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Abstract

I consider �rst-price auctions (FPA) and second-price auctions (SPA) with

two asymmetric bidders. The FPA is known to be more pro�table than the

SPA if the strong bidder�s distribution function is convex and the weak bidder�s

distribution is obtained by truncating or horizontally shifting the former. In this

paper, I employ a new mechanism design result to show that the FPA remains

optimal if the weak bidder�s distribution falls between the two benchmarks in

a natural way. The same conclusion holds if the strong bidder�s distribution is

concave, but with a vertical shift replacing the horizontal shift. A result with

a similar �avor holds if the strong bidder�s distribution is neither convex nor

concave. The dispersive order and the star order prove useful in comparing

the weak bidder�s distribution to the benchmarks. A key step establishes a

relationship between the dispersive and star orders, truncations, and reverse

hazard rate dominance.
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1 Introduction

In the by now standard independent private values model, the celebrated Revenue

Equivalence Theorem implies that the auction format is irrelevant for a risk-neutral

seller whenever bidders are homogeneous ex ante. While Vickrey (1961) discovered

an early version of the Revenue Equivalence Theorem, he also proved that it does

not extend to a more realistic setting with heterogeneous bidders. Since then, a

literature has emerged comparing the standard auctions, speci�cally the �rst-price

auction (FPA) and the second-price auction (SPA). This literature has identi�ed a

number of isolated environments or examples, each of which allows a revenue ranking

to be obtained. In this paper, I identify robust classes of environments where the

FPA can be shown to be superior to the SPA.1

In a seminal paper, Maskin and Riley (2000) study three particular environments.

In the �rst model, the strong bidder�s distribution, Fs, is obtained by shifting the

weak bidder�s distribution, Fw, horizontally to the right. In the second model, Fs is

obtained by �stretching�Fw. In both models, the FPA dominates the SPA under

certain curvature assumptions. However, the SPA dominates in their third model,

in which Fs and Fw share the same support. A central result in the current paper

takes Maskin and Riley�s (2000) �rst two models as �benchmarks�and then proves

that the FPA is superior whenever the auction environment �lies between�the two

benchmarks in a natural way. Several results of this type are presented.

More concretely, consider for the moment the most stringent assumptions in

Maskin and Riley (2000), namely that the distributions are convex and log-concave.

An alternative way, used from now on, of thinking about their �stretch�model is

that Fw is a truncation of Fs, which I denote F ts .
2 In their �shift�model, Fw is a

horizontal, left-ward shift of Fs, denoted F hs . These cases are depicted in Figure 1.

1Vickrey (1961), Lebrun (1996), and Cheng (2006) analytically compare revenue in models where
bidders draw types from restricted classes of power distributions. Cheng (2010) contains additional
examples. Gavious and Minchuk (2011) study auctions with �small�asymmetries. Maskin and Riley
(1985) and Doni and Menicucci (2011) assume distributions are discrete. Maskin and Riley�s (2000)
paper is discussed momentarily. The numerical literature dates back to Marshall et al (1994) and
also includes Fibich and Gavious (2003), Li and Riley (2007), and Gayle and Richard (2008).

2De�ning Fw as a truncation of Fs is arguably a more parsimonious way of describing the same
setting. In either case, Fs is a multiple of Fw on the shared support, but when Fs is thought of as
a stretch of Fw one has to also formulate an extension of Fs on the rest of its support. As noted
in Kirkegaard (2011b), this forces Maskin and Riley (2000) to impose some unneccessarily strong
assumptions.
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Of course, holding Fs �xed, Fw can take many other forms. Here, the FPA is shown

to dominate if Fw is between F ts and F
h
s and satis�es certain regularity conditions.

These conditions are satis�ed if Fw is more disperse than F ts , but less disperse F
h
s .

Similar results obtain if Fs is concave, but with a vertical shift of Fs taking the place

of the horizontal shift. A related result for non-monotonic densities is also derived.

Fs

F ts

F hs

v�s �s�w

1

Figure 1: Truncations and horizontal shifts.

Note: Fs has support [�s; �s]. Consider some Fw whose support ends at aw 2 (�s; �s).
Generate the appropriate truncation, F ts , and horizontal shift, F

h
s , of Fs, such that these

end at �w. The FPA dominates if Fw is more disperse than F ts but less disperse than F
h
s .

The analysis takes as its starting point a new revenue ranking result, due to

Kirkegaard (2011b). Kirkegaard�s (2011b) objective is to demonstrate that mech-

anism design methods can be used to simplify the problem of ranking asymmetric

auctions. As a result, he proves a theorem establishing the superiority of the FPA

under two conditions. First, Fs must dominate Fw in terms of the reverse hazard rate.

This assumption allows some inferences concerning bidding behavior in the FPA. The

second assumption is, roughly speaking, that Fs is �atter and more disperse than Fw.

Indeed, Kirkegaard (2011b) shows that Maskin and Riley�s (2000) �rst two models

satisfy the conditions.3 The idea in this paper is to invoke Kirkegaard�s (2011b) the-

orem. However, the challenge remains to describe environments where both, possibly

contradictory, conditions are satis�ed simultaneously.
3Given the two conditions, Kirkegaard (2011b) also shows that the revenue ranking is una¤ected

by a reserve price. Moreover, it also holds if there are more than one weak bidder.
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It is easy to show that reverse hazard rate dominance does not apply if Fw lies

below F ts in Figure 1. Thus, a key step is to more precisely establish when reverse

hazard rate dominance applies. Under mild conditions, I show that if Fw is more

disperse than F ts (which implies Fw � F ts) then it is also the case that Fs dominates
Fw in terms of the reverse hazard rate (Lemma 3). That is, there is an intimate

relationship between the dispersive order, truncations, and reverse hazard rate dom-

inance. Thus, F ts is a useful benchmark. However, if Fw is too far above F
t
s , then

the second condition in Kirkegaard�s (2011b) theorem is violated. In fact, when Fs
is convex, the condition is violated if Fw is ever above F hs in Figure 1. Thus, Maskin

and Riley�s (2000) examples are essentially on opposite boundaries of Kirkegaard�s

(2011b) theorem. Here, I establish the regularity assumptions needed to conclude

that the FPA is revenue superior to the SPA if Fw falls between F ts and F
h
s .

The dispersive order plays a role both in Kirkegaard�s (2011b) theorem as well

as in the aforementioned Lemma 3 of this paper. A related order, the star order,

also proves useful. In Section 5 I show that these orders, or comparisons between

distributions, are equivalent to comparisons of various notions of price sensitivity in

di¤erent markets. Recall that Bulow and Roberts (1989) have argued that there are

parallels between the auction design problem and the monopoly pricing problem.

The dispersive order has recently attracted some attention in the theoretical auc-

tion literature. Jia et al (2010), Katzman et al (2010), and Szech (2011) examine

various comparative statics in symmetric auctions when bidders� distributions be-

come more disperse. Ganuza and Penalva (2010) consider symmetric auctions in

which the seller can in�uence the precision of bidders�information by making their

signals more or less disperse. Johnson and Myatt (2006) examine a related question in

the context of a monopoly. Their �rotation order�is also used to compare how spread

out two distributions are. In asymmetric auctions, the dispersive order plays a role in

determining the qualitative features of revenue-enhancing interventions into particu-

lar auction formats, as demonstrated by Kirkegaard (2011c) and Mares and Swinkels

(2011a, 2011b). The results in these papers are particularly strong when densities

are monotonic. Hopkins (2007) describe qualitative features of bidding behavior in

auctions where distribution functions cross and one is smaller than the other in the

dispersive order. However, apart from Kirkegaard (2011b), the current paper is the

�rst to explicitly use the dispersive order to rank revenue across standard auctions

with asymmetric bidders.
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2 Model and preliminaries

Two risk neutral bidders compete in an auction. Bidder s is perceived as strong

and bidder w as weak. Roughly speaking, the former is more likely to have a high

willingness to pay; a more precise de�nition is postponed. Independently of the other

bidder, bidder i draws a type or valuation from a distribution function, Fi, which

is continuously di¤erentiable on its support, Si = [�i; �i], i = s; w. Mass points

are ruled out and the density, fi, is strictly positive on (�i; �i], with �i > �i � 0,

i = s; w.4 Finally, �w � �s and �w < �s.
The common support is denoted by C = Ss\Sw, with C = [�s; �w] if the supports

overlap. It is useful to de�ne Fi(v) = fi(v) = 0 for all v < �i, such that fw(v) � fs(v)
for all v < �s.

Two distinct kinds of stochastic orders are useful for comparing Fs and Fw. Thus,

stochastic orders of strength and stochastic orders of dispersion and spread are re-

viewed next.

2.1 Stochastic orders of strength

There are several ways to formalize the idea that one bidder is stronger than another,

depending on how Fs and Fw are related on C:

1. Fs dominates Fw i.t.o. the likelihood ratio, Fw �lr Fs: fs(v)
fw(v)

is increasing on C.5

2. Fs dominates Fw i.t.o. the reverse hazard rate, Fw �rh Fs: fs(v)
Fs(v)

� fw(v)
Fw(v)

; 8 v 2 C.

3. Fs dominates Fw i.t.o. the hazard rate, Fw �hr Fs: fs(v)
1�Fs(v) �

fw(v)
1�Fw(v) ; 8 v 2 C.

4. Fs �rst order stochastically dominates Fw, Fw �st Fs: Fs(v) � Fw(v); 8 v 2 C.

See Krishna (2002) for an introduction to these stochastic orders and their use in

auction theory. See Shaked and Shanthikumar (2007) for an in-depth treatment. The

�rst order implies the other orders. The second and third both imply the fourth.

4Maskin and Riley (2000) allow a mass point at �i in two of their models.
5In this paper, increasing is taken to mean non-decreasing; decreasing means non-increasing.

The abbreviation i.t.o. stands for �in terms of�.
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Following Lebrun (1999) and Maskin and Riley (2000), qualitative features of

bidder interaction in the FPA are known under the assumption that Fw �rh Fs.6 To be
more speci�c, let r(v) = F�1s (Fw(v)), v 2 Sw. In Hopkins�(2007) terminology, bidder
s with type r(v) has the same rank as bidder w with type v since Fs(r(v)) = Fw(v).

Note that Fw �st Fs is equivalent to r(v) � v for all v 2 Sw. Given Fw �rh Fs,
Maskin and Riley (2000) show that in a FPA, bidder w with type v either submits a

non-serious bid (one that is so low that it never wins) or he submits a bid of the same

magnitude as a bid submitted by the strong bidder of some type, k1(v), somewhere

in the interval [v; r(v)].7 In other words, the weak bidder is more aggressive than the

strong bidder, but not aggressive enough to make up for the di¤erence in strength.

The bid is strictly increasing in type for those that submit serious bids. Moreover,

bidder w with type �w submits the same bid as bidder s with type �s. Hence,

k1(�w) = �s = r(�w).

In a SPA, it is a weakly dominant strategy to submit a bid equal to the bidder�s

type. Since the auction is e¢ cient, bidder w with type v wins if and only if bidder s

has a type below k2(v) = maxf�s; vg.

2.2 Stochastic orders of dispersion and spread

Given r(v) plays an important role bounding bidder w�s winning probability, r�s

characteristics are of some interest. To this end, the following orders of dispersion

and spread are relevant for the current paper, in descending order of importance:

1. Fw is smaller than Fs in the dispersive order, Fw �disp Fs: r(v) � v is increasing
on Sw.

2. Fw is smaller than Fs in the star order, Fw �� Fs: r(v)v is increasing on Sw.

3. Fw is smaller than Fs in the convex transform order, Fw �c Fs: r(v) is convex on
Sw.

6See Milgrom (2004), Hopkins (2007), or Kirkegaard (2011b) for alternative proofs. Kirkegaard
(2009) analyses environments where reverse hazard rate dominance (or even �rst order stochastic
dominance) does not hold.

7A non-serious bid is made only if bidder w�s type, v, is su¢ ciently far below �s. A non-serious
bid wins with probability 0 = Fs(�s). Since �s 2 [v; r(v)] when v � �s, letting k1(v) = �s for all v
that submit non-serious bids implies that k1(v) 2 [v; r(v)] for all v 2 Sw.
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Shaked and Shanthikumar (2007) review these stochastic orders.8 In words,

Fw �disp Fs if the distance between the types that are at the same percentile is
increasing. Thus, geometrically, the dispersive order implies that the horizontal dif-

ference between Fs and Fw is increasing. If Fs is more disperse than Fw then it has

larger variance and wider support, �s � �s � �w � �w. It is useful to note that if
Fw �disp Fs then r0(v) � 1 or fw(v) � fs(r(v)) for all v 2 Sw. I write Fw =disp Fs if
r(v)� v is constant.
The dispersive order and the star order are obviously related. In particular,

Fw(v) �� Fs(v)() Fw(e
v) �disp Fs(ev); 9 (1)

which helps explain why both Fi(ev) and Fi(v), i = s; w, will play a role in this paper.

The dispersive order, star order, and convex transform order have natural eco-

nomic interpretations, all related to various notions of price sensitivity. A discussion

of these interpretations are postponed until Section 5, however.

Note it is possible that Fw �disp Fs and yet Fs �� Fw. The assumption that
Fs �� Fw plays a role in Kirkegaard�s (2011c) analysis of favoritism in asymmetric

all-pay auctions. Mares and Swinkels (2011b) consider favoritism in procurement

auctions in which the buyer has a preference for a speci�c bidder (seller). Translating

their procurement setting into a standard auction, one of their assumptions is that

Fs �c Fw.

3 Ranking asymmetric auctions

Using mechanism design techniques, Kirkegaard (2011b) proves the following re-

sult.10,11

8The literature on the star order and convex transform order should be read with some care. In
this literature, it is often assumed that �s = �w = 0, and a number of results rely on this assumption
(for example, if �s = �w = 0 then �c=)��). In the current paper, �s and �w are allowed to be
strictly positive.

9Consider two random variables, X and Y . By Theorem 4.B.1 in Shaked and Shanthikumar
(2007), X �� Y () logX �disp log Y . The relationship in (1) comes from the fact that if X is
distributed according to F (x) then logX is distributed according to F (ex).

10The following version of Kirkegaard�s (2011b) theorem incorporates his discussion of (3); see
the discussion around equation (8) in Kirkegaard (2011b).

11See Kirkegaard (2011a) for a review of examples in the literature that do not satisfy the con-
ditions of Theorem 1, but where a revenue ranking is nevertheless possible.
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Theorem 1 Assume Fw �rh Fs. Then, the FPA generates strictly higher expected

revenue than the SPA if

fw(v) � fs(x) for all x 2 [v; r(v)] and all v 2 Sw (2)

or, more generally, ifZ k(v)

v

(fw(v)� fs(x)) dx � 0 for all k(v) 2 [v; r(v)] and all v 2 Sw. (3)

Condition (2) implies condition (3) and is typically easier to check than condition

(3). If (2) is satis�ed then Fs is �atter and more disperse than Fw. Together, Fw �rh
Fs and condition (2) imply that Fw �hr Fs.
As demonstrated in Kirkegaard (2011b), Maskin and Riley�s (2000) shift and

stretch models satisfy Fw �rh Fs and condition (2). Thus, their results are corollaries
of Theorem 1. The shift and stretch models are discussed further in Section 4.

To invoke Theorem 1, the challenge is to describe environments where both Fw �rh
Fs and either (2) or (3) hold simultaneously. For example, (2) requires that fw(v) �
fs(v) for any v 2 C, while, by de�nition, Fw �rh Fs can hold only if fw(v) is not too
much larger than fs(v) for any v 2 C. Thus, there is a tension between the two types
of conditions.

Note also that Fw �rh Fs is equivalent to assuming that Fw=Fs is a decreasing
function on C. However, for any v 2 C,

d

dv

�
Fw(v)

Fs(v)

�
=
d

dv

�
Fs(r(v))

Fs(v)

�
/ fs(r(v))r

0(v)

Fs(r(v))
� fs(v)

Fs(v)
: (4)

Condition (2) implies Fw �disp Fs, or r0(v) � 1. Thus, if Fs is locally log-convex ( fs(v)Fs(v)

is locally increasing) the right hand side may easily be positive, thereby violating

Fw �rh Fs. Thus, the dual assumption of Fw �disp Fs and Fw �rh Fs is more likely
to be satis�ed when Fs is log-concave, when C 6= ;. Incidentally, Lebrun (2006) has
shown that equilibrium in the FPA is essentially unique if �s > �w, or if �s = �w and

Fi is strictly log-concave close to �s, i = s; w.
12 Maskin and Riley (2000) assume Fs

12More precisely, equilibrium is essentially unique when bidders never bid above their valuations.
However, Kaplan and Zamir (2011) prove there are other equilibria in which the non-serious bids
(that never win) exceed the weak bidder�s valuation. Note bidder w is using a weakly dominated
strategy in this case. Moreover, Kirkegaard�s (2011b) theorem applies to all equilibria.
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is log-concave in their examples in which the FPA dominates. This assumption will

typically also be imposed here. Indeed, at times the stronger assumption that Fs(ev)

is log-concave will be imposed. Since Fs(ev) is log-concave if and only if the function

v fs(v)
Fs(v)

is decreasing, log-concavity of Fs(ev) requires that the reverse hazard rate falls

su¢ ciently rapidly.

The following example shows that log-concavity of Fs is not necessary to invoke

Theorem 1, however.

Example 0 (concave vs. convex): Assume Fw is concave and Fs is convex, with

fw(�w) � fs(�s). Fs need not be log-concave. Note that r(v) must be concave, or

Fs �c Fw. The curvature assumptions imply Fw �lr Fs and therefore Fw �rh Fs.
Condition (2) is satis�ed since densities are monotonic and fw(�w) � fs(�s). Thus,
Theorem 1 applies. N

The two types of conditions in Theorem 1 are examined in turn. Section 4 com-

pletes the analysis by describing environments where Theorem 1 can be invoked.

3.1 Conditions (2) and (3)

At this point, it is desirable to establish more direct conditions on the primitives,

Fs and Fw, which would imply (2) or (3). The following lemmata are new, i.e. not

included in Kirkegaard (2011b).

First, note that condition (2) is particularly simple to check if fs is monotonic.

The proof of the following Lemma is trivial and is therefore omitted.

Lemma 1 Condition (2) is satis�ed if:

1. Fs is convex on Ss and fw(v) � fs(r(v)) for all v 2 Sw (i.e. Fw �disp Fs), or

2. Fs is concave on Ss, fw(v) � fs(v) 8v 2 C, and fw is decreasing on [�w; �s).

Turning to condition (3), a counterpart to the �rst part of Lemma 1 can be

developed. Lemma 2 should be seen in light of the relationship described in (1).

Lemma 2 Assume Fs(ev) is convex and Fw �� Fs. Then, condition (3) is satis�ed.
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Proof. Since fw(v) = fs(r(v))r0(v), the left hand side of (3) equals

fs(r(v))r(v)

"
r0(v)

r(v)
(k(v)� v)�

Z k(v)

v

fs(x)x

fs(r(v))r(v)

v

x

1

v
dx

#
;

where the �rst two terms under the integration is less than one because (i) vfs(v)

is increasing for all v � �s (since Fs(ev) is convex with fs(x) = 0 for x < �s) and

x � k(v) � r(v) and (ii) v � x, respectively. The sign of the above expression is

determined by the terms inside the square brackets, which is then no smaller than

r0(v)

r(v)
(k1(v)� v)�

Z k1(v)

v

1

v
dx = (k1(v)� v)

�
r0(v)

r(v)
� 1
v

�
� 0;

where the inequality is due to Fw �� Fs. Hence, condition (3) is satis�ed.
The important di¤erence between Lemma 1 and Lemma 2 is that the density need

not be monotonic in the latter. Thus, in the analysis Lemma 1 and condition (2) will

be invoked when fs is monotonic and Lemma 2 and condition (3) when it is not.

3.2 Reverse hazard rate dominance

The requirement of reverse hazard rate dominance in Theorem 1 has bite only if

C 6= ;. For any � 2 (�s; �s), de�ne

F ts(vj�) =
Fs(v)

Fs(�)
; v 2 [�s; �] (5)

as the right-truncation of Fs with truncation point �. Since F ts(�j�) has the same
reverse hazard rate as Fs, F ts(�j�) �rh Fs. This suggests that whenever �w 2 (�s; �s),
it may be fruitful to compare Fw to the benchmark F ts(�j�w), as highlighted by the
next proposition.

Proposition 1 (Necessary condition) Assume the upper end-point of Fw�s sup-
port is �w 2 (�s; �s). Then Fw �rh Fs =) Fw �st F ts(�j�w); if F ts(�j�w) does not �rst
order stochastically dominate Fw then Fs does not reverse hazard rate dominate Fw.

Proof. Assume Fw(x) < F ts(xj�w) for some x 2 [�s; �w). Then, Fw(�w) = 1 =

F ts(�wj�w) necessitates fw(v) > f ts(vj�w) for some v 2 [x; �w] where Fw(v) < F ts(vj�w)
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and thus Fw �rh F ts . Since F ts(�j�w) has the same reverse hazard rate as Fs, Fw �rh Fs
as well.

Thus, if C 6= ;, Fw �st F ts(�j�w) is necessary to invoke Theorem 1. Note the

implication that Fw(v) � F ts(vj�w) � Fs(v) for all v 2 C, meaning that Fw cannot
be �too close� to Fs. Otherwise, a fundamental problem arises; if Fw �rh Fs then
it is no longer necessarily the case that bidder w is more aggressive than bidder s.

See Maskin and Riley (2000) and Kirkegaard (2009). The method of proof in both

Maskin and Riley (2000) and Kirkegaard (2011b) relies crucially on the property that

bidder w is more aggressive.

As explained previously, the dispersive and star orders are sometimes su¢ cient for

condition (2) or (3) to hold. Thus, it would be desirable to also link reverse hazard

rate dominance to these stochastic orders. The following lemma establishes such a

link and thus constitutes a crucial building block. The key to linking the stochastic

orders is to recognize the pivotal role of the benchmark distribution F ts .

Lemma 3 (Su¢ cient conditions) Assume the upper end-point of Fw�s support is
�w 2 (�s; �s). Then:

1. If Fs is log-concave then F ts(�j�w) �disp Fs; if F ts(�j�w) �disp Fw then Fw �rh Fs.

2. If Fs(ev) is log-concave then F ts(�j�w) �� Fs; if F ts(�j�w) �� Fw then Fw �rh Fs.

Proof. Assume �rst that Fs is log-concave. F ts can be written in one of two ways,
F ts(vj�w) =

Fs(v)
Fs(�w)

or F ts(vj�w) = Fs(rt(v)). Thus, Fs(rt(v)) =
Fs(v)
Fs(�w)

and so

rt0(v) =
1

Fs(�w)

fs(v)

fs(rt(v))
=
fs(v)

Fs(v)

Fs(r
t(v))

fs(rt(v))
� 1

by log-concavity, as rt(v) � v. Thus, F ts(�j�w) �disp Fs. Next, F ts(�j�w) �disp Fw =)
Fw �st F ts(�j�w) since the upper bound of the supports, �w, are the same. Thus,
Sw � C. Since F ts(�j�w) �disp Fw, fw(v) � f ts(xj�w) must hold for any v 2 Sw, where
x satis�es Fw(v) = F ts(xj�w). Since Fw �st F ts(�j�w), x � v. Thus, for any v 2 C,

fw(v)

Fw(v)
=

fw(v)

F ts(xj�w)
� f ts(xj�w)
F ts(xj�w)

=
fs(x)

Fs(x)
� fs(v)

Fs(v)
;

where the second inequality comes from the log-concavity of Fs. This proves the �rst

part of the Lemma. By (1) and the assumed log-concavity of the function Fs(ev), the
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proof of the �rst part can be applied to prove the second part.

In words, if Fw is more disperse than F ts(�j�w) then it is possible to conclude
that Fw �rh Fs. Note, as explained in the proof, that F ts(�j�w) �disp Fw implies
Fw �st F ts(�j�w). Together, Proposition 1 and Lemma 3 signify that Fw �st F ts(�j�w)
is necessary for Fw �rh Fs and, in a sense, �almost su¢ cient�as well. Note that if
Fw coincides with F ts then F

t
s(�j�w) �disp Fw and Fw �rh Fs are trivially satis�ed.

4 Between a shift and a stretch

This section begins by considering four benchmark examples. The idea is then to use

these benchmarks to establish robust classes of environments where the FPA can be

shown to dominate the SPA.

4.1 Four benchmark examples

To provide a �rst illustration of Theorem 1, consider the following four examples. The

�rst two examples essentially coincide with Maskin and Riley�s (2000) stretch and

shift models, respectively. These were also examined and more thoroughly discussed

in Kirkegaard (2011b).

Example 1 (truncations and stretches): Assume Fs is log-concave and that

Fw is a truncation of Fs, i.e. Fw = F ts as de�ned earlier. Alternatively, Fs can be

viewed as a �stretched�version of Fw, which is the interpretation given in Maskin

and Riley (2000). It has already been established that F ts �rh Fs (Lemma 3). By
log-concavity,

fw(v)

Fw(v)
=
fs(v)

Fs(v)
� fs(x)

Fs(x)

for any x 2 [v; r(v)]. Since Fs(x) � Fw(v) for any x 2 [v; r(v)], the inequality

necessitates fs(x) � fw(v) for all x 2 [v; r(v)], implying (2). Theorem 1 now applies.

N

Example 2 (horizontal shifts): Assume that Fs is convex and log-concave.

Assume Fw is obtained by shifting Fs to the left, or Fw(v) = Fs(v+a), for v 2 [�w; �w],
where a = �s � �w = �s � �w > 0 and �w � 0. Since r(v) = v + a, Fw =disp Fs. By

12



Lemma 1, (2) is satis�ed. By logconcavity,

fw(v)

Fw(v)
=
fs(v + a)

Fs(v + a)
� fs(v)

Fs(v)
, for all v 2 C,

or Fw �rh Fs. Theorem 1 can now be invoked. N

Example 3 (vertical shifts): Assume Fs and Fw are concave and that Fw is a

vertical shift of Fs on C 6= ;. That is, Fw(v) = Fs(v) + 1 � Fs(�w) for v 2 [�s; �w],
where �s > �w > �s > 0. On [�w; �s), Fw is some (unspeci�ed) concave function,

with �w � 0. For v 2 C,
Fw(v)

Fs(v)
=
1� Fs(�w)
Fs(v)

+ 1;

which is decreasing. Hence, Fw �rh Fs. By concavity, fw(v) � fs(x) for all x 2 [v; �s],
implying that (2) is satis�ed as well. Theorem 1 applies once again. N

Remark A: Comparing Examples 2 and 3, the former satis�es fw(v) = fs(r(v)) and

the latter fw(v) = fs(v) on C. Hence, (2) is satis�ed �with equality�at one of the

endpoints of the interval [v; r(v)]. Indeed, if Fw lies anywhere above the horizontal

or vertical shift of Fs whose support has the same end-point, �w, then (2) cannot be

satis�ed.13 Thus, Examples 2 and 3 identify the boundaries of condition (2) and thus

complement Proposition 1. 4

Example 4 (rescaling): Assume Fs(ev) is convex but log-concave. Assume Sw =h
�s

; �s


i
, where  > 1. Thus, either �s = �w = 0 or �s > �w > 0. Finally, assume

r(v) = v, which implies Fw =� Fs. If C 6= ;, then by Lemma 3, F ts �� Fs =� Fw
and therefore Fw �rh Fs. Lemma 2 implies condition (3) is satis�ed. Thus, the FPA
dominates the SPA. N

Remark B: The di¤erence between Examples 1 and 4 is signi�cant. In the former,

the truncation changes the shape of the density. For example, fw may be monotonic

even if fs is not. In contrast, the rescaling in Example 4 preserves the shape of the

density. The examples coincide only if Fs is a power distribution with �s = 0. There

are two ways of transforming Fs to get Fw; Fw can be written Fw(v) = G(Fs(v)) or

13If Fw(x) > Fs(v + �s � �w) for some x 2 (�w; �w) then Fw cannot be less disperse than
Fs(v+�s��w) and still satisfy Fw(�w) = 1 = Fs(�w +�s��w). Since Fhs =disp Fs, condition (2)
is then violated. For similar reasons, condition (2) is violated if Fw(x) > F vs (xj�w) for some x 2 C.
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Fw(v) = Fs(r(v)). G is a linear transformation in Example 1. On the other hand, it

is r that is linear in Example 4.14

However, Examples 2 and 4 are intimately related. The di¤erence between bidders�

valuations is an additive term in Example 1, r(v) = v+a. Thus, Fw =disp Fs; r(v)�v
is constant because the dispersive order is location free. In Example 4, the di¤erence

is a multiplicative term, r(v) = v. Therefore, Fw =� Fs;
r(v)
v
is constant because the

star order is scale free.15 For completeness, note that the convex transform order is

scale and location free; if r(v) = v + a then Fw =c Fs. 4

The more interesting and challenging case is when C 6= ; since both conditions in
Theorem 1 then comes into play. Therefore, consider Fs �xed and assume �w > �s.

For any � 2 (�s; �s), let F hs (vj�) = Fs(v+�s��) denote a horizontal and left-ward
shift of Fs, such that the new distribution�s support ends at �. The weak bidder�s

distribution in Example 2 takes this form. Let �h denote the lowest end-point of

this distribution�s support. Technically, it is possible that �h < 0 (depending on �),

in which case the distribution does not satisfy the assumptions made in Section 2.

Nevertheless, it remains a useful benchmark. Let rh(vj�) = F�1s (F hs (vj�)). Similarly,
let F vs (vj�) denote a vertical shift of Fs (as in Example 3), with the added requirement
that f vs (vj�) = fs(�s) for all v 2 [�v; �s]. Here, it is also possible that �v < 0. Note
that if fs is increasing then F vs (vj�w) �st F hs (vj�w). The opposite holds if fs is
decreasing. Finally, let F rs (vj�w) denote a rescaling of Fs such that �s


= �w (as

in Example 4). Let rm(vj�) = F�1s (Fms (vj�)), where m 2 ft; h; v; rg, denote the r
function in the four benchmarks.

Given assumptions of log-concavity of Fs or Fs(ev), Examples 2 �4 establishes

that F hs �rh Fs, F vs �rh Fs, and F rs �rh Fs. Thus, by Proposition 1, F ts �rst order
stochastically dominates the other three benchmarks. In other words, there is a gap

between F ts and F
h
s , say. In the following, I will derive conditions that ensure the

FPA is more pro�table than the SPA whenever Fw lies between F ts and one of the

other benchmarks.

14Bagnoli and Bergstrom (2005, Section 5.3) write that a truncation is a �linear transformation�
of the original distribution function. Unfortunately, they appeal to a result that relies on r, not
G, being linear in order to �prove� their Theorem 9, which is erroneous. It is easy to construct
examples where their claims concerning log-convex functions are untrue.

15Kirkegaard (2011b) shows that the FPA is also superior in the two models if the terms a and
, respectively, are private information.
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4.2 Fs is convex

To begin, consider the strongest curvature assumptions in Maskin and Riley�s (2000)

two models, namely that Fs is convex but log-concave. In this case, Corollary 1,

below, uni�es and extends Maskin and Riley�s (2000) results.

Corollary 1 (Intermediate dispersion) Fix Fs and �w 2 (�s; �s). Assume Fs is
convex but log-concave. Then, the FPA yields strictly higher expected revenue than

the SPA if F ts(�j�w) �disp Fw �disp F hs (�j�w) =disp Fs.16

Proof. Lemma 1 implies (2) is satis�ed. Lemma 3 establishes Fw �rh Fs.
Figure 1 in the introduction illustrates Corollary 1. It applies if, for instance,

Fw(v) =
Fs(v + �s � �w)
Fs(�w + �s � �w)

; v 2 [�w; �w]; (6)

such that Fw is obtained by �rst shifting Fs leftward, and then truncating it.17 Maskin

and Riley (2000, p. 423) allude to this possibility, but do not provide any details or

proof.

Using Proposition 1, Fw �rh Fs is violated if Fw �disp F ts(�j�w), since F ts(�j�w) �st
Fw in that case. Likewise, by Remark A, if F hs (�j�w) �disp Fw then condition (2) is
violated. Thus, a problem arises if Fw is either too disperse or not disperse enough.

In this light, Corollary 1 signi�es that intermediate dispersion of Fw, compared to the

benchmarks, are �almost�necessary and su¢ cient for the conditions of Theorem 1

to hold when Fs is convex and log-concave. The quali�er is due to the fact that the

dispersive order is not a complete order.

Corollary 1 relates Fw to the benchmark distributions F hs (vj�w) and F ts(vj�w). It is
also of interest to compare Fw directly to Fs. In the following, the assumption that Fs
is log-concave is strengthened. It is then possible to describe qualitative relationships

16The assumptions in the proposition imply that �w 2 [�hw; �s]. It should be understood from
the description of the model in Section 2 that it is also required that �w � 0. From Lemma 3,
F ts(�j�w) �disp Fs =disp Fhs , so the set of Fw functions satisfying the condition in Corollary 1 is
non-empty.

17Write Fw(v) = F ts(br(v)j�w). If Fw is described by (6) then br(v) � v + �s � �w and
br0(v) = fs(v + �s � �w)

Fs(v + �s � �w)
Fs(br(v))
fs(br(v)) � 1;

by log-concavity. Thus, F ts(�j�w) �disp Fw. The proof that Fw(v) �disp Fhs (�j�w) is similar.
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between Fw and Fs that are su¢ cient for the FPA to dominate the SPA. Recall that

if Fw �disp Fs, then the absolute distance between r(v) and v is increasing. The
implication of the next result is that the FPA is superior if the asymmetry between

bidders do not increase too fast with type, or r(v)
v
is decreasing.

Corollary 2 Assume Fs(v) is convex and Fs(ev) is log-concave. Then, the FPA yields
strictly higher expected revenue than the SPA if Fw �disp Fs �� Fw.18

Proof. Assume �w � �s. By Lemma 3, Fs �� Fw implies F ts(�j�w) �� Fs �� Fw and
therefore Fw �rh Fs. Since Fw �disp Fs and Fs is convex, condition (2) is satis�ed
as well. The result also holds if �w < �s, since only condition (2) is required in that

case.

In the spirit of Corollary 1, it is also possible to show that the FPA dominates

when r(v) takes intermediate values and satis�es certain regularity conditions. Note,

by Lemma 3, that rt0(vj�w) � 1 = rh0(vj�w) for all v 2 C when Fs is log-concave.

Proposition 2 (Rank-mixtures) Fix Fs and �w 2 (�s; �s). Assume Fs is convex
and log-concave. Then, the FPA yields strictly higher expected revenue than the SPA

if r(vj�w) is steeper than rh(vj�w) but �atter than rt(vj�w); r0(vj�w) � rh0(vj�w) for
all v 2 Sw and r0(vj�w) � rt0(vj�w) for all v 2 C.

Proof. The assumptions that r0(vj�w) � rh0(vj�w) = 1 and Fs is convex mean that
condition (2) is satis�ed, by the �rst part of Lemma 1. The assumptions in the

proposition also imply that rt(vj�w) � r(vj�w) � rh(vj�w) on C. Thus, for v 2 C,

fw(v)

Fw(v)
=
fs(r(vj�w))
Fs(r(vj�w))

r0(vj�w) �
fs(r

t(vj�w))
Fs(rt(vj�w))

r0(vj�w) �
fs(r

t(vj�w))
Fs(rt(vj�w))

rt0(vj�w) =
fs(v)

Fs(v)
;

where the �rst inequality comes from r(vj�w) � rt(vj�w) and the log-concavity of Fs.
The second inequality comes from r0(vj�w) � rt0(vj�w).
The proposition applies if Fw is a �rank-mixture�of F hs and F

t
s . Clearly, this has

a similar �avor as Corollary 1. However, neither implies the other.

18If Fs is a convex power distribution with �s = 0 then lnFs(e
v) is linear and the conditions in

Theorem 1 are satis�ed if and only if r(0) = 0, r0(v) � 1, and r(v)=v is decreasing. It is possible
to construct examples where fs is increasing but fw has a peak. Assume fs(v) = 2v, v 2 [0; 1] and
r(v) = 4ve�v, v 2 [0; 0:357]. Then, fw(v) = 2r(v)r0(v) is non-monotonic. This result should be
contrasted with Maskin and Riley�s (2000) two models, in which fw never has more peaks than fs
(see Remark B).
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4.3 Fs is concave

A counterpart to Corollary 2 exists when Fs is concave.

Corollary 3 Assume Fs is concave and that Fw(v) = G(Fs(v)), v 2 [�s; �w], with
�w > �s and G

0(�) � 1. If G(x)=x is decreasing then the FPA yields strictly higher

expected revenue than the SPA. G(x)=x is decreasing if G is concave.19

Proof. Fw(v)
Fs(v)

= G(Fs(v))
Fs(v)

is decreasing by assumption, implying Fw �rh Fs. Since
fw(v) = G

0(Fs(v))fs(v) � fs(v), Lemma 1 ensures condition (2) is satis�ed.
However, the main result of this subsection is a counterpart to Corollary 1 and

Proposition 2. Recall that f ts(vj�w) � f vs (vj�w) for all v 2 C.

Proposition 3 (Mixtures) Fix Fs and �w 2 (�s; �s). Assume Fs is concave. Then,
the FPA yields strictly higher expected revenue than the SPA if Fw is steeper than F vs
but �atter than F ts ; fw(v) � f vs (vj�w) for all v 2 Sw and fw(v) � f ts(vj�w) for all
v 2 C.

Proof. By Lemma 1, the concavity of Fs and fw(v) � f vs (vj�w) � fs(maxfv; �sg)
for all v 2 Sw ensures condition (2) is satis�ed. Since fw(v) � f ts(vj�w) for all v 2 C,
Fw �st F ts(�j�w) and therefore

fw(v)

Fw(v)
� f ts(vj�w)
F ts(�j�w)

=
fs(v)

Fs(v)
;

thereby proving Fw �rh Fs.
Proposition 3 applies if Fw is a convex combination (a mixture) of F vs and F

t
s on

C, (with an appropriate di¤erentiable extension on Sw=C).

4.4 Fs(e
v) is convex

Example 4 does not require fs to be monotonic. Assume from now on that Fs(ev)

is convex but log-concave.20 Hence, vfs(v) is increasing but
vfs(v)
Fs(v)

is decreasing. The

density need not be monotonic.

19The transformation in Example 1 is linear and thus a special case of the one in Corollary 3.
However, with the linear transformation in Example 1 it is possible to weaken the assumption that
Fs is concave and instead assume only that it is log-concave.

20If F is the uniform distribution then F (ev) is both strictly convex and strictly log-concave
whenever �s > 0. Write Fs(v) = (1 � ")F (v) + "H(v), " 2 (0; 1), where F (v) is the uniform
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Once again, a counterpart to Corollary 1 can be derived. Recall from Example 4

that F ts �� F rs =� Fs.

Proposition 4 Fix Fs and �w 2 (�s; �s). Assume Fs(ev) is convex but log-concave.
Then, the FPA yields strictly higher expected revenue than the SPA if F ts(�j�w) ��
Fw �� F rs (�j�w).

Proof. Since F ts(�j�w) �� Fw, Lemma 2 ensures Fw �rh Fs. Lemma 3 guarantees
condition (3) is satis�ed.

Proposition 4 applies if Fw is obtained by �rst scaling down Fs, and then truncating

it, Fw(v) =
Fs(v)
Fs(�w)

, where �w =
�s

, �w 2

�
�s

; �s


i
, and  � 1.

5 Interpretation & application of �disp;��; and �c
Bulow and Roberts (1989) argue that the auction design problem is analogous to the

monopoly pricing problem. Intuitively, comparing di¤erent distributions is equivalent

to comparing di¤erent demand functions. Thus, it is well known that the common

stochastic orders of strength can be used to compare demand functions in intuitive

ways. Here, I show that the stochastic orders of dispersion and spread also have

natural interpretations.

Compare two distribution functions, F1 and F2, with support S1 and S2 respec-

tively. De�ne r(v) = F�11 (F2(v)). Thinking of v as a price, the survival function

qi(v) � 1�Fi(v) has the properties of a demand curve in a market with a continuum
of consumers of mass one, distributed on Si, i = 1; 2. For the most part, no stochas-

tic order of strength need to be imposed in this section, but to �t with the model in

Section 2 bidder 1 could be thought of as strong and bidder 2 as weak. For example,

if F2 �st F1, then q1(v) � q2(v). It is well known, and easy to show, that hazard

rate dominance would allow the elasticities in the two markets to be ordered (see (7),

below).

distribution and H(v) is a distribution on Ss. Assume H has �nite density. If �s > 0, Fs(ev) is
then convex and log-concave when " is su¢ ciently small. Note that fs may have arbitrarily many
peaks. As another example, assume Fs is obtained by truncating a Normal distribution with mean
:5(�s + �s). If �s > 0 and the variance is su¢ ciently large, then Fs(e

v) is convex and log-concave
(the truncated Normal distribution converges to the uniform distribution as the variance increases).
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The relative change in demand following a marginal price increase can be measured

by ����q0i(v)qi(v)

���� = fi(v)

1� Fi(v)
and "i(v) =

����vq0i(v)qi(v)

���� = vfi(v)

1� Fi(v)
: (7)

For future reference, de�ne marginal revenue evaluated at price v as

Ji(v) = v

�
1� 1

"i(v)

�
= v � 1� Fi(v)

fi(v)
:

The interpretation of Ji as marginal revenue is due to Bulow and Roberts (1989).

Myerson (1981) refers to Ji as bidder i�s virtual valuation.

Stochastic orders of strength can be used to compare demand functions at any

given price. The orders of dispersion and spread instead allow comparisons to be

made at any given quantity (or probability of sale), as illustrated next. The third

part assumes that densities are di¤erentiable.

Proposition 5 For any v 2 S2:

1. r(v)� v increasing()
��� q02(v)q2(v)

��� � ��� q01(r(v))q1(r(v))

��� :
2. d

dv

�
r(v)
v

�
� 0() "2(v) � "1(r(v)):

3. r00(v) � 0() J 02(v) � J 01(r(v)):21

Proof. The �rst part follows directly from (7) and f2(v) � f1(r(v)). The second part
follows from

d

dv

�
r(v)

v

�
/ r0(v)v�r(v) = f2(v)

f1(r(v))
v�r(v) / f2(v)v�f1(r(v))r(v) / "2(v)�"1(r(v));

while the third part is due to

r00(v) � 0() f 02(v)

(f2(v))
2 �

f 01(r(v))

(f1(r(v)))
2 () J 02(v) � J 01(r(v)):

21Obviously, if these properties hold for all v 2 S2 then F2 �disp F1, F2 �� F1, and F2 �c F1,
respectively.
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In the monopoly interpretation, Proposition 5 implies that, starting at comparable

quantities, a marginal price increase would have a greater impact on the less disperse

market.

F2 �disp F1 implies that the inverse demand curve p2(q) = F�12 (1 � q) is �atter
than p1(q) = F�11 (1� q). In contrast, p1(q)

p2(q)
is decreasing if F2 �� F1.

Expressing marginal revenue as a function of quantity,

MRi(q) � Ji(F�1i (1� q)) = fi(F
�1
i (1� q))F�1i (1� q)� q
fi(F

�1
i (1� q))

; (8)

for q 2 [0; 1], it follows that

MR0i(q) = J
0
i(F

�1
i (1� q)) �1

fi(F
�1
i (1� q))

: (9)

Assuming F2 �disp F1, cases in which either F1 �� F2 or F1 �c F2 also hold have
interesting interpretations.

Corollary 4 If F2 �disp F1 �c F2 then jMR01(q)j � jMR02(q)j. If F2 �disp F1 �� F2
then MR1(q) �MR2(q) whenever MR2(q) � 0.22

Proof. For the �rst part, if r(v) = F�11 (F2(v)) satis�es r0(v) � 1 and r00(v) � 0 then
f1(F

�1
1 (1 � q)) � f2(F�12 (1 � q)) and J 01(F�11 (1 � q)) � J 02(F�12 (1 � q)), respectively

(see Proposition 5.3). The result then follows from (9). For the second part, F1 �� F2
implies f1(F�11 (1�q))F�11 (1�q) � f2(F�12 (1�q))F�12 (1�q). The result then follows
from (8).

Wang (1993) compares auctions and posted-price selling in a model where other-

wise symmetric bidders arrive sequentially. One of his comparative statics results is

that if the marginal revenue curve is steeper for distribution F1 than distribution F2,

then auctions are more likely to dominate posted-price selling when all bidders draw

types from F1 rather than F2. Wang (1993) proves that for this to hold, F1 must

necessarily be more disperse than F2. Corollary 4 implies that F2 �disp F1 combined
with F1 �c F2 is su¢ cient. First order stochastic dominance is not required for this
result.

22Mares and Swinkels (2011a) consider procurement auctions in which bidders� costs, c, are
private information. Bidder i�s virtual cost is !i(c) = c +

Fi(c)
fi(c)

. Counterparts to Corollary 4 exist
for �marginal costs� if (i) F2 �disp F1 and F2 �c F1 or (ii) F2 �disp F1 and F2 �� F1. Mares and
Swinkels (2011a) assume (i).
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Although Johnson and Myatt�s (2006) focus is very di¤erent from Wang�s (1993),

many of the �ingredients� in their analysis are similar. Two distributions satisfy

Johnson and Myatt�s (2006) rotation order if they cross precisely once.23 They are

also interested in distributions whose marginal revenue curves coincide at most once,

which is obviously the case if one marginal revenue curve is steeper than the other.

Both Wang (1993) and Johnson and Myatt (2006) explicitly mention variance ordered

distributions, where Fi can be written Fi(v) = F
�
v��i
�i

�
. In this case, r(v) is linear,

with r0(v) > 1 whenever �1 > �2. Thus, F2 �disp F1 but F1 =c F2. The result in the
previous paragraph therefore applies.

Moreover, assuming non-negative marginal costs, the important comparison of

marginal revenues is at quantities where they are positive. It is irrelevant how many

times marginal revenue curves cross below zero. Corollary 4 implies that marginal

revenues are ordered in the positive quadrant if F2 �disp F1 �� F2. Thus, this

combination of the dispersive and star orders makes it possible to determine on which

market the optimal quantity is highest. Note, however, that F2 �disp F1 �� F2 implies
r(v) � r0(v)v � v, or F2 �st F1. With the stronger assumption that F2 �hr F1, it is
also possible to determine on which market the optimal price is the highest. Indeed,

both the price and the quantity sold would be higher on market 1. In the auction

setting, an optimal auction with n clones of bidder 1 would thus have a higher reserve

price but nevertheless yield a higher probability of sale than an optimal auction with

n clones of bidder 2.

6 Conclusion

Keeping the strong bidder�s distribution �xed, this paper establishes that the FPA

dominates the SPA whenever the weak bidder�s distribution falls in the gap between

a truncation and a shift of the strong bidder�s distribution, subject to some curvature

and regularity assumptions. Thus, robust environments are described in which one

auction dominates another. In contrast, the existing literature has focused mainly on

ranking auctions in isolated examples.

The results of the paper rely critically on a new result that links the dispersive

23The rotation order and the dispersive order are related. If two distributions cross and r(v)� v
is strictly increasing then they cross exactly once. However, as Ganuza and Penalva (2010) point
out, dispersion only requires r(v) � v to be weakly increasing, which permits the two distributions
to coincide on an interval.
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and star orders to reverse hazard rate dominance. Here, a pivotal role is played by

the truncation of the strong bidder�s distribution. In fact, a complementary result

proves that reverse hazard rate dominance is violated if the weak bidder�s distribution

is between the strong bidder�s distribution and a truncation hereof. In other words,

reverse hazard rate dominance cannot apply unless the asymmetry is su¢ ciently large.

A challenge for auction theory is thus identi�ed; what are the properties of bidding

strategies and revenue when the asymmetry is small?24

The central role played by the dispersive order complements recent �ndings by

Kirkegaard (2011c) and Mares and Swinkels (2011a, 2011b) in other asymmetric

auction settings. Thus, the dispersive order may prove to be as useful for the analysis

of auction design as the more commonly used stochastic orders of strength.

References

[1] Bagnoli, M. and Bergstrom, T., 2005, Log-concave probability and its applica-

tions, Economic Theory, 26, 445-469.

[2] Bulow, J. and Roberts, J., 1989, The Simple Economics of Optimal Auctions,

Journal of Political Economy, 97, 1060-1090.

[3] Cheng, H., 2006, Ranking sealed high-bid and open asymmetric auctions, Journal

of Mathematical Economics, 42, 471-498.

[4] Cheng, H., 2010, Asymmetric FPAs with a Linear Equilibrium, mimeo.

[5] Doni, N. and Menicucci, D., 2011, Revenue comparison in asymmetric auctions

with discrete valuations, mimeo.

[6] Fibich, G., and Gavious, A., 2003, Asymmetric FPAs - A Perturbation Approach,

Mathematics of Operations Research, 28, 836-852.

[7] Ganuza, J.-J. and Penalva, J.S., 2010, Signal Ordering based on Dispersion and

the Supply of Private Information in Auctions, Econometrica, 78, 1007-1030.

[8] Gavious, A. and Minchuk, Y., 2011, Ranking Asymmetric Auctions, Mimeo.

24Kirkegaard (2009) examine bidding behavior without any assumptions of reverse hazard rate
dominance. Gavious and Minchuk (2011) compare revenue in auctions with small asymmetries.
However, both papers assume bidders share the same support, which is not the case in the current
paper.

22



[9] Gayle, W., and Richard, J-F, 2008, Numerical Solutions of Asymmetric, First

Price, Independent Private Values Auctions, Computational Economics, 32:

245-275.

[10] Hopkins, E., 2007, Rank-Based Methods for the Analysis of Auctions, mimeo.

[11] Jia, J., Harstad, R.M., and Rothkopf, M.H., 2010, Information Variability Im-

pacts in Auctions, Decision Analysis, 7, 137-142.

[12] Johnson, J.P. and Myatt, D.P., 2006, On the Simple Economics of Advertising,

Marketing, and Product Design, American Economic Review, 96, 756-784.

[13] Kaplan, T.R. and Zamir, S., 2011, Multiple Equilibria in Asymmetric First-Price

Auctions, mimeo.

[14] Katzman, B., Reif, J., and Schwartz, J.A., 2010, The relation between variance

and information rent in auctions, International Journal of Industrial Organi-

zation, 28, 127-130.

[15] Kirkegaard, R., 2009, Asymmetric First Price Auctions, Journal of Economic

Theory, 144, 1617-1635.

[16] Kirkegaard, R., 2011a, Ranking Asymmetric Auctions using the Dispersive Or-

der, mimeo.

[17] Kirkegaard, R., 2011b, A Mechanism Design Approach to Ranking Asymmetric

Auctions, Econometrica, forthcoming.

[18] Kirkegaard, R., 2011c, Favoritism in Asymmetric Contests: Head Starts and

Handicaps, mimeo.

[19] Krishna, V., 2002, Auction Theory, Academic Press.

[20] Lebrun, B., 1996, Revenue Comparison Between The First and Second Price

Auctions in a Class of Asymmetric Examples, mimeo.

[21] Lebrun, B., 1999, First Price Auctions in the Asymmetric N Bidder Case, In-

ternational Economic Review, 40, 125-142.

[22] Lebrun, B., 2006, Uniqueness of the equilibrium in FPAs, Games and Economic

Behavior, 55, 131�151.

[23] Li, H., and Riley, J., 2007, Auction Choice, International Journal of Industrial

Organization, 25, 1269-1298.

23



[24] Mares, V. and Swinkels, J.M., 2011a, On the Analysis of Asymmetric First Price

Auctions, mimeo.

[25] Mares, V. and Swinkels, J.M., 2011b, Near-Optimality of Second Price Mecha-

nisms in a Class of Asymmetric Auctions, Games and Economic Behavior,

72, 218-241.

[26] Marshall, R.C., Meurer, M.J., Richard, J-F, and Stromquist, W., 1994, Nu-

merical Analysis of Asymmetric First Price Auctions, Games and Economic

Behavior, 7, 193-220.

[27] Maskin, E., and Riley, J., 1985, Auction Theory with Private Values, American

Economic Review, 75, 150-155.

[28] Maskin, E. and Riley, J., 2000, Asymmetric Auctions, Review of Economic Stud-

ies, 67, 413-438.

[29] Milgrom, P., 2004, Putting Auction Theory to Work, Cambridge University

Press.

[30] Myerson, R.B., 1981, Optimal Auction Design, Mathematics of Operations Re-

search, 6, 58-73.

[31] Shaked, M. and Shantikumar, J.G., 2007, Stochastic Orders, Springer.

[32] Szech, N, 2011, Optimal advertising of auctions, Journal of Economic Theory,

146, 2596-2607.

[33] Vickrey, W., 1961, Counterspeculation, Auctions, and Competitive Sealed Ten-

ders, Journal of Finance, 16, 8-37.

[34] Wang, R., 1993, Auctions vesus Posted-Price Selling, American Economic Re-

view, 83, 838-851.

24


