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Abstract

The theories of Nash noncooperative solutions and of rationalizability intend
to describe the same target problem of ex ante individual decision making, but
they are distinctively different. We consider what their essential difference is by
giving parallel derivations of their resulting outcomes. The derivations pinpoint
that the difference is only in the use of quantifiers for each player’s prediction
about the other’s possible decisions; the universal quantifier for the former and
the existential quantifier for the latter. Using this difference, we argue that the
former is compatible with the free-will postulate for game theory that each player
has free will for his decision making, and that for the latter, the interpretation in
terms of determinism would be more natural. In the present approach, however,
the distinction between decisions and predictions still remains interpretational. For
an explicit distinction, we undertake, in the companion paper, a study of those
theories in a framework of common knowledge logic.
JEL Classification Numbers: B40, C70, C72
Key words: Nash equilibrium, Solvability, Rationalizability, Prediction/Decision
Criterion, Infinite Regress, Simultaneous Equations

1. Introduction

We make critical comparisons between the theory of Nash noncooperative solutions due
to Nash [17] and the theory of rationalizable strategies due to Bernheim [3] and Pearce
[18]. Either is intended to be a theory about ex ante individual decision making in
a game, i.e., decision making before the actual play of the game. The difference in
their resulting outcomes has been well analyzed and known. However, their conceptual
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difference has not been much discussed. In this paper, we evaluate these theories from
the perspective of ex ante decision making and connect them to the basic postulates
of game theory. We confine our scope of analysis to idealized decision making, partly
because it is the focus of our targeted theories. We address the question of logical
coherence, for the two theories, with conceptual bases of game theory.

First, we review the literature of these theories. It is well known that Nash [17]
provides the concept of Nash equilibrium and proves its existence in mixed strategies.
However, it is less known that the main focus of [17] is on ex ante individual deci-
sion making. He develops various other concepts such as interchangeability, solvability,
subsolutions, symmetry, and values, which are ingredients of a theory of ex ante indi-
vidual decision making, though the aim is not explicitly stated in [17]. This view is
discussed only in a few papers such as Johansen [10] and Kaneko [11]1. We call the
entire argumentation the Nash noncooperative theory2.

On the other hand, in the literature, the theory of rationalizability is typically
regarded as a faithful description of ex ante individual decision making in games, and is
interpreted as expressing the idea of the common knowledge of “rationality”. According
to Mas-Colell et al. [13], p.243, “The set of rationalizable strategies consists precisely of
those strategies that may be played in a game where the structure of the game and the
player’s rationality are common knowledge among the players.”This view is common in
many standard game theory/micro-economics textbooks.

We find a puzzling feature of these two theories: Both theories target ex ante in-
dividual decision making, and are regarded as successful by some or many researchers.
However, their formal definitions, predicted outcomes, and explanations differ consider-
ably. This puzzling feature raises the following question: Are any components or basic
postulates conceptually wrong in either (or both) of them? This paper attempts to
answer this question.

We pinpoint the difference between the two theories; it emerges through formulating
a new prediction/decision criterion for each theory. For the Nash theory, it is given as
the following circular requirements:

N1o: player 1 chooses his best strategy against all of his predictions
about player 2’s choice based on N2o;

N2o: player 2 chooses his best strategy against all of his predictions
about player 1’s choice based on N1o.

1Millham [15] and Jansen [9] study the mathematical structure of the solution and subsolutions, but
do not touch the view.

2The mathematical definition of Nash equilibrium allows different interpretations such as a steady
state in a repeated situation. Some variant interpretations may sneak into our consideration of the Nash
noncooperative theory, which prevents us from crystallizing the theory. See Johansen [10] and Kaneko
[12] for those interpretations.
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A possible decision for 1 is determined by N1o but requires a prediction about 2’s possible
decision which is determined by N2o. The symmetric form N2o determines a possible
decision for 2 with a prediction about 1’s possible decision. These are regarded as a
system of simultaneous equations with players’decisions/predictions as unknown. In
Section 3, we show the theorem that N1o and N2o characterize the Nash noncooperative
solution as the greatest set satisfying them if the game is solvable (the set of Nash
equilibria is interchangeable); and if not, a maximal set satisfying them is a subsolution.

The rationalizable strategies are characterized by R1o and R2o, which are obtained
from N1o-N2o simply by replacing the quantifier “for all”by “for some”:

R1o: player 1 chooses his best strategy against some of his predictions
about player 2’s choice based on R2o;

R2o: player 2 chooses his best strategy against some of his predictions
about player 1’s choice based on R1o.

These requirements are closely related to the BP-property (“best-reponse property”in
Bernheim [3] and Pearce [18]), and the characterization result is given in Section 3.

The characterization results unify the Nash noncooperative theory and rationaliz-
ability theory, and pinpoint their difference: It is the choice of the universal or existential
quantifiers for predictions about the other player’s possible decisions. A basic method-
ological postulate of game theory is that each player has free will, which is associated
with decision making. The quantifier “for all”in N1o-N2o can be understood as coher-
ent in the application of this postulate between the players, but “for some”in R1o-R2o

is diffi cult to be reconciled with it.
In Section 4, we argue that the theory of rationalizability is better understood from

the perspective of complete determinism. Indeed, the epistemic justification for rational-
izability begins with a complete description of players’actions as well as mental states,
and characterizes classes of those states by certain assumptions. On the other hand, the
Nash noncooperative solutions correspond to predictions that result from players’active
inferences based on certain axioms about their own and other players’decision-making.
This insight has been emphasized by Johansen [10], and will be further discussed in the
companion paper [8] of the present paper.

As a result, our problem is a choice between two methodological assumptions, the
free-will postulate and complete determinism. This choice are discussed in Morgenstern
[16] and Heyek [7] in the context of economics and/or social science in general. Based
upon their arguments, we will conclude that the large part of social science is incom-
patible with complete determinism. From this perspective, the Nash noncooperative
theory is preferable to rationalizability.

The Nash theory might be regarded as having a defect in that it does not generate
definite predictions for unsolvable games. However, we argue that this is not a defect;
rather, it points out that additional principles, other than the decision criteria given
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above, are needed for unsolvable games. The study of those additional principles is
beyond this research project, but we remark that many applied works that use game
theory appeal to principles such as symmetry (which is already discussed in Nash [17])
and Pareto optimality.

Related to this issue is the notion of rationality in game theory. In the theory of ratio-
nalizability, rationality is more or less equivalent to payoff maximization; here, we take
a broader view of rationality, which includes, but not limited to, the decision/prediction
criterion and logical abilities to understand their implications, while payoff maximiza-
tion is only a component of rationality. With this broader view, one can incorporate
additional principles or criteria such as symmetry or Pareto optimality and investigate
whether those principles are consistent with more basic ones.

The paper is written as follows: Section 2 introduces the theories of Nash nonco-
operative solutions and rationalizable strategies; we restrict ourselves to finite 2-person
games for simplicity. Section 3 formulates N1o-N2o and R1o-R2o, and gives two the-
orems characterizing the Nash noncooperative theory and rationalizability. In Section
4, we discuss implications from them considering foundational issues. Section 5 gives a
summary and states continuation to the companion paper.

2. Preliminary Definitions

In this paper, we restrict our analysis to finite 2-person games without mixed strategies,
which is rich enough to conduct critical and conceptual comparisons between the two
theories. Mathematically, our main results can be extended to general n-person games
with potentially infinite strategy sets under suitable topological assumptions. Here, we
define basic concepts in a finite 2-person game. In Section 3.3, we discuss required
changes for our formulation to accommodate mixed strategies.

Let G = (N, {Si}i∈N , {hi}i∈N ) be a finite 2-person game, where N = {1, 2} is the
set of players, Si is the finite set of pure strategies and hi : S1 × S2 → R is the payoff
function for player i ∈ N. We assume S1 ∩ S2 = ∅. When we take one player i ∈ N, the
remaining player is denoted by j. Also, we write hi(si; sj) for hi(s1, s2). The property
that si is a best-response against sj , i.e.,

hi(si; sj) ≥ hi(s′i; sj) for all s′i ∈ Si, (2.1)

is denoted by Best(si; sj). Since S1∩S2 = ∅, the expression Best(si; sj) has no ambiguity.
We say that (s1, s2) is a Nash equilibrium in G iff Best(si; sj) holds for i ∈ N.We define
E(G) to be the set of all Nash equilibria in G. The set E(G) may be empty.

Nash Noncooperative Solutions: Let E be a subset of S1 × S2. We say that E is
interchangeable iff

(s1, s2), (s
′
1, s
′
2) ∈ E imply (s1, s

′
2) ∈ E. (2.2)
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It is known that this is equivalent for E to have the product form. For completeness,
we give it as a lemma. The only-if part is essential: If (s1, s2) ∈ E1×E2, then for some
s′1 ∈ S1 and s′2 ∈ S2 we have (s1, s

′
2) ∈ E and (s′1, s2) ∈ E, which, together with (2.2),

implies (s1, s2) ∈ E.

Lemma 2.1. Let E ⊆ S1 × S2 and let Ei = {si : (si; sj) ∈ E for some sj ∈ Sj} for
i = 1, 2. Then, E satisfies (2.2) if and only if E = E1 × E2.

Now, let E = {E : E ⊆ E(G) and E satisfies (2.2)}. We say that E is the Nash
solution iff E is nonempty and is the greatest set in E, i.e., E′ ⊆ E for any E′ ∈ E and
E 6= ∅. We say that E is a Nash subsolution iff E is a nonempty maximal set in E, i.e.,
there is no E′ ∈ E such that E ( E′. We call these the Nash noncooperative solutions.

Table 2.1 Table 2.2

s21 s22
s11 (2, 2) (1, 1)

s12 (1, 1) (0, 0)

s21 s22
s11 (1, 1) (1, 1)

s12 (1, 1) (0, 0)

When E(G) 6= ∅, E(G) is the Nash solution if and only if E(G) satisfies (2.2). When the
Nash solution exists for game G, G is called solvable. The game of Table 2.1 is solvable.
Thus, a game G is not solvable if and only if E(G) = ∅ or the nonempty greatest set does
not exist. On the other hand, for a game G with E(G) 6= ∅, a subsolution exists always;
specifically, for any (s1, s2) ∈ E(G), there is a subsolution Eo with (s1, s2) ∈ E0. This
Eo may not be unique: The game of Table 2.2 is not solvable and has two subsolutions:
{(s11, s21), (s11, s22)} and {(s11, s21), (s12, s21)}, and both include (s11, s21).

In Section 3, we argue that the Nash solution can be regarded as describing ex ante
individual decision making; here we give two comments about its interpretation. First,
for a solvable game, each component of the solution consists of a pair of strategies,
(s1, s2), rather than a single strategy. This means that from player 1’s perspective,
s1 describes player 1’s possible decision while s2 is player 1’s prediction of player 2’s
possible decisions. As shown later, a distinction between a decision and a prediction is
crucial from the perspective of ex ante decision making in a game.

Second, the Nash theory does not provide a definite recommendation for possible
decisions if the game is unsolvable and if a subsolution exists. Suppose that G has
exactly two subsolutions, say, F 1 = F 11 × F 12 and F

2 = F 21 × F 22 with F
1
i 6= F 2i for

i = 1, 2. One may think that the Nash theory would recommend the set Ei = F 1i ∪ F 2i
for player i as the set of possible decisions to play G. However, we find neither E′1 or
E′2 so that E

′
1 × (F 12 ∪ F 22 ) or (F 11 ∪ F 21 )× E′2 satisfies interchangeability.

Rationalizable Strategies: Now, we turn to rationalizability. The pure strategy
version to be discussed here is known as point-rationalizability due to Bernheim [3].
Although there are various ways to define this notion, we take the iterative one: A
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sequence of sets of strategies, {(Rν1(G), Rν2(G))}∞ν=0, is inductively defined as follows:
for i = 1, 2, R0i (G) = Si, and

Rνi (G) = {si : Best(si; sj) holds for some sj ∈ Rν−1j (G)} for any ν ≥ 1. (2.3)

We obtain rationalizable strategies by taking the intersection of these sets, i.e., Ri(G) =⋂∞
ν=0R

ν
i (G) for i = 1, 2; that is, we say a pure strategy si ∈ Si is rationalizable iff

si ∈ Ri(G). Note that Rνi (G) is nonempty for all ν and i = 1, 2, which is shown by
induction over ν.

It is known that each {Rνi (G)}ν is monotonically decreasing. Because each Rνi (G)
is finite and nonempty, Rνi (G) becomes constant after some ν; as a result, Ri(G) is
nonempty. These facts are more or less known, but we give a proof for completeness.

Lemma 2.2. {Rνi (G)}ν is a decreasing sequence of nonempty sets, i.e., Rνi (G) ⊇
Rν+1i (G) 6= ∅ for all ν.

Proof We show by induction over ν that the two sequences {Rνi (G)}ν , i = 1, 2, are
decreasing with respect to the set-inclusion relation. Once this is shown, since Si is
finite, we have Ri(G) =

⋂∞
ν=0R

ν
i (G) 6= ∅. For the base case of ν = 0, we have R0i (G) =

Si ⊇ R1i (G) for i = 1, 2. Now, suppose the hypothesis that this inclusion holds up to ν
and i = 1, 2. Let si ∈ Rν+1i (G). By (2.3), Besti(si; sj) holds for some sj ∈ Rνj (G). Since
Rν−1j (G) ⊇ Rνj (G) by the supposition, Besti(si; sj) holds for some sj ∈ Rν−1j (G). This
means si ∈ Rνi (G).

Criterion for Decision/Prediction Making: Our discussion of ex ante decision
making in games begin with a decision/prediction criterion. While our concern is about
comparisons between the Nash theory and rationalizability, some simpler example of
decision criteria may be helpful. A classical example of a decision criterion is the
maximin criterion due to von Neumann-Morgenstern [20]: It recommends a player to
choose a strategy maximizing the guarantee level (that is, the minimum payoff for a
strategy). In G = (N, {Si}i∈N , {hi}i∈N ), let Ei be a nonempty subset of Si, i = 1, 2.
The set Ei is interpreted as the set of possible decisions for player i. The criterion is
formulated as follows:

NM1: for each s1 ∈ E1, s1 maximizes mins2∈S2 h1(s1; s2);

NM2: for each s2 ∈ E2, s2 maximizes mins1∈S1 h2(s2; s1).

These are not interactive at all, since NMi, i = 1, 2, can recommend a decision without
depending upon NMj and also player i needs to know only his’s own payoff function.
Thus, no prediction is involved for decision making with these criteria.

A more sophisticated criterion may allow a player to consider the other’s criterion.
One possibility is the following:
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NM1: for each s1 ∈ E1, s1 maximizes mins2∈S2 h1(s1; s2);

N2: for each s2 ∈ E2, Best(s2, s1) holds for all s1 ∈ E1.

The second requires player 2 to predict player 1’s possible decisions and to choose
his decision against that prediction, while player 1 still adopts the maximin criterion.
In this sense, their interpersonal thought stops at depth 2. In the Nash theory and
rationalizability theory, we would meet some circularity and their interpersonal thought
goes beyond depth 2. Note that N2 is a mathematical formulation of N2o and will be
used in the characterization of the Nash theory.

We should comment on the choice of E1 or E2 when there are multiple candidates
for them. Without other information than the criterion and components of the game,
the outside observer cannot make a further choice of particular strategies. In the case
of NM1-NM2, Ei should consist of all strategies maximizing mins2∈S2 h1(s1; s2); Ei is
the greatest set satisfying NMi. In the case of NM1-N2, this should also be applied to
player 2’s predictions about 1’s choice: E1 in N2 should be the greatest set satisfying
NM1. We will adopt this practice of taking the greatest set for Ei in Section 3. This
is not a mere mathematical practice, but is very basic for the consideration of ex ante
decision making: It is stated as Johansen’s [10] postulate in Section 4.1.

3. Parallel Derivations of the Nash Noncooperative Solutions and Ra-
tionalizable Strategies

Our discussion of ex ante decision making in games begin with decision criteria. We
give two parallel decision criteria, and derive the Nash noncooperative solutions and
the rationalizable strategies from those criteria. Our characterization results pinpoint
the difference between the two theories. This difference is used as the basis of our
evaluation of these two theories of ex ante individual decision making in Section 4. We
give remarks on the mixed strategy versions of those derivations in Section 3.3.

3.1. The Nash Noncooperative Solutions

The decision criterion for the Nash solution formalizes the statements N1o and N2o in
Section 1. Let Ei be a subset of Si, i = 1, 2, interpreted as the set of possible decisions:
N1o and N2o are now formalized as:

N1: for each s1 ∈ E1, Best(s1; s2) holds for all s2 ∈ E2;

N2: for each s2 ∈ E2, Best(s2; s1) holds for all s1 ∈ E1.

These describe how each player chooses possible decisions; when one player’s viewpoint
is fixed, one of N1-N2 is interpreted as decision making, and the other is interpreted as
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prediction making. For example, from player 1’s perspective, N1 describes his decision
making, and N2 describes his prediction making.

Mathematically, N1 and N2 can be regarded as a system of simultaneous equations
with unknown E1 and E2. First we give a lemma showing that (E1, E2) satisfies N1-N2
if and only if it consists only of Nash equilibria.

Lemma 3.1. Let Ei be a nonempty subset of Si for i = 1, 2. Then, (E1, E2) satisfies
N1-N2 if and only if any (s1, s2) ∈ E1 × E2 is a Nash equilibrium in G.

Proof. (Only-If): Let (s1, s2) be any strategy pair in E1 × E2. By N1, h1(s1, s2) is
the largest payoff over h1(s′1, s2), s

′
1 ∈ S1. By the symmetric argument, h2(s1, s2) is the

largest payoff over s′2’s. Thus, (s1, s2) is a Nash equilibrium in G.

(If): Let (s1, s2) ∈ E1 × E2 be a Nash equilibrium. Since h1(s1, s2) ≥ h1(s
′
1, s2) for all

s′1 ∈ S1, we have N1. We have N2 similarly.
Regarding N1-N2 as a system of simultaneous equations with unknown E1 and E2,

there may be multiple solutions; indeed, any pair of Nash equilibrium as a singleton
set is a solution for N1-N2. However, the sets E1 and E2 should be based only on the
information of the game structure G. This implies that we should look for the pair of
greatest sets (E1, E2) satisfies N1-N23. The following theorem characterizes conditions
for the greatest pair to exist and and strategies in that pair in terms of Nash solutions.
In the theorem, E is a subset of S1 × S2 and Ei = {si : (si; sj) ∈ E for some sj ∈ Sj}
for i = 1, 2.

Theorem 3.2 (The Nash Noncooperative Solutions): (0): G has a Nash equilib-
rium if and only if there is a nonempty pair (E1, E2) satisfying N1-N2.

(1): Suppose that G is solvable. Then the greatest pair (E1, E2) satisfying N1-N2 exists
and E = E1 × E2 is the Nash solution E(G).

(2): Suppose that G has a Nash equilibrium but is unsolvable. Then E is a Nash sub-
solution if and only if (E1, E2) is a nonempty maximal pair satisfying N1-N2.

Proof. (0): If (s1, s2) is a Nash equilibrium of G, then E1 = {s1} and E2 = {s2} satisfy
N1-N2. Conversely, a nonempty pair (E1, E2) satisfies N1-N2. By Lemma 3.1, any pair
(s1, s2) ∈ E1 × E2 is a Nash equilibrium of G.

(1):(If): Let (E1, E2) be the greatest pair satisfying N1-N2. It satisfies to show E(G) =
E1 ×E2. By Lemma 3.1, any (s1, s2) ∈ E1 ×E2 is a Nash equilibrium. Conversely, let
(s′1, s

′
2) ∈ E(G) and E′i = {s′i} for i = 1, 2. Since this pair (E′1, E

′
2) satisfies N1-N2, we

have (s′1, s
′
2) ∈ E′1 × E′2 ⊆ E1 × E2. Hence, E(G) = E1 × E2.

(Only-If): Since E is the Nash solution, it satisfies (2.2). Hence, E is expressed as

3 If any additional information is available, then we extend N1-N2 to include it and should consider
the pair of greatest sets satisfying the new requirements.
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E = E1 × E2 by Lemma 2.1. Since it consists of Nash equilibria, (E1, E2) satisfies
N1-N2 by Lemma 3.1. Since E(G) = E = E1 ×E2, (E1, E2) is the greatest pair having
N1-N2.

(2): (If): Let (E1, E2) be a maximal pair satisfying N1-N2, i.e., there is no (E′1, E
′
2)

satisfying N1-N2 with E1 × E2 ( E′1 × E′2. By Lemma 3.1, E1 × E2 is a set of Nash
equilibria. Let E′ be a set of Nash equilibria satisfying (2.2) with E1 ×E2 ⊆ E′. Then,
E′ is also expressed as E′1 × E′2. Since E

′
1 × E′2 satisfies N1-N2 by Lemma 3.1, we

have E′i ⊆ Ei for i = 1, 2 by maximality for (E1, E2). By the choice of E′, we have
E1 × E2 = E′. Thus, E is a maximal set satisfying interchangeability(2.2).

(Only-If): Since E is a subsolution, it satisfies (2.2). Hence, E is expressed as E =
E1 × E2. Also, by Lemma 3.1, (E1, E2) satisfies N1-N2. Since E = E1 × E2 is a subso-
lution, (E1, E2) is a maximal set satisfying N1-N2.

The pair (E1, E2) satisfying N1-N2 consists of the empty sets if there is no Nash
equilibrium in G. When G has a Nash equilibrium but is unsolvable, there are multiple
pairs of maximal sets (E1, E2) satisfying N1-N2. We do not have those problems in
NM1-NM2 in Section 2.3, for which the greatest pair always exists and is nonempty. It
may be the reason for this difference that N1-N2 are interactive but NM1-NM2 are not
at all. In this respect, the theory of rationalizable strategies, to be discussed in Section
3.2, is similar to NM1-NM2, though it is more interactive than NM1-NM2.

In the case of an unsolvable game G with a Nash equilibrium, there are multiple
candidate sets of possible decisions and predictions, even though the decision criterion
and game structure are commonly understood between the players. Each maximal pair
(E1, E2) satisfying N1-N2 may be a candidate, but it requires further information for the
players to choose among them. Thus, N1-N2 alone is not suffi cient to provide a definite
recommendation in unsolvable games. Theorem 3.2 gives a demarcation between the
cases of having a definite recommendation and not.

One possible way to reach a recommendation for an unsolvable game is to impose
additional criterion, such as the symmetry requirement in Nash [17], to select a certain
subset of Nash equilibria. The game of Table 2.2 is unsolvable, but it has a unique
symmetric equilibrium (s11, s21). Hence, if we add the symmetry criterion, we convert
an unsolvable game to a solvable game.

Table 3.1 Table 3.2

s21 s22
s11 (5, 5)n (0, 5)n

s12 (5, 0)n (0, 0)n

s21 s22
s11

n(5,−5) n(0,−5)

s12
n(5, 0) n(0, 0)

Another possible criterion is Pareto-optimality. In the thought process of decision
making, the players may add the (strong) Pareto-criterion to their decision criterion.
In the game of Table 3.1, (s11, s21) (weakly) Pareto-dominates the other equilibria, and
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(s12, s21) does in the game of Table 3.2. We obtain a unique decision in both games.
This suggests a possibility to obtain the value of the 2-person game for each player,
as discussed in Nash [17]. Indeed, in general, if the Nash solution exists in a 2-person
game, we can select a unique payoff vector by the Pareto criterion.

To achieve solvability by adding additional criteria seems diffi cult in general. Nev-
ertheless, N1-N2 serves the starting point which allows further investigation of their
compatibility with additional principles in specific classes of games, which may become
a fruitful direction for future research.

One alternative to obtain a definite recommendation in unsolvable games other than
additional criteria is to introduce pre-play communication between the players. This
requires a development of a language to communicate about which subsolution would
be played. This approach, however, meets conceptual issues regarding modeling com-
munication. The game of Table 3.3 has three subsolutions indexed by (1), (2), (3) : To
communicate which subsolution would be played requires the information of all the ele-
ments of the targeted subsolution. The success of such a communication depends upon
the choice of names or language referring to subsets of strategies or subsolutions. In
this paper, we do not touch this problem.

Table 3.3

s21 s22 s23
s11

(1)(1, 1) (1)(1, 1)(2) (0, 0)

s12 (0, 0) (3)(1, 1)(2) (3)(1, 1)

3.2. Rationalizable Strategies

Let us consider the following modification of N1-N2: for E1 and E2,

R1: for each s1 ∈ E1, Best(s1; s2) holds for some s2 ∈ E2;

R2: for each s2 ∈ E2, Best(s2; s1) holds for some s1 ∈ E1.

This criterion differs from N1-N2 only in that the quantifier “for all” before players”
predictions in N1-N2 is replaced by “for some”. In fact, R1-R2 is the pure-strategy
version of the BP-property given by Bernheim [3] and Pearce [18]. The greatest pair
(E1, E2) satisfying R1-R2 exists and coincides with the sets of rationalizable strategies
(R1(G), R2(G)). A more general version of the following theorem is reported in Bernheim
[3] (Proposition 3.1); we include the proof for self-containment.

Theorem 3.3 (Rationalizability): (R1(G), R2(G)) is the greatest pair satisfying R1-
R2.

Proof. Suppose that (E1, E2) satisfies R1-R2. First, we show by induction that E1 ×
E2 ⊆ Rν1(G) × Rν2(G) for all ν ≥ 0, which implies E1 × E2 ⊆ R1(G) × R2(G). Since
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R0i (G) = Si for i = 1, 2, E1 × E2 ⊆ R01(G) × R02(G). Now, suppose E1 × E2 ⊆
Rν1(G) × Rν2(G). Let si ∈ Ei. Due to the R1-R2, there is an sj ∈ Ej such that
Best(si; sj) holds. Because Ej ⊆ Rνj (G), we have sj ∈ Rνj (G). Thus, si ∈ Rν+1i (G).

Conversely, we show that (E1(G), E2(G)) satisfies R1-R2. Let si ∈ Ri(G) =
⋂∞
ν=0R

ν
i (G).

Then, for each ν = 0, 1, 2, ...., there exists sνj ∈ Rνj such that Best(si; sνj ) holds. Since Sj
is a finite set, we can take a subsequence {sνtj }∞t=0 in {sνj }∞ν=0 such that for some s∗j ∈ Sj ,
sνtj = s∗j for all νt. Then, s

∗
j belongs to Rj(G) =

⋂∞
ν=0R

ν
j (G). Also, Besti(si; s∗j ) holds.

Thus, (R1(G), R2(G)) satisfies R1-R2.

Existence of a Theoretical Prediction: Theorem 3.3 and Lemma 2.2 imply that the
greatest pair satisfying R1-R2 exists and consists of nonempty sets. Interchangeability
is automatically satisfied by construction. In this respect, the rationalizability theory
may appear preferable to the Nash theory, since it avoids issues due to the emptiness
or nonexistence of the Nash solution. However, we can/should take a different view:
Emptiness or nonexistence involved in the Nash theory may help identify situations
where additional principles other than best-response against predictions are required to
obtain a recommendation. The Nash theory may be more useful than the rationalizabil-
ity theory in that it demarcates between those two cases. We will return to this issue
once more in Section 4.2.

Set-theoretical Relationship to the Nash Solutions: It follows from Theorem 3.3
that each strategy of a Nash equilibrium is a rationalizable strategy. Hence, the Nash
solution, if it exists, is a subset of the set of rationalizable strategy profiles. However,
the converse does not necessarily hold. Indeed, consider the game of Table 3.4, where
the subgame determined by the 2nd and 3rd strategies for both players is the “matching
pennies”.

Table 3.4 Table 3.5

s21 s22 s23
s11 (5, 5) (−2,−2) (−2,−2)

s12 (−2,−2) (1,−1) (−1, 1)

s13 (−2,−2) (−1, 1) (1,−1)

s21 s22 s23
s11 (5, 5) (1/2, 1/2) (1/2, 1/2)

s12 (1/2, 1/2) (1,−1) (−1, 1)

s13 (1/2, 1/2) (−1, 1) (1,−1)

This game has a unique Nash equilibrium, (s11, s21). Hence, the set consisting of this
equilibrium is the Nash solution.

It follows from the above observation that both s11 and s21 are rationalizable strate-
gies. Moreover, the other four strategies, s12, s13 and s22, s23 are also rationalizable:
Consider s12. It is a best response to s22, which is a best response to s13, and s13 is
a best response to s23, which is a best response to s12. That is, we have the following
relations:

Best(s12; s22), Best(s22; s13),Best(s13; s23), and Best(s23; s12).
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By Theorem 3.3, those four strategies are rationalizable. In sum, all the strategies are
rationalizable in this game.

This example shows that even for solvable games, the Nash solution may differ from
rationalizable strategies. As we shall see later, the game of Table 3.4 becomes unsolvable
if mixed strategies are allowed, while the rationalizable strategies remain the same.

3.3. Mixed Strategy Versions

Theorems 3.2 and 3.3 can be carried out in mixed strategies without much diffi culty.
The use of mixed strategies may give some merits and demerits to each theory. Here,
we give comments on the mixed strategy versions of the two theories.

The mixed strategy versions can be obtained by extending the strategy sets S1 and
S2 to the mixed strategy sets ∆(S1) and ∆(S2); where ∆(Si) is the set of probability
distributions over Si. The notion of Nash equilibrium is defined in the same manner with
the strategy sets ∆(S1) and ∆(S2) : Once the Nash equilibrium is defined, the Nash
solution, subsolution, etc. are defined in the same manner. However, the mixed strategy
version of rationalizability requires some modification: A sequence of sets of strategies,
{(R̃ν1(G), R̃ν2(G))}∞ν=0, is inductively defined as follows: for i = 1, 2, R̃0i (G) = Si, and
for any ν ≥ 1,

R̃νi (G) = {si : Best(si; sj) holds for some mj ∈ ∆(R̃ν−1j (G))}.

A pure strategy si ∈ Si is rationalizable iff si ∈ R̃i(G) =
⋂∞
ν=0 R̃

ν
i (G).

Requirements N1-N2 are modified by replacing Si by ∆(Si), i = 1, 2;for Ei ⊆ ∆(Si),
i = 1, 2,

N1m: for each m1 ∈ E1, Best(m1;m2) holds for all m2 ∈ E2,

N2m: for each m2 ∈ E2, Best(m2;m1) holds for all m1 ∈ E1.

Notice that N1m-N2m is the same as N1-N2 with different strategy sets. Moreover,
Theorem 3.2 still holds without any substantive changes.

In a parallel manner, the mixed strategy version of rationalizability can also be
obtained; for Ei ⊆ ∆(Si), i = 1, 2,

R1m: for each m1 ∈ E1, Best(m1;m2) holds for some m2 ∈ E2,

R2m: for each m2 ∈ E2, Best(m2;m1) holds for some m1 ∈ E1.

This is a direct counterpart of R1-R2 in a game with mixed strategies. In this case,
a player is allowed to play mixed strategies. However, in the original version of ra-
tionalizability in Bernheim [3] and Pearce [18], the players are allowed to use pure
strategies only; indeed, mixed strategies are interpreted as a player’s beliefs about the
other player’s decisions. We can reformulate R1m-R2m based on this interpretation of
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mixed strategies: In R1m, the first occurrence of m1 is replaced by a pure strategy in
the support of E1, and R2m is modified in a parallel manner. This reformulation turns
out to be mathematically equivalent to R1m-R2m.

With the replacement of R1-R2 by R1m-R2m in Theorem 3.3, the following statement
holds:

Theorem 3.3′. (∆(R̃1(G)),∆(R̃2(G))) is the greatest pair satisfying R1m-R2m.

A simple observation is that a rationalizable strategy in the pure strategy version
is also a rationalizable strategy in the mixed strategy version. Similarly, since a Nash
equilibrium in pure strategies is also a Nash equilibrium in mixed strategies, it may be
conjectured that if a game G has the Nash solution E in the pure strategies, it might be
a subset of the Nash solution in mixed strategies. In fact, this conjecture is answered
negatively.

Consider the game of Table 3.4. This game has seven Nash equilibria in mixed
strategies:

((1, 0, 0), (1, 0, 0)), ((0,12 ,
1
2), (0,12 ,

1
2)), (( 418 ,

7
18 ,

7
18), ( 418 ,

7
18 ,

7
18))

((18 ,
7
8 , 0), ( 310 ,

7
10 , 0)), ((18 , 0,

7
8), ( 310 , 0,

7
10)), (( 310 ,

7
10 , 0), (18 , 0,

7
8)), (( 310 , 0,

7
10), (18 ,

7
8 , 0)).

This set does not satisfy interchangeability (2.2). For example, ((1, 0, 0), (1, 0, 0)) and
((0, 12 ,

1
2), (0, 12 ,

1
2)) are Nash equilibria, but ((0, 12 ,

1
2), (1, 0, 0)) is not a Nash equilibrium.

Thus, (2.2) is violated, and the set of all mixed strategy Nash equilibria is not the Nash
solution.

This result depends upon the choice of payoffs: In Table 3.5, (s11, s21) is the unique
Nash equilibrium in mixed strategies, while all strategies are still rationalizable.

Finally, we give comments on n-person games with potentially infinite strategy sets.
Our previous arguments are still valid both mathematically and conceptually for such an
extension under suitable topological assumptions, for example, compactness on strategy
sets and continuity on payoff functions.

4. Evaluations of N1-N2 and R1-R2 as Prediction/Decision Criteria

In our unified approach, we found that the difference between the Nash and rational-
izability theories is the choice of quantifier “for all” or “for some” for each player’s
predictions. Based on this, we evaluate these theories from the viewpoint of ex ante
individual decision making, and their logical coherence with the conceptual bases of
game theory. First we consider the principles of prediction/decision making in general
and focus on the distinction between decision and prediction and the resulted infinite
regress in particular. Then, we return to the pinpointed difference between the two
theories. We take Johansen’s [10] argument on the Nash theory as our starting point;
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his argument is the first attempt to understand ex ante decision/prediction making in
game theory.

4.1. Johansen’s Argument

Johansen [10] gives the following four postulates for decision/prediction making in games
and assert that the Nash noncooperative solution can be derived from those postulates4

for solvable games.

Postulate J1. A player makes his decision si ∈ Si on the basis of, and only on the
basis of information concerning the action possibility sets of two players S1, S2 and their
payoff functions h1, h2.

Postulate J2. In choosing his own decision, a player assumes that the other is rational
in the same way as he himself is rational.

Postulate J3. If any5 decision is a rational decision to make for an individual player,
then this decision can be correctly predicted by the other player.

Postulate J4. Being able to predict the actions to be taken by the other player,
a player’s own decision maximizes his payoff function corresponding to the predicted
actions of the other player.

First, we notice that the term “rationality”in Johansen’s argumentation is broader
than its typical meaning in the game theory literature, which refers simply to “pay-
off maximization.”Indeed, “rational”appears in J2 and J3, and “payoff maximization
against prediction” appears in J4. It is more faithful to his argumentation to regard
these four postulates together as an attempt to define “rationality”, while “payoffmax-
imization” is only one component of it. In fact, we may disentangle the notion of “ra-
tionality” into two separate concepts: prediction/decision criterion, which has “payoff
maximization”as its component, and ability of logical inferences.

Postulate J1 is the starting point for our consideration of ex ante decision mak-
ing. Postulate J2 requires the decision criterion be symmetric between one player and
his imaginary other player. Postulate J3 requires each player’s prediction about the
other’s decision be correctly made. Postulate J4 corresponds to the payoff maximiza-
tion requirement. In the following, we first elaborate Postulates J2 and J3, and then
use J1-J4 as a reference point for our critical comparisons between the N-system and
R-system.

Postulate J2 implies that from player 1’s perspective, the decision criterion has to
be symmetric to both players. Since the present context has no further components to

4He assumed that the game has the unique Nash equilibrium for his assertion (p.435), but he noted
that interchangeability is actually enough (p.437) for it.

5This “any”was “some”in Johansen’s orginal Posutlate 3. According to logic, this should be “any”.
However, this is mistakenly expressed as “some”in many scientists (even mathematicians).
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distinguish the other player from himself, a natural choice is to assume symmetry for
player 1’s decision making. If some new component is introduced to distinguish between
the players, then J2 might be violated, and it would be possible to have the combination
N1-R2 for player 1: That is, player 1 uses N1 for his decision making but R2 for his
prediction making.

The underlying reasoning for Postulate J3 is as follows: First, player 1 thinks about
the whole situation taking player 2’s criterion as given, and makes inferences from this
thinking. Based on such inferences, player 1 makes a prediction about 2’s decisions.
This prediction is correct in the sense that if 2 uses the same decision criterion as the
one used by 1’s prediction for 2’s decision, and if 2 has the same logical ability, then
1’s predictions coincide with 2’s actual decisions. In this sense, predictability in J3 is a
result of a player’s contemplation of the whole interactive situation6. In this reasoning,
the emphasis of J3 is about players’ interpersonal logical abilities, while that of J2 is
about decision criterion.

Now, we compare J1-J4 with N1-N2 and R1-R2. Postulate J1 is well taken in N1-N2
and R1-R2, because both criteria are described only with the components of the game
structure G = (N, {Si}i∈N , {hi}i∈N ). Both systems N1-N2 and R1-R2 are compatible
with J2 and J3. Finally, Postulate J4 corresponds to the requirement that actions in Ei
maximize player i’s payoff against elements in E−i predicted by player i; the difference
in the quantifiers before the predicted decisions that appear in N1-N2 and R1-R2 will
be discussed in great detail later.

Johansen [10] did not give a formal analysis of these postulates. Indeed, they contain
elements that cannot be expressed in the language of classical game theory. Our N1-N2
may be regarded as a formulation of these postulates in the language of classical game
theory. In this sense, Theorem 3.2 is comparable with Johansen’s assertion that the
Nash solution is characterized by J1-J4. However, one crucial aspect of J1-J4 is the
distinction between decision and prediction, which is not captured in our formulation
and is discussed in Section 4.2.

4.2. Prediction/Decision Criterion

Here, we discuss some principles for decision/prediction making, and highlight the re-
sulting infinite regress of decision/prediction making based on N1-N2 or R1-R2. For
this discussion, the difference between N1-N2 and R1-R2 is not significant; we focus on
N1-N2, but will comment on R1-R2 also.

Prediction Making (Putting Oneself in the Other’s Shoes): System N1-N2 is
understood as describing both prediction making and decision making: from player 1’s

6Bernheim’s [4], p.486, interpretation of J3 in his criticism against these postulates is quite different
from our reasoning. In his framework, predictability simply means that the belief about the other
player’s action, which is exogenously given, coincides with the actual action.

15



perspective, E1 in N1 is his decision variable, while E2 in N1 is his prediction variable.
N1 alone does not determine E1, since it needs some other criterion to determine E2.
To do so, player 1 puts himself into player 2’s shoes to make predictions. However, this
argument could not stop here; by putting himself in 2’s shoes, 1 needs to think about
2’s predictions about 1’s decisions. Continuing this argument ad infinitum, we meet the
infinite regress described in Diagram 4.1, which is made from the viewpoint of player
1. A symmetric argument from player 2’s viewpoint can be constructed. This infinite
regress is encountered by R1-R2 as well (Diagram 4.3).

Double Uses of N1-N2: In the infinite regress, N1 is a decision criterion for 1 and
is a prediction criterion for 2, while N2 is a decision criterion for 2 and a prediction
criterion for 1. Thus, both N1 and N2 are used both as decision and prediction criteria.
This double use is consistent with J2.

Diagram 4.1 Diagram 4.2

N1 N1 N1 · · ·
↓ ↗ ↓ ↗ ↓ ↗
N2 N2 N2

=⇒
N1
↓ ↑
N2

Diagram 4.3 Diagram 4.4

R1 R1 R1 · · ·
↓ ↗ ↓ ↗ ↓ ↗
R2 R2 R2

=⇒
R1
↓ ↑
R2

In the language of classical game theory, no explicit distinction can be made between
player 1’s and 2’s perspectives, which remains interpretational. Without this distinction,
the infinite regress in Diagram 4.1 collapses into a system of simultaneous equations
described by Diagram 4.2. As shown in Theorem 3.2, a solution to the simultaneous
equations is a Nash solution. The theory of rationalizability is parallel in this respect;
although the original definition of rationalizable strategies, given in Section 2, takes the
form of Diagram 4.3, Theorem 3.3 states that it collapses to Diagram 4.4.

One way to avoid the collapses from Diagram 4.1 (3, respectively) into Diagram 4.2
(4) is to reformulate our considerations in an epistemic logic framework, in which we can
explicitly discuss the relationship between the above infinite regress and the common
knowledge of N1-N2 (R1-R2). This will be given in the companion paper [8].

Ex Ante Decision Making, Inferences, and Solvability: In ex ante decision-
making, each player makes his decision based on his prediction about the other’s deci-
sions. Those decisions as well as predictions can only come from the player’s individual
inferences based on his knowledge of both players’decision criteria and the game struc-
ture. In many situations, such inferences may not give a unique decision. The sets E1
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and E2 in N1-N2 or R1-R2 may be regarded as the set of decisions and the set of pre-
dictions, respectively, that result from such inferences. In particular, for N1-N2, those
inferences may not provide definite recommendations for decisions7.

Indeed, in situations such as the Battle of Sexes game, individualistic decision making
is incapable of recommending a set of definite decisions without communication between
the players. Theorem 3.2 exactly demarcates between the case where individualistic
decision making does serve a definite set of decisions (when the game is solvable) and
the case where it does not (when the game is unsolvable). For example, according to
Theorem 3.2.(2), the Nash solution does not give a definite recommendation in the Battle
of Sexes game. On the other hand, the theory of rationalizability tells no diffi culties:
The recommendation from R1-R2 is the set of rationalizable strategies, which is always
nonempty.

4.3. The Free-will Postulate vs. Complete Determinism

The difference between N1-N2 and R1-R2 lies in the choice between the quantifiers ‘for
all’and ‘for some’for one’s predictions about the other’s possible decisions. Here, we
evaluate this difference based on two conflicting meta-theoretical foundations: One is
the free-will postulate, and the other is complete determinism.

The Free-will Postulate: This is a basic principle in game theory, stating that players
have freedom to make a choice following their own will. In a single person decision prob-
lem, utility maximization may effectively void this postulate; however, in an interactive
situation, even if each player is very smart, it is still possible that individual decision
making, based on utility maximization alone, may not result in a unique decision8, due
to potential multiplicity of his opponent’s decision and vice versa. This is first argued in
Morgenstern [16], using the paradox of Moriarity chasing Holmes, both of whom are ex-
tremely clever. Therefore, the free-will postulate remains relevant to game theory. Our
approach reflects this relevance in that the decision criterion is applied to a candidate
set of “rational”(Johansen [10]) decisions for each player simultaneously.

Moreover, whenever the social science involves value judgements for an individual
being and/or society, it relies on the free-will postulate as a foundation9. Here, we argue
that the Nash theory is consistent with this postulate, while the rationalizability theory
has some diffi culties to be reconciled with this postulate.

First, we consider two applications of the postulate at two different layers in terms

7Here, our discussions of logical inferences are all interpretational. But those can be discussed
formally in an epistemic logic framework; see Hu-Kaneko [8].

8These do not imply that utility maximization even for 1-person problem violates the free-will pos-
tualte; he has still freedom to ignore his utility.

9The free-will postulate is needed for deontic concepts such as responsibility for individual choice
and also for individual and social efforts for future developments.

17



of interpersonal thinking:

(i): It is applied by the outside observer to the (inside) players;

(ii): It is applied by an inside player to the other player.

In application (i), the outside theorist respects the free will of each player; the theorist
can make no further refinement than the inside player. This corresponds to the great-
estness requirement for (E1, E2) in Theorems 3.2.(1) and Theorem 3.3. In (ii), when
one player has multiple predictions about the other’s rational decisions, the free-will
postulate, applied to interpersonal decision making, requires the player take all rational
predictions into account. N1-N2 is consistent with this requirement in that it requires
each player’s decision be optimal against all predictions10. Criterion R1-R2 involves
some subtlety in judging whether it is consistent with the application (ii). The main
diffi culty is related to the interpretation of the existential quantifier before the prediction
about the other’s decision. We will discuss the potential arbitrariness implied by the
existential quantifier next. Indeed, we consider another view “complete determinism”.

Complete Determinism: The quantifier “for some”in R1-R2 can have two different
interpretations:

(a): it requires only the mere existence of a rationalizing strategy;

(b): it suggests a specific rationalizing strategy predetermined for some other reason.

Interpretation (a) is more faithful to the mathematical formulation of R1-R2 as a de-
cision criterion. If we accept (a), then R1-R2 can still be consistent with the free-will
postulate in that R1-R2 can be regarded as chosen by a player, although arbitrari-
ness of the rationalizing strategy shows no respect to the other player’s free will. This
treatment reminds us the Aesops’sour grapes; the fox finds one convenient reason to
persuade himself. This interpretation of “rationalization” is at odds with the purpose
of a theory of ex ante decision-making for games, for which the theory is serious about
a best choice responding to prediction about the other’s decisions. Such a theory is
supposed to provide a rationale for players’possible decisions as well as predictions.
However, interpretation (a) avoids an explicit rationale for each specific rationalizing
strategy.

Interpretation (b) resolves this “arbitrariness” in (a): According to (b), there are
some further components, not explicitly included in the game description G and R1-R2,
which determine a specific rationalizing strategy. A specific rationalizing strategy for
each step has to be uniquely predetermined; this uniqueness is crucial, for otherwise
the player would have to arbitrarily choose among different strategies or to look for a
further reason to choose some of them.
10There are many other criteria consistent with the requirement. For example, player 1 uses the

maximin criterion to choose his action against E2. Another possibility is to put equal probability on
each action in E2 and to apply expected utility maximization.
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To determine a specific rationalizing strategy, one possibility is to refer to a full
description of the world including players’mental states; this presumes some form of
determinism. We consider only complete determinism for simplicity. Since our situation
involves two players in an interactive manner, the full description requires infinite hi-
erarchy of beliefs. Indeed, there is a literature, beginning from Aumann [2]11 to justify
the rationalizability theory or alike along this line (see Tan-Werlang [19]).

Complete determinism denies the free-will postulate in that it contains no room for
decision; ex ante decision making is an empty concept from this perspective. From this
point of view, R1-R2 loses the status of a decision criterion; instead, it becomes a law
of causation.

Except for conflicting against the free-will postulate, complete determinism may not
be very fruitful as a methodology for social science in general, which is aptly described
by Hayek [7], Section 8.93: “Even though we may know the general principle by which
all human action is causally determined by physical processes, this would not mean that
to us a particular human action can ever been recognizable as the necessary result of
a particular set of physical circumstances.” In fact, complete determinism is justified
only because of its non-refutability by withdrawing from concrete problems into its own
abstract world. Neither complete determinism nor the free-will postulate can be justified
by its own basis. Either should be evaluated with coherency of the entire scope and the
scientific and/or theoretical discourse.

Basic Beliefs for a Player: Ex ante decision making begins with the player’s basic
understanding of the game structure. A normal form game G = (N, {Si}i∈N , {hi}i∈N ) is
regarded as abstracted from a real social situation by taking relevant information. The
abstraction and choice of relevant information are necessarily involved in the process of
decision making. Johansen’s postulate J1 requires a study of ex ante decision making
starts with the descriptive elements in G. Player’s understanding of G is parallel to
the theorist’s understanding of his theory. From this perspective, we conclude that the
Nash noncooperative theory is a faithful description of ex ante decision-making. On the
other hand, if we take the complete determinism interpretation for rationalizability, a
full description of the world is required, which voids active decision making.

11 In the problem of common knowledge in the information partition model due to Robert Aumann,
the information partitions themselves are assumed to be common knowledge. He wrote in [1], p.1237:
“Included in the full description of a state ω of the world is the manner in which information is im-
parted to the two persons”. This can be interpreted as meaning that the primitive state ω includes
every information. A person receives some partial information about ω, but behind this, everything is
predetermined. This view is shared with Harsanyi [6] and Aumann [2].
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5. Conclusions

We presented the unified framework of the Nash noncooperative theory and rational-
izability theory. Then, we pinpointed that the difference between them is the choice
of the quantifier “for all”or “for some” for predictions about the other player’s possi-
ble decisions. In Section 4, we discussed various conceptual problems by viewing the
quantifier “for all” or “for some” from the perspectives of the free-will postulate and
complete determinism.

As already stated, in our current framework no formal distinction is made for one’s
predictions and the other’s decisions. Similarly, the knowledge of the game structure
and rationality is also purely interpretational here. To formalize the distinction between
decisions and predictions, and to evaluate the (common) knowledge requirements more
explicitly, we need a certain extended framework. In the companion paper [8], we will
adopt the epistemic logic approach. Specifically, we will use the (propositional) common
knowledge logic CKL. It enables us to study the meaning of the common knowledge of
the structure of the game and the player’s rationality, stated in the quotation from
Mas-Collel, et al [13]. We can also discuss the relationship between the infinite regress
mentioned in Section 4.2 and the common knowledge of N1-N2 (or R1-R2).

The CKL approach sheds different lights on the problems of the free-will postulate
and/or complete determinism. We adopt the proof theoretical (syntactical) formulation
of the logic, where each player is facilitated with some logical inference ability and infers
logical conclusions for his decisions from his basic beliefs. This view is coherent to what
we described in Section 4.3. Also, we provide the semantic approach to prove some
unprovability results. In sum, the logical approach is needed so as to have more explicit
and extensive discussions on the problem of ex ante individual decision making than in
those in Section 4.
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