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Abstract

We define a general fractional matching model. Each person has a set
of potential partners and consumes a bundle of partnerships. Each person
consumes the same quantity of a particular partnership as his partner does.
Each person’s preferences are defined over partnership bundles.

This model has several natural applications: the assignment of probabil-
ity distributions over deterministic matchings for marriage problems, school
choice, scheduling workers at various work sites, organizing paired activities
among a group, and so on.

For this novel model, we define a price based solution. We show that
the core of each problem is non-empty. We show that our solution selects
a subset of the core. We also show that if the number of people involved
increases—in a way that there is a fixed number of “kinds” of people—the
gains from misreporting preferences diminish.
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1 Introduction

Professor X has several graduate students in his charge. Each of his students has
a fixed amount of time to devote to research (in a given semester, let us say).
Research interests dictate which students are compatible as co-authors. Professor
X needs a “good” way to decide which of his students should collaborate, and for
how long.

Our goal is to solve problems like the one faced by Professor X.
The abstract model that we study is one where each person has a set of po-

tential partners. His consumption space is the set of all combinations of potential
partners (i.e. the simplex whose dimension is the number of his potential part-
ners). His preferences are convex, continuous, and locally non-satiated (except at
the maxima), over this consumption space. A feasible allocation is one where, for
each pair i and j, the amount of partnership with j that i consumes is exactly
the same as the amount of partnership with i that j consumes, and no person is
partnered for more than his availability.

Our model is very general. Among others, it includes the following models as
special cases:

1. Fractional (heterosexual) marriage (Rothblum 1992, Roth, Rothblum and
Vande Vate 1993, Aldershof, Carducci and Lorenc 1999, Bäıou and Balinski
2000, Klaus and Klijn 2006, Bogomolnaia and Moulin 2004, Sethuraman,
Teo and Qian 2006, Manjunath 2011): Since the potential partners are de-
termined by a bi-partition, any feasible allocation is a bistochastic matrix
and thus a probability distribution over deterministic matchings. In fact,
our model covers a fractional version of the roommate problem (Gale and
Shapley 1962).1

2. Trade under bilateral constraints (Bochet, İlkılıç, Moulin and Sethuraman
Forthcoming, Szwagrzak 2012c, Szwagrzak 2012a, Szwagrzak 2012b): This
is the case where each person is indifferent between trading partners and has
single peaked preferences only over the volume of his trade.

3. School choice (Abdulkadiroğlu and Sönmez 2003, Abdulkadiroğlu, Pathak,
Roth and Sönmez 2005, Erdil and Ergin 2008, Abdulkadiroğlu, Che and
Yasuda 2010): While a school does not have preferences over the children
that are admitted to it, each school is associated with a priority order over
children. These priorities dictate which children are to be favored at each
school. Just as in the fractional marriage model, feasible allocations are
bistochastic matrices.

1However, fractional matchings for the roommate problem cannot necessarily be expressed as
probability distributions over deterministic matchings (Budish, Che, Kojima and Milgrom 2010).
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4. Matching differently skilled workers to various employers who desire partic-
ular combinations of skills. We interpret a feasible allocation as a schedule
that determines the time each worker spends at each job. To the extent of
our knowledge, though related to the “stable schedule problem” (Bäıou and
Balinski 2002, Alkan and Gale 2003), the model presented in Section 5.4 is
novel.

5. Trading favors over a network: Each person is connected to a set of people
with whom he can engage in pairwise activities. Since each member may
value such activities differently, each person may consider activities with
some partners to be be “costly” while those with others to be “beneficial.”
In this way, we can inerpret our model of one where favors are traded. At
a feasible allocation, each person takes part in various quantities of paired
activities with different partners. We can interpret the allocation as one
where a person does “favors” for some people (a costly activity for him
that is beneficial for the other) and receives favors from others (a beneficial
activity for him that is costly for the other).

Just as with more familiar matching models without transfers, such as the
marriage problem (Gale and Shapley 1962), we can think of fractional matching
problems as resource allocation problems where the resources are people. That
is, the resources that need to be allocated have preferences over whom they are
consumed by. The only difference is, that in our model, these resources are di-
visible. In terms of applications, there are scenarios where considering fractional
matchings can have benefits in terms of both fairness and efficiency. The idea
that randomization permits the fair allocation of discrete goods dates back the the
Bible (Hofstee 1990). The same goes for time-sharing as a means to fairness. The
following example demonstrates the gains in efficiency.

Example 1. Ex-ante efficiency gains from randomization.

Consider the following unhappy situation involving two men, m1 and m2, and
two women, w1 and w2. Suppose that m1 prefers w1 to being single, and being
single to w2. Similarly, w1 prefers m2 to being single to m1, m2 prefers w2 to being
single to w1, and finally w2 prefers m1 to being single to m2.

The requirement of “individual rationality” says that each person has the right
to remain single. That is, no person should find his partner to be worse than be-
ing single. If we restrict our attention to discrete allocations, the only individually
rational allocation is for each person to remain single. To consider fractional allo-
cations, we need more information about preferences. Suppose that each person’s
preferences over bundles of being with their most preferred mate, least preferred
mate, and alone are as depicted in Figure 1. As shown in the figure, assigning a

3

<iAnnotate iPad User>
Pencil



Single Least preferred mate

Most preferred mate

Coin flip between mates

Ri

Figure 1: Preferences of m1,m2, w1 and w2: Since preferences are over lotteries,
we represent this by the simplex with three corners. The least and most preferred
mates are each at a corner and being single is at the other. We have depicted
an indifference curves through the deterministic outcome of being single as well
as a coin flip between the two possible mates. The arrow shows the direction of
increasing preferences.

lottery between both possible mates is an ex-ante Pareto improvement over the
only individually rational discrete allocation.

Our main contributions are:

1. We set up a new model of fractional matching. We show that it can be
interpreted as a production model. A key insight is that a partnership is a
public good in some senses and a private good in others. It is like a public
good in that if a person i consumes a certain amount of partnership with j,
then j necessarily consumes the same amount of partnership with i. It is a
private good in that i excludes all others from that amount of partnership
with j. Understanding this helps us define a price-based solution for such
economies. Since “resources have preferences,” the price system that we
consider will have to reflect them. We achieve this through “double-indexed”
prices. A natural interpretation for double-indexed prices is that since each
i has preferences over whom he partners with, it is natural that he would
charge different partners different prices. Specifically, if he prefers j to k,
then he would charge j less than he would charge k.

2. We define an appropriate notion of the core and show that our solution is a
sub-correspondence of it. This establishes non-emptiness of the core.

3. We add some structure to our model to incorporate the concept of a “kind”
of person. In this more general version of our model, each person has pref-
erences over the kinds of his potential partners. Think of each person as
having a set of “external characteristics” or a kind. For the examples listed
above, these could be a man or woman’s income, and education, a trader’s
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connections, a school child’s neighborhood and number of siblings at differ-
ent schools, and a worker’s qualifications. Not only are these characteristics
observable by others, but they are what preferences are based on.

We consider a generalization of our model where a person is identified by a
kind along with his preferences over bundles of kinds. We extend our solution
by indexing prices by kind rather than identity. This is important for two
reasons. First, from a fairness point of view, two people who are exactly
the same ought to be given exactly the same opportunities. Second, if the
market is “thick” (there are many people of each kind), for given utility
representations, the gains from misreporting preferences is small for each
person of each kind.

While Shapley and Shubik (1969) have defined competitive equilibria for match-
ing problems, we remind the reader that the model that they consider involves
monetary transfers. Subsequently, Kelso and Crawford (1982) have shown the
nonemptiness of the core and its equivalence with the set of competitive alloca-
tions for matching markets involving money. Cole and Prescott (1997), Bikhchan-
dani and Ostroy (2002), and Sun and Yang (2006) have also used non-anonymous
prices. Our model differs from the ones studied in these papers in an important
way: monetary transfers are not possible in our model. Further, unlike Bikhchan-
dani and Ostroy (2002) and Sun and Yang (2006) the goods in our model are
divisible.

Allocation models where resources are not associated with preferences can be
encoded as instances of the model that we study. However, the analysis pre-
sented here is not as interesting as it is for the case where resources are associated
with preferences. In particular, we need not resort to double-indexed prices since
single-indexed competitive equilibria from equal income typically do exist for these
problems (Hylland and Zeckhauser 1979, Budish forthcoming).

Though there are papers on two-sided “probabilistic” (or fractional) matching,
such as those mentioned above, their focus has been on the ex-post core (Rothblum
1992, Roth et al. 1993, Aldershof et al. 1999, Bäıou and Balinski 2000, Klaus and
Klijn 2006, Bogomolnaia and Moulin 2004, Sethuraman et al. 2006, Manjunath
2011). Exceptions are Bogomolnaia and Moulin (2004) and Manjunath (2011).
However, Bogomolnaia and Moulin (2004) study problems where preferences are
“dichotomous.” For this very restricted class of problems, they propose a rule that
fulfills certain efficiency and fairness criteria. Manjunath (2011) studies various
ex-ante core notions and their logical relations.

The remainder of the paper is organized as follows. In Section 2 we formally
introduce the model and define key concepts. In Section 4 we prove that our
solution is well defined and that it is a selection from the core. We particularize
our model for specific applications in Section 4. In Section 6 we generalize our
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model to accommodate kinds of people.

2 The Model

Let N be a set of people. Let each i ∈ N be associated with a set of potential
partners Si ⊆ N such that i ∈ Si.

2 For each i ∈ N , let i’s availability be
ai ∈ R such that ai > 0. Let i’s consumption set be ∆(ai, Si) ≡ {x ∈ RSi

+ :∑
j∈Si xj = ai}. Let Ri be i’s preference relation over ∆(ai, Si). We require that

Ri be continuous and convex. Further we require that it be locally non-satiated,
except at its maxima on ∆(ai, Si). Let Ri be the set of all such preferences.
For each pair x, y ∈ ∆(ai, Si), if i finds x to be at least as desirable as y under
preference relation Ri, we write x Ri y. Similarly, if i prefers x to y, we write
x Pi y. If he is indifferent between them, we write x Ii y.

An economy is fully described by a profile of preferences R ∈ R ≡ ×i∈NRi.
A feasible allocation specifies for each i ∈ N a consumption bundle πi ∈ ∆(ai, Si)

in a way that for each i ∈ N and each j ∈ Si, πij = πji. Let Π be the set of feasible
allocations. We represent a feasible allocation by a symmetric N × N matrix, of
which, the columns sum to one and for each i ∈ N , the ith row sums to ai.

A solution, φ : R⇒ Π, associates each economy with a set of feasible alloca-
tions.

The availability of each i ∈ N plays no significant role in the remainder of
the definitions and the results that we present. In order to simplify notation,
we normalize so that for each i ∈ N , ai = 1 and denote i’s consumption space by
∆(Si). Nonetheless, the results carry through for arbitrary profiles of availabilities.

3 Solutions

We start with some normative concepts. The first one reflects a very familiar notion
of efficiency. For each R ∈ R and π ∈ Π, we say that π is Pareto-efficient at
R if there is no π′ ∈ Π such that for each i ∈ N, π′i Pi πi. Let P (R) be the set of
Pareto-efficient allocations at R.

The Next is an expressesion of the principle that each person has the right to
“consume” himself. Let δ ∈ Π be such that for each i ∈ N , δii = 1. For each
R ∈ R and π ∈ Π, we say that π is individually rational at R if for each
i ∈ N, πi Ri δi. Let I(R) be the set of allocations that are individually rational
at R.

2While this specification of potential partners might remind the reader of that in Sönmez
(1996), it ought to be noted that Sönmez’s analysis is not restricted to bilateral situations such
as ours.

6

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
Pencil



At one end, we have defined the Pareto solution that picks allocations that
society as a whole cannot improve upon. At the other end, the individually rational
solution respects the rights of individuals. The following solution extends these
principles to groups of all sizes. For each R ∈ R, π ∈ Π, and S ⊆ N , S blocks π
at R if there is πS ∈ Π such that for each i ∈ S,

i)
∑
j∈S

πSij = 1 and

ii) πSi Pi πi.

The core at R, C(R), is the set of allocations that are not blocked by any
coalition at R. We will see, in the sequel, that C(R) is never empty.

As expressed when we defined individual rationality, it is natural to think of
each person as “owning” himself. The next obvious step is to wonder whether each
person can trade what they own for something they prefer. That is, can we find
prices that dictate such trades in a meaningful way?

We begin our search for a price-based solution with a näıve first attempt. Since
each person “owns” himself, we assign a price to each person and allow people to
trade parts of themselves for parts of others. An allocation π ∈ Π is a Walrasian
allocation at R if there is a vector p ∈ RN such that for each i ∈ N ,

πi ∈ argmax
π′
i∈∆(Si)

Ri

subject to∑
j∈Si

πijpj︸ ︷︷ ︸
Price of π′

i

≤ 1 · pi︸︷︷︸
i’s income

.

We refer to (π, p) as a Walrasian equilibrium. Let W (R) be the set of all
Walrasian allocations at R. As demonstrated by Example 2, W (R) may be empty.

Example 2. An economy with no Walrasian allocation.

Let N ≡ {m1,m2, w1, w2} and

Sm1 ≡ {m1, w1, w2},
Sm2 ≡ {m2, w1, w2},
Sw1 ≡ {w1,m1,m2}, and
Sw1 ≡ {w2,m1,m2}.
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Let R ∈ R be such that the following are numerical representations:

For each πm1 ∈ ∆(Sm1), um1(πm1) = 2πm1w1 + πm1w2 ,
for each πm2 ∈ ∆(Sm2), um2(πm2) = 2πm2w2 + πm2w1 ,
for each πw1 ∈ ∆(Sw1), uw1(πw1) = 2πw1m2 + πw1m1 , and
for each πw2 ∈ ∆(Sw2), uw2(πw2) = 2πw2m1 + πw2m2 .

Let p ∈ RN
+ . Suppose that (π, p) is a Walrasian equilibrium. Suppose m1 ∈

argmax
i∈N

pi. Then, πm1w1 = 1. By feasibility, πm2w1 = 0. So, pw1 > pm2 . This

implies that πw1m2 = 1 and contradicts πm1w1 = 1. Since the problem is symmetric
(each person has the same preferences over bundles of being single, with the most
preferred mate and with the least preferred mate), we reach a similar contradiction
if m1 /∈ argmax

i∈N
pi. ◦

The reason that a Walrasian allocation may not exist is that some of the con-
sumption goods in these economies are not private goods: a partnership involves
both members.

For our next attempt, we draw inspiration from the literature on public goods
economies and introduce “double-indexed” prices, as follows.

Let M ⊆ N ×N be such that (i, j) ∈ M if and only if j ∈ Si and i ∈ Sj. We
say that π ∈ Π is a double-indexed price (DIP) allocation at R if there is a
vector p ∈ RM

+ such that for each i ∈ N ,

πi ∈ argmax
π′
i∈∆(Si)

Ri

subject to∑
j∈Si

π′ijpij︸ ︷︷ ︸
Price of π′

i

≤
∑
j∈Si

πjipji︸ ︷︷ ︸
i’s income at π

,

and π ∈ Π (this ensures that the “market clears”). We interpret the price vector
as follows: for each (i, j) ∈M , pij is the price that i pays for j.

We refer to (π, p) as a double-indexed price equilibrium. Let D(R) be
the set of all DIP allocations at R.

It is easy to see that a Walrasian equilibrium, if it exists, is also a DIP equi-
librium: Let (π, q) be a Walrasian equilibrium and define p ∈ RM

+ by setting, for
each i ∈ N and each j ∈ Si, pji = qi. It follows directly from the two definitions
that (π, p) is a DIP equilibrium.

Remark 1. Our definition of a DIP equilibrium has the flavor of a “Lindahl
equilibrium” (Lindahl 1958). The reason is that a positive amount of a partnership
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between i and j ∈ N is not a private good (nor is it purely a public good). If
i consumes a certain amount of this partnership, say πij, then he excludes all
others from consuming it. Yet, j is not excluded. Note that partnerships are not
“common goods” or “club goods” either.3 4

Unfortunately, even DIP allocations may not exist as demonstrated by Exam-
ple 3.

Example 3. An economy with no DIP allocation.4

Let N ≡ {1, 2} and for each i ∈ N , Si ≡ N . Let R ∈ R be such that for each
i ∈ N,Ri is represented by ui : ∆(Si)→ R defined as follows:

For each π1 ∈ ∆(S1), u1(π1) = π12 and
for each π2 ∈ ∆(S2), u2(π2) = −(1

4
− π21)2.

Suppose that (π, p) ∈ Π×RM
+ is a DIP equilibrium. Only the relationship between

the prices p12 and p21 is relevant. For each possibility, we show that π /∈ Π: If
p12 > p21, then π12 = 0 and π21 = 1. If p12 < p21, then π12 = 1

4
and π21 = 0.

Finally, if p12 = p21, then π12 = 1
4

and π21 = 1. ◦

The difficulty here arises from the fact that “endowments” of each person are
on the boundaries of their consumption spaces. As with exchange economies, this
sometimes precludes the existence of equilibria. We propose the following way of
dealing with this:

1. For each i ∈ N , we extend each i’s preference relation from ∆(Si) to Λ(Si) ≡
{λ ∈ RSi

+ :
∑

j∈S λj ≤ 1}. We take care to make sure that the extended
preference relation satisfies certain properties (that we will describe below).

2. We redistribute an abitrarily small amount of each person’s endowment
among others.

3. We define a price-equilibrium for this modified economy.

We first explain how to extend preferences. Clearly, for each i ∈ N,∆(Si) ⊂
Λ(Si). For each R ∈ R, and each i ∈ N , let R̂i be an extension of Ri from ∆(Si)
to Λ(Si) such that R̂i is:

• strictly monotonic over Λ(Si) \∆(Si),

3A common good is one that is not excludable but has congestion effects. A club good is one
that can be consumed by any number of people simultaneously but is excludable.

4Person 2 in Example 3 does not have linear preferences. However, we can construct examples
in the linear domain, involving more people, where a DIP allocations do not exist.
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Figure 2: The preference relation R̂i which is an extension of Ri from ∆(Si) to
Λ(Si).

• continuous, and

• convex.

Claim 1. Such R̂ exists.

Proof: We describe the construction of one such profile (see Figure 2). First we
extend Ri to {xi ∈ RSi :

∑
j∈Si xij = 1} and then define R̂i over Λ(Si).

Let R̃i be a continuous and convex extension of Ri from ∆(Si) to {xi ∈ RSi :∑
j∈Si xij = 1} that is locally non-satiated except at the maxima of Ri over ∆(Si).
Let Mi ≡ argmax

∆(Si)

Ri. For each x ∈ ∆(Si), let Ii(x) ≡ {y ∈ ∆i : xi Ii yi}. For

each x ∈ ∆(Si), let
d(x) ≡ min

y ∈ Mi
z ∈ Ii(x)

||z − y||.

That is, d(x) is the shortest distance between the indifference class of x and Mi.
Note that for all x, d(x) ≤

√
2. Define R̂i as follows: for each xi ∈ ∆(Si), let the

upper contour set of R̂i at xi be

U(R̂i, x) ≡ convex hull

((
1− d(x)

2

)
Mi ∪ U(R̃i, xi)

)
∩ RSi

+ .

Let wi ∈ {xi ∈ ∆(Si) : for each yi ∈ ∆(Si), yi Ri xi}. That is, wi is one of i’s
least preferred points in ∆(Si) at preference relation Ri. The preference map over
Λ(Si) \ U(R̂i, wi) is completed by translating the level set of wi.

It is easy to verify that R̂i is convex, continuous, and strictly monotonic over
Λ(Si) \∆(Si).

We are now ready to define our next solution.
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Let ε ∈ (0, 1). An allocation π ∈ Π is an ε-double-indexed price (εDIP)
allocation if there is p ∈ RM

+ such that:

1. For each pair (i, j) ∈M ,

pii + pjj ≥ pij + pji.

2. For each pair (i, j) ∈M such that πij > 0.

pii + pjj = pij + pji.

3. For each i ∈ N ,

πi ∈ argmax
xi∈Λ(Si)

Ri

subject to∑
j∈Si

xijpij︸ ︷︷ ︸
Price of x′i

≤ (1− ε)pii +

(
ε

|n| − 1

) ∑
j∈N\{i}

pjj


︸ ︷︷ ︸

i’s income

.

4. π ∈ Π.

We refer to (π, p) as an εDIP equilibrium.
The first two conditions, on the price vector, relate the price of individuals as

inputs and partnerships as outputs. Let Dε(R) be the set of all εDIP allocations
at R. As we will show, for each ε ∈ (0, 1) and each R ∈ R, there is an εDIP
allocation. Note that if we set ε = 0, the above definition coincides with that of a
DIP allocation.

We now define our last solution. An allocation π ∈ Π is a limit DIP (lim-
DIP) allocation if there is a sequence {πε}ε∈(0,1) ∈ Π such that

i) for each ε ∈ (0, 1), πε ∈ Dε(R) and
ii) lim

ε→0
πε = π.

Let Dl(R) be the set of all limit DIP allocations. In Section 4 we will show that
Dl(R) 6= ∅ and that Dl(R) ⊆ C(R), thereby establishing that C(R) 6= ∅ as well.
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Figure 3: The preference relation R̂i which is an extension of Ri from ∆(Si) to
RSi

+ .

4 Nonemptiness of lim-DIP

We begin this section by proving that an εDIP always exists. Since Π is compact,
this means that a lim-DIP exists (Theorem 1). We conclude by showing that
every lim-DIP allocation is in the core, thereby establishing the existence of a core
allocation.

Proposition 1. For each ε ∈ (0, 1) and R ∈ R, Dε(R) 6= ∅.

Proof: We proceed by embedding R in an Arrow-Debreu economy. We then show
the existence of a competitive equilibrium of this augmented economy (McKenzie
1959, Arrow and Hahn 1971). We conclude by showing that this competitive
equilibrium corresponds to an εDIP of R.

Step 1: Embed R in an Arrow-Debreu economy, E.
For each i ∈ N , let i’s consumption space be Xi ⊆ RM

+ defined by

x ∈ Xi ⇔ (xij)j∈Si ∈ RSi
+ and for each pair (j, k) ∈M such that j 6= i, xjk = 0.

That is, Xi ≡ RSi
+ × {(0, . . . , 0)}. By definition, Xi is closed and convex.

A notable feature of these consumption spaces is that for each pair i, j ∈ N
Xi ∩Xj = {0}.

Note that Λ(Si) × {0} ⊆ Xi. For each i ∈ N , we now extend R̂i (defined in
Section 3) from Λ(Si) to Ri over Xi (see Figure 3).

For each xi ∈ Λ(Si), let the upper contour set of Ri at xi be

U(Ri, xi) ≡ comp U(R̂i, xi).
5

5Denote the “upper comprehensive hull” of X ⊆ Rl by comp (X) ≡ X + Rl+.
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Since for each mi ∈Mi, U(Ri,mi) is convex, the preference map in this region
is completed by translating the level set of Mi.

Clearly, Ri is continuous, convex, monotone, and strictly monotone over Λ(Si) \∆(Si)

Let F be a set of |M |−|N |
2

firms. Label these firms by unordered (distinct) pairs
from N , a generic member being {i, j}. The production set of {i, j} ∈ F is

Y{i,j} ≡
{
y ∈ R{ij,ji,ii,jj} : yij = yji = −yii = −yjj

}
× {0} ⊂ RM .

Note that Y{i,j} is closed and convex.
For each {j, k} ∈ F and each i ∈ N , let σi({j, k}) be i’s share of {j, k}. Thus,

for each {j, k} ∈ F,
∑

i∈N σi({j, k}) = 1.
Finally, for each i ∈ N , let ωi ∈ RM

+ be such that for each pair k, j ∈ N ,

ωikj =


1− ε if i = j = k,
ε

|N |−1
if i 6= j = k, and

0 otherwise.

Let ω ≡ (ωi)i∈N .
We have now specified an Arrow-Debreu economy E ≡ (X, Y,R, ω, σ).

Step 2: Check that E has a competitive allocation.
Since the set of goods that each person is endowed with is the same, E is

“irreducible” (McKenzie 1959) (alternatively, we could have shown that it satisfies
“resource relatedness” (Arrow and Hahn 1971)). Let Y ≡

∑
{i,j}∈M Y{i,j} + ω and

X ≡
∑

i∈N Xi. We have the following:

1. For each i ∈ N , Xi is convex, closed, and bounded from below.

2. For each i ∈ N , Ri is continuous, convex, and weakly monotonic.

3. For each i ∈ N,Xi ∩ Y 6= ∅.

4. For each {i, j} ∈M , Y{i,j} is closed and convex.

5. Y ∩ RM
+ = {0}.

6. ω is in the relative interiors of Y and X.

7. Irreducibility (McKenzie 1959): For each bi-partition N1, N2 of N , if xN1 ∈
Y −

∑
i∈N2

Xi, then there is w ∈ Y −
∑

i∈N2
Xi and x′ ∈ X such that

w =
∑

i∈N1
x′i −

∑
i∈N2

xi and for each i ∈ N1, x
′
i Ri xi with x′i Pi xi for at

least one i ∈ N1.

13



By Theorem 2 of McKenzie (1959), E has a competitive allocation (x, y, p) ∈
X × Y × RM

+ .

Step 3: Show that (x, p) ∈ Dε(R).
We check that for each i ∈ N, xi ∈ ∆(Si). From this, we conclude that

x ∈ Dε(R). Suppose that there is i ∈ N such that xi /∈ ∆(Si).

Case 1:
∑

j∈Si xij > 1. Then,
∑

j∈Si\{i} xij + xii > 1 =
∑

j∈N ω
j
ii.

For each j ∈ Si \ {i}, xij ≤ y
{i,j}
ij = −y{i,j}ii .

Thus,
∑

j∈Si\{i} xij ≤ −
∑

j∈Si\{i} y
{i,j}
ii ,

Finally, we establish that xii ≥ ωii +
∑

j∈Si\{i} y
{i,j}
ii . This violates the feasi-

bility of (x, y) for E.

Case 2:
∑

j∈Si xij < 1. Let α = 1 +
∑

j∈Si\{i} y
{i,j}
ii . By feasibility, α ≥ xii. If α > xii

then, let x′ ∈ X be such that x′ii = α and for each j ∈ N \ {i}, xj ′ = xj and
x′ij = xij. Since Ri is strictly monotone at x, we know that x′i P i xi. This

violates the Pareto-efficiency of (x, y) at R (which is a competitive allocation
for E).

Thus, 1 +
∑

j∈Si\{i} y
{i,j}
ii = xii. So, xii −

∑
j∈Si\{i} y

{i,j}
ii = 1 >

∑
j∈Si xij.

From this, we conclude that there is j ∈ Si \ {i} such that xij < −y{i,j}ii =

y
{i,j}
ij . Let x′ ∈ X be such that for each k ∈ N \ {i}, xk ′ = xk, for each

k ∈ Si \ {j}, x′ik = xik, and x′ij = y
{i,j}
ij . Since Ri is strictly monotone at

x, we know that x′i P i xi. This violates the Pareto-efficiency of (x, y) at R
(which is a competitive allocation for E).

Since
∑

j∈Si xij = 1 and xii = 1−
∑

j∈Si y
{i,j}
ij , we have

∑
j∈Si xij =

∑
j∈Si y

{i,j}
ij .

Since for each j ∈ Si \ {i}, xij ≤ y
{i,j}
ij , we have xij = y

{i,j}
ij . Since for each

{i, j} ∈ F, y{i,j}ij = y
{i,j}
ji , we deduce that xij = xji.

Since (x, y, p) is an equilibrium, for each pair i, j ∈ N , if y
{i,j}
ij = y

{i,j}
ij > 0 then

pij + pji = pii + pjj. Otherwise, pij + pji ≥ pii + pjj.
As we have established, for each i ∈ N, xi ∈ ∆(Si). From the definition of Y{i,j}

for each {i, j} ∈M , we have xij = xji. Thus, x ∈ Π. It is clear that that for each

14



i ∈ N , πi ∈ ∆(Si) :
∑
j∈Si

πijpij ≤ (1− ε)pii +

(
ε

|n| − 1

) ∑
j∈N\{i}

pjj



⊆{
xi ∈ Xi :

∑
j∈Si

xijpij ≤ p · ωi
}

Thus, (x, p) is a εDIP equilibrium at R and x ∈ Dε(R). 2

We now establish that a lim-DIP allocation always exists.

Theorem 1. For each R ∈ R, Dl(R) 6= ∅.

Proof: For each ε ∈ (0, 1), let πε ∈ Dε(R) (this is possible since Dε(R) 6= ∅).
Since Π is compact, π ≡ lim

ε→0
πε is well defined and π ∈ Dl(R). 2

An appealing property of Dl is that it is a sub-correspondence of the core.
To prove this, we will use the following definitions. Recall the definition, for

each R ∈ R, of R̂ in Section 3.
Let ε ∈ (0, 1). Let S ⊆ N . We say that S ε-blocks π ∈ Π if there is

xS ∈ ×
i∈S

Λ(Si) such that:

1. For each i ∈ S and each j ∈ S ∩ Si, xSij = xSji, and

2. For each i ∈ S,

i)
∑

j∈Si∩S

xSij = 1−
(
|N | − |S|
|N | − 1

)
ε,

ii)
∑
j∈Si\S

xSij = 0, and

ii) xSi P̂i πi.

The ε-core, Cε(R), is the set of allocations are not ε-blocked by any coalition.

Lemma 1. For each R ∈ R, Dε(R) ⊆ Cε(R).
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Proof: Let π ∈ Dε(R) and (π, p) is an εDIP equilibrium. Suppose that S ⊆ N
ε-blocks xS. Then, for each i ∈ S,

∑
j∈Si∩S

pijx
S
ij > pii(1− ε) +

 ∑
j∈N\{i}

pjj

 ε

|N | − 1
.

Summing over all members of S,

∑
i,j∈S

pijx
S
ij >

(∑
i∈S

pii

)(
1− |N | − |S|

|N | − 1
ε

)
+

 ∑
i∈N\S

pii

 |S|ε
|N | − 1

.

However, for each (i, j) ∈M , pii + pjj ≥ pij + pji and so,

∑
i,j∈S

pijx
S
ij ≤

(∑
i∈S

pii

)(
1− |N | − |S|

|N | − 1
ε

)
.

From this contradiction we conclude that π ∈ Cε(R). 2

Next, we show that the limit of a sequence of ε-core allocations, as ε goes to
zero, is a core allocation.

Lemma 2. For each R ∈ R, and each sequence {πε}ε∈(0,1) such that for each
ε ∈ (0, 1), πε ∈ Cε(R), we have lim

ε→0
πε ∈ C(R).

Proof: Let π ∈ lim
ε→0

πε. Suppose that π /∈ C(R). Then there is S ⊆ N and πS

such that for each i ∈ S,

i)
∑

j∈S π
S
ij = 1 and

ii) πSi Pi πi.

Let V be a neighborhood of π and V S be a neighborhood of πS such that for each
v ∈ V , each vS ∈ V S, and each i ∈ S,

vSi R̂i vi.

Since R̂i is continuous, such V and V S exist. For ε small enough, πε ∈ V and

(1−
(
|N |−|S|
|N |−1

)
ε)πS ∈ V S. This contradicts πε ∈ Cε(R). 2

We finally establish that the set of lim-DIP allocations is a subset of the core.

Theorem 2. For each R ∈ R, Dl(R) ⊆ C(R).
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Proof: This follows directly from Lemmas 1 and 2. 2

As a corollary of Theorems 1 and 2, we show that the core is never empty.6

Corollary 1. For each R ∈ R, C(R) 6= ∅.

5 Applications

In this section, we consider each of the applications mentioned in the introduction
in more detail.

5.1 Probabilistic (heterosexual) marriage problems

Let M be a set of men and W be a set of women. A deterministic matching either
associates each person with a mate of the opposite sex or leaves them single.

As with other problems involving indivisibilities, randomization is one way to
bring a sense of justice to a matching process (Aldershof et al. 1999, Klaus and
Klijn 2006, Sethuraman et al. 2006). A common approach is to randomize only
over the ex post core (or the stable set) (Sethuraman et al. 2006). However, if
groups are able to commit to probabilistic allocations among themselves, a notion
of ex ante stability is called for. That is, we should look for probabilistic matchings
that are in the core with respect to their preferences over lotteries.7

To encode these problems in our model, let N ≡M ∪W . For each m ∈M , let
Sm ≡ {m} ∪W and for each w ∈ W , let Sw ≡ {w} ∪M . For each i ∈ N , let Ri

be i’s linear (von Neumann-Morgenstern) preferences over ∆(Si).
The following is an implication of Theorem 1:

Corollary 2. Every probabilistic marriage problem has a lim-DIP allocation.

By considering preferences over lotteries, rather than just preferences over in-
dividual partners, we are able to account for intensities of preferences and achieve
ex ante efficiency gains. The example described in the introduction demonstrates
this.

5.2 Trade under bilateral constraints

Suppose there is a group V of vendors of some good, and a group of buyers B.
However, not every vendor can sell to every buyer. Instead, a graph G ⊆ V × B

6This can also be shown by proving that, for each problem, the non-transferable-utility (NTU)
game associated with each economy is “balanced” (Scarf 1967).

7See Manjunath (2011) for more on the core of probabilistic marriage problems.
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Figure 4: Let i ∈ N be such that Si ≡ {i, j, k}. We construct Ri from R̂i.

dictates which vendor-buyer pair can trade (Bochet et al. Forthcoming): the pair
v ∈ V, b ∈ B can trade only if (v, b) ∈ G. Each v ∈ V has single peaked preferences,
R̂v, over the amount that he sells. Each b ∈ B has single peaked preferences, R̂b,
over the amount that he purchases. Since preferences are defined over the real
line, we pick suitable bounds and normalize so that the maximum any buyer can
purchase or seller can sell is one unit.8 The goal is then to specify an amount for
each vendor to sell and for each buyer to purchase.

This model can be embedded in ours as follows: Let N ≡ V ∪ B. For each
v ∈ V , let Sv ≡ {v} ∪B and for each b ∈ B, let Sb ≡ {b} ∪ V . For each i ∈ N , let
Ri be such that for each πi, π

′
i ∈ ∆(Si), (see Figure 4)

πiRiπ
′
i ⇔

(∑
j∈Si

πij

)
R̂i

(∑
j∈Si

π′ij

)
.

The following is an implication of Theorem 1:

Corollary 3. Every problem of trade under bilateral constraints has a lim-DIP
allocation.

Our model can accommodate two natural generalizations of these problems:

8While Bochet et al. (Forthcoming) do not assume that such a bound exists, if we apply their
“voluntary participation” axiom, such a normalization is possible.
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1. Diverse vendors and buyers. Corollary 3 holds for more general preferences
on the part of both buyers and vendors. For instance, the vendors need not
sell identical goods. The only restrictions on preferences are that, as listed
earlier, they be continuous, convex, and locally non-satiated except at the
maxima.

2. More general graphs. Rather than work with a bipartite graph such as G,
Theorem 1 applies to a larger set of trading constraints. For instance, we can
consider a situation where each person i owns an input that he can either
sell to a set of buyers Bi or can combine with other inputs that he buys from
the vendors Vi. Then, for each i ∈ N , and each v ∈ Vi, i ∈ Bv and for each
b ∈ Bi, i ∈ Vb. Thus, Si ≡ {i} ∪ Vi ∪ Bi and Ri is defined over triples of the
form (bi, oi, vi) where,

bi =
∑

b∈Bi πib is the amount of goods that i sells to his available buyers,
oi = πii is the amount of i’s good that he keeps, and
vi =

∑
v∈Vi πiv is the amount of goods that i buys from his available sellers.

5.3 School Choice

Let S be a set of schools and C be a set of children. For each c ∈ C, let Rc be
c’s (more likely, his parents’) von Neumann-Morgenstern preferences over ∆(S).
For each s ∈ S, let ≺s be a priority ordering of children at school s which involves
large indifference classes. Let Rs be a von Neumann-Morgenstern index over ∆(C)
that is consistent with ≺s. Call (RC , RS) an “augmented school choice problem.”

We can now select an lim-DIP allocation.

Corollary 4. Every augmented school choice problem has a lim-DIP allocation.

In real-world school choice problem, ties are broken randomly (Erdil and Ergin
2008, Abdulkadiroğlu et al. 2010, Pathak and Sethuraman forthcoming) and used
as inputs for deterministic algorithms like the Boston and deferred acceptance
algorithms. Since these algorithms only consider ordinal information in students’
preferences, there are ex ante efficiency losses (Abdulkadiroğlu et al. 2010). These
losses can be avoided by modeling these problems as fractional matching problems.

Example 4. A school choice problem.9

Let S ≡ {s1, s2, s3} and C ≡ {c1, c2, c3}. For each s ∈ S, let ≺s be degenerate
so that each child has the same priority. Let RC be defined by the following von

9This example is from Abdulkadiroğlu et al. (2010).
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Neumann-Morgenstern indices:

uc1 uc2 uc3
s1 0.8 0.8 0.6
s2 0.2 0.2 0.4
s3 0.0 0.0 0.0

Since each child has the same preferences over individual schools, both the Boston
and deferred acceptance algorithms single out the same recommendation: equal
probability for each child at each school. This, however, is inefficient. Consider
the allocation π ∈ Π such that πc1s1 = πc1s3 = 0.5, πc2 = πc1 and πc3s2 = 1. Clearly
π Pareto-dominates equal division (see Figure 5). Further, since for each s ∈ S,
Rs is complete indifference, π ∈ Dl(RC , RS).

s3 s2

R3

R1, R2

π3

π1, π2

(1
3
, 1
3
, 1
3
)

s1

Figure 5: Clearly, equal division is dominated by π at (RC , RS).

By Theorem 2, we know that a lim-DIP allocation is in the core. It is in this
sense that the augmented priorities of the schools are respected. While it is true
that the allocation realized ex-post may violate priorities, the priorities are not
entirely ignored. It is by weakening the role of priorities that we achieve gains in
efficiency.

5.4 Workers and employers

Let E be a set of employers and W be a set of workers. For each e ∈ E, let Re

be e’s preferences over RW
+ . For each w ∈ W , let Rw be w’s preferences over RE

+.
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Each w ∈ W has a unit supply of labor and each e ∈ E can hire at most one unit
of labor. The goal is to assign a work schedule to each worker. An allocation in
the core of such a problem ensures participation of all groups. It is easy to see
that, as in the applications above, this problem is a special case of our model.

The following is an implication of Theorem 1:

Corollary 5. Every problem of workers and employers has a lim-DIP allocation.

6 Kinds of people

In this section, we describe a more general model than the one analyzed so far. In
particular, we introduce the notion of a kind for each person and show that the
prices of an lim-DIP allocation can be indexed by kinds rather than identities.

Recall that the lim-DIP equilibria are somewhat like Lindahl equilibria as ex-
plained in Remark 1. A common indictment of Lindahl allocations, however, is
that as the number of people involved increases, the number of prices must also
increase. While prices are “personalized” in the definition of an lim-DIP equilib-
rium, we show here that they only need to be indexed by the kind of person and
not his identity. The role of double-indexing is to reflect the “preferences of the
resource.” Suppose that two people are identical to the rest of the world. Since
they are identical, anyone matched to them is indifferent between the two. The
two should then face the same prices. Here, we generalize our earlier definitions
and results to reflect this.

Let K be a set of kinds. For each τ ∈ K, let Sτ ⊆ K be such that τ ∈ Sτ .
The set of potential partner kinds of τ are Sτ \ {τ}. As before, let N be the
set of people involved. Let κ ∈ KN be such that for each i ∈ N , i’s kind is κi. For
each pair υ, τ ∈ K if υ ∈ Sτ then τ ∈ Sυ. For each i ∈ N , i’s consumption set
is ∆(Sκi). Let Ri, i’s preference relation over ∆(Sκi), be continuous and convex.
We also require Ri to be locally non-satiated, except at its maxima on ∆(Sκi). Let
Ri be the set of all such preferences. Let (Nτ )τ∈K be a partition of N such that
for each τ ∈ K,Nτ ≡ {i ∈ N : κi = τ}. An economy is described by a profile of
preferences R ∈ R ≡ ×i∈NRi and a profile of kinds κ ∈ KN .

A feasible allocation specifies for each i ∈ N a consumption bundle πi ∈ ∆(Sκi)
in a way that for each τ ∈ K and each υ ∈ Sτ ,∑

i∈Nτ

πiυ =
∑
i∈Nυ

πiτ .

Let Π be the set of feasible allocations.
Let M ⊆ K ×K be such that (υ, τ) ∈M if and only if υ ∈ Sτ and τ ∈ Sυ. An

allocation π ∈ Π is a double-indexed price (DIP) allocation at R if there is
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a vector p ∈ RM
+ such that for each i ∈ N ,

πi ∈ argmax
π′
i∈∆(Sκi )

Ri

subject to∑
τ∈Sκi

π′iτpκiτ︸ ︷︷ ︸
Price of π′

i

≤
∑
τ∈Sκi

∑
j∈Nτ

π′jκipτκi︸ ︷︷ ︸
i’s income at π′

,

and π ∈ Π. We interpret the price vector as follows: for each (υ, τ) ∈ M , pυτ is
the price that a person of kind υ pays for a partnership with someone of kind τ .

We refer to (π, p) as a DIP equilibrium. Let D(R) be the set of all DIP
allocations at R.

Of course, for the same reasons as before, D(R) may be empty. So we define
εDIP and lim-DIP allocations here as well. While the definition of εDIP equilib-
rium is nearly the same as before, there are a few minor differences that we will
highlight.

For each i ∈ N , Λ(Sκi) ≡ {λ ∈ RSκi
+ :

∑
τ∈Sκi

λτ ≤ 1 + ε|Nκi |}. Clearly, for

each i ∈ N,∆(Sκi) ⊂ Λ(Sκi). For each R ∈ R and each ε ∈ (0, 1), let Rε
i be an

extension of Ri from ∆(Sκi) to Λ(Sκi) such that Rε
i is:

• monotonic,

• strictly monotonic over {λ ∈ Λ(Sκi) :
∑

τ∈Sκi
λτ < 1},

• continuous,

• convex, and

• For each pair x, y ∈ Λ(Sκi) if
∑

τ∈Sκi
xτ < min{1−ε,

∑
τ∈Sκi

yτ}, then y P ε
i x.

That is, if the sum of x’s coordinates are less than 1−ε, then any point whose
coordinates have a greater sum is preferred to x.

Claim 2. Such Rε exists.

Proof: The proof is identical to that of Claim 1 with only a few changes. For
each x ∈ ∆(Sκi),

U(R̂i, x) ≡ convex hull

((
1− d(x)ε

2

)
Mi ∪ U(R̃i, x)

)
∩ RSκi

+

Then, we complete the preference map over Λ(Sκi) in a way that indifference curves
through any point x such that

∑
τ∈Sκi

xτ ≤ 1−ε are parallel to the simplex ∆(Sκi).
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The remainder of the proof remains the same as that of Claim 1 and the extension
of R̂ to the positive orthant in the proof of Proposition 1. 2

We say that π ∈ R×i∈NSκi+ is an εDIP allocation if there is p ∈ RM
+ such that

for each pair (υ, τ) ∈M ,
pυυ + pττ ≥ pυτ + pτυ,

for each (υ, t) such that
∑
i∈Nτ

πiυ +
∑
i∈Nυ

πiτ > 0,

pυυ + pττ = pυτ + pτυ,

for each i ∈ N ,

πi ∈ argmax
xi∈Λ(Sκi )

Ri

subject to∑
τ∈Sκi

xijpκiτ︸ ︷︷ ︸
Price of x′i

≤ (1− ε)pκiκi +
∑

τ∈K\{κi}

pττ
|Sτ |ε

|N | − |Sτ |︸ ︷︷ ︸
i’s income

,

for each pair (υ, τ) ∈M , ∑
i∈Nτ

πiυ =
∑
i∈Nυ

πiτ ,

and for each i ∈ N ,

1− ε ≤
∑
τ∈Sκi

πiτ ≤ 1 + ε|Nκi |.

The “clearing” condition here is less demanding than before. The allocation π need
not a feasible allocation itself. That is, while it needs to clear in aggregate, at the
individual level it only need be “within ε” of an element of a person’s consumption
set. 10

10It is easy to find examples where the stronger clearing condition that requires, for each
i ∈ N, πi ∈ ∆(Sκi

) cannot be met. Consider a problem where K = {υ, τ} and N = {1, 2, 3, 4}.
Let Sυ = Sτ = {υ, τ}. Let κ1 = κ2 = υ and κ3 = κ4 = τ . Let R1 be represented by the utility
function u0(π0) = π0υ and let R2, R3, and R4 be represented by the utility function u′0(π0) = π0τ .
That is, 1 prefers to be matched to 3 or 4, 2 prefers to remain unmatched, and 3 and 4 prefer to
be matched to 1 or 2. Suppose there is an equilibrium (p, π) where the stronger clearing condition
holds. Since preferences are linear, each person chooses a corner solution. Further, by feasibility
and the definition of R1 and R2 , neither pυτ nor pυυ can be zero. By the clearing condition,
π1τ = π2υ = 1. By 2’s budget constraint, 1pυυ = (1 − ε)pυυ + εpττ . So, pττ = pυυ = p∗.
By 1’s budget constraint, 1pυτ = (1 − ε)pυυ + εpττ . This implies that pυτ = p∗. Finally, the
equilibrium condition pττ + pυυ = pτυ + pυτ implies that pτυ = p∗ as well. Then, since 3 and 4
are maximizing in their budget sets, π3υ = π4υ = 1. This contradicts our assumption that the
market clears in aggregate
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Proposition 2. For each ε ∈ (0, 1) and each (R, κ) ∈ R×KN , εD(R, κ) 6= ∅.

Proof: This proof is very similar to that of Proposition 1. Preferences are extended
to the positive orthant, and the problem is encoded as an Arrow-Debreu economy.
For each i ∈ N , i’s consumption space is

Xi ≡ RSκi
+ × {0} ⊂ RM

+ .

Define the extension R
ε

i of Rε
i to Xi exactly as in the proof of Proposition 1.

For each x ∈ Λ(Sκi), set

U(R
ε

i , x) ≡ comp U(Rε
i , x).

Define Mi as before and and translate the preference map over U(R
ε

i ,Mi).
Firms are defined the same way, except that they are indexed by pairs of kinds

rather than pairs of people. The production set of firm (υ, τ) ∈ F is

Y{υ,τ} ≡
{
y ∈ R{υτ,τυ,υυ,ττ} : yυτ = yτυ = −yυυ = −yττ

}
× {0} ⊂ RM .

For each i ∈ N , i’s endowment is ωi ∈ RM
+ such that for each pair υ, τ ∈ K,

ωiυτ =


1− ε if υ = τ = κi,
|Sτ |ε
|N |−|Sτ | if τ = υ 6= κi, and

0 otherwise.

For each {υ, τ} ∈ F , and each i ∈ N , let σi({υ, τ}) be i’s share of {υ, τ}. Thus,
for each {υ, τ} ∈ F,

∑
i∈N σi({υ, τ}) = 1.

As before, the economy E ≡ (X, Y,R
ε
, ω, σ) has a competitive allocation

(x, y, p) ∈ X × Y × RM
+ . We show that (x, p) is actually an εDIP equilibrium.

Since (x, y, p) is a competitive equilibrium, for each i ∈ N , xi R
ε

i (1− ε)δκi . Then,
by definition of Rε and therefore R

ε
, for each i ∈ N ,

∑
τ∈Sκi

xiτ ≥ 1− ε. Thus, by

feasibility, for each τ ∈ K and i ∈ N ,
∑

υ∈Sκi
xiυ ≤ 1 + ε|Nτ |. Finally, as argued

in the proof of Proposition 1, by definition of Y and feasibility,∑
i∈Nτ

xiυ =
∑
i∈Nυ

xiτ .

2

As before, an allocation π ∈ Π is a limit DIP (lim-DIP) allocations if there
is a sequence {πε}ε∈(0,1) ∈ Π such that

i) for each ε ∈ (0, 1), πε ∈ Dε(R) and
ii) lim

ε→0
πε = π.

Let Dl(R) be the set of all limit DIP allocations..
From Proposition 2 we have the following.

Theorem 3. For each (R, κ) ∈ RN ×KN , Dl(R, κ) 6= ∅.
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6.1 Discussion regarding kinds

There are two distinct benefits to including kinds in our model. The first is with
regards to fairness. Two people who are, for all intents and purposes, the same
should be given the same opportunities. The lim-DIP solution does exactly that.
Since prices are indexed by kind rather than identity, each person of a particular
kind is faced with exactly the same “budget set.” If prices are indexed by identities,
then identical people may be treated differently.

The second is to apply our model to situations where no person is unique in the
eyes of others. Take, for instance, a school district where each school has a large
number of seats and large groups of students have identical priorities at each of
the schools. Or think of a problem involving many workers and many tasks where
there are many workers with identical skills and many tasks that are identical.

Unlike Lindahl equilibria, as the number of people involved increases, as long
as there number of kinds remains fixed, the dimension of the price vector remains
fixed. Since εDIP equilibria are actually competitive equilibria of appropriately
defined Arrow-Debreu models, for fixed utility representations, the gains from
misreporting preferences diminish as the number of people of each kind increases.

References
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