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Abstract

We consider a network of intermediaries facilitating exchange between a buyer and
a seller. Intermediary traders face a private trading cost, a network characterizes the
set of feasible transactions, and an auction mechanism sets prices. We investigate
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Figure 1: A trading network.

Intermediation in markets is commonplace. Consider the situation depicted in Figure 1.

Sam is a farmer growing watermelons in California while Beth is a consumer of watermel-

ons in New England. There are gains from trade between Sam and Beth; however, rarely

will Sam and Beth trade directly—they may not even know each other. Instead, trade be-

tween them is mediated by a network of intermediary agents {x1, x2, x3, y1, y2, y3, z}. These

intermediaries—such as wholesalers, transporters, distributors, or retailers—have invested

in market-specific technologies and have developed a web of trading relationships through

which Sam and Beth are linked. As Figure 1 emphasizes, there are many paths in the

economy through which Sam’s produce can arrive on Beth’s picnic table.

We study two cross-cutting dimensions of intermediary networks. First, networks encour-

age competition among intermediaries, especially those with similar links and relationships.

For example, noting their positions, x3 and y3 can perform similar tasks in the market of

Figure 1. Intuitively, markets with a high degree of competition among intermediaries are

robust—a shock experienced by a particular intermediary is unlikely to lead to market break-

down since competitors can step in. However, are equilibrium intermediary networks destined

to be robust or are fragilities and bottlenecks, which exaggerate the shocks experienced by

certain agents, likely to emerge? How severe are any associated welfare consequences?

Second, the persistence of a network of intermediaries as a facilitator of exchange implies

that there must be some definable distance between the seller and the buyer—a degree

of intermediation. In the market of Figure 1, at least three intermediaries are necessary
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to deliver Sam’s watermelons to Beth. But why three? For example, {x1, x2, x3} could

merge together, change the network of relationships in the economy, and thus shorten the

economic distance between Sam and Beth. In this regard, intermediary networks encourage

cooperation among dissimilar or complementary traders. Which economic forces counteract

such integrative impulses and add stability to the network of intermediary relationships? Are

all networked markets stable in the long term or are some network configurations unlikely

to persist?

To explore both dimensions of intermediation, we develop a model of endogenous network

formation. Intermediary traders have private information concerning their trading cost, an

auction mechanism sets prices, and a free-entry/zero-profit condition drives the equilibrium

network formation process. Our study speaks to the fragility and complexity of intermediary

markets. We argue that intermediary networks have a natural tendency to organize into a

structure that exaggerates the negative shocks experienced by some traders. Bottlenecks

between the buyer and the seller can arise in equilibrium with negative consequences for

market robustness as a whole. Moreover, network externalities imply that many network

structures—with significant differences in efficiency—are often possible in equilibrium. We

also argue that traders’ incentives to shorten distances in the economy are closely tied to the

underlying trading technology. Indeed, a market may exhibit a very large distance between

buyers and sellers and be robust to traders integrating or forming collusive relationships with

neighbors. Despite not always reflecting an efficient market organization, very extensive and

complex intermediary markets can be stable.

We develop our argument progressively. Section 1 formally introduces our model. While

our lighthearted introductory vignette with Sam and Beth focused on the produce market,

the applicability of our analysis to many real and financial markets is immediate. Indeed,

Spulber (1996) argues that intermediation, broadly interpreted, accounts for a quarter of U.S.

economic output. Beyond the noted application to the exchange of physical goods, in section

1 we offer alternative interpretations of our model with applications to production and to

financial markets. Indeed, many economic activities can be considered as involving a high

degree of intermediation services. Our analysis stresses unpacking the black box between

buyers and sellers so that the network of relationships underlying these transactions becomes

a key contributor behind successful markets.

As a prelude to our main analysis, Section 2 briefly discusses price-formation and ex-

change taking the intermediary network as fixed and exogenous. Section 3 tackles the first

dimension of intermediation by endogenizing the level of competition among intermediaries
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while holding the degree of intermediation fixed. Here we show that competitive intermediary

markets have a natural tendency to assume an equilibrium form which does not tend to pro-

mote market robustness. Roughly, intermediaries will congregate near the buyer with fewer

intermediaries linked to the seller. The asymmetric structure begets fragility in the market

as a whole. Section 4 considers the second dimension of intermediation and introduces our

notion of stable markets, which are immune to collusive arrangements among neighboring

intermediaries. Finally, noting a tension between stable markets and those with equilibrium

levels of trader competition, Section 5 reconciles the two ideas. We place our analysis in

the context of the wider literature on networked markets before concluding. An appendix

collects longer proofs not in the main text.

1 Model

An economy is characterized by three elements. First, agents are organized in a network

defining the set of trading possibilities. Second, each agent has a private trading cost deter-

mining the prudence of exchange. Finally, a trading protocol sets prices. After introducing

our model, we comment on our assumptions and we offer interpretations in relation to the

exchange of physical goods, to intermediate goods production, and to financial intermedia-

tion.

Trading Possibilities Trading possibilities are summarized by a directed graph 〈N , E〉.

N is the set of agents (nodes) and ij ∈ E is an edge indicating that agent i can sell an item

to agent j. Suppose that the network is given exogenously and that it is common knowledge.

In section 3 we discuss network formation.

Our network topology generalizes the incomplete trading networks analyzed by Gale

& Kariv (2009) and Figure 2 presents a typical example. Agents are arranged in rows

{0, 1, . . . , R + 1}.1 Let Nr be the set of agents in row r. Row R + 1 is inhabited only by the

seller (S). The seller is the originator of an asset. We assume that the seller is always willing

to sell her creation at a price normalized to zero. Row 0 is inhabited only by the buyer

(B) who is offering to pay v > 0 for the seller’s asset. Since we seek to study intermediary

behavior, for simplicity we assume that the buyer and the seller are passive agents. The seller

and buyer can be interpreted as metaphors for larger upstream and downstream markets

that the intermediaries take as given. Extensions allowing for multiple buyers and sellers or

1Our row numbering is opposite to the convention followed by Gale & Kariv (2009).
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Figure 2: A trading network with configuration n = (3, 2).

uncertain buyer valuations are easy to accommodate.

There exist gains from transferring the asset from the seller to the buyer; however, the

seller and the buyer cannot trade directly: SB /∈ E . Instead, there is a set of intermediary

traders who may buy and (re)sell the asset. Intermediaries inhabit rows r ∈ {1, . . . , R}. Row

r has nr traders and we call the vector n = (n1, . . . , nR) the configuration of intermediary

traders.2 Traders do not value the asset per se. Rather, they seek to earn trading profits

by facilitating network-conforming trades which move the asset from the seller to the buyer.

We assume that the trading network is not complete and instead constrains trade as follows:

An agent in row r can purchase the asset from any agent in row r + 1 and can

sell the asset to any agent in row r − 1. Other trades are not feasible.3

The example in Figure 2 is a trading network with R = 2 and a trader configuration n =

(3, 2). Traders in row 2 can buy directly from the seller and can resell the asset to traders in

row 1. We interpret R as measuring the degree of intermediation in an economy. The number

of traders in each row, n = (n1, . . . , nR), measures the competition among intermediaries.

Our analysis focuses on these two dimensions of trading markets.

Trading Costs We assume that each trader i in row r has a private trading cost θri ∈ {0, c̄}

where 0 < v < c̄. At the time of trading, each agent knows her own private trading cost but

is unaware of others’ realized trading costs. In this sense, the network structure captures

the set of (ex ante) potential trading relationships while agents hold residual uncertainty

2We use standard shorthand: n−r = (n1, . . . , nr−1, nr+1, . . . , nR) and n = (nr,n−r).
3If i ∈ Nr and j ∈ Nr−1, then ij ∈ E . Similarly, if i ∈ Nr, j ∈ Nr′ and r′ 6= r − 1, then ij /∈ E .
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concerning the set of economically worthwhile trading opportunities in a given trading period.

We take the distribution of trading costs to be common knowledge. Costs are distributed

independently and identically. The probability that a trader has a low trading cost is Pr[θri =

0] = p ∈ (0, 1). We consider private trading costs to behave like an inventory cost. A trader

incurs the private cost θri upon acquiring the asset even if who only intends to resell it.

Traders that do not encounter the asset do not incur a trading cost.

We interpret p as describing the trading technology. If p is very low, traders find it difficult

to trade since they are exposed to negative cost shocks with high probability. Alternatively,

1−p reflects the expected opportunity cost that a specific trader faces in participating in this

particular market versus other (not modeled) markets. If 1 − p is very high, despite being

a member of our trading network, agents have on average more promising opportunities

elsewhere.

Trading Protocol We assume that all trade occurs via second-price, sealed-bid auctions

and proceeds along the following timeline.

1. An agent in row r + 1 has the asset. She organizes an auction to sell it to someone in

row r.

2. Each agent in row r submits a bid from the set B = {ℓ} ∪ R+.

(a) The bid ℓ < 0 is a non-competitive bid equivalent to not participating in the

auction. An agent bidding ℓ cannot win the auction nor will she ever incur the

trading cost θri. If all agents in row r bid ℓ, the asset is not sold and it expires.

In this case, trade is said to break down.

(b) Bids bri 6= ℓ are competitive bids. The agent submitting the highest competitive

bid wins the auction. A lottery among high bidders resolves any ties.

3. The agent winning the auction makes a payment equal to the second-highest compet-

itive bid (or zero if all others bid ℓ) and incurs her private trading cost. Other agents

do not incur any costs.

4. The process repeats until the asset reaches the buyer or trade breaks down. By as-

sumption, the buyer pays v to purchase the asset from a trader in row 1.

We assume that all traders are risk neutral and wish to maximize trading profits net of

trading costs. If a trader never acquires the asset her payoff is zero. If a trader purchases
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the asset her payoff is given by

Resale Price − Price Paid − θri.

Discussion and Interpretations Our first key assumption concerns the economy’s net-

work structure. Our network is not complete but it has a regularized form making the

direction of trade discernible. The topology captures the notion that many traders can per-

form a similar function in the chain of intermediation. Furthermore, we believe that the

structure captures many of the qualitative features of trade in complex economic networks.

For example, we would not expect trade to exhibit cycles (Gale & Kariv, 2007). Similarly,

some branches of a more general network may be pruned if they are ancillary to trade.4 We

introduce additional asymmetries into our network structure when we investigate market

stability in Section 4.

Throughout we assume that all traders are ex ante symmetric, except for their position

in the network. Trader symmetry allows us to isolate the effects of the network structure

alone. Extending the analysis to ex ante asymmetric traders opens many new questions,

such as the selection of traders into systematically different intermediary roles, which we

hope to explore in future work.

Like Kranton & Minehart (2001) or Patil (2011), we rely on a second-price (equivalently,

an ascending auction) to structure exchange. Beyond capturing the flavor behind a com-

petitive bidding process, this format allows us to bracket trader bidding behavior and to

move quickly into a discussion of equilibrium network structures. Bidding one’s value is

still an equilibrium strategy and we exploit this simplification fully. That said, much of

our analysis is robust to a change in the auction format. In an earlier working paper (Ko-

towski & Leister, 2012), we developed our arguments around first-price sealed-bid auctions.

This alternative mechanism, where traders follow mixed strategies in equilibrium, offers a

rich set of predictions concerning price formation as trade unfolds. Our conclusions about

equilibrium networks carry over to alternative auction formats provided revenue equivalence

obtains. We leave to future research the introduction of other trading schemes or of more ex-

otic auction mechanisms. For example, Rubinstein & Wolinsky (1987) study a consignment

mechanism with middlemen while Zheng (2002) considers optimal auctions with resale. Al-

ternative treatments of network-mediated exchange focus on bargaining (Corominas-Bosch,

2004; Manea, 2011; Elliott, 2011; Siedlarek, 2011).

4For example, if the network had traders who are not on any path between the buyer and the seller, they
would not wish to participate in this market anyway.
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To aid intuition, above we described the trading procedure as proceeding sequentially.

In many markets, this assumption is natural. However, our trading game also has a static

counterpart. In this version, all bids are submitted simultaneously and the asset immediately

traverses the network, greedily following the path of the highest bids. The static variant

allows for a simple adaptation of our model as a (normal-form) experiment. It is a reasonable

approximation of a market where trade happen very rapidly, as in finance, with minimal

strategic revisions by traders during the course of particular transaction. The experimental

study of Gale & Kariv (2009) is an implementation of such a design.

In the introduction, we sketched our model’s interpretation concerning the exchange of

tangible goods. As in our produce example, a network of intermediaries acts as a geographic

and temporal bridge between producers and consumers. Another interpretation of our set-up

is as a model of production with intermediate inputs. A consumer wishes to purchase one

unit of good q1 at a price of v. Only firms i ∈ N1 have the technology to produce good q1.

The production function of good q1 combines one unit of labor (for example), at cost θ1i,

with one unit of intermediate good q2; and so on up to intermediate good qR+1, which is a

natural resource available at a rate of one unit per trading period. Interpreted in this light,

our model emphasizes the importance of complementaries in production—a theme explored

extensively in the literature on economic development (Kremer, 1993). Nagurney & Qiang

(2009) present a network model, with a topology reminiscent of our networks, to describe

production inside a firm.5

Our model also has an interpretation when viewed as a financial market.6 Suppose an

investor (the seller) has one unit of capital available. A safe asset offers a return normalized

to zero. Some firm seeking financing (the buyer) offers an expected rate of return of v > 0 for

the funds. Intermediary financial institutions—banks, brokers, insurance companies, mutual

funds, etc.—link the investor and the firm. The investor initially allocates her funds with

the intermediary promising the highest return. The intermediary does the same, and so

on until the resources reach the firm. Intermediaries skim small fractions of the expected

return promised by the firm as a payment for their intermediation services. On average

intermediaries earn non-negative profits but particular intermediaries may experience losses

if they are unlucky in allocating the funds among downstream interests.

5Noting the production interpretation, our model therefore covers cases in between pure intermediation
and pure production. For example, intermediaries may “add value” to an item by introducing packaging or
a specific branding. Often which activities are labeled as “intermediation” is quite flexible and our model
accommodates many such instances.

6This interpretation may be easier to appreciate if prices are set with a first-price auction.
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We analyze our model in three steps. Section 2 briefly examines intermediary behavior

holding the trading network fixed. Section 3 endogenizes the degree of competition among

traders (n) while Section 4 examines the stability of the market’s other dimension, the degree

of intermediation (R).

2 Exogenous Trading Networks

We begin by recording some facts about trader behavior in a fixed trading network. Fix

an economy with R rows of intermediaries and a market configuration n = (n1, . . . , nR).

It is well-known that the second-price auction admits multiple equilibria, and indeed this

observation carries over to our model. Following tradition, however, we restrict our analysis

to the equilibrium where all traders truthfully bid their value for the item that they can buy.

Theorem 1. Let n = (n1, . . . , nR) be a fixed network configuration and define

δ(n) = 1 − (1 − p)n−1(1 + p(n − 1)).

Let νr =
∏r−1

k=1 δ(nk)v. The strategy profile where each bidder i ∈ Nr bids νr if θri = 0 and ℓ

otherwise is a Bayesian-Nash equilibrium of the trading game.

Proof. In a second-price auction, truthfully bidding one’s value is a dominant strategy. Thus,

it suffices to show that νr is the value of the asset to a trader in row r given the bids of

others.7 The argument is by induction.

All low-cost traders in row 1 will bid v since this is the price they can secure by selling

the asset to the buyer. High cost traders bid ℓ since v < c̄. Now consider a trader in row 2.

If she has the asset, one of three events may happen when she tries to resell it to an agent

in row 1:

1. There are at least two low-cost agents in row 1. Since each such trader will bid v, the

item will transact at that price.

2. There is exactly one low-cost agent in row 1. In this case the asset sells at a price of

zero since there is only one competitive bid submitted.

3. There are no low-cost agents in row 1. In this case the asset does not sell at all.

7Generally, the strategy in Theorem 1 is not a dominant strategy since νr depends on the strategies of
other bidders.
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The probability of case 1 is 1 − (1 − p)n1 − n1p(1 − p)n1−1 = δ(n1). Therefore the expected

resale value is ν2 = δ(n1)v. By a similar argument, if each low-cost agent in row r − 1 bids

νr−1, the expected value of the asset to a trader in row r is νr = δ(nr−1)νr−1. The conclusion

follows.

While the equilibrium bidding strategy outlined in Theorem 1 is simple, it is nevertheless

reflective of many qualitative features of exchange. First, since δ(n) < 1 expected prices and

bids by low-cost traders are nondecreasing as the asset approaches the final buyer. Second,

since δ(n) is increasing in both p and n (Lemma A.1 in the appendix), transaction prices

increase as prevalence of low-cost traders increases (p ↑) and as the degree of competition in

the economy increases (nr ↑). Changes in nr, have an asymmetric effect for different parts

of the trading network. Changes in this value only impact the bids and transaction prices

seen in rows r′ > r.8

Despite its simplicity and intuitive appeal, in practical terms the equilibrium outlined

in Theorem 1 actually demands a high degree of sophistication from traders. In particu-

lar, traders must be able to correctly forecast downstream trader’s strategies and associated

prices to bid effectively. Strategic uncertainty or a failure of the inductive reasoning behind

equilibrium bidding can in principle lead to very different non-equilibrium outcomes. Re-

cent laboratory experiments studying a similar trading environment by Gale et al. (2012)

suggest that human subjects (i.e. Berkeley undergraduate students) form reasonably accu-

rate estimates of downstream prices and equilibrium predictions accord well with observed

market outcomes. We view this as supportive evidence for the equilibrium analysis we are

undertaking.

3 Endogenous Competition

In this section we study network formation when R is fixed. Many economic interactions

are defined by a fixed degree of intermediation due to geographic, legal, or transaction-

cost considerations. In the subsequent section we pose the complementary question and

ask whether R is a stable degree of intermediation given the trading technology and the

prevailing trader configuration.

Fix R and suppose there is a large group of potential traders who may enter the market

at any of the R rows. To enter the market, a trader must incur an entry cost of κ > 0.

We interpret κ as an irreversible investment in market-specific skills or technology. For

8The invariance of bids in row r to nr is an artifact of the second-price auction.
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example, it may be the cost of forming the relevant relationships to be a part of the trading

community or network. Once all traders have made their entry and location decisions, the

network configuration n becomes known. Each trader then learns her private cost θri and

exchange unfolds as before. Agents not entering the market receive a payoff of zero. We

wish to define an equilibrium concept in our model that consistent with the following basic

principle.

Assumption A1. There is free entry into the trading market. Traders enter until no further

profitable entry is possible into any row.

To operationalize the essence behind Assumption A1 requires some new notation. Let

πr(n) denote the expected profits (before the realization of private trading costs) of a trader

in row r given the trading network n = (n1, . . . , nR).

Lemma 1. Suppose n = (n1, . . . , nR) is a configuration of traders. If

δ(nk) = 1 − (1 − p)nk−1(1 + p(nk − 1))

µ(nk) = 1 − (1 − p)nk

then for each r ∈ {1, . . . , R},

πr(n) =

[
r−1∏

k=1

δ(nk)

]

[
p(1 − p)nr−1

]

[
R∏

k=r+1

µ(nk)

]

v. (1)

Moreover, πr(nr,n−r) is increasing in n−r and decreasing in nr.

Proof. Consider bidder i in row r. Suppose this bidder is bidding to purchase the asset. If

this bidder has a low trading cost, this bidder will bid νr. With probability (1 − p)nr−1, all

other bidders in row r have a high trading cost; thus, bidder i receives a surplus of νr. (She

expects to resell the asset at price νr but pays zero to buy it.) With probability 1−(1−p)nr−1,

this bidder receives a surplus of zero. Either she does not win the auction or if she wins,

she must pay the second highest bid, which is also νr. Thus, conditional on bidding for the

asset, a low-cost trader in row r has an expected payoff of
[∏r−1

k=1 δ(nk)v
]
(1 − p)nr−1. The

probability that this bidder draws a low trading cost is p. Finally, the probability that the

asset reaches row r + 1 (and thus, a bidder in row r can bid to purchase the asset) is the

probability that each row k ∈ {r + 1, r + 2, . . . , R} has at least one low-cost trader. This

probability is
∏R

k=r+1 µ(nk). Combining the above observations gives (1).
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Lemma A.1 shows that δ(n) is increasing in n. That µ(n) is increasing in n is obvious;

thus, πr(nr,n−r) is increasing in n−r. By inspection, πr(n) is decreasing in nr.

Remark 1. Since πr(n) ∝ v it is without loss of generality that we henceforth normalize the

value of the asset to the buyer at v = 1.

The µ- and δ-terms in (1) capture the positive externality experienced by a trader in row

r from an increase in the number of traders at upstream (µ) and downstream (δ) positions

in the network. A trader benefits from more downstream traders since the more intense

competition leads to higher (re)sale prices. The benefit a trader receives from upstream

traders is more subtle. Recall that a trader can only earn profits if the asset actually reaches

her row and she is fortunate enough to sell it. With increased upstream competition, this

event becomes more likely and the probability of a premature market breakdown declines.

Noting the presences of externalities, we propose two equilibrium notions compatible with

our free entry assumption.

Definition 1 (Local Equilibrium). n
∗ = (n∗

1, . . . , n
∗
R) is a local equilibrium configuration of

traders if for all r ∈ {1, . . . , R},

πr(n
∗
1, . . . , n

∗
r , . . . , n

∗
R) − κ ≥ 0

and

πr(n
∗
1, . . . , n

∗
r−1, n

∗
r + 1, n∗

r+1, . . . , n
∗
R) − κ < 0.

In a local equilibrium all traders earn nonnegative profits and no single additional trader

can enter profitably. We consider the equilibrium to be “local” since the configuration n
∗ is

robust only to one-agent deviations. Our second equilibrium notion looks at large changes in

the network structure. A global equilibrium is a local equilibrium with the added requirement

that no group of potential traders, coordinating their entry decision, can all enter profitably.

Definition 2 (Global Equilibrium). n
∗ = (n∗

1, . . . , n
∗
R) is a global equilibrium configuration

of traders if for all r ∈ {1, . . . , R},

πr(n
∗
1, . . . , n

∗
r , . . . , n

∗
R) − κ ≥ 0

and for all a = (a1, . . . , aR) ∈ Z
R
+, a 6= 0, there exists r such that ar ≥ 1 and

πr(n
∗
1 + a1, . . . , n

∗
r + ar, . . . , n

∗
R + aR) − κ < 0.
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Several features of a global equilibrium are worth noting. First, our definition allows for

coordinated entry but we do not allow coordinated side-payments between new entrants. In

future work, we wish to extend our model by allowing more sophisticated economic relation-

ships among entering parties but for the moment we suppress such embellishments. Second,

the intuition behind a global equilibrium highlights the backward and forward linkages in

our market. A new trader entering the market will generate a positive externality on both

upstream and downstream market participants. The existence of externalities suggests there

is a scope for mis-coordination and equilibrium multiplicity. Finally, we show below that

a global equilibrium is unique. Hence, the stronger equilibrium concept offers a natural

selection criterion.

We call a network trivial if n = (0, . . . , 0) and nontrivial otherwise. When R ≥ 2 there

always exists a trivial local equilibrium. No agent wishes to enter row 2 since there are

no traders in row 1 to buy the asset. No agent wishes to enter row 1 since the asset is

never made available to row 1 traders. In both cases, incurring the fixed entry costs is not

worthwhile. Similar reasoning applies to all rows. Although an important case—arguably

many (unobserved) markets depending on complementary relationships could exist but do

not because of (unobserved) “coordination” on the no trade equilibrium—we will focus only

on nontrivial equilibria in the following discussion.

Using (1) we can derive several conclusions concerning equilibrium market configurations.

First, local and global equilibria exist under fairly weak conditions. Second, equilibria form

a directed set with a unique global equilibrium dominating all local equilibria. Finally,

equilibrium configurations will assume an asymmetric structure similar to a pyramid. Hence,

our market does not naturally organize itself into a robust network structure and it may be

very fragile despite our free-entry assumptions. Theorems 2–4 formalize these points.

Theorem 2. Let n̄ ≡
⌈

1 + log(κ)−log(p)
log(1−p)

⌉

and define X = {n ∈ Z
R : 0 ≤ nr ≤ n̄}. There

exists a nontrivial local equilibrium configuration if and only if there exists n ∈ X such that

for all r, πr(n) − κ ≥ 0.

The proof of Theorem 2 relies on a tâtonnement procedure. When it is started at any

configuration n satisfying πr(n) − κ ≥ 0, it converges to a local equilibrium. An immediate

corollary and shown en route in the proof of Theorem 2 is the following.

Corollary 1. If n
∗ is a local equilibrium configuration, then n

∗ ∈ X .

Since X is a finite set, Corollary 1 says that an exhaustive search in X will identify all

equilibria in our model. A naive search is acceptable when R is small (as in our examples
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below) but is impractical for economies with a very large degree of intermediation. A related

concern is that if R is large, verifying the necessary and sufficient condition for an equilibrium

to exist may be prohibitively difficult. A very conservative sufficient condition for a nontrivial

equilibrium is that min{(1 − p)p2R−2, p2R−1} > κ (Lemma A.4 in the appendix).

Building on Theorem 2 we can show that the set of equilibrium networks has a natural

directed structure and that there exists a unique global equilibrium configuration.

Definition 3. Let n = (n1, . . . , nR) and m = (m1, . . . , mR) be network configurations. We

say that n ≥ m ⇐⇒ nr ≥ mr for each r.

Theorem 3. Let n
∗ and m

∗ be local equilibrium configurations.

1. There exists a local equilibrium configuration x
∗ such that x

∗ ≥ n
∗ and x

∗ ≥ m
∗.

2. There exists a unique global equilibrium configuration q
∗ and q

∗ ≥ n
∗ for all local

equilibrium configurations n
∗.

Example 1 illustrates the coexistence and ordering of distinct equilibria. We discuss its

implications in detail below.

Example 1. Suppose R = 6, p = 0.5, κ = 0.01. There exist two equilibrium networks:

n
∗ = (4, 4, 3, 3, 2, 1)

m
∗ = (6, 6, 6, 6, 5, 5)

Figures 3 and 4 illustrate these networks. m
∗ is a global equilibrium configuration while n

∗

is only a local equilibrium.

The two equilibrium markets in Example 1 provoke several observations. First, both

networks share a distinctive “pyramid” structure with more traders locating near the buyer

than near the seller in equilibrium. This is a characteristic feature of all equilibrium markets.

Theorem 4. If n
∗ = (n∗

1, . . . , n
∗
R) is a local equilibrium configuration then for all r, n∗

r ≥

n∗
r+1.

The intuition behind Theorem 4 is best illustrated with the following thought experiment.

Suppose that a market has an equal number of traders in each row. Although the network

structure is balanced, there is (typically) an imbalance in the (ex ante) expected profits of

traders in different rows. Specifically, noting (1) and because µ(n) > δ(n) for all p ∈ (0, 1),
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Figure 3: A local equilibrium configuration (n∗) in Example 1.
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Figure 4: The global equilibrium configuration (m∗) in Example 1.
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the expected profits of a trader in row 1 are greater than the expected profits of a trader in

row R. Provided π1(n) is sufficiently large, if additional traders were to enter the market

now, they would be naturally drawn to rows closer to the buyer since the expected returns

are greatest there. As entry occurs, asymmetric competition equalizes profits across rows at

zero.

The simple observation that µ(n) > δ(n) reflects the distinct roles played by upstream

and downstream trading relationships. From the perspective of a trader in row r, the only

relevant characteristic of upstream trades is that they occur. The prices at which traders in

rows r + 1, . . . , R trade is immaterial. From a downstream relationship, however, a trader

in row r cares not only that exchange can happen but she also has an interest in the prices

at which it happens. The distinction between µ and δ thus reflects this added dependence

on downstream trading relationships.

A second observation we can draw from equilibrium markets concerns welfare. Up to

integer constraints, traders in an equilibrium market earn zero profits. Therefore, we instead

adopt the following metric to summarize the welfare generated by a market.

Definition 4. The capability of a market, denoted χ, is the probability that the asset reaches

the buyer taking the configuration of traders as given.

In our model χ is a direct function of n, p, and R. Specifically,

χ(n, p, R) =

R∏

k=1

µ(nk).

In equilibrium, however, market capability is also an indirect function of κ since the equilib-

rium configuration n
∗ is itself a function κ as well. Changes in the environment which boost

competition enhance capability.

Under this criterion, a global equilibrium is seen to be far more capable of ensuring

consistent delivery of the asset from the seller to the buyer. In example 1 the probability

that the asset reaches the buyer when the market configuration is n
∗ is approximately 0.25.

In the global equilibrium, the market’s capability jumps to about 0.88. In this regard, local

and global equilibria need not be nearby and substantial gains are possible if coordination

problems surrounding trading network formation are overcome.

When viewed from the perspective of capability, however, Theorem 4 can assume a

somewhat negative interpretation. Roughly the asymmetric market structure that emerges

in equilibrium suggests that intermediary markets have a natural tendency to organize in a
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manner which creates market fragility. Asymmetries imply that the economy’s equilibrium

network functions both as an absorber and as an amplifier of idiosyncratic risks.9 This

characteristic is easiest to appreciate in the equilibrium of Figure 3. Idiosyncratic cost

shocks experienced by traders in rows one and two are effectively absorbed by the network.

Even if a specific trader is unlucky and is unable to trade, there are many others to facilitate

trade. In contrast, a negative cost shock experienced by the trader in rows five or six has a

much more severe implication for the functioning of the market as a whole. The equilibrium

market has a bottleneck in this region of the economy. Indeed, if the trader in row six

experiences a cost shock, trade breaks down entirely.

4 Stable Intermediation

Our analysis thus far has focused on the horizontal dimension of trading network formation.

In this section we extend our discussion by identifying a stable degree of intermediation—

R. Given a market configuration n, a natural and compelling intuition is that neighboring

traders have an incentive to merge, to collude, or to partner. By behaving as a single

collective, they can together span multiple links in the chain leading from the seller to the

buyer. A stable value for R, as a measure of the distance between seller and buyer, ensures

that such integrative impulses are kept at bay. To make the above intuition precise, we

begin by introducing the collusive actions traders may take to compromise the stability of a

market.

Definition 5. A (vertical) partnership spanning rows r to s is a set of traders P such that

for all k ∈ {r, r +1, . . . , s−1, s} there exists a unique trader from row k in P. We may write

Ps
r to emphasize a partnership’s span.

Intuitively, a partnership will resemble a vertical merger. We assume that agents can

form a partnership after all agents have entered the market and the resulting configuration

n is known but before traders learn their private costs for the particular trading period.

Our definition therefore abstracts from the selection of traders into partnerships given their

observed costs. Partnership formation is costless.

We model a partnership as a unitary actor maximizing its trading profit. Since a partner-

ship is composed of individual traders we assume that it inherits its constituents’ character-

istics. First, partnerships are connected with other traders. A partnership Ps
r has precisely

the following links to the wider economy:

9We thank Richard Zeckhauser for suggesting to us the amplifier/absorber metaphor.
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Figure 5: The formation of a partnership spanning rows 2 and 3.

1. A partnership Ps
r can purchase the asset from any agent in row s + 1 by participating

in the established trading protocol.

2. A partnership Ps
r can sell the asset to any agent in row r − 1 using the established

trading protocol.

When agents form a partnership they collectively deviate to an alternative network structure.

Figure 5 illustrates this deviation in a typical market. The two agents forming a partnership

maintain links to traders in rows 1 and 4. However, links with rows 2 and 3 have been

severed. In this regard, partnerships are stronger than a loose coalition among individual

traders. Instead, they involve a deep vertical integration with commitment and the severing

of intermediate inbound and outbound links.

Second, a partnership will incur a trading cost if it engages in exchange. We assume that

the partnership’s cost type θP is a function of its members’ types. For simplicity, suppose

θP =
∑

j∈P

θj . (2)

The distribution of θP is induced from the distribution of its members’ types. Our moti-

vation for (2) is simple. A partnership moves the asset multiple steps in the market and it

accomplishes the function of s−r+1 traders simultaneously. We can interpret each member

of P as being specialized in moving the asset through their step of the trading chain. Our

specification of a partnership’s cost abstracts from any so-called cost synergies that may

accompany a merger. This abstraction is plausible in the short-run when post-merger firms

often continue operating as separate, but coordinated, divisions for some time. Our results
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will extend naturally (by continuity) to the case of cost synergies, provided cost savings are

not too strong.

Finally, the actions available to a partnership mirror those available to a trader. Ps
r

places a bid in the auction organized by an agent in row s + 1 and it organizes an auction

to sell to the agent(s) in row r − 1 (or it sells directly to the buyer if r = 1). If the asset

bypasses the partnership entirely, it incurs zero costs. The following lemma summarizes the

consequences of the preceding assumptions.

Lemma 2. Let Ps
r be a partnership and suppose all i /∈ Ps

r are truthfully bidding their

expected value for the asset. Then it is a best response for the partnership to bid νr =
∏r−1

k=1 δ(nk) if θPs
r

= 0 and ℓ otherwise. The partnership’s ex ante expected payoff is

πPs
r
(n) =

[

(1 − p)ns−1 + (1 − (1 − p)ns−1)

(

1 −
s−1∏

j=r

δ(nj − 1)

)]

νrp
s−r+1

R∏

k=s+1

µ(nk). (3)

Proof. The partnership sells the asset to an agent in row r − 1 at an expected price of νr;

thus, it is optimal for the partnership to submit such a bid when it has a chance to buy the

item and it has low costs. (See the proof of Theorem 1.) If θP 6= 0, then a bid of ℓ is a best

response.

To derive the ex ante expected profits of the partnership we argue analogously to Lemma

1. Conditional on θPs
r

= 0, the partnership bids against ns − 1 other agents to purchase the

asset. With probability (1 − p)ns−1, all of these competitors have a high cost and bid ℓ. In

this case the partnership enjoys a surplus of νr. If instead at least one other trader in row s

has a low trading cost, which happens with probability 1 − (1 − p)ns−1, they will submit a

bid equal to their value for the item: ν̂s =
∏s−1

j=r δ(nj − 1)νr, which accounts for the reduced

number of traders in rows r, . . . , s−1 owing to the partnership’s existence and the associated

severing of links. Since νr > ν̂s, the partnership will win this auction and will benefit from

a surplus of νr − ν̂s =
(

1 −
∏s−1

j=r δ(nj − 1)
)

νr. With probability ps−r+1 the partnership has

a low trading cost and with probability
∏R

k=s+1 µ(nk) the asset traverses rows R to s + 1 to

be available for purchase. Combining the above expressions gives πPs
r
(n) as above.

What incentive do agents have to form partnerships? Given that there are no cost advan-

tages, the motivation to merge in our model must be driven by more indirect forces. There

are at least two factors behind partnership formation. The first centers on an information

advantage that a partnership brings. A partnership is aware of the costs of its members

and thus can bid appropriately knowing whether or not it can transport the asset multi-
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ple steps efficiently. Non-partnership agents at intermediate levels face residual uncertainty

concerning the costs and behavior of neighbors.

The second advantage rests on a strategic externality resulting from the presence of a

partnership and the resulting change in network structure. A partnership Ps
r severs many

links in the economy and this negatively impacts traders exterior to the partnership. Traders

in rows r + 1, r + 2, . . . , s must anticipate reselling the item at a lower price than otherwise

since they have fewer prospective buyers. By reducing the expected resale prices of these

agents, the partnership reduces the competing bids it faces when it bids for the item. Since

it pays a price equal to the second highest bid, the lower bids by competitors directly benefit

the partnership’s payoffs. As we show below, these slight and subtle asymmetries in market

organization are often sufficient to encourage partnership formation and to render some

market structures vertically unstable.

We consider a market to be vertically stable if no partnership can form profitably taking

as given the configuration of traders, n. Recall that πr(n) is the expected profit of a trader

in row r, as defined in (1), while πP(n) is the expected profit of a partnership, as defined in

(3).

Definition 6. A market with configuration n is vertically stable10 if for all partnerships P,

∑

k∈P

πk(n) ≥ πP(n).

In a vertically stable market, the sum of traders’ individual expected trading profits

exceeds the profits of any possible partnership they may form. The spirit of the core underlies

our definition of vertical stability. Example 2 illustrates the mechanics of vertical stability

in a simple market.

Example 2. Suppose n = (3, 2) is the configuration of traders. Absent a partnership, the

expected trading profits of a trader in rows one and two are

π1(n) = −p5 + 4p4 − 5p3 + 2p2

π2(n) = 2p5 − 5p4 + 3p3

The only nontrivial partnership that can form is between a trader in row one and a trader

10This definition of vertical stability is subtlety distinct from a definition we presented in the working
paper Kotowski & Leister (2012) since πPs

r
is computed in a different manner; otherwise the concept is the

same.
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Figure 6: Trading profits in Example 2.

in row two. The expected trading profits accruing to this coalition are

πP(n) = p2 − p5.

The configuration n = (3, 2) is vertically stable when π1 + π2 ≥ πP . Figure 6 presents

both sides of this inequality as a function of p. When p is low the network configuration is

vertically stable. When p is high the converse is true.

Example 2 offers several lessons. First, partnerships are not universally dominant proposi-

tions for traders. Second, whether a specific market configuration is vertically stable depends

critically on the underlying trading technology. When p is very high, traders are likely to

have low costs and therefore they are often eager to trade in this particular market. As a

consequence, the collusive partnership which brings together complementary traders is also

likely to have low cost sufficiently often to be worth forming. When p is low and low-cost

traders are infrequent, it is very unlikely that the partnership will have low costs. Instead

traders are better-off acting independently and the shock-absorber role of a networked mar-
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ket becomes especially valuable. Multiple independent trading paths insulate downstream

traders from cost shocks experienced by upstream traders. This benefit of independent trade

is sufficient to discourage the formation of partnerships and indeed applies generally.

Theorem 5. Fix a configuration n = (n1, . . . , nR). There exists p̂ > 0 such that for all

p < p̂ the configuration n is vertically stable.

Theorem 5 complements the analysis of Kranton & Minehart (2000) who also conclude,

in a model of production, that networks increase in importance when firm-specific shocks

are high and flexibility is a key consideration determining overall welfare. This is precisely

the situation when p is low in our model.

5 Stable and Competitive Intermediary Markets

Having a description of competition between traders and a notion of stability in the degree

of intermediation, we wish to combine the ideas. Up to this point we have analyzed the free

entry of traders into a market taking R as given. Similarly, we have confirmed that n
∗ can

be a vertically stable configuration if p is chosen correctly; however, would n
∗ ever arise as

an equilibrium configuration at that specific p (for some κ) if traders could enter the market

freely? We will call a configuration of traders stable if it is both vertically stable and a local

equilibrium configuration.

We begin reconciling the two dimensions of market organization by considering a simple

example. The example highlights the tensions which render the coexistence of the two

concepts for any R a nontrivial matter.

Example 3. Suppose R = 2. We will identify the set of (p, κ) such that n
∗ = (3, 2) is

a vertically-stable, local equilibrium configuration. (p, κ) must simultaneously satisfy the

following five non-linear (in p) inequalities:

π1(3, 2) − κ ≥ 0

0 > π1(4, 2) − κ

π2(3, 2) − κ ≥ 0

0 > π2(3, 3) − κ

π1(3, 2) + π2(3, 2) ≥ πP2
1
(3, 2)
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Figure 7: When (p, κ) are in the shaded region, n
∗ = (3, 2) is both vertically-stable and a

(local) equilibrium configuration.

The first four inequalities are the definition of a local equilibrium. The final inequality

concerns vertical stability. Figure 7 presents the irregularly-shaped set of pairs (p, κ) which

satisfy the above conditions. By Theorem 4, p ≈ 0 guarantees that this market is vertically

stable; however, n
∗ = (3, 2) is not compatible with a free entry equilibrium at such a low

value of p. Likewise, when κ is reduced, additional entry also compromises the equilibrium.

Suppose instead n
∗ = (3, 3). This configuration is not vertically stable when it is a local

equilibrium. Thus, it is not stable for any (p, κ). This configuration is vertical stable only

if p < 0.445 (approximately). The smallest value of p for which it is a local equilibrium for

any κ is p ≈ 0.468. Therefore, not all configurations are assured to be stable.

In moving beyond the case of R = 2, the general existence of nontrivial stable markets

is not apparent. First, the number of constraints defining our stability and equilibrium

notions grows with R. To prevent all partnerships while maintaining free-entry requires

simultaneously satisfying R2+3R
2

non-linear inequality constraints. If we demand additionally

that a stable market is also a global equilibrium configuration, the number of constraints is
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much larger.

Although the above discussion suggests that there could exist a limit to the degree of

intermediation in a stable market—an R for which there does not exist a stable configuration

of intermediaries—this is actually not the case. Indeed, for any R we can find a trading

technology (p, κ) which admits a stable nontrivial configuration of traders.

Theorem 6. Fix R ∈ N. There exists (p, κ) such that the economy has a nontrivial, global

(and therefore local) equilibrium configuration that is vertically stable.

The proof of Theorem 6 depends on the careful joint adjustment of both p and κ. We

identify a sequence of equilibrium markets as p → 0 and κ → 0 together. By bounding the

rate at which p tends to zero, we are able to use a limiting argument to confirm vertical

stablity.11

Theorem 6 confirms that, in principle, arbitrarily large degrees of intermediation are pos-

sible in a stable market. However, taken together, this section’s discussion paints a nuanced

picture. Stable markets generally exist, but which markets are stable is closely tied with

the economy’s underlying technology. Taking the technology as given, the notions of vertical

stability and free-entry prevent many network structures from persisting as equilibrium mar-

ket organizations. The configuration n = (3, 3) in Example 3 is just one instance. Likewise,

if we observe a stable market, its stability is consistent with only a relatively small set of

trading technologies. A technological disruption, such as a change in p or κ, can therefore

compromise an existing network of intermediary relationships along both of its dimensions.

Similarly, noting the multiplicity of equilibria, small changes in the economy’s primitives

can lead to drastic reorganizations of the intermediary market and of the network of stable

trading relationships.

6 Context, Extensions, and Conclusions

We have developed a model of network formation to study the competition among inter-

mediary traders and the degree of intermediation in the economy. Our model shows that

intermediary markets may not naturally assume the most capable market organization. Bot-

tlenecks, which amplify market fragility, can arise in a free-entry equilibrium. Similarly we

have argued that the degree of intermediation in the economy is closely tied with the under-

lying trading technology. In principle, the degree of intermediation can be quite extensive

11A related inquiry concerning stability may ask whether for each (p, κ) there exists an R such that the
market is stable. The answer is essentially trivial since all local equilibria are vertically stable when R = 1.
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and may go far beyond the bipartite buyer-seller networks traditionally explored in the lit-

erature. Our analysis has stressed both substitutive and complementary factors that shape

equilibrium trading networks.

In studying intermediation, our study builds on earlier analyses in several literatures.

Networks provide a natural forum for studying exchange and the relationships among eco-

nomic agents. In particular, our equilibrium stresses the complementaries among agents in

the presence of network externalities (Economides, 1996).12 Intuitively, traders who perform

similar tasks in the intermediation process (i.e. those who have the same “friends”) function

as substitutes. In contrast, traders who are in distant regions of the economy complement

each other. Downstream traders enhance competition and thus bid up resale prices. Up-

stream traders enhance the frequency of exchange; idiosyncratic shocks are less likely to

compromise the market’s operation.

Like Bala & Goyal (2000), Kranton & Minehart (2001), or more recently Condorelli

& Galeotti (2012), we study network formation. Our network-formation process builds

around free entry and contrasts with their focus on strategic link formation. Additionally,

our analysis moves away from bipartite buyer-seller networks by incorporating layers of

intermediaries or middlemen. In this regard, our study follows most closely recent work by

Gale & Kariv (2007, 2009) who also study intermediation with a network of intermediaries.

Unlike these papers we endow traders in our model with private information. Recognizing the

importance of market “middlemen,” Rubinstein & Wolinsky (1987) offer a lucid analysis based

on the random matching of buyers and sellers with intermediaries. They do not explicitly

model a network but their model accommodates alternative institutional arrangements, such

as consignment sales, which we do not consider.

Our analysis stresses the competitive and complementary pressures seen by markets with

intermediaries. The free entry assumption is ubiquitous when analyzing market organiza-

tion and, like here, has been noted to imply cross-cutting implications for social efficiency

(Mankiw & Whinston, 1986). At a more abstract level, our concept of a local equilibrium is

closest to the “equilibrium configurations” analyzed by Gary-Bobo (1990) in a general class

of asymmetric entry models. Our model falls outside that paper’s purview since traders’

payoffs in our model do not satisfy his monotonicity condition.

Similarly, the role of vertical relationships and integration has also received considerable

attention. Like Kranton & Minehart (2000), we consider our network-based model well suited

for investigating this market dimension. Although many motives can drive firms to integrate

12Jackson (2008) offers a comprehensive survey of the literature on economic networks.
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vertically, our model stresses information asymmetries and the advantages that they may

bring. Arrow (1975), for example, describes such incentives in the context of a production

line. We additionally highlight the strategic externality resulting from the change in the

economy’s network of trading relationships, which serve to benefit the integrating agents.

Our model can be extended along many dimensions and incorporated into broader stud-

ies of trade where intermediaries play an important role. A particularly promising direction

concerns developing a more comprehensive understanding of the stability and robustness of

networked markets. This is especially salient if traders can form more elaborate network

configurations than what we have considered. Similarly, we have focused on a specific mar-

ket institution, an auction, as mediating exchange. Allowing for alternative or endogenous

institutional arrangements—such as consignment contracts, bargaining, or optimal trading

mechanisms—among buyers, sellers, and intermediaries, is but one exciting avenue for fur-

ther analysis.
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A Proofs

In the appendix we may write δp(n) and µp(n) to emphasize the dependence of these ex-

pressions on p. Lemmas A.1 and A.2 record facts about δp(n) and µp(n) which are used

throughout the analysis.

Lemma A.1. For p ∈ (0, 1) and n ∈ N, let δp(n) = 1 − (1 − p)n−1(1 + p(n − 1)). Then,

1. δp(0) = δp(1) = 0; for all n ≥ 1, δp(n) < δp(n + 1); and, limn→∞ δp(n) = 1.

2. If n ≥ 2, then d
dp

δp(n) > 0; limp→0 δp(n) = 0; limp→1 δp(n) = 1

Proof.

1. δp(0) = δp(1) = 0 is trivial. To prove the second statement, let q(n) = (1 − p)n−1(1 +

p(n − 1)). It is sufficient to show that q(n + 1) < q(n). q(n + 1) = (1 − p)n(1 + pn) =

(1 − p)n−1(1 + p(n − 1)) (1−p)(1+pn)
(1+p(n−1))

= q(n)1+p(n−1)−np2

1+p(n−1)
< q(n). To confirm the third

point, limn→∞
q(n+1)

q(n)
= limn→∞

(1−p)(np+1)
(n−1)p+1

= 1 − p < 1. Thus, limn→∞ q(n) = 0, which

implies limn→∞ δp(n) = 1.

2. It is sufficient to show that (1 − p)m(1 + pm), m ≥ 1, is decreasing in p:

d

dp
(m log(1 − p) + log(1 + pm)) = m

−p − pm

(1 + pm)(1 − p)
< 0.

The limit results are immediate from inspection.

Lemma A.2. Let n ≥ 1, p ∈ (0, 1), and µp(n) = 1 − (1 − p)n. (1) µp(n)/p ≥ 1. (2)

limp→0
µp(n)

p
= n. (3) limp→1

µp(n)
p

= 1. (4) If n ≥ 2, d
dp

(
µp(n)

p

)

< 0.

Proof. For (1) note that 1 − (1 − p)n ≥ 1 − (1 − p)1 = p ≥ p. To show (2) apply l’Hôpital’s

Rule: limp→0
1−(1−p)n

p
= limp→0

n(1−p)n−1

1
= n. (3) follows from inspection. To see (4) we can

compute the derivative:

d

dp

(
µp(n)

p

)

=
np(1 − p)n−1 + (1 − p)n − 1

p2
.

Since d
dp

(
µp(n)

p

)∣
∣
∣
n=1

= 0, it is sufficient to show that np(1−p)n−1 +(1−p)n−1 is decreasing

in n:

d

dn

(
np(1 − p)n−1 + (1 − p)n − 1

)
= (1 − p)n−1(((n − 1)p + 1) log(1 − p) + p) < 0,
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since log(1 − p) + p < 0 when p ∈ (0, 1).

Lemma A.3. Fix p ∈ (0, 1) and κ > 0. Suppose n
∗ is a local equilibrium configuration.

1. For each r, n∗
r ≤ n̄ =

⌈

1 + log(κ)−log(p)
log(1−p)

⌉

. (This is Corollary 1.)

2. For each r ∈ {1, . . . , R − 1}, n∗
r 6= 1.

Proof. To prove part 1, it is sufficient to derive a bound the number of traders any given

row can support. From (1), πr(n) ≤ p(1 − p)nr−1. In an equilibrium πr(n
∗) − κ ≥ 0, hence

for each r

p(1 − p)n∗

r−1 − κ ≥ 0 =⇒ n∗
r ≤ n̄ =

⌈

1 +
log(κ) − log(p)

log(1 − p)

⌉

.

To prove part 2 suppose that for some r ∈ {1, . . . R− 1}, n∗
r = 1. Then δ(n∗

r) = 0. Thus, for

all r′ > r, πr′(n
∗) = 0. But this implies πr′(n

∗) − κ < 0, which is a contradiction if nr′ ≥ 1.

If instead nr′ = 0, then µ(nr′) = 0 and πr(n
∗) = 0. Hence πr(n

∗) − κ < 0, which again is a

contradiction.

Proof of Theorem 2. (⇒) Follows from the definition of equilibrium. (⇐) We define a

tâtonnement-style mapping that converges to a local equilibrium. First, let n
0 ∈ X be such

that πr(n
0) − κ ≥ 0 for all r. Let Qr(n) = {ñr ≥ nr : πr(ñr,n−r)− κ ≥ 0, ñr ∈ Z+, ñr ≤ n̄}.

Let n̂r = maxQr(n). Next, define Ar : X → X to be

Ar(n) =







(n̂r,n−r) if Qr(n) 6= ∅

n
0 if Qr(n) = ∅

Composing these mapping together, define A : X → X as

A(n) = (A1 ◦ · · · ◦ AR)(n) (4)

We first argue that A has a fixed point, A(n∗) = n
∗. Afterward, we show that n

∗ is an

equilibrium configuration.

To show that A has a fixed point we first establish that if πr(n) − κ ≥ 0 for all r,

then A(n) ≥ n. Suppose πr(n) − κ ≥ 0. Then QR(n) 6= ∅. So, AR(n) ≥ n since

nR may have increased (but certainly did not decrease). Now consider any r and let

ñ = (n1, . . . , nr, ñr+1, . . . , ñR) where the first r terms are unchanged relative to n and

(ñr+1, . . . , ñR) ≥ (nr+1, . . . , nR). Then πr(nr, ñ−r) − κ ≥ πr(nr,n−r) − κ ≥ 0. Therefore,
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Ar(ñ) ≥ ñ. It follows immediately that A(n) ≥ n. Note also that for all r, πr(A(n))−κ ≥ 0.

Indeed, if we let ñ = A(n), we see that

πr(ñ1, . . . , ñr−1, ñr, . . . , ñR) − κ ≥ πr(n1, . . . , nr−1, ñr, . . . , ñR) − κ ≥ 0.

Finally, consider the sequence n
t+1 = A(nt) starting at n

0. Since πr(n
0)−κ ≥ 0 for every

r, n
t is an increasing sequence and for each t, πr(n

t)− κ ≥ 0 for every r. Since n
t ∈ X and

X is a finite set, the sequence {nt} converges to a limit n
∗ ∈ X . Since the space is discrete,

convergence implies n
t = A(nt) for all t ≥ T . Thus, there exists a configuration such that

n
∗ = A(n∗)

Take a fixed point n
∗ = A(n∗) ≥ n

0 and suppose that n
∗ is not an equilibrium con-

figuration. Therefore, there exists some row r̂ such that either (1) πr̂(n
∗) − κ < 0 or (2)

πr̂(n
∗
r̂ + 1,n∗

−r̂) − κ ≥ 0. We address both cases.

Suppose that πr̂(n
∗) − κ < 0. Then, Ar̂(n

∗) = n
0 since Qr̂(n

∗) = ∅. Therefore n
∗ =

(n∗
1, . . . , n

∗
r̂−1, n

0
r̂ , . . . , n

0
R). Thus, recalling that πr(nr,n−r) is increasing in n−r and n

∗ ≥ n
0,

πr̂(n
∗) − κ = πr̂(n

∗
1, . . . , n

∗
r̂−1, n

0
r̂, . . . , n

0
R) − κ ≥ πr̂(n

0) − κ ≥ 0,

which is a contradiction.

Suppose instead that πr̂(n
∗
r̂ + 1,n∗

−r̂) − κ ≥ 0. But then, from the definition of Qr̂,

n∗
r̂ + 1 ∈ Qr(n

∗). This implies n∗
r̂ ≥ n∗

r̂ + 1, which is a contradiction with the definition of

A. Therefore a fixed point of A is an equilibrium configuration.

Lemma A.4. Let n = (2, . . . , 2, 1). πr(n) > κ for all r if and only if min{(1−p)p2R−2, p2R−1} >

κ.

Proof. Let n = (2, . . . , 2, 1) and fix r̂. If r̂ 6= R,

πr̂(n) = p
(
1 − (1 − p)2

)R−r̂−1
p(1 − p) (1 − (1 − p)(1 + p))r̂−1 .

Taking logarithms and collecting terms gives:

log(πr̂(n)) = r̂
(
log(p2) − log(1 − (1 − p)2)

)
+ K(R, p)

where K(R, p) is a term that is independent of r̂. Since p2 < 1 − (1 − p)2 when p ∈ (0, 1),

the above expression is decreasing in r̂. Therefore for all r̂ ≤ R − 1, πr̂(n) ≥ πR−1(n) =
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(1 − p)p2R−2. If instead r̂ = R, then πR(n) = p2R−1. Therefore, we have the conclusion that

πr(n) − κ > 0 ⇐⇒ min{(1 − p)p2R−2, p2R−1} > κ.

Proof of Theorem 3. If the only local equilibrium is trivial, then it will also be the unique

global equilibrium. Suppose instead that n
∗ 6= (0, . . . , 0) is a local equilibrium and m

∗ is

some other local equilibrium. Therefore, πr(n
∗) − κ ≥ 0 for every r.

Following standard notation, let n
∗∨m

∗ ≡ (max(n∗
1, m

∗
1), . . . , max(n∗

R, m∗
R)) and consider

the alternative configuration x = n
∗∨m

∗. Choose some row r, and without loss of generality

suppose n∗
r ≥ m∗

r . Then,

πr(x) − κ = πr(n
∗
r ,n

∗
−r ∨m

∗
−r) − κ ≥ πr(n

∗
r,n

∗
−r) − κ ≥ 0.

Therefore, the configuration x satisfies the conditions of Theorem 2. Using the mapping

A(·) defined in (4), we can construct an increasing sequence of configurations x
t+1 = A(xt),

x
0 = x, which converges to some configuration x

∗ ≥ x. x
∗ is another nontrivial local

equilibrium configuration. Since n
∗ and m

∗ were arbitrary local equilibrium configurations

and there is a finite number of such configurations (X is a finite set), there exists a local

equilibrium configuration q
∗ ≥ n

∗ for all local equilibria n
∗. Thus, if a global equilibrium

exists, it must be q
∗.

We claim that q
∗ is global equilibrium configuration. To verify this claim, suppose

not. Then there exists an a = (a1, . . . , aR) ∈ Z
R
+, with at least one ak ≥ 1, such that

πr(q
∗ + a) − κ ≥ 0 for all r. But, following the same argument as above and applying the

A(·) mapping, this implies there exists a nontrivial local equilibrium configuration q̂ such

that q̂ ≥ q
∗ + a ≥ q

∗ and q̂ 6= q
∗, which is a contradiction.

Proof of Theorem 4. The proof is by contradiction. Suppose that n
∗ = (n∗

1, . . . , n
∗
R) is

an equilibrium configuration such that for some r, n∗
r < n∗

r+1. Since n
∗ is an equilibrium

configuration, it satisfies the following inequalities:

r−1∏

k=1

δ(n∗
k)
[
p(1 − p)n∗

r−1µ(n∗
r+1)

]
R∏

k=r+2

µ(n∗
k) ≥ κ >

r−1∏

k=1

δ(n∗
k)
[
p(1 − p)n∗

rµ(n∗
r+1)

]
R∏

m=r+2

µ(n∗
m)

r−1∏

k=1

δ(n∗
k)
[
δ(n∗

r)p(1 − p)n∗

r+1−1
]

R∏

k=r+2

µ(n∗
k) ≥ κ >

r−1∏

k=1

δ(n∗
k)
[
δ(n∗

r)p(1 − p)n∗

r+1

]
R∏

m=r+2

µ(n∗
m)
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To simplify, let

κ̃ =
κ

∏r−1
k=1 δ(n∗

k)
∏R

m=r+2 µ(n∗
m)

.

The above inequalities are equivalent to

p(1 − p)n∗

r−1µ(n∗
r+1) ≥ κ̃ > p(1 − p)n∗

rµ(n∗
r+1)

δ(n∗
r)p(1 − p)n∗

r+1
−1 ≥ κ̃ > δ(n∗

r)p(1 − p)n∗

r+1

From these inequalities, we see that

δ(n∗
r)(1 − p)n∗

r+1
−1 > (1 − p)n∗

rµ(n∗
r+1).

However, since n∗
r+1 ≥ n∗

r + 1, (1 − p)n∗

r+1
−1 ≤ (1 − p)n∗

r . Similarly, by Lemma A.1,

δ(n∗
r) ≤ δ(n∗

r + 1) ≤ δ(n∗
r+1) < µ(n∗

r+1). Hence, δ(n∗
r)(1 − p)n∗

r+1
−1 < (1 − p)n∗

rµ(n∗
r+1),

which is a contradiction.

Proof of Theorem 5. There are several cases depending on the network configuration

n = (n1, . . . , nR). Let Ps
r be a partnership spanning rows r to s. If nk = 0 for any k, then all

traders earn zero expected profits independently and as members of a vertical partnership;

thus, suppose nk ≥ 1 for all k.

1. Suppose nk = 1 for some k ≤ r − 1. Then, δ(nk) = 0 and consequently, νr =
∏r−1

j=1 δ(nj) = 0. Thus, πPs
r
(n) = 0 and πk(n) = 0 for all r ≤ k ≤ s. Hence, the

partnership does not strictly benefit its members.

2. Suppose nk ≥ 2 for all k ≤ r−1, but nr = 1. In this case, πPs
r
(n) = νrp

s−r+1
∏R

k=s+1 µ(nk).

Therefore,

πr(n)

πPs
r
(n)

=
νrp
(∏s

k=r+1 µ(nk)
) (∏R

k=s+1 µ(nk)
)

νrps−r+1
(
∏R

k=s+1 µ(nk)
) =

s∏

k=r+1

µ(nk)

p
≥ 1.

And so,
∑s

k=r πk(n) ≥ πr(n) ≥ πPs
r
(n). Hence, this partnership does not strictly

benefit its members.

3. Suppose nk ≥ 2 for all k ≤ r, but nr+1 = 1. For notation, let Q(p,n) = (1−p)ns−1+(1−

(1−p)ns−1)(1−
∏s−1

j=r δ(nj −1)). We note that 0 < Q(p,n) ≤ 1 and limp→0 Q(p,n) = 1.
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Then, we can write13

πr(n) + πr+1(n)

πPs
r
(n)

=

[
µ(nr+1)

p
(1 − p)nr−1 +

δ(nr)

p

]
1

Q(p,n)

s∏

k=r+2

µ(nk)

p
︸ ︷︷ ︸

≥1

Therefore, to establish that πr(n) + πr+1(n) ≥ πPs
r
(n), it is sufficient to show that

[
µ(nr+1)

p
(1 − p)nr−1 +

δ(nr)

p

]

=
−1 + p + (1 − p)nr(1 + (nr − 2)p)

p(p − 1)
(5)

is greater than 1. When nr = 2, (5) equals 1 for all p ∈ (0, 1). Thus, it is sufficient to

show that (5) is nondecreasing in nr when p ∈ (0, 1). Differentiating with respect to

nr,

d

dnr

[
−1 + p + (1 − p)nr(1 + (nr − 2)p)

p(p − 1)

]

= −
(1 − p)nr−1(((nr − 2)p + 1) log(1 − p) + p)

p
> 0,

since (nr − 2)p log(1 − p) + log(1 − p) + p < 0.

4. Suppose nk ≥ 2 for all k ≤ r + 1. Then,

πr(n)

πPs
r
(n)

=

(
s∏

k=r+1

µ(nk)

p

)[

(1 − p)nr−1

(1 − p)ns−1 + (1 − (1 − p)ns−1)(1 −
∏s−1

j=r δ(nj − 1))

]

.

Since the term in square brackets tends to 1 as p → 0, while by Lemma A.2 limp→0

∏s
k=r+1

µ(nk)
p

=
∏s

k=r+1 nk ≥ 2, for p sufficiently small, πr(n) > πPs
r
(n). Hence, this partnership does

not strictly benefit its members for p sufficiently small.

Lemmas A.5—A.9 are used in the proof of Theorem 6.

Lemma A.5. Let R ≥ 2 and n ≥ 2. There exists a unique pn ∈ (0, 1) such that 1 − pn =

δpn(n)R−1.

Proof. By Lemma A.1, δpn(n)R−1 is strictly increasing and δ0(n)R−1 = 0, while δ1(n)R−1 = 1.

Thus, the conclusion follows.

13If s < r + 2, then it is understood that
∏s

k=r+2
µ(nk)

p
= 1.
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Lemma A.6. Let R ≥ 2 and consider the sequence {pn}
∞
n=2 defined implicitly by 1 − pn =

δpn(n)R−1. For each n ∈ {2, 3, . . .}, there exists a nonempty set [κn, κ̄n] such that if κn ∈

[κn, κ̄n], then n = (n, n, . . . , n
︸ ︷︷ ︸

R

) is a local equilibrium configuration when pn = Pr[θri = 0] and

the entry costs are κn.

Proof. For each n, let

κ̄n = pn(1 − pn)n−1δpn(n)R−1

κn = pn(1 − pn)nµpn(n)R−1

Noting that κn = pn(1 − pn)nµpn(n)R−1 < pn(1 − pn)
n = pn(1 − pn)n−1δpn(n)R−1 = κ̄n.

Therefore [κn, κ̄n] is nonempty. Choose any κn ∈ (κn, κ̄n).

To simplify notation, if n = (n, . . . , n), then let nr+ = (n . . . , n + 1, . . . , n) which is

identical to n except there is an additional trader in row r. To show that n is a local

equilibrium we verify the two inequalities for each r:

πr(n) − κn = δpn(n)r−1pn(1 − pn)n−1µpn(n)R−r − κn

≥ δpn(n)R−1pn(1 − pn)
n−1 − κn

> δpn(n)R−1pn(1 − pn)n−1 − κ̄n = 0

Similarly,

πr(nr+) − κn = δpn(n)r−1pn(1 − pn)nµpn(n)R−r − κn

≤ pn(1 − pn)nµpn(n)R−1 − κn

< pn(1 − pn)nµpn(n)R−1 − κn = 0

Thus, n = (n, . . . , n) is a local equilibrium configuration at (pn, κn).

Lemma A.7. Suppose k ≥ 0 and a ∈ [0, 1). Then, limn→∞ nk
(
1 − 1

na

)n
= 0.

Proof. Recalling that for all x > 1,
(
1 − 1

x

)x
≤ 1

e
, we can see that

0 ≤ lim
n→∞

nk

(

1 −
1

na

)n

= lim
n→∞

nk

[(

1 −
1

na

)na
]n1−a

≤ lim
n→∞

nk

[
1

e

]n1−a

= 0.
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Lemma A.8. Fix R ≥ 2. And let {pn}
∞
n=2 be the sequence defined in Lemma A.5. For every

a ∈ (0, 1) there exists n̄ such that for all n > n̄, pn < 1
na .

Proof. The proof is by contradiction. Fix a ∈ (0, 1) and suppose that there exists a subse-

quence {nk} such that for all k, pnk
> 1

na
k
. Since p 7→ δp(n) is increasing, for all nk:

1 − pnk
= δpnk

(nk)
R−1

=⇒ 1 −
1

na
k

> δ 1

na
k

(nk)
R−1

=⇒ 1 −
1

na
k

>

(

1 −

(

1 −
1

na
k

)nk−1(

1 +
1

na
k

(nk − 1)

))R−1

=⇒ 1 −
1

na
k

> 1 − (R − 1)

(

1 −
1

na
k

)nk−1(

1 +
1

na
k

(nk − 1)

)

(6)

=⇒ (R − 1)na
k

(

1 −
1

na
k

)nk−1(

1 +
1

na
k

(nk − 1)

)

> 1 (7)

(6) follows from the fact that (1−x)R > 1−Rx when x ∈ (0, 1). Using Lemma A.7, however,

(7) is seen to fail for nk sufficiently large—a contradiction.

Lemma A.9. Suppose q ∈ (0, 1), a ∈ (0, 1) and k ≥ e. Then for all z ≥ 1, kz

1+a−qz ≥ k
1+a−q

.

Proof. Taking the derivative,

d

dz

(
kz

1 + a − qz

)

=
kz

(1 + a − qz)2
[(1 + a − qz) log(k) + qz log(q)] .

Thus, it is sufficient to verify that φ(q) = (1 + a − qz) log(k) + qz log(q) is nonnegative for

all q ∈ (0, 1). Note that φ(1) = a log(k) ≥ 0. Therefore it is sufficient to verify that φ(q) is

non-increasing in q.

φ′(q) = qz−1(1 + z[log(q) − log(k)]) ≤ qz−1(1 + log(q) − log(k)) ≤ 0.

The inequalities follow from log(q) ≤ 0 and log(k) ≥ 1.

Proof of Theorem 6. Since the case of R = 1 is trivial, suppose R ≥ 2. From Lemma A.6,

take a sequence of economies—defined by {pn}∞n=2—such that for each n, n = (n, . . . , n)

is an equilibrium configuration of traders. We will show that for n sufficiently large, the

configuration n = (n, . . . , n) is vertically stable.
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Suppose Ps
r is a partnership spanning rows r to s. We will show that for n sufficiently

large πr(n) > πPs
r
(n). Letting z = s − r we can write

πr(n)

πPs
r
(n)

=

(
µpn(n)

pn

)z

·
(1 − pn)n−1

(1 − pn)n−1 + (1 − (1 − pn)n−1)(1 − δpn(n − 1)z)

=

(
µpn(n)

pn

)z

·
(1 − pn)n−1

1 − δpn(n − 1)z + (1 − pn)n−1δpn(n − 1)z

Let p̃n = 1
n3/4 . By Lemma A.8 there exists an n̄1 such that for all n > n̄1, p̃n > pn. Using

Lemma A.2, for n > n̄1,

µpn(n)

pn
>

µp̃n(n)

p̃n
=

(

1 −

(

1 −
1

n3/4

)n)

n3/4 n→∞
−−−→ ∞.

Thus, there exists n̄2 such that for all n > n̄3 = max{n̄1, n̄2, 4},
µpn (n)

pn
>

µp̃n (n)

p̃n
> e.

Since δpn(n) < 1, we can use Lemma A.9 to note that for n > n̄3,

πr(n)

πPs
r
(n)

=

(
µpn(n)

pn

)z

·
(1 − pn)n−1

1 − δpn(n − 1)z + (1 − pn)n−1δpn(n − 1)z

≥

(
µpn(n)

pn

)

·
(1 − pn)n−1

1 − δpn(n − 1) + (1 − pn)n−1δpn(n − 1)z

≥

(
µpn(n)

pn

)

·
1 − pn

2 + (n − 3)pn

≥

(
µp̃n(n)

p̃n

)

·
1 − p̃n

2 + (n − 3)p̃n

=

(
1 −

(
1 − 1

n3/4

)n) (
1 − 1

n3/4

)
n3/2

2n3/4 + n − 3

n→∞
−−−→ ∞.

Thus, there exists and n sufficiently large such that for all r and s, πr(n) ≥ πPs
r
(n). Therefore,

the market is vertically stable.

To show that there exists a vertically stable market that is also a global equilibrium

configuration, it suffices to identify an entry cost where n = (n, . . . , n) is a global equilibrium.

Recalling that 1−pn = δpn(n)R−1, set the cost of entry at κn = pn(1−pn)n−1δpn(n)R−1 = κ̄n.
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Choose r and let a = (a1, . . . , an) ∈ Z
R
+, ar ≥ 1. Then,

πr(n + a) − κn =

R∏

k=r+1

µpn(nk + ak)
[
pn(1 − pn)n−1+ar

]
r−1∏

k=1

δpn(nk + ak) − κn

≤ pn(1 − pn)n − κn

= pn(1 − pn)n−1δpn(n)R−1 − κn = 0.

Since r was arbitrary, n = (n, . . . , n) is also a global equilibrium configuration.

References

Arrow, Kenneth J. 1975. Vertical Integration and Communication. The Bell Journal of Economics,

6(1), 173–183.

Bala, Venkatesh, & Goyal, Sanjeev. 2000. A Noncooperative Model of Network Formation. Econo-

metrica, 68(5), 1181–1229.

Condorelli, Daniele, & Galeotti, Andrea. 2012 (January). Endogenous Trading Networks. Working

Paper, University of Essex.

Corominas-Bosch, Margarida. 2004. Bargaining in a Network of Buyers and Sellers. Journal of

Economic Theory, 115, 35–77.

Economides, Nicholas. 1996. The Economics of Networks. International Journal of Industrial

Organization, 14, 673–699.

Elliott, Matthew. 2011 (August). Inefficiencies in Networked Markets. Working Paper, Stanford

University.

Gale, Douglas, & Kariv, Shachar. 2007. Financial Networks. American Economic Review: Papers

and Proceedings, 97(2), 99–103.

Gale, Douglas M., & Kariv, Shachar. 2009. Trading in Networks: A Normal Form Game Experiment.

American Economic Journal: Microeconomics, 1(2), 114–132.

Gale, Douglas M., Kariv, Shachar, Kotowski, Maciej H., & Leister, C. Matthew. 2012. Work in

Progress.

36



Gary-Bobo, Robert J. 1990. On the Existence of Equilibrium Points in a Class of Asymmetric

Market Entry Games. Games and Economic Behavior, 2, 239–246.

Jackson, Matthew O. 2008. Social and Economic Networks. Princeton, NJ: Princeton University

Press.

Kotowski, Maciej H., & Leister, C. Matthew. 2012 (February). Trading Networks and Equilibrium

Intermediation. Working Paper, Harvard Kennedy School and University of California.

Kranton, Rachel E., & Minehart, Deborah F. 2000. Networks versus Vertical Integration. RAND

Journal of Economics, 31(3), 570–601.

Kranton, Rachel E., & Minehart, Deborah F. 2001. A Theory of Buyer-Seller Networks. American

Economic Review, 91(3), 485–508.

Kremer, Michael. 1993. The O-Ring Theory of Economic Development. Quarterly Journal of

Economics, 108(3), 551–575.

Manea, Mihai. 2011. Bargaining in Stationary Networks. American Economic Review, 101(5),

2042–80.

Mankiw, N. Gregory, & Whinston, Michael D. 1986. Free Entry and Social Inefficiency. RAND

Journal of Economics, 17(1), 48–58.

Nagurney, Anna, & Qiang, Qiang. 2009. Fragile Networks. John Wiley & Sons.

Patil, Hemant. 2011. Buyer-Seller Networks with Demand Shocks and Intermediation. Review of

Economic Design, 15, 121–145.

Rubinstein, Ariel, & Wolinsky, Asher. 1987. Middlemen. Quarterly Journal of Economics, 102(3),

581–594.

Siedlarek, Jan-Peter. 2011 (November). Intermediation in Networks. Working Paper.

Spulber, Daniel F. 1996. Market Microstructure and Intermediation. Journal of Economic Perspec-

tives, 10(3), 135–152.

Zheng, Charles Zhoucheng. 2002. Optimal Auction with Resale. Econometrica, 70(6), 2197–2224.

37


