this context, the imperfect commitment assumption requires that the same set of possible outcomes

should be associated with each contingency.
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pletely absent. For example, making certain decisions may require a specialized equipment

which is prohibitively expensive to procure ex post. In this case, not procuring the equipment

ex ante commits the principal to not making the decisions that use the equipment. Similarly,

in many organizations, managers make decisions using software packages, such as SAP ERP.

This software is typically adjusted to the specific needs of each organization so that certain

decisions are made unavailable, such as trading of some products at certain prices in a finan-

cial company. In addition, it may be impractical to give control over this software to those

who have relevant information for decision making in an organization. This technology thus

allows the principal to restrict her decision set without making it possible for her to commit

to decisions based on the agent’s reports. It is worth noting that between the two aspects in

the standard full-commitment model, the principal’s ability to make certain decisions infea-

sible and her ability to commit to not changing the decision made by the agent, the first one

may be accomplished through some technology while the second one is often technologically

harder or even impossible.

The third and final motivation for the imperfect commitment assumption is institutional,

and is based on realistic assumptions about how decision rights are allocated in organizations.

In many organizations, managers typically make critical decisions based on information sup-

plied by their subordinates, but are held accountable for the final decisions. Organization

rules often prohibit managers from delegating their decisions to their subordinates, but allow

managers to credibly commit to not taking certain decisions. This is the kind of organiza-

tional setting that makes our limited authority model applicable. The same situation may

also arise in a multi-level hierarchy in which contracts can be written only among certain

parties. For instance, our limited authority model applies in a multi-divisional organization

with the headquarters, a division manager, and the manager’s subordinate, where enforceable

contracts can be written only between the headquarters and the manager.
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2 General analysis

In this section we provide a general analysis of the optimal PBE in our limited authority

model. We start by characterizing the optimal PBE as a solution to a constrained maxi-

mization problem in Proposition 1. This is a useful result that we exploit further in the

uniform-convex loss setup in Section 3 to completely characterize the optimal PBE. Here

we use it to establish the main result of the section, Proposition 2, that the optimal PBE

strictly improves the principal’s welfare relative to the most informative equilibrium of CS.

Under further assumptions on the preference functions uA and uP , Proposition 3 provides a

tight upper bound on the agent’s bias parameter b for the principal to benefit from limited

authority relative to the CS model.

Our first result establishes the existence of optimal PBE under limited authority and

characterizes its basic properties. In particular, it shows that the optimal PBE is a partition

equilibrium with a finite number of induced decisions.

Proposition 1 An optimal PBE exists and is a partition equilibrium with a finite number

of elements. Moreover, among all partition equilibria ({θi}n
i=0, {yi}n

i=1) with a finite n, it

maximizes
∑n

i=1

∫ θi

θi−1

uP (yi, θ)f(θ)dθ subject to, for each i = 2, . . . , n,

uA(yi, θi−1) = uA(yi−1, θi−1), (2)
∫ θi

θi−1

uP (yi, θ) f(θ)dθ ≥
∫ θi

θi−1

uP (yi−1, θ) f(θ)dθ. (3)

We start the proof of Proposition 1 by characterizing all PBE. First, we exploit the

assumptions on the payoff functions uA and uP to show that any PBE in the cheap talk game

can be supported as one in the delegation game, meaning that we can restrict attention to

PBE’s in which P ’s equilibrium decision set Y is minimal and veto-free. Second, we prove

that any PBE is a partition equilibrium with a finite number of elements. The proof of the

finiteness is quite standard, except that the distance between three rather than two adjacent

induced lotteries is bounded away from zero. Third, in any PBE, the adjacent incentive
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conditions are sufficient for all incentive conditions of P because P ’s payoff function is strictly

concave. Further, in any PBE in which P does not randomize over the set of decisions upon

receiving a message, P never has incentives to deviate to higher decisions, because A has an

upward bias and even he weakly prefers not to deviate to higher decisions.

To complete the proof of Proposition 1, we characterize optimal PBE. First, we show that

in any optimal PBE, P never randomizes. The proof is involved because of the finiteness of

decision set Y .6 We show that for any PBE with non-degenerate lotteries, P can increase her

payoff by replacing each non-degenerate lottery with the higher decision in the lottery. The

observation above that in any non-degenerate lottery y < y′, A strictly prefers the higher

decision y′ implies that P can improve the quality of communication by A by increasing

the probability weight on y′. By putting all the weight on y′ instead, she makes the (now

degenerate) lottery more attractive so that A recommends y′ for a set of higher states than in

the old PBE. Since P prefers a lower decision for the same set of states, she is strictly better

off. Finally, the problem of finding the optimal PBE reduces to a constrained maximization

problem where the set of feasible choices is all partition equilibria with a finite number of

elements that satisfy A’s indifference conditions (2) and P ’s adjacent downward incentive

conditions (3). The solution to this problem exists by the maximum theorem.

Clearly, P cannot do worse than in any CS equilibrium, as she can replicate any CS

equilibrium outcome by restricting the set of decisions to those induced in the CS equilibrium.

Our second result shows that P can in fact do strictly better.

Proposition 2 P ’s expected payoff is strictly higher in the optimal PBE than in any infor-

mative CS equilibrium.

In a CS equilibrium, each induced decision is ex post optimal for P in that it maximizes

P ’s expected payoff over all possible decisions y ∈ R given P ’s belief about the state after

receiving a message from A. Therefore, P ’s incentive conditions (3) are not binding in an

informative CS equilibrium, and she can marginally increase any induced decision yi without

6In CS P ’s payoff function is strictly concave in a decision and the set of decisions is convex. Thus, upon

receiving a message, P has a unique optimal decision.
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violating (3). As P increases yi, by the envelope theorem, her expected payoff is unaffected

by the introduction of ex post inefficiencies, but it increases marginally due to an increase

in the partition thresholds θi−1 and θi. For example, as θi−1 increases to θ′i−1, an upwardly

biased A induces yi−1 instead of a higher decision yi for states θ ∈ (θi−1, θ
′
i−1], which increases

P ’s expected payoff.

We can strengthen Proposition 2 by showing that P can still strictly improve her expected

payoff by restricting the set of decisions even when there does not exist an informative CS

equilibrium. More formally, suppose that an informative CS equilibrium exists whenever b is

less than b∗, with two decisions y1 and y2. Then there exists ε such that for all b less than

b∗ + ε, ε sufficiently small, P ’s expected payoff is strictly higher in the optimal PBE than

in any CS equilibrium. By Proposition 2, for b less than b∗, P can increase either y1 or y2

to achieve the desired PBE. By continuity of u, these new induced decisions still constitute

a PBE in which P ’s expected payoff is strictly higher than that in the uninformative CS

equilibrium at b = b∗ + ε.

Under additional assumptions on the function u, we can further strengthen Proposition

2. We show that P ’s expected payoff is strictly higher in the optimal PBE than a babbling

equilibrium if and only if delegation is valuable under full commitment. Adopting a definition

from Alonso and Matouschek (2008), we say that delegation is valuable if P can improve on

the uninformed decision yP by committing to letting A choose between at least two decisions.

Proposition 3 Let uP (y, θ) = −(y − yP (θ))2 and uA(., θ) be symmetric around yA(θ). P ’s

expected payoff is strictly higher in the optimal PBE than in any CS equilibrium if and only

if delegation is valuable.

The “only if” part is immediate, because by Proposition 1 the optimal PBE is a partition

equilibrium and any partition equilibrium can be implemented through delegation as the

incentive conditions (3) for P are absent in delegation under full commitment. The proof of

the “if” part is based on a result due to Alonso and Matouschek (2008). They show that if

delegation is valuable, then P can improve on implementing the uninformed decision yP by
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letting A choose between exactly two decisions. We show that these two decisions satisfy P ’s

incentive condition (3), and thus can be induced in a PBE.

3 The uniform-convex loss example

This section focuses on a slight generalization of the leading example of CS. In particular, we

assume:

Assumption 2 f(θ) = 1 for θ ∈ (0, 1], u(y, θ, β) = −l(|y − (θ + β)|), where l is increasing

and convex with l(0) = l′(0) = 0.

Assumption 2 includes the leading uniform-quadratic example as a special case with l(z) =

z2. Clearly, Assumption 2 satisfies Assumption 1, so Propositions 1 and 2 hold. We focus on

this example because it is widely used in applications as a building block.7

This example is particularly well-behaved to apply the constrained maximization program

given in Proposition 1. In leading to the main result of this section, a complete characteri-

zation of the optimal PBE in Proposition 5, we provide a few results that have independent

interests and a solution approach that yields further insights about the optimal PBE. We

first establish that in the optimal PBE each induced decision is higher than what is ex post

optimal conditional on P learning the corresponding partition element. As a result, P ’s in-

centive conditions (3) take a particularly simple form. In Proposition 4, we show that binding

these conditions yields both an upper bound on the number of induced decision in the opti-

mal PBE, and a PBE that achieves this upper bound. We then solve the full-commitment

problem of maximizing P ’s expected payoff with a fixed number of induced decisions, subject

7There is another uniform-quadratic example that has been analyzed in recent papers including Gordon

(2007) and Alonso et al. (2008). In this example, A has an outward rather than upward bias such that his

payoff is given by uA (y, θ) = − (y − b − cθ)
2

where b < 0 and b + c > 1. Intuitively, an outwardly biased A

prefers extreme decisions when the state of the world is extreme. In the example with outwardly biased A,

there exists an equilibrium with a countable number of induced decisions which eliminates an integer problem

peculiar to the leading example of CS. Therefore, in some applications, an example with outwardly biased A

is simpler to analyze.
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only to the partition conditions (1) and the agent’s indifference conditions (2). The solution

provides a lower bound on the number of induced decisions in the optimal PBE when it satis-

fies P ’s incentive conditions (3). The optimal PBE can be then characterized by considering

all partition equilibria with a number of induced decisions between the lower bound from the

full-commitment problem and the upper bound from Proposition 4.

3.1 Maximal limited authority

From Proposition 1, an optimal PBE exists and it is a partition equilibrium that satisfies

A’s indifference conditions (2) and P ’s adjacent downward incentive conditions (3). In the

present uniform-convex loss model, these conditions can be rewritten as: for all i = 2, . . . , n,

θi−1 + b − yi−1 = yi − θi−1 − b; (4)

|yi − y∗
i | ≤ |y∗

i − yi−1|, (5)

where y∗
i = 1

2
(θi−1 + θi) is P ’s ex post optimal decision conditional on the interval (θi−1, θi].

We now show that induced decisions yi are higher than ex post optimal y∗
i for all i = 1, . . . , n.

Lemma 1 In any optimal PBE ({θi}n
i=0, {yi}n

i=1), yi > y∗
i for each i = 1, . . . , n.

The first part of the proof of the above result establishes that if yi ≤ y∗
i for some i =

1, . . . , n in the optimal PBE, then P ’s (i +1)-th incentive condition binds. This holds for the

general model set up in Section 2, not just the uniform-convex loss model here. The intuition

is that if yi ≤ y∗
i and the (i + 1)-th condition is slack, P can obtain a greater expected payoff

by marginally increasing yi without affecting any incentive condition. Her payoff gain is clear:

a higher yi moves her closer to her ex post optimal decision given the same belief of the states;

and the resulting increases in thresholds θi−1 and θi mean that A now recommends yi for a

set of higher states, making P better off by the same argument as in Proposition 2.8 The

8In the general model, this result implies that in an optimal PBE the highest decisions yn and yn−1 satisfy

yn > y∗n and yn−1 > y∗n−1, and that no two adjacent decisions yi and yi+1 are below y∗i and y∗i+1 respectively.

Further, in the hypothetical problem of full commitment with a fixed number of decisions introduced in

Section 3.2, every decision yi is strictly higher than y∗i .
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second part of the proof of Lemma 1 uses the special structure of the uniform-convex loss

model to show that yi ≤ y∗
i is incompatible with binding P ’s (i + 1)-th incentive condition.

We now restate the constrained maximization problem of Proposition 1 for the uniform-

convex loss setup by substituting out A’s indifference conditions (4). The choice variables are

{yi}n
i=1. By partition condition (1), θ0 = 0 and θn = 1, so the objective function becomes

UP
n = −

n∑

i=1

∫ θi

θi−1

l (|θ − yi|) dθ (6)

The constraints are

y1 < ... < yn, (7)

y1 + y2 > 2b, (8)

yi+1 − yi−1 ≥ 4b, for each i = 2, . . . , n − 1, (9)

yn + yn−1 ≤ 2 (1 − b) . (10)

Conditions (7) are part of the partition condition (1). Condition (8) ensures that θ1 > 0;

θn−1 < 1 is implied by condition (10); and θ1 < θ2 < ...θn−2 < θn−1 follow from (7). Conditions

(9) and (10) are equivalent to (5) for i = 2, . . . , n by Lemma 1. Condition (10) takes a different

form because θn = 1 by partition condition (1), instead of being determined by A’s indifference

condition in (4).

Observe that conditions (9) and (10) place constraints on the distance between decisions,

and thus the possible number of decisions, in the optimal PBE. We now proceed to character-

ize the maximum number of decisions that P can possibly use in an optimal PBE for a given

bias b. More importantly, we show that there always exists a PBE in which the maximum

number of decisions is induced.

Proposition 4 The number of decisions induced in an optimal PBE is strictly less than

1/(2b) + 1. Conversely, there exists a PBE with n induced decisions for any positive integer

n < 1/(2b) + 1.

Note that conditions (8) and (10) require that b < 1
2
. This is consistent with the above

proposition, as the maximum number of decisions that P can possibly use in any PBE is

16



1 if b ≥ 1
2
. The second part of Proposition 4 is established by construction. A PBE that

achieves the upper bound on the number of decisions in an optimal PBE in the present

uniform-convex loss model is called maximal limited authority. The construction binds all

P ’s incentive conditions (9), with symmetric and equidistant decisions.9 It is instructive to

compare the maximal limited authority with the most informative CS equilibrium. In a CS

equilibrium, the distance between subsequent induced decisions grows at the rate 4b, that is,

yi+1 − yi = yi − yi−1 + 4b for i = 2, ..., n − 1. Therefore, the number of induced decisions n

in any CS equilibrium has to satisfy 2n(n − 1)b < 1. In contrast, under limited authority,

the distance between two subsequent induced decisions does not grow. In fact, under the

maximal limited authority with N induced decisions, binding P ’s i-th incentive condition we

have yi+1 − yi−1 = 4b for all i = 2, . . . , N −1. As a result, N is the largest integer n satisfying

2(n− 1)b < 1, which is greater than the number of induced decisions in the most informative

CS equilibrium.

Although both the upper bound on the number of decisions in an optimal PBE and the

construction of a PBE that achieves the upper bound are specific to the uniform-convex loss

setup, there is a more general logic behind the result that the number of decisions under

maximal limited authority is larger than that in the most informative CS equilibrium. In a

CS equilibrium, each induced decision yi is ex post optimal conditional on the corresponding

interval (θi−1, θi] because P has no commitment power. In contrast, because our limited

authority model gives P some commitment power, in a partition equilibrium, P ’s incentive

conditions are given by (3), requiring only that P prefer yi to the adjacent lower decision

yi−1 conditional on (θi−1, θi]. Therefore the partitioning of the state space (0, 1] under limited

authority need not be as rightward skewed as in a CS equilibrium, and more decisions can be

induced as a result.

9When n = 2, the maximum limited authority coincides with the full commitment solution introduced in

Lemma 2, so P ’s incentive condition does not bind. See the proof of the proposition in the appendix.
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3.2 Optimal limited authority

Before characterizing the optimal PBE, it is useful to consider the hypothetical problem of

maximizing (6) subject to constraints (7), (8), and

yn−1 + yn < 2(1 + b), (11)

where we have dropped P ’s incentive conditions (9) and (10), but added (11) to ensure that

θn−1 < 1. This hypothetical problem has the interpretation of the case of full commitment,

with the restriction to a finite number n of decisions, and is informative about the limited

authority model.10 The solution also provides an upper bound on what P can achieve in an

optimal PBE if it has n decisions. Denote the solution as Y FC (n) =
{
yFC

i

}n

i=1
. (We write

yFC
i instead of yFC

i (n; b) whenever it can be done without loss of clarity.) The following

lemma provides a characterization of Y FC (n).

Lemma 2 Suppose that b < 1
2
. For any natural n, Y FC (n) is given by yFC

i = 1
2
+∆

(
i− n+1

2

)
,

i = 1, . . . , n, where ∆ > 0 is uniquely determined by

2l(yFC
1 ) = l (b + ∆/2) + l (|b −∆/2|) .

For b ≥ 1
2
, the optimal full commitment solution has the single decision of 1

2
. In contrast,

for b < 1
2
, under full commitment for any n optimal decisions yFC

i are equidistant, that is,

all decisions i = 1, . . . , n are ∆ apart and symmetric around 1
2
. In order to minimize P ’s

expected payoff given by (6), the decisions need to be equidistant to make the partition of

the state space uniform in that θi − θi−1 is the same for all i = 2, . . . , n − 1. The uniform

partition in turn minimizes the loss of information, which can be loosely understood as the

average residual uncertainty of the state of the world provided that P learns the partition

elements (see Section 4 for more details when the loss function is quadratic). That decisions

10Melumad and Shibano (1991) show that the optimal decision set is equal to [b, 1− b] in the full commit-

ment model in which P can commit to not to change A’s recommendation without the restriction to a finite

number of decisions. The solution given in Lemma 2 becomes arbitrarily close to [b, 1− b] as n → ∞. To see

this, note that as n → ∞, ∆ → 0 and (n − 1)∆ → 1 − 2b.

18



yFC
i are symmetric around 1

2
is also intuitive, because P is unbiased, that is, yP (θ) = θ.11

Finally, Lemma 2 implies that as n increases, the maximized value of UP
n in the hypothetical

full-commitment problem strictly increases. In fact, a robust feature of models with full

commitment is that more decisions can only improve A’s communication quality because P

commits to not using the information A revealed strategically.

Solution Y FC (n), however, may violate P ’s incentive conditions (9) and thus become

infeasible under limited authority. We now turn to the problem of maximizing P ’s expected

payoff (6) by choosing a set of a fixed finite number n of decisions, subject to all constraints

(7)-(10). Denote the solution to this problem as Y LC (n) =
{
yLC

i (n)
}n

i=1
, and we refer to it

as the n-optimal limited authority as it takes n as given. A few observations are immediate.

First, obviously, Y LC(1) = Y FC(1) for any b, with yLC
1 (1) = 1

2
. Second, for each n ≥ 2, by

Proposition 4, Y LC (n) exists only if and only if

b < bLC (n) ≡ 1

2 (n − 1)
. (12)

Third, for n ≥ 3, the solution Y FC(n) to the full commitment problem satisfies P ’s incentive

condition (9), and hence Y LC(n) = Y FC(n), if and only if b ≤ bFC(n), where bFC(n) is

uniquely determined by

2l(1/2 − (n − 1)bFC(n)) = l(2bFC(n)). (13)

This follows because the above definition of bFC is simply the evaluation of the condition

in Lemma 2 at ∆ = 2b, so the distance ∆ between two adjacent decisions yFC
i+1 and yFC

i is

greater than or equal to 2b if and only if b ≤ bFC(n).12 Intuitively, when b or n is small, the

decisions under Y FC(n) are sufficiently far apart from each other so that P would not want

to deviate to the lower decision yi−1 when A recommends yi. For n = 2, it turns out that

11If we focused on PBE that maximized A’s expected payoff instead of P ’s, then the optimal decisions

would tend to be symmetric around 1

2
+ b because A has the upward bias b > 0.

12Since l is convex, the right-hand side of the condition in Lemma 2 is increasing in ∆ regardless of whether

∆ ≥ 2b or ∆ < 2b. The remaining incentive condition (10) of P can be shown to be equivalent to θ1 ≥ 0,

which is always satisfied under Y FC(n). For details see the proof of Lemma 2 in the appendix.
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Y FC(2) given in Lemma 2 is always incentive compatible for P , and thus Y LC(2) = Y FC(2).13

Since Y FC(2) exists if and only if b ≤ 1
2
, we write bFC(2) = 1

2
.

The following lemma characterizes the n-optimal limited authority Y LC(n) for n ≥ 3 and

b ∈ (bFC(n), bLC(n)). The crucial feature is that P ’s incentive conditions (9) all bind under

Y LC(n). That is, under any Y LC(n), whenever some of P ’s incentive conditions must bind

because b > bFC(n), P is indifferent between implementing each recommended decision yLC
i

and replacing it with the adjacent lower decision yLC
i−1 for each i = 2, . . . , n − 1. Otherwise,

if some, but not all, incentive conditions (9) bind, then it would be possible to modify the

decisions to make them more equidistant and P better off. For example, if yi+1−yi−1 > 4b for

some i, then we could increase yi−1 or decrease yi+1 without violating any incentive condition

of P . That all incentive conditions of P must bind if any of them binds is an intuitive result

due to the assumption of uniform distribution of the state, and this result is what makes the

characterization of Y LC(n) relatively straightforward. It turns out that the characterization

of Y LC(n) depends on whether n is odd or even. In both cases, the decisions {yLC
i }n

i=1 are

symmetric around 1
2
, which is intuitive because the state is uniformly distributed and the loss

function l is convex. When n is odd, the decisions are all equidistant at 2b. When n is even,

the decisions are equidistant in an alternating manner, with yLC
i+1 − yLC

i equal for all odd i

and for all even i respectively but strictly smaller for odd i.14

Lemma 3 Fix any n ≥ 3 and b ∈ (bFC(n), bLC(n)). The n-optimal limited authority Y LC(n)

is given by yLC
i = 1

2
+2b

(
i− n+1

2

)
+

(
b − 1

2
∆1

)
for odd i, and yLC

i = 1
2
+2b

(
i − n+1

2

)
−

(
b − 1

2
∆1

)

for even i, where ∆1 = 2b if n is odd and ∆1 < 2b determined by

2l(yLC
1 ) = l(b + ∆1/2) + l(b −∆1/2) −

n − 2

2
[l(3b− ∆1/2) − l(b + ∆1/2)] (14)

if n is even.

13The only incentive condition of P is (10). This is equivalent to θ1 ≥ 0, which is satisfied because in this

case θ1 = 1

2
− b and b ≤ 1

2
. See the proof of Proposition 4 in the appendix for details.

14Having all yLC
i+1 − yLC

i equal to 2b is not optimal when n is even, because the number of such differences

is not a multiple of the number of incentive conditions in (9). Starting from a set of decisions {yi}n
i=1 that

are equidistant at 2b and symmetric around 1

2
, we can increase P ’s expected payoff by increasing yi for all

odd i and decreasing it for even i by the same amount.
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Given the above characterization of the n-optimal limited authority decision set Y LC(n)

for each fixed n and for all b ∈
(
bFC(n), bLC(n)

)
, we can now present the main result of this

section. This is a characterization of the optimal PBE, achieved by comparing P ’s expected

payoffs under all feasible decision sets. By (12) and (13),15

bFC (n) < bLC (n + 1) < bFC (n − 1) .

Since P prefers Y FC (n − 1) to Y FC (i) and Y LC (i) for all i < n − 1, we can restrict the

search for the optimal PBE in the interval [bFC (n) , bFC (n − 1)) to Y FC(n− 1), Y LC(n) and

Y LC(n + 1).

Proposition 5 Suppose that l(z) = z2. For each n ≥ 3, there exists b(n, n − 1) ∈ (bLC(n +

1), bFC(n − 1)) such that the induced decisions in the optimal PBE are given by Y LC(n) for

all b ∈
[
bFC(n), b(n, n − 1)

)
, and by Y FC(n − 1) for all b ∈

[
b(n, n − 1), bFC(n − 1)

)
.

The logic behind the comparison among Y FC(n−1), Y LC(n) and Y LC(n+1), which holds

for all loss function l that satisfies Assumption 2, can be seen as follows. First, observe that

at b = bFC(n), the optimal decision sets under full commitment and limited authority are

identical: Y FC(n) = Y LC(n). P ’s expected payoff jumps down discontinuously at bFC(n)

if decisions change from Y FC(n) to Y FC(n − 1). In contrast, Y LC (n) changes continuously

with b at bFC(n), consequently P is strictly better off with Y LC(n) than with Y FC(n − 1)

if b is sufficiently close to and greater than bFC(n). Second, at b just below the cutoff value

bLC(n+1), P strictly prefers Y LC(n) to Y LC(n+1). This follows because under Y LC(n+1), the

lowest partition threshold θLC
1 (n+1) equals 0 at bLC(n+1), so effectively only n decisions are

recommended by A and approved by P . Since Y LC(n) is available at bLC(n + 1), Y LC(n + 1)

is dominated for P : the additional decision in Y LC(n + 1) does nothing to improve her

expected payoff, but distorts the quality of her decisions, making her worse off. Therefore,

15Note that the function g (k, b) ≡ 2l(1/2 − (k − 1)b) − l(2b) is decreasing in b for b ∈
(
0, bLC (k)

)
and is

equal to 0 at bFC (k) for all k. The first inequality holds because g
(
n, bLC (n + 1)

)
= 2l

(
1

2n

)
− l

(
1

n

)
< 0 for

any convex loss function l. The second inequality holds because g
(
n − 1, bLC (n + 1)

)
= l

(
1

n

)
> 0.
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the cutoff value bLC(n + 1) is not relevant for P ’s search for optimal PBE in the interval
[
bFC (n) , bFC(n − 1)

)
.

As b increases in the interval (bFC(n), bFC(n − 1)), P ’s expected payoff decreases under

each of Y FC(n − 1), Y LC(n) and Y LC(n + 1). Under the assumption of l(z) = z2, the proof

of Proposition 5 in the appendix ranks the rate of decrease for the three sets of decisions.

In particular, we show that P ’s expected payoff decreases slower under Y FC(n − 1) than

under Y LC(n) for any b ∈ (bFC(n), bFC(n− 1)), and in turn slower under Y LC(n) than under

Y LC(n+1) for any b ∈ (bFC(n), bLC(n+1)). We then show that at bFC(n−1), P strictly prefers

Y FC(n− 1) to Y LC(n). Shifting the indices forward by 1 and noting that Y LC (n) = Y FC (n)

at bFC (n), we have that P strictly prefers Y LC (n) to Y LC (n + 1). This evaluation then

allows us to establish the proposition.

Proposition 5 makes it clear that the optimal limited authority does not generally co-

incide with the maximal limited authority. This is reflected in two ways. First, when b

falls in
[
bFC(n), bLC(n + 1)

)
, Y LC(n + 1) is available but is never optimal. Indeed, as ob-

served above, for any loss function l that satisfies Assumption 2, P strictly prefers Y LC(n)

to Y LC(n + 1) for b sufficiently close to and lower than bLC(n + 1). Second, when b falls in
(
b(n, n − 1), bFC(n − 1)

)
, Y LC(n) is available but P strictly prefers Y FC(n−1). Thus, unlike

in the solution to the hypothetical full-commitment problem, P ’s payoff does not necessarily

increase with the number of decisions under limited authority. Intuitively, in an optimal PBE,

P retains fewer decisions in order to relax the incentive conditions due to limited authority.16

Our result that the optimal PBE under limited authority does not always maximize the

number of induced decisions contrasts strongly with CS and models with full commitment.

This may be counterintuitive, but recall that we have restricted the search for the optimal

PBE under limited authority to decision sets that are minimal and veto-free. Thus, in char-

acterizing the decision set Y LC(n) for each fixed n, we have imposed the condition that all

n decisions are induced in some states, and precluded the standard reasoning that adding a

16By Proposition 5, in the familiar uniform-quadratic case, the number of induced decisions under the

maximal and optimal limited authority is the same only for b ∈
[
bLC(n + 1), b(n− 1, n)

)
.
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decision cannot make P worse off. Instead, each additional decision in our model presents P

with a credibility problem. In a PBE with a larger number of induced decisions there is better

information transmission, which would benefit P , everything else being equal. This better

information transmission, however, is achieved due to P ’s commitment to ex-post suboptimal

decisions. As a result, P may prefer a PBE with worse information transmission, but better

decision-making.

4 Welfare comparison across organizational forms

Many existing papers have analyzed extensions of the CS model that improve communication

quality and thus P ’s welfare. We categorize these papers into six organizational forms: cheap

talk, delegation, persuasion, informational control, noisy talk, and limited authority. Then

we compare P ’s ex ante expected payoffs under these organizational forms. All the payoff

comparisons are based on specializing the uniform-convex loss example of Section 3.2 to the

quadratic loss function.

4.1 Organizational forms

Our first organizational form is CS’s cheap talk model in which neither P nor A has any

commitment power. In the CS model, there are essentially three players: nature, A, and P .

Nature draws the state of the world θ ∈ Θ. A privately observes the state θ and sends a

message m ∈ M to P , who then makes a decision y ∈ Y .

Let us introduce a fourth non-strategic player to the CS model who takes an input i ∈ I

and returns a possibly stochastic output o ∈ O according to some pre-specified mapping

φ : I → ∆O, where ∆O denotes the set of lotteries over outcomes O. The fourth player

can either replace one of the players or be a mediator. Each possible way that a fourth

player could be introduced into the game corresponds to a different organizational form.

Note that a strategic fourth player is just a particular non-strategic player who uses a certain

(equilibrium) mapping. Thus we can analyze either a fourth player designed by P , whose
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mapping maximizes P ’s expected payoff; or a fourth player with an equilibrium mapping,

which corresponds to a strategic player or to a modification of the CS environment.

We first discuss organizational forms where the fourth player replaces another player

(Figure 1, left panel). There are two such forms: delegation and persuasion, which correspond

to the replacement of P and A respectively by a fourth player. Delegation refers to P ’s

commitment power: under delegation, A sends a message m to the fourth player instead of to

P , and the fourth player then makes a decision y according to φD : M → ∆Y . Such delegation

encompasses both optimal delegation and full delegation: the former corresponds to a fourth

player designed by P and the latter corresponds to A being the fourth player respectively.17

Persuasion refers to A’s commitment power: under persuasion, the fourth player observes the

state θ and sends a message m to P according to φPM : Θ → ∆M .18

We turn next to organizational forms where the fourth player is a mediator (Figure 1,

right panel). There are three such forms: informational control, noisy talk, and limited

authority, which correspond to information, message, and decision mediation, respectively.

Informational control refers to A’s information structure: under informational control, the

fourth player privately observes the state θ and returns a signal θ̂ ∈ Θ according to φIC : Θ →
∆Θ; A privately observes the signal θ̂ and sends a message to P , who makes a decision.19

Noisy talk refers to the quality of the communication channel between A and P : under noisy

talk, the fourth player receives a message m from A and sends a perturbed message m̂ ∈ M

17Holmstrom (1984), Melumad and Shibano (1991), Martimort and Semenov (2006), and Alonso and Ma-

touschek (2008) study optimal delegation in which a third player is restricted to deterministic decision rules.

Goltsman et al. (2009), and Kovac and Mylovanov (2009) study optimal stochastic delegation. Dessein (2002)

studies full delegation and analyzes how it compares to cheap talk. Gilligan and Krehbiel (1987), Krishna

and Morgan (2001), and Mylovanov (2008) study veto-delegation.
18Kamenica and Gentzkow (2011) analyze optimal persuasion that maximizes A’s expected payoff. Clearly,

full information transmission maximizes P ’s expected payoff.
19Ivanov (2010b) studies optimal informational control, while Austen-Smith (1994), and Fischer and Stocken

(2001) study a non-optimal informational control. The extensive literature on information acquisition and

reputational cheap talk is also related to informational control, but there are additional elements added to

the CS model.
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to P according to φNT : M → ∆M .20

Finally, limited authority refers to the set of decisions available to P : under limited

authority, P receives a message from A and then recommends a decision y to the fourth

player, who implements a decision ŷ ∈ Y according to φRA : Y → ∆Y . This paper focuses

on P ’s optimal deterministic limited authority (deterministic in that a decision mediator

is bound to use a deterministic mapping φRA : Y → Y ). Note that limited authority is

equivalent to letting P make any decision from the restricted set φRA (Y ), which justifies the

setup of our model.

4.2 Payoff comparisons

In this section, we compare P ’s highest ex ante expected payoffs within each organizational

form. To begin with, Proposition 6 calculates P and A’s expected payoffs for a small bias b

under optimal limited authority.

Proposition 6 The first term in Taylor expansion around b = 0 of P and A’s expected

payoffs under optimal limited authority is equal to −4
3
b2 and −1

3
b2 respectively.

To understand the intuition behind Proposition 6, it is useful to decompose P and A’s

expected payoffs as the sum of the loss of information and the loss of control:

UP = −E
[
(y − θ)2] = −E

[
(ym − E [θ|m])2]

︸ ︷︷ ︸
P ’s Loss of Control

− E [V ar (θ|m)]︸ ︷︷ ︸
Loss of Information

,

UA = −E
[
(y − (θ + b))2] = −E

[
(ym − E [θ|m] − b)2

]
︸ ︷︷ ︸

A’s Loss of Control

− E [V ar (θ|m)]︸ ︷︷ ︸
Loss of Information

,

where ym, E [θ|m], and V ar (θ|m) are the decision taken, the expectation, and the variance

of the state θ given a message m (under P ’s beliefs), respectively. The loss of information

20Goltsman et al. (2009) characterize optimal noisy talk. Furthermore, there are a number of papers that

can be represented as a particular type of a message mediator: Krishna and Morgan (2004) analyze back

and forth communication between the agent and the principal; Blume et al. (2007) study communication

with perturbed messages; Ivanov (2010a), Li (2010), and Ambrus et al. (2010) study communication with a

strategic message mediator and a sequence of strategic message mediators, respectively.
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is defined as the expected conditional variance of the state given P ’s belief at the time of

decision making. Therefore, the loss of information captures the residual uncertainty that P

has after communication took place. P and A’ loss of control is defined as the expected loss

from making decision ym instead of the ex post optimal decision given the message m.

Now we calculate the loss of information and the loss of control under optimal limited

authority. By Proposition 5, adjacent induced decisions are symmetric around 1
2

and approx-

imately 2b apart from each other (yi ≈ 1
2

+
(
i − n+1

2

)
2b). Therefore, the loss of information

can be approximated as

n∑

i=1

Pr ((θi−1, θi])V ar (θ| (θi−1, θi]) ≈ V ar (θ| (θi−1, θi]) ≈
(2b)2

12
=

1

3
b2,

and P ’s loss of control can be approximated as

n∑

i=1

Pr ((θi−1, θi]) (yi − E [θ| (θi−1, θi]])
2 ≈

(
yi −

θi−1 + θi

2

)2

≈ b2

where the last equality follows from A’s indifference conditions (4). Analogous calculations

show that A has essentially no loss of control. Summing up the loss of information and the

loss of control yields Proposition 6.

Next we compare P and A’s expected payoffs for a small bias b under all organizational

forms (see Table 1).21

Persuasion
Informational

Control

Optimal

Delegation

Full

Delegation

Limited

Authority

Noisy

Talk

Cheap

Talk

UP 0 −1
3
b2 −b2 −b2 −4

3
b2 −1

3
b −1

3
b

UA −b2 −4
3
b2 −8

3
b3 0 −1

3
b2 −1

3
b −1

3
b

21We believe that these results hold more generally with a caveat that each row of Table 1 is multiplied by

some constant. In particular, we expect them to hold if P ’s and A’s payoffs are given by arbitrary smooth

loss functions uP (y, θ) = −lP (|y − θ|), uA (y, θ) = −lA (|y − (θ + b)|). Intuitively, as the bias goes to zero,

the distance between any two subsequent decisions also goes to zero. Therefore, the loss functions can be

approximated by quadratic functions, and the distribution function can be approximated by a piecewise

uniform distribution.
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Table 1. P and A’s expected payoffs under all organizational forms.

To understand these payoff comparisons, we decompose P ’s expected payoff into the loss

of information and the loss of control. In terms of loss of control, in all organizational forms,

either P or A has essentially no loss of control, and thus the other party has a loss of control

equal to b2. Under delegation and limited authority, P has commitment power and effectively

delegates authority to A to improve information transmission, and her loss of control b2 is

simply due to A’s bias. Next, we turn to the loss of information. There is essentially no loss of

information under delegation and persuasion because the state is almost fully revealed. The

loss of information is approximately 1
3
b2 under informational control and limited authority

because induced decisions are approximately 2b apart from each other.22 Under cheap talk

and noisy talk, however, the partition is coarse such that the distance between adjacent

decisions grows at the approximate rate 4b, leading to a much larger loss of information of

approximately 1
3
b. Combining these two parts lead to the payoff comparisons in Table 1.

The above intuition suggests that P and A’s expected payoffs are still given by Table 1 un-

der A’s optimal organizational forms, except for A’s optimal delegation, which coincides with

full delegation. It is also straightforward to characterize P and A’s expected payoffs under

combinations of different organizational forms. However, the first term in Taylor expansion

of P and A’s expected payoffs will depend on whether we are looking at P or A’s optimal

combination of organizational forms. For example, if both P and A have full-commitment

power (a combination of persuasion and delegation), then they can eliminate the loss of in-

formation and split the loss of control arbitrarily such that P and A’s expected payoffs on

the Pareto frontier are given by UA = − (αb)
2

and UP = − ((1 − α) b)
2
, where α ∈ [0, 1].

22This connection between limited authority and informational control is due to limited commitment power

of both A and P . Under limited authority, P makes the decision space discrete to relax her incentive

conditions, whereas under informational control, P makes the state space discrete to relax A’s incentive

conditions.
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Figure 2 illustrates P ’s expected payoff under all organizational forms for all possible

values of the bias b ∈
(
0, 1

2

)
. As we can see from the figure, for the whole range of A’s bias,

P ’s expected payoffs are considerably lower under cheap talk and noisy talk than under all

other organizational forms. P ’s payoff is of the same order of the bias under informational

control, delegation, and limited authority. In particular, P ’s payoff under limited authority

is almost as high as P ’s payoff under optimal delegation despite the fact that only finite

decisions can be induced under limited authority. Moreover, P receives a higher payoff under

informational control than under limited authority when A’s bias is small whereas the opposite

is true when A’s bias is large. Although these payoff comparisons alone do not indicate which

organizational form should be chosen due to differences in environment, they do suggest that

organizations can potentially benefit from credibly ruling out some decisions ex ante even if

it cannot fully delegate the decision-making authority.

5 Concluding remarks

Our model of limited authority aims to explore and understand the environment in which the

principal has some degree of commitment power, but not all. The remainder of this section

contains a discussion of how the optimal equilibrium may be affected by different assumptions

about the communication process and contracting environment (see Kolotilin (2011) for more

detailed expositions) as well as some thoughts for further research.

Because only finitely many decisions can be induced in any optimal equilibrium under
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limited authority, one may wonder whether the principal benefits from a finite decision set

per se, that is, when the principal’s decision space is discrete. It can be shown that in the

uniform-quadratic setup in Section 3, the equilibria in the CS model with a discrete set of

decisions are similar to equilibria in the CS model with a continuous set of decisions, but

with a modified smaller bias. Therefore, by discretizing the set of available decisions, the

principal can effectively decrease the agent’s bias and thereby improve communication.23 In

fact, under the optimal limited authority given in Proposition 5, the agent’s effective bias

disappears such that a uniform partition becomes feasible.

One possible critique of the limited authority model is that parties can renegotiate, after

the agent’s recommendation, to a decision not in the pre-specified set if both prefer to do

so. To address this issue, we can strengthen our solution concept and look for the optimal

renegotiation-proof equilibrium. In our model the scope for renegotiation is limited for two

reasons. First, because transfers between the parties are not allowed, both the principal

and the agent must prefer the renegotiated decision to the optimal equilibrium decision.

Second, in any PBE there is unresolved uncertainty about the state of the world after the

agent’s recommendation, and thus the principal does not know to which decision, if any,

she should renegotiate. In the uniform-quadratic setup, we can show that a renegotiation-

proof equilibrium exists, and has a maximal possible number of induced decisions that can

be supported as an equilibrium.

Another critique is that if the principal can credibly restrict the set of decisions ex ante,

then she may also be able to commit to transfers contingent on decisions. Following the

literature on communication and delegation, we rule out such transfers in the limited authority

model.24 Note that with transfers, the principal can do at least as well as in the limited

23This result resembles that of Alonso and Matouschek (2007) who show that the principal’s commitment

power reduces the agent’s “effective” bias.
24Monetary transfers may be explicitly ruled out by law, or implicitly ruled out if the parties involved are

very risk averse with respect to money. However, the assumption that there are no transfers is strong. Even

though explicit transfers between parties may be ruled out, the parties can effectively “burn” money, which

generally improves their welfare (see, for example, Austen-Smith and Banks, 2000).
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authority model by committing to no transfers for decisions in the pre specified set and

very large transfers for decisions outside the set. In fact, with transfers, the principal can

achieve the first best outcome, which maximizes the sum of the principal and agent’s expected

payoffs, if there are no monetary frictions. However, not all decision rules can be supported

with transfers. For example, the principal’s and the agent’s optimal decision rules are not

achievable. Further, if there are frictions, such as when the agent is protected by limited

liability or if the principal can “burn” money, then there is a tradeoff between making efficient

decisions and leaving a quasi rent to the agent. Due to this tradeoff, there is incomplete

information revelation for high states of the world, even though full information revelation is

feasible.25

In the current model, the principal never vetoes the agent’s recommendation in equilib-

rium. A further topic of research is to extend our model to allow veto to happen in equilibrium.

One way to model this is to imagine that there is some small, exogenous probability that the

principal can observe the true state after hearing the agent’s recommendation, and may con-

sequently desire to change her decision (still within the pre-specified decision set) given this

information. In this case, it is without loss of generality to restrict to equilibria in which the

principal follows the agent’s recommendation when she does not learn the state and otherwise

makes a choice independent of the recommendation. Thus, any equilibrium characterized in

Proposition 1 remains feasible, and further, the principal can do better by adding any decision

that is chosen with zero probability in equilibrium so long as her incentive conditions (when

she does not learn the state) are unaffected. The interesting question is how the principal

optimally modifies the decisions that are used with positive probabilities when she does not

learn the state, in order to retain more decisions that she will use when she does. Answering

this question can further our understanding of the principal’s tradeoff between maintaining

the flexibility of responding to new information and establishing the credibility of letting the

25This result is analogous to that of Krishna and Morgan (2008) who consider a communication game in

which the principal can commit to transfers contingent on messages and the agent is protected by limited

liability. Kartik (2009) obtains a somewhat similar result. He shows that in a model of communication with

lying costs, there is pooling for high states of the world.
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agent best use his private information.

6 Appendix: Proofs

Proof of Proposition 1: We prove the proposition through a series of lemmas.

First, we establish that it is without loss of generality to restrict attention to PBE’s in

which all decisions in P ’s equilibrium choice Y are induced, each message from A’s is a

recommendation of some probability distribution over Y , and no recommendation is vetoed

by P . This is a version of the revelation principle adapted to our setting. Fix any PBE and

the subgame after P has made the equilibrium choice Y . We refer to any response by P to

a message m from A as a lottery, and a particular choice from Y as a degenerate lottery. We

say that two PBE’s are outcome equivalent if they both result in the same (random) mapping

from states to decisions on the equilibrium path.

Lemma 4 Consider a PBE with P ’s equilibrium choice Y . There exists an outcome-equivalent

PBE with P ’s equilibrium choice Ỹ ⊆ Y , where Ỹ is the union of the supports of all induced

lotteries and for any induced lottery there is a unique y in its support chosen by A as a

message.

Proof : Fix any PBE and the subgame after P has chosen the equilibrium Y . Since uP (·, θ)

is strictly concave, there are at most two decisions y and y′ in Y that are optimal given the

equilibrium belief of P conditional on any m. Thus, a non-degenerate lottery has exactly two

decisions. Moreover, if y and y′ in Y satisfying y < y′ are in the support of some lottery,

then (y, y′) ∩ Y = ∅; otherwise, strict concavity of uP (·, θ) implies that the lottery would

not be optimal for P . Finally, no two induced lotteries have the same support. Otherwise,

if y, y′ ∈ Y with y < y′ are in the common support of two distinct lotteries induced after

A chooses m and m′ respectively, then one of them, say the lottery following m′, first order

stochastically dominates the other. Since uyβ > 0, P being indifferent between y and y′ given

the belief conditional on m implies that A strictly prefers y′ to y given the same belief. Thus,

there are states in which A is supposed to choose m but would find it profitable to deviate
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to m′ to induce the lottery following m′, a contradiction. By the same argument, if y, y′ ∈ Y

with y < y′ are the support of some induced lottery, y′ is not induced as a degenerate lottery.

Let Ỹ be the union of the supports of all induced lotteries following Y . We construct

an outcome-equivalent PBE where P chooses Ỹ instead of Y on the equilibrium path and

A’s message space is restricted to P ’s choice of set of decisions on and off the equilibrium

path. For any choice of P that is not Ỹ , including Y , let the continuation in the new PBE

be such that A chooses the lowest decision in the set chosen by P regardless of realized θ and

P chooses a decision that is optimal in the set given her prior belief. It remains to specify

the continuation equilibrium in the new PBE following Ỹ that is outcome-equivalent to the

continuation equilibrium in the original PBE following Y . For each degenerate lottery y ∈ Y

induced in the continuation equilibrium following Y after A chooses some message m, let A

choose y in the subgame following Ỹ and let P ’s belief be the same as in the original PBE

conditional on m; and for each non-degenerate lottery where P randomizes between y and y′

with y < y′ following Y after A chooses some message m′, let A choose y′ in the subgame

following Ỹ and let P ’s belief be the same as in the original PBE conditional on m′. All

equilibrium conditions are satisfied in the new PBE following Ỹ as they are a subset of the

equilibrium conditions in the original PBE following Y . Further, by construction Ỹ is part

of the new PBE, because Y is part of the original PBE, and the equilibrium payoff for P is

greater than or equal to the payoff from choosing yP . QED

Second, we show that in any PBE the number of induced lotteries is finite. Denote

{y, y′; w} as a lottery induced in some continuation game after P has chosen Y , with P

choosing y with probability w ∈ (0, 1) and y′ ≥ y with probability 1 − w. We adopt the

convention that a degenerate lottery is represented by y′ = y. The proof of Lemma 4 implies

that any two distinct lotteries {y1, y
′
1; w1} and {y2, y

′
2; w2} can be ordered, with the first lower

than the latter, such that y1 ≤ y′
1 ≤ y2 ≤ y′

2, with at least one strict inequality and y′
1 = y2

implying that y′
2 > y2.

Lemma 5 The number of decisions induced in any PBE is finite.
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Proof : Fix some PBE and the subgame after P has chosen the equilibrium Y . Let {yi, y
′
i; wi},

i = 1, 2, 3, be three distinct induced lotteries, in increasing order. Since both {y2, y
′
2; w2} and

{y3, y
′
3; w3} are induced, there is a state θ̂ such that

w2u
A(y2, θ̂) + (1 − w2)u

A(y′
2, θ̂) = w3u

A(y3, θ̂) + (1 − w3)u
A(y′

3, θ̂).

Since uA(·, θ̂) is strictly concave, yA(θ̂) ∈ (y2, y
′
3). Further, since uA

yθ > 0, the lottery

{y2, y
′
2; w2} is not induced for any θ > θ̂, as

w3(u
A(y3, θ) − uA(y3, θ̂)) + (1 − w3)(u

A(y′
3, θ) − uA(y′

3, θ̂))

≥ uA(y3, θ) − uA(y3, θ̂)

≥ uA(y′
2, θ) − uA(y′

2, θ̂)

≥ w2(u
A(y2, θ) − uA(y2, θ̂)) + (1 − w2)(u

A(y′
2, θ) − uA(y′

2, θ̂)),

with at least one inequality being strict. This implies that {y2, y
′
2; w2} can only be induced

if the state θ is smaller than θ̂. As a result, we have yP (θ̂) > y1; otherwise, since uP
yθ > 0, a

similar argument as above would imply that P prefers the lottery {y1, y
′
1; w1} to {y2, y

′
2; w2}

for all θ < θ̂ but then {y2, y
′
2; w2} would never be induced. It then follows that y1 < yP (θ̂) <

yA(θ̂) < y′
3. Since yP (θ) < yA(θ) for all θ ∈ [0, 1] and are both continuous, there exists ε > 0

such that yA(θ) − yP (θ) ≥ ε for all θ ∈ [0, 1]. There can be at most one induced decision

greater than yP (1) and one lower than yP (0). The lemma then follows immediately. QED

By the first two lemmas, for any PBE, it is without loss of generality to assume that the

equilibrium Y has a finite number of decisions, and each decision y ∈ Y is induced either in a

degenerate lottery or in a lottery with another decision y′ ∈ Y . Denote the induced lotteries

as {yi, y
′
i; wi}, i = 1, . . . , n, in increasing order. Since uA

yθ > 0, there is a partition {θi}n
i=0

of the state space [0, 1], with θ0 = 0 and θn = 1, such that each {yi, y
′
i; wi}, i = 1, . . . , n,

is induced in state θ ∈ (θi−1, θi]. The necessary equilibrium conditions are A’s indifference

conditions: for each partition threshold θi, i = 1, . . . , n − 1,

wiu
A(yi, θi) + (1 − wi)u

A(y′
i, θi) = wi+1u

A(yi+1, θi) + (1 − wi+1)u
A(y′

i+1, θi); (15)
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and P ’s incentive condition for each lottery {yi, y
′
i; wi}, i = 1, . . . , n,

∫ θi

θi−1

(wiu
P (yi, θ) + (1 − wi)u

P (y′
i, θ))f(θ)dθ ≥

∫ θi

θi−1

uP (ỹ, θ)f(θ)dθ (16)

for ỹ = yj, y
′
j and all j = 1, . . . , n. If in addition,

n∑

i=1

∫ θi

θi−1

(wiu
P (yi, θ) + (1 − wi)u

P (y′
i, θ))f(θ)dθ ≥

∫ 1

0

uP (yP , θ)f(θ)dθ

so that P ’s expected payoff is greater than that from making an uninformed decision, then

the above necessary conditions are also sufficient for PBE.

Third, we simplify the incentive conditions for P .

Lemma 6 In any PBE, P ’s incentive conditions (16) must all be slack except for ỹ =

y′
i−1, yi, y

′
i, yi+1. Further, if yi = y′

i for all i, then P ’s incentive conditions except for (3)

are all slack.

Proof : We first argue that adjacent incentive conditions are sufficient for all incentive con-

ditions. Consider all P ’s incentive conditions for {yi, y
′
i; wi}. Since P prefers {yi, y

′
i; wi} to

y′
i−1 conditional on (θi−1, θi], the most preferred decision conditional on the interval is higher

than y′
i−1. By the strict concavity of uP , P strictly prefers y′

i−1, and hence {yi, y
′
i; wi}, to all

decisions lower than y′
i−1 conditional on (θi−1, θi]. By the same argument, P strictly prefers

{yi, y
′
i; wi} to all decisions higher than yi+1 conditional on (θi−1, θi].

Next, we argue that the adjacent upward incentive condition is satisfied if all induced

lotteries are degenerate. To see this, note that in any partition equilibrium A’s indifference

conditions (2) hold. Since uyβ > 0, A being indifferent between yi and yi+1 in state θi implies

that P strictly prefers yi to yi+1 in the same state. By uP
yθ > 0, P then prefers yi to yi+1 for

all θ < θi, and in particular, for any θ ∈ (θi−1, θi]. QED

Fourth, we show that if an optimal PBE exists, then on the equilibrium path, P never

randomizes over the set of decisions.

Lemma 7 For each PBE in which lotteries are induced, there exists another PBE in which

only degenerate lotteries are induced and P obtains a higher expected payoff.
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Proof : Fix some PBE with induced lotteries {yi, y
′
i; wi}, i = 1, . . . , n, in increasing order.

We prove this lemma in two steps. First, we show that there is another PBE in which P ’s

equilibrium choice of Y contains only y′
i, i = 1, ..., n, and each decision y′

i is induced in a

degenerate lottery. Each new threshold θ̂i is given by (15) where wi and wi+1 are set to 0.

Since yi ≤ y′
i ≤ yi+1 ≤ y′

i+1, the concavity of uA(·, θ̂i) and A’s indifference condition at θ̂i

between y′
i and y′

i+1 imply that uA(yi, θ̂i) ≤ uA(y′
i, θ̂i) and uA(yi+1, θ̂i) ≥ uA(y′

i+1, θ̂i). Then,

since uA
yθ > 0, using the implicit function theorem applied to (15) gives that the solution to

(15) decreases in wi and wi+1, which implies that each new threshold θ̂i is higher than the

original threshold θi. The distribution function of the state θ conditional on [θ̂i−1, θ̂i], given

by (F (θ) − F (θ̂i−1))/(F (θ̂i) − F (θ̂i−1)), first-order stochastically dominates the distribution

function of the state θ conditional on [θi−1, θi], because it is decreasing in θ̂i−1 and θ̂i. Since

the difference uP (y′
i, θ)−uP (y′

i−1, θ) is increasing in θ by the assumption of uP
yθ > 0, P prefers

y′
i to y′

i−1 conditional on [θ̂i−1, θ̂i], because in the original PBE, P prefers y′
i to y′

i−1 conditional

on [θi−1, θi]. Since the downward incentive conditions are satisfied, Lemma 6 implies that we

indeed constructed a new PBE.

Second, we show that P obtains a higher expected payoff in the new PBE than in the

original PBE by transforming the original PBE into the new PBE in such a way that P ’s

expected payoff continuously increases. We continuously decrease each lottery weight w̃i from

wi to 0, one lottery at a time starting at i = 1 and ending at i = n, while increasing thresholds

θ̃i and θ̃i−1 to always satisfy A’s indifference conditions (15). Note that all other partition

thresholds are unchanged when we continuously decrease w̃i alone. The partial derivative of

P ’s expected payoff with respect to w̃i is given by

∫ θ̃i

θ̃i−1

(uP (yi, θ) − uP (y′
i, θ))f(θ)dθ,

which is negative because P prefers y′
i to yi conditional on

(
θ̃i−1, θ̃i

]
(recall that P is indifferent

between y′
i and yi conditional on (θi−1, θi], so the argument from the previous paragraph

applies). Thus, as we decrease w̃i continuously, the direct effect on P ’s expected payoff is

positive. The partial derivative of P ’s expected payoff with respect to θ̃i is equal to f
(
θ̃i

)
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multiplied by

w̃iu
P (yi, θ̃i) + (1 − w̃i)u

P (y′
i, θ̃i) − (wi+1u

P (yi+1, θ̃i) + (1 − wi+1)u
P (y′

i+1, θ̃i))

= w̃i(wi+1(u
P (yi, θ̃i) − uP (yi+1, θ̃i)) + (1 − wi+1)(u

P (yi, θ̃i) − uP (y′
i+1, θ̃i)))

+ (1 − w̃i)(wi+1(u
P (y′

i, θ̃i) − uP (yi+1, θ̃i)) + (1 − wi+1)(u
P (y′

i, θ̃i) − uP (y′
i+1, θ̃i)))

> w̃i(wi+1(u
A(yi, θ̃i) − uA(yi+1, θ̃i)) + (1 − wi+1)(u

A(yi, θ̃i) − uA(y′
i+1, θ̃i)))

+ (1 − w̃i)(wi+1(u
A(y′

i, θ̃i) − uA(yi+1, θ̃i)) + (1 −wi+1)(u
A(y′

i, θ̃i) − uA(y′
i+1, θ̃i)))

= w̃iu
A(yi, θ̃i) + (1 − w̃i)u

A(y′
i, θ̃i) − (wi+1u

A(yi+1, θ̃i) + (1 − wi+1)u
A(y′

i+1, θ̃i))

= 0,

where the inequality follows from uyβ > 0, and the last equality follows from A’s indifference

condition between {yi, y
′
i; w̃i} and {yi+1, y

′
i+1; wi+1} in state θ̃i. Because we replace one lottery

at a time starting at i = 1, the lottery {yi−1, y
′
i−1; wi−1} must be degenerate. By construction

w̃i−1 = 0 when we decrease w̃i, so analogously the partial derivative of P ’s expected payoff

with respect to θ̃i−1 is equal to f
(
θ̃i−1

)
multiplied by

uP (y′
i−1, θ̃i−1) − (w̃iu

P (yi, θ̃i−1) + (1 − w̃i)u
P (y′

i, θ̃i−1))

= w̃i(u
P (y′

i−1, θ̃i−1) − uP (yi, θ̃i−1)) + (1 − w̃i)(u
P (y′

i−1, θ̃i−1) − uP (y′
i, θ̃i−1))

> w̃i(u
A(y′

i−1, θ̃i−1) − uA(yi, θ̃i−1)) + (1 − w̃i)(u
A(y′

i−1, θ̃i−1) − uA(y′
i, θ̃i−1))

= uA(y′
i−1, θ̃i−1) − (w̃iu

A(yi, θ̃i−1) + (1 − w̃i)u
A(y′

i, θ̃i−1))

= 0.

Thus, as we decrease w̃i continuously, the indirect effects of increased θ̃i−1 and θ̃i on P ’s

expected payoff are also positive. Finally, if we suppose that at least one induced lottery

in the original PBE is non-degenerate, then the direct effect will be strictly positive, which

implies that P ’s expected payoff is strictly higher in the new PBE. QED

Fifth and last, we show that an optimal PBE exists. Combining the above lemmas, we

have already established that an optimal PBE, if one exists, is a solution to the constrained

maximization problem where the objective is P ’s expected payoff and the feasible choices are

all partition equilibria with a finite number of elements.
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Lemma 8 An optimal PBE exists.

Proof : Let us consider a relaxed problem in which strict inequalities of the partition condition

(1) are replaced with weak inequalities. By Lemma 5, the number of induced decisions n is

uniformly bounded. Thus, the relaxed problem is a constrained maximization problem with

finitely many variables. There exists y such that we can impose |yi| ≤ y for all i = 1, . . . , n

without affecting the maximization problem.26 These constraints, |yi| ≤ y, together with

a finite number of constraints (2) and (3) determine the compact set for variables {θi}n
i=0 ,

{yi}n
i=1 over which the continuous function

∑n
i=1

∫ θi

θi−1

uP (yi, θ) f(θ)dθ is maximized. Clearly,

there exists a solution to this relaxed problem. Finally, we need to show that the value of the

relaxed problem is achievable with strict inequalities (1), which will prove the existence of an

optimal PBE. If some of θi or yi coincide, we can take the maximal subset {θ′i}n′

i=0 ⊂ {θi}n
i=0

and a corresponding subset of induced decisions {y′
i}n′

i=1 ⊂ {yi}n
i=1 such that all θ′i and y′

i are

distinct. These {θ′i}n′

i=0 and {y′
i}n′

i=1 will satisfy (2)-(3) and strict inequalities of the partition

condition (1). Moreover, this modification does not change P ’s expected payoff. QED

This concludes the proof of Proposition 1. QED

Proof of Proposition 2: Consider a CS equilibrium ({θi}n
i=0 , {yi}n

i=1) with n ≥ 2. We prove

that for any sufficiently small δ, there exists a PBE with P ’s equilibrium choice
{
yδ,j

i

}n

i=1
≡

{y1, ..., yj+δ, ..., yn}, and the corresponding partition
{
θδ,j

i

}n

i=0
≡ {θ0, ..., θj−1(δ), θj(δ), ..., θn}.

Moreover, we prove that P ’s expected payoff in this PBE is strictly higher than in the CS

equilibrium. By the implicit function theorem applied to A’s indifference condition (2), θj−1(δ)

26There can be at most one induced decision above y(1) and one induced decision below y(0). Moreover,

there is at least one induced decision in [yP (0) , yP (1)]. Let us define g1 (y2, θ1) as y1 that solves uA (y1, θ1) =

uA (y2, θ1) and gn (yn−1, θn−1) as yn that solves uA (yn−1, θn−1) = uA (yn, θn−1). The functions g1 and gn are

decreasing in the first argument and increasing in the second argument which implies that y1 ≥ g1

(
yP (1) , 0

)

and yn ≤ gn

(
yP (0) , 1

)
. Therefore, |yi| ≤ max

{∣∣g1

(
yP (1) , 0

)∣∣ ,
∣∣gn

(
yP (0) , 1

)∣∣} ≡ y for all i.
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and θj(δ) are continuous functions in a neighborhood of δ = 0 with

dθj−1(δ)

dδ

∣∣∣∣
δ=0

=
−uA

y (yj, θj−1)

uA
θ (yj, θj−1) − uA

θ (yj−1, θj−1)
for j 6= 1,

dθj(δ)

dδ

∣∣∣∣
δ=0

=
uA

y (yj, θj)

uA
θ (yj+1, θj) − uA

θ (yj, θj)
for j 6= n.

For j = 1 and j = n we have dθ0(δ)
dδ

∣∣∣
δ=0

= dθn(δ)
dδ

∣∣∣
δ=0

= 0 because θ0 (δ) = 1 − θn (δ) = 0.

In the CS equilibrium,
∫ θi

θi−1

uP (yi, θ)f(θ)dθ >
∫ θi

θi−1

uP (yi−1, θ)f(θ)dθ for all i because yi =

arg maxy∈R

∫ θi

θi−1

uP (y, θ)f(θ)dθ. Therefore, incentive conditions (3),
∫ θ

δ,j
i

θδ,j
i−1

uP (yδ,j
i , θ)f(θ)dθ >

∫ θ
δ,j
i

θδ,j
i−1

uP (yδ,j
i−1, θ)f(θ)dθ, hold for all i because functions uP (y, θ), θj−1(δ), θj(δ) are continuous,

and δ is sufficiently small.

The derivative of P ’s expected payoff with respect to δ at δ = 0 is given by

(
uP (yj−1, θj−1) − uP (yj, θj−1)

)
f (θj−1)

dθj−1(δ)

dδ

∣∣∣∣
δ=0

+

(
uP (yj, θj) − uP (yj+1, θj)

)
f (θj)

dθj(δ)

dδ

∣∣∣∣
δ=0

+

∫ θj

θj−1

uP
y (yj, θ)f(θ)dθ

The last term in the above expression is 0 because yj = arg maxy∈R

∫ θj

θj−1

uP (y, θ)f(θ)dθ. The

second term is positive for j 6= n because uP (yj, θj) − uP (yj+1, θj) > 0 holds by (2) and

uyβ > 0; and
dθj (δ)

dδ

∣∣∣
δ=0

> 0 holds by uA
y (yj, θj) > 0 and uA

θ (yj+1, θj) − uA
θ (yj, θj) > 0. More

specifically, uA
y (yj, θj) > 0 holds by (2) and uA

yy > 0, whereas uA
θ (yj+1, θj) − uA

θ (yj, θj) > 0

holds by uA
yθ > 0. Analogously, the first term is positive for j 6= 1. To sum up, the above

expression is positive for all j. QED

Proof of Proposition 3: For the “only if” part, recall from Proposition 1 that any optimal

PBE is a partition equilibrium. The claim then follows immediately, because any partition

equilibrium can be implemented by delegation under full commitment.

For the “if” part, we use a result obtained by Alonso and Matouschek (2008). They

show that if delegation is valuable then there exists θ∗ ∈ (0, 1) such that S (θ∗) < 0 < T (θ∗),

where T (θ∗) ≡
∫ θ∗

0

(
yA (θ∗) − yP (θ)

)
f (θ) dθ and S (θ∗) ≡

∫ 1

θ∗

(
yA (θ∗) − yP (θ)

)
f (θ) dθ. The

decision rule ỹ (θ) given by

ỹ (θ) =





yA(θ∗) + T (θ∗) − S (θ∗) if θ > θ∗,

yA(θ∗) + S (θ∗) − T (θ∗) if θ ≤ θ∗,
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satisfies A’s indifference condition (2) at θ∗ because A’s payoff function is symmetric around

yA(θ). Moreover, the difference in P ’s expected payoff under ỹ (θ) and the uninformative

decision yP is equal to −4T (θ∗)S (θ∗), and is positive. The decision rule ỹ (θ) satisfies P ’s

incentive condition (3) that P prefers decision yA(θ∗)+T (θ∗)−S (θ∗) to yA(θ∗)+S (θ∗)−T (θ∗),

as otherwise she would prefer decision yA(θ∗) + S (θ∗) − T (θ∗) to ỹ (θ). Thus, ỹ (θ) can be

supported as a PBE. QED

Proof of Lemma 1: Suppose that in the optimal PBE, yi ≤ y∗
i for some i = 2, . . . , n.

We first show by contradiction that P ’s (i + 1)-th incentive condition binds. Suppose not.

Consider marginally increasing yi, keeping all other decisions unchanged. We know from the

proof of Proposition 2 that θi−1 and θi both increase, with all other thresholds unaffected. By

the concavity of uP (·, θ), P ’s i-th incentive condition is slack and hence unaffected because

yi−1 < yi ≤ y∗
i . Similarly, her (i − 1)-th incentive condition remains satisfied because θi−1

increases as yi increases. The proof of Proposition 2 has already established that P ’s expected

payoff is increased when either θi or θi−1 increases. Her expected payoff is further increased

because yi moves closer to her ex post optimal decision y∗
i on (θi, θi+1]. A contradiction.

The above result immediately implies that yn > y∗
n. For each i = 2, ..., n − 2, note that

P ’s (i + 1)-th incentive condition binding implies that yi < y∗
i+1 < yi+1, so we can rewrite it

as yi+1 + yi = θi+1 + θi. Using (4) for θi and θi+1, we then have

yi+2 − yi = 4b.

However, if yi ≤ y∗
i , from A’s indifference conditions (4) we would have

yi+1 − yi ≥ 4b + (yi − yi−1) > 4b,

which contradicts P ’s binding (i + 1)-th incentive condition. This establishes the lemma for

i = 2, . . . , n − 2.

Next, we show that yn−1 > y∗
n−1. Suppose not. Consider marginally increasing yn−1 and

decreasing yn in such a way that θn−1 remains unchanged. Then P ’s n-th incentive condition

is unaffected. However, this increases P ’s expected payoff because by assumption yn−1 ≤ y∗
n−1,

yn > y∗
n, and because θn−2 increases as a result of increasing yn−1. A contradiction.
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Finally, it can be verified using the proof of Proposition 5 that y1 > y∗
1 at the optimal

PBE. Note that this result is not needed for rewriting P ’s incentive conditions (5). QED

Proof of Proposition 4: Adding up condition (9) for i = 2, . . . , n − 1, we have

yn + yn−1 − (y1 + y2) ≥ 4b(n − 2).

Also, using conditions (8) and (10), we have 2b(n − 1) < 1, or n < 1/(2b) + 1.

For the converse, let n be a positive integer strictly less than 1/(2b) + 1. By definition of

N , 1/(2N) ≤ b < 1/(2(N − 1)). Note that N ≥ 2 if and only b < 1
2
.

If n = 1, then there exists a babbling equilibrium with the induced decision y1(1) = 1
2
.

If n = 2, suppose that b < 1
2

and consider the “full commitment” problem of choosing two

decisions y1 and y2 with 0 ≤ y1 ≤ y2 ≤ 1 that maximizes P ’s expected payoff

U(2) = −
∫ θ1

0

l(|y1 − θ|) dθ −
∫ 1

θ1

l(|y2 − θ|) dθ,

subject only to A’s indifference condition θ1 = 1
2
(y1 + y2)− b. The first order conditions with

respect to y1 and y2 are

∂U(n)

∂y1
=

1

2
(l(y2 − θ1) + l(|y1 − θ1|)) − l(y1) = 0;

∂U(n)

∂y2
= −1

2
(l(y2 − θ1) + l(|y1 − θ1|)) + l(1 − y2) = 0.

The above conditions imply that y1 = 1 − y2. It is straightforward to verify that the second

order condition is satisfied. The above first order conditions become identical, and we can

rewrite it as

2l((1 − ∆)/2) = l(b + ∆/2) + l(|b− ∆/2|),

where ∆ = y2 − y1. By the convexity of l, the right hand side is increasing in ∆, so there

is a unique ∆ ∈ (0, 1) satisfying the above condition. The solution to the full commitment

problem is then given by y1(2) = 1
2
(1−∆) and y2(2) = 1

2
(1 + ∆), with θ1 = 1

2
− b. Note that

b < 1
2

implies that θ1 > 0. The incentive condition of P is satisfied at this solution, because

y1(2) + y2(2) = 1 < 1 + θ1. We can thus take the solution to the full commitment problem
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to be a limited authority PBE. Since the solution has y2(2) − y1(2) = ∆ > 0, it gives P a

strictly higher payoff than making the uninformed decision of 1
2
.

Finally, for any n ≥ 3, consider the set of n decisions Y (n) given by yi(n) = 1
2
+2b

(
i− n+1

2

)

for each i = 1, . . . , n. Then, by A’s indifference condition, θi = yi(n) for each i = 1, . . . , n−1.

It is straightforward to verify that conditions (8), (9) and (10) are all satisfied. The expected

payoff for P under this construction is given by

U(n) = −2

∫ y
1
(n)

0

l(y1(n) − θ) dθ − (n − 1)

∫ y
2
(n)

y
1
(n)

l(y2(n) − θ) dθ. (17)

It is straightforward to show that U(n) > U(n − 2): the difference is given by

U(n) − U (n − 2) = 2

∫ y1(n)

0

(l(y2(n) − θ) − l(y1(n) − θ)) dθ > 0,

where y1(n) is the smallest decision under the construction for n, and y2(n) the second

smallest decision for n and the smallest for n − 2 (that is, y2(n) = y1(n − 2)).

The above argument immediately implies that the expected payoff to P under the above

construction with n decisions is greater than making the uninformed decision of 1
2

for all

n ≥ 3 and odd. To complete the proof of the proposition, we only need to show that the

above construction Y (4) for n = 4 dominates making the uninformed decision of 1
2

for P .

(This step is necessary because the payoff formula (17) does not apply to the case of n = 2.)

It is straightforward to show that

∫ 1

0

l(|1/2 − θ|) dθ −
4∑

i=1

∫ θi

θi−1

l(yi − θ) dθ

>

[∫ y3+b

y
3

l(θ − 1/2) dθ −
∫ 1/2

y
2

l(y3 − θ) dθ

]
+

[∫ y3

1/2

(l(θ − 1/2) − l(y3 − θ)) dθ

]

+

[∫ 1/2

y
2

l(1/2 − θ) dθ −
∫ y3+b

y
3

l(θ − y3) dθ

]

= 0,

where the first line follows because 1
2

is a more extreme decision than the corresponding

decisions y1, y2 and y4 outside the interval [y2, y3 + b], and the second line follows because

each term in the bracket is zero.27 QED

27One integral that appears in U (4) is
∫ y

4

y
3

l (y4 − θ) dθ. It is equal to
∫ y

4

y
3

l (θ − y3) dθ by a change of
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Proof of Lemma 2: For n = 1, it is trivially true that yFC
1 (1) = 1

2
. For n = 2, Y FC(2)

is derived in the proof of Proposition 4. Fix any n ≥ 3. Arguments similar to the proof of

Lemma 8 in Proposition 1 can show that Y FC (n) exists. We will guess and verify later that

conditions (7), (8), and (11) are not binding at Y FC (n). Denote ∆i = yFC
i+1 − yFC

i .

To get a contradiction, suppose that there is i such that ∆i 6= ∆i−1. The derivative of P ’s

expected payoff with respect to yi is

∂U(n)

∂yi
=

1

2
[l(yi+1 − θi) − l(yi − θi−1)] −

1

2
[l(|yi−1 − θi−1|) − l(|yi − θi|)]

=
1

2
l

(
∆i

2
+ b

)
+

1

2
l

(∣∣∣∣
∆i

2
− b

∣∣∣∣
)
− 1

2
l

(
∆i−1

2
+ b

)
− 1

2
l

(∣∣∣∣
∆i−1

2
− b

∣∣∣∣
)

(18)

where we used A’s indifference conditions. Since l is convex, ∂U(n)
∂yi

has the same sign as

∆i − ∆i−1 regardless of whether ∆ ≥ 2b or ∆ < 2b. Thus, P ’s expected payoff can be

increased by changing yi to decrease |∆i −∆i−1|. A contradiction.

Thus, the optimal decisions satisfy yFC
i −yFC

i−1 = ∆ > 0 for all i = 2, . . . , n, so the optimum

is interior. From A’s indifference conditions, we have θi − θi−1 = ∆ for all i = 2, . . . , n − 1.

Since the state is uniformly distributed, we can rewrite P ’s expected payoff as

U(n) = −
∫ θ1

0

l(|y1 − θ|)dθ − (n − 2)

∫ θ2

θ1

l(|y2 − θ|)dθ −
∫ 1

θn−1

l(|yn − θ|)dθ. (19)

To find ∆, we differentiate (19) with respect to y1 and yn. From the two first order conditions

we immediately have l(y1) = l(1 − yn), and thus y1 = 1 − yn = (1 − (n − 1)∆)/2. The two

conditions then become identical, and are given by

∂U(n)

∂y1

=
1

2
(l(b + ∆/2) + l(|b− ∆/2|)) − l((1 − (n − 1)∆)/2) = 0. (20)

We claim that there exists a unique ∆ ∈ (0, 1/(n − 1)) that solves (20). Since l is convex,

∂U(n)/∂y1 is strictly increasing in ∆ regardless of whether ∆ ≥ 2b or ∆ < 2b, so there can

be at most one value of ∆ that solves (20). At ∆ = 0, we have ∂U(n)/∂y1 < 0 because

by assumption b < 1
2
; and at ∆ = 1/(n − 1), we have ∂U(n)/∂y1 > 0. Thus, a unique

variables. The first part of the latter integral, from y3 to y3 + b, is the integral that appears in the last

bracket.
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∆ ∈ (0, 1/(n − 1)) exists that solves (20). Condition (20) is a necessary condition for ∆ to

be optimal. Since there exists a unique solution ∆, (20) is also sufficient.

To complete the derivation of Y FC(n), we verify that the dropped constraints are satisfied.

Condition (7) is satisfied because ∆ > 0. Condition (8) is equivalent to y1 > b− 1
2
∆. This is

satisfied if ∆ ≥ 2b since ∆ < 1/(n−1) implies that y1 > 0; it also holds if ∆ < 2b, because in

that case it is implied by (20). Finally, condition (11) is satisfied because given yn = 1 − y1

it is implied by (7). QED

Proof of Lemma 3: The lemma follows immediately from the three claims below.

Claim 1 P ’s incentive conditions (9) bind at Y LC (n) for b ∈
[
bFC (n) , bLC (n)

)
.

Proof : To get a contradiction, without loss of generality suppose that there exists i, i =

2, ..., n− 2, such that yi+2 − yi = 4b and yi+1 − yi−1 > 4b at Y LC(n). Denote ∆i = yi+1 − yi.

Below we will change one decision yk in such a way that all conditions (7)-(10) are still satisfied

and |∆k − ∆k−1| is decreased. Condition (18) then implies that P ’s expected payoff increases

with this change, leading to a contradiction. If ∆i ≥ ∆i−1 (and thus ∆i > 2b > ∆i+1 =

4b − ∆i), then decrease yi+1 slightly. If ∆i > ∆i−1, then there are two cases. If i − 1 = 1

or yi − yi−2 > 4b, then decrease yi slightly, otherwise (yi − yi−2 = 4b), increase yi−1 slightly.

QED

Claim 2 For any n ≥ 3 and odd, and b ∈
(
bFC (n) , bLC (n)

)
, Y LC(n) is given by yLC

i =

1
2

+ 2b
(
i− n+1

2

)
for all i = 1, ..., n.

Proof : By Claim 1, yi+2 − yi = 4b for all i = 1, . . . , n−2. Then, yi = y1 +2b(i−1) for i odd,

and yi = y2 + 2b(i − 2) for i even. Further, θi − θi−1 = 2b for all i = 2, . . . , n − 1. Using the

assumption that the state is uniformly distributed, we can rewrite P ’s expected payoff (6) as

U(n) = −
∫ θ1

0

l(|y1 − θ|)dθ − n − 1

2

∫ θ2

θ1

l(|y2 − θ|)dθ

−n − 3

2

∫ θ2

θ1

l(|y1 + 2b − θ|)dθ −
∫ 1

θn−1

l(|yn − θ|)dθ. (21)
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The first order conditions with respect to y1 and y2 are

∂U(n)

∂y1

= −l(y1) + l(1 − yn) − n − 1

4
[l(3b− ∆1/2) − l(b + ∆1/2)] = 0;

∂U(n)

∂y2
=

n − 1

4
[l(3b− ∆1/2) − l(b + ∆1/2)] = 0

where ∆1 = y2 − y1. It follows immediately that y1 = 1 − yn and ∆1 = 2b. Furthermore,

it is straightforward to verify that the second order condition with respect to y1 and y2 are

satisfied at y1 = 1 − yn and ∆1 = 2b. Finally, (7) is satisfied because ∆1 ∈ (0, 4b), and (8)

and (10) are equivalent to 2b (n − 1) < 1, and thus are satisfied because b < bLC(n). QED

Claim 3 For any n ≥ 2 and even, and b ∈
(
bFC (n) , bLC (n)

)
, Y LC(n) is given by yLC

i =

1−∆1

2
+2b

(
i − n

2

)
for odd i, and yi = 1+∆1

2
+2b

(
i− n+2

2

)
for even i, where ∆1 < 2b is uniquely

determined by (14).

Proof : Similar to Claim 2, we can rewrite P ’s expected payoff (6) as:

U(n) = −
∫ θ1

0

l(|y1 − θ|)dθ − n − 2

2

∫ θ2

θ1

l(|y2 − θ|)dθ

−n − 2

2

∫ θ2

θ1

l(|y1 + 2b − θ|)dθ −
∫ 1

θn−1

l(|yn − θ|)dθ. (22)

The first order conditions with respect to y1 and y2 are

−l(y1) +
1

2
[l(b + ∆1/2) + l(|b −∆1/2)] −

n − 2

4
[l(3b −∆1/2) − l(b + ∆1/2)] = 0;

l(1 − yn) −
1

2
[l(b + ∆1/2) + l(|b − ∆1/2)] +

n − 2

4
[l(3b− ∆1/2) − l(b + ∆1/2)] = 0

where ∆1 = y2−y1. It follows immediately that y1 = 1−yn and ∆1 satisfies (14). Furthermore,

we can easily verify that the second order condition with respect to y1 and y2 are satisfied.

Finally, (7) is satisfied because ∆1 ∈ (0, 4b), and (8) and (10) are equivalent to 2b (n − 1) < 1,

and thus are satisfied because b < bLC(n).

To see that there is a unique ∆1 ∈ (0, 2b) that satisfies (14), note that since b > bFC(n),

the left-hand side of (14) is strictly smaller than the right-hand side at ∆1 = 2b. As ∆

decreases, the left-hand side of (14) increases while the right-hand side decreases because l
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is convex. At ∆ = 0, the left-hand side of (14) is strictly greater than the right-hand side

because b < bLC(n). It follows that there exists a unique ∆1 ∈ (0, 2b) that satisfies condition

(14). QED

Proof of Proposition 5: First we establish a series of claims.

Claim 4 Suppose that l(z) = z2. For each n ≥ 3, dUFC (n − 1)/db > dULC(n)/db for

all b ∈ (bFC(n), bFC(n − 1)), where UFC(n − 1) and ULC(n) are P ’s expected payoff under

Y FC(n − 1) and under Y LC(n) respectively.

Proof : Consider Y FC(n − 1). For b < bFC(n − 1), from condition (13) for n − 1 we have

∆ given in Lemma 2 is strictly greater than 2b. From (19) for n − 1, using the Envelope

Theorem we have

dUFC (n − 1)

db
= −(n − 2)[l(∆/2 + b) − l(∆/2 − b)].

It is straightforward to see from the first order condition (20) that yFC
1 (n) is decreasing in n

for fixed b and increasing in b for fixed n. Since yFC
1 (n) = 1

2
(1− 2b(n− 1)) at b = bFC(n), we

have yFC
1 (n − 1) > 1

2
(1 − 2b(n − 1)) for all b > bFC(n). It then follows from the convexity of

l that

dUFC(n − 1)

db
> −(n − 2)[l(2b + b/(n − 2)) − l(b/(n − 2))].

Using the assumption of l(z) = z2, we immediately have

dUFC (n − 1)

db
> −(n− 1)l(2b).

Next, suppose that n is odd and consider Y LC(n). From (21), using the Envelope Theorem

we have

dULC (n)

db
= −2(n − 1)[l(2b) − l(1/2 − (n − 1)b)]. (23)

Since b > bFC(n), from condition (13) we have 2l(1/2 − (n − 1)b) < l(2b), and thus

dULC (n)

db
< −(n − 1)l(2b),
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establishing the claim for the case of n odd.

Lastly, suppose that n is even and consider Y LC(n). From (22), using the Envelope

Theorem we have

dULC(n)

db
= −1

2
(n − 2)(n + 1)l(3b − ∆1/2) +

1

2
n(n − 3)l(b + ∆1/2) + (n − 1)l(b − ∆1/2).(24)

For fixed b, the above is clearly increasing in ∆1. Evaluating the above at ∆1 = 2b, we then

have

dULC (n)

db
< −(n − 1)l(2b),

establishing the claim for the case of n even. QED

Claim 5 For any l that satisfies Assumption 2, and for each n ≥ 3, dULC(n)/db > dULC (n+

1)/db for all b ∈ (bFC(n), bLC(n + 1)).

Proof : First, suppose that n is odd. Using the first order condition (14) for n + 1 we can

rewrite (24) for n + 1 as

dULC(n + 1)

db
= −(n − 1)[l(3b− ∆1/2) + l(b + ∆1/2)] − 2l(b + ∆1/2) + 2nl(yLC

1 (n + 1)).

Since l is convex, we have

l(3b −∆1/2) + l(b + ∆1/2) > 2l(2b).

Further, (14) implies that l(b + ∆1/2) > l(yLC
1 (n + 1)). Thus,

dULC(n + 1)

db
< −2(n − 1)[l(2b) − l(yLC

1 (n + 1))].

The lemma then follows from yLC
1 (n + 1) < 1

2
− (n − 1)b and (23).

Second, suppose that n is even. Using the first order condition (14) we can rewrite (24)

as

dULC(n)

db
= −(n+1)[l(b+∆1/2)+l(b−∆1/2)−2l(yLC

1 (n))]−(n−1)[l(b+∆1/2)−l(b−∆1/2)].

Since ∆1 < 2b, from (14) we have

l(b + ∆1/2) + l(b −∆1/2) − 2l(yLC
1 (n)) < l(2b) − 2l(1/2 − (n − 1)b).
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Thus

dULC(n)

db
> −(n + 1)[l(2b)− 2l(1/2 − (n − 1)b)] − (n − 1)[l(b + ∆1/2) − l(b− ∆1/2)].

The lemma then follows from ∆1 < 2b and (23) for n + 1. QED

Claim 6 Suppose that l(z) = z2. Then, for any n ≥ 3, UFC(n − 1) > ULC(n) at b =

bFC(n − 1).

Proof : From Lemma 2 and condition (13), at bFC(n − 1) all n − 1 decisions in Y FC(n − 1)

are 2bFC(n − 1) apart, that is, ∆ given in Lemma 2 is equal to 2bFC(n − 1). Further, from

A’s indifference conditions we have θi = yFC
i (n − 1) for all i = 1, . . . , n − 2. We distinguish

two cases.

First, suppose that n is odd. By Lemma 3, all n decisions in Y LC(n) are also 2bFC(n− 1)

apart, with θi = yLC
i (n) for all i = 1, . . . , n− 1. Note that yFC

1 (n− 1)− yLC
1 (n) = bFC(n− 1).

Using (19) and (21), we can show that the difference between P ’s expected payoff UFC(n−1)

under Y FC(n − 1) and ULC(n) under Y LC(n) is given by

UFC(n − 1) − ULC(n) =

∫ 2bFC(n−1)

0

l(θ)dθ − 2

∫ yFC
1

(n−1)

yFC
1

(n−1)−bFC (n−1)

l(θ)dθ.

Using the assumption of l(z) = z2, we can explicitly compute yFC
1 (n−1) in terms of bFC(n−1)

and use it to show that the above is strictly positive.

Second, suppose that n is even. In this case, under Y LC(n) the thresholds θi remain evenly

spaced, with θi+1 − θi = 2bFC(n − 1). Note that yFC
1 (n − 1) − yLC(n) = 1

2
∆1 where ∆1 as

defined by condition (14). As in the case of odd n, using (19) and (22) we can show that

the difference between P ’s expected payoff UFC(n− 1) under Y FC(n− 1) and ULC(n) under

Y LC(n) is given by

UFC(n − 1) − ULC(n) =

∫ bFC(n−1)+∆1/2

bFC(n−1)−∆1/2

l(θ)dθ − 2

∫ yLC
1

(n)+∆1/2

yLC
1

(n)

l(θ)dθ

+(n/2 − 1)

[∫ 3bFC(n−1)−∆1/2

2bFC(n−1)

l(θ)dθ −
∫ 2bFC(n−1)

bFC(n−1)+∆1/2

l(θ)dθ

]
.

Using the assumption of l(z) = z2, we can explicitly compute ∆1 from equation (14), and use

it to show that the above is strictly positive. QED

47



Now, observe that Y LC(n) = Y FC(n) at b = bFC(n), and recall from Lemma 2 that

Y FC(n) > Y FC(n − 1). Then, from Claim 4 and Claim 6, we have that for any n ≥ 3,

there exists b(n, n − 1) such that UFC(n − 1) < ULC(n) for b ∈ (bFC(n), b(n, n − 1)) and

UFC(n − 1) > ULC(n) for b ∈ (b(n, n − 1), bFC(n − 1)]. Next, since Claim 6 implies that

ULC(n) = UFC(n) > ULC(n + 1) at b = bFC(n), it follows from Claim 5 that ULC(n) >

ULC(n + 1) for all b ∈ [bFC(n), bLC(n + 1)). Finally, using the assumption of l(z) = z2, we

can easily show that for any n ≥ 3, U (n) > UFC(n − 1) at b = bLC(n + 1) where U(n) is P ’s

expected payoff under Y (n) =
{

1
2

+ 2b
(
i − n+1

2

)}n

i=1
. Since ULC(n) ≥ U(n) by the definition

of Y LC(n), from Claim 4 we have b(n, n − 1) > bLC(n + 1). This concludes the proof of

Proposition 5. QED

Proof of Proposition 6: As it is clear from the proof of Proposition 5, P ’s expected payoff

(6) can be bounded below and above by substituting Y FC (n) and Y FC (n + 1), respectively,

where n is the largest integer smaller than 1
2b
−
√

2 + 1. Since ∆ (n; b) and ∆ (n + 1; b) given

by Lemma 2 are equal to 2b + O (b2), P ’s expected payoff for k = n, n + 1 is

UP
n = − 1

12
(k − 1)∆3 − (k − 1) b2∆ − 1

12
(1 − (k − 1) ∆)3

= −(2b)
2

12
− b2 − 0 + o

(
b2

)
= −4

3
b2 + o

(
b2

)
.

Similarly, A’s expected payoff is

UA
n = − 1

12
(k − 1) ∆3 − b2 (1 − (k − 1)∆) − 1

12
(1 − (k − 1) ∆)3 = −1

3
b2 + o

(
b2

)
.

QED
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