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Abstract

Expected consumer’s surplus rarely represents a consumer’s preferences over price-income lot-
teries. Still, I find that policies which maximize expected surplus are interim Pareto Optimal
under four assumptions. Two are strong but standard partial equilibrium assumptions: the
policy affects only one price; and income changes do not affect demand. The two others
are that every consumer’s indirect utility function satisfies increasing differences in price and
income; and policies order prices by a single-crossing property. I argue that increasing dif-
ferences is plausible. The single-crossing property appears strong, but holds in important
applications. I use the result to extend some well-known welfare results beyond the knife-edge
case of quasilinear utility.
JEL Classification: D61, D8.
Keywords: Welfare under Uncertainty, Consumer’s Surplus, Risk Aversion, Optimal Regu-
lation, Single-Crossing Property, Increasing Differences, Quasilinear Utility.

1 Introduction

Consumer’s surplus cannot represent a consumer’s preferences over all price-income pairs
(Chipman and Moore (1976), p. 80, building on Samuelson (1942) and others). Perhaps worse,
Chipman and Moore (1976 and 1980) show that even if we severely restrict allowable price-
income pairs, consumer’s surplus only represents a knife-edge class of preferences. Yet if there
is no uncertainty, policies which maximize aggregate surplus just equate prices and marginal
costs, a necessary condition for Pareto Optimality of a production plan, absent distortions.
For example, per-unit taxes should be set to zero, and a monopolist should be subsidized until
price equals marginal cost. This fact surely helps explain why applied economists often use
aggregate surplus to evaluate policies. Another surely-important fact is that one only needs
to know aggregate demand to calculate it, not individual preferences and endowments.

It is easy to see how surplus-maximizing policies can be Pareto Optimal if there is no
uncertainty: if prices and incomes vary smoothly with the policy (for example, taxes) then the

∗I thank Hector Chade, Kerry Smith, and conference participants at the 2010 Society for the Advancement of
Economic Theory meetings in Singapore and the 2010 Public Economic Theory conference in Istanbul for comments.
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change in consumer’s surplus for small policy changes is proportional to the change in utility:
the change in consumer’s surplus locally represents a consumer’s preferences over policies, no
matter what the preferences. It follows that the first-order conditions for maximizing aggregate
surplus are the same as those for maximizing a particular weighted sum of consumer utilities.

With uncertainty and incomplete markets, the outlook for a positive result seems bleak:
even if incomes and the prices of all but one good are fixed, the change in expected consumer’s
surplus is not proportional to change in expected utility unless the marginal utility of income
is constant in the one price (Rogerson (1980) and Turnovsky, Shalit, and Schmitz (1980)).1

And policies which maximize expected surplus often lack the immediate intuitive appeal of
“price = marginal cost.” For example, Deneckere, Marvel, and Peck (1997) find that letting
a monopolist manufacturer impose a price floor for retailers can raise expected aggregate and
expected consumers’ surplus. And Baron and Myerson (1982) find that optimal regulation
of a monopolist with private cost information sometimes puts positive probability on prices
that are higher than the highest possible unregulated monopoly price. Curiously, defenses
of aggregate surplus in Industrial Organization texts only consider economies with complete
markets and no uncertainty—e.g. Tirole (1988), Introduction, and Vives (1999), Chapter 3—
although those texts, and the applied microeconomics literature more generally, are filled with
models with uncertainty and incomplete markets.

Still, I show that expected-surplus-maximizing policies are (interim) Pareto Optimal under
four conditions (Theorem 1). Two are standard if strong partial equilibrium conditions: the
policy only affects one price, and policy-induced income changes do not affect demand. The
other two are more novel in this literature, one on preferences, the other on how policies affect
prices. The preference condition is that each consumer’s indirect utility function satisfies
increasing differences in the price of the good and money, or equivalently the marginal utility
of money is increasing in the price. It turns out that increasing differences holds if and only if
relative risk aversion for money lotteries is at least as large as the budget elasticity of demand
for the good. Since budget elasticities must on average equal 1, I argue that this condition
is empirically plausible. The policy condition is that an expected surplus maximizing policy
generates a random price which is “less variable” in a sense to be made precise than any
other policy. The condition seems strong, but I show it often holds in applications. I argue
that, roughly, it is more likely to hold if uncertainty is about consumers rather than producers
(Section 3.2). I illustrate my results with some important I.O. applications (Section 4). For
example I show that if the indirect utilities satisfy increasing differences, minimum resale price
maintenance in Deneckere, Marvel, and Peck (1997) remains Pareto Optimal, but the policy
identified by Baron and Myerson (1982) is not—indeed all consumers and the firm can prefer
no regulation at all to the Baron-Myerson policy.

The models of Baron and Myerson (1982) and Deneckere, Marvel, and Peck (1997) share
two things with many in I.O. and applied microeconomics. First, they are partial equilibrium
models: the policy only affects one relative price, and income changes do not affect demand.
Second, consumers’ attitudes towards the uncertainty in the model are irrelevant: by the time
consumers act, all the uncertainty in the model is resolved, so their choices reveal nothing
about attitudes towards this uncertainty. These attitudes are needed to evaluate policies
chosen before the uncertainty is resolved.

1I exploit this fact (Schlee, 2008) to show that the percentage error from using expected consumer’s surplus to
approximate the willingness to pay for a price change is unbounded, in contrast to Willig (1976)’s famous approx-
imation result in the certainty case (Vives (1987) and Hayashi (2008) substantially extend Willig’s result). Here I
am not concerned with measuring the welfare change, but with finding optimal policies.
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The closest paper is Rogerson (1980), who determines whether the expected-surplus rank-
ing of policies which affect a good’s price is Pareto Consistent, namely, whether expected
surplus rises whenever all consumers prefer a change. He finds it is if and only if each con-
sumer’s indirect utility is additively separable in the price of the good (and any other variables
that are random), a much stronger condition than increasing differences. He also concludes
that expected surplus is apt to perform better if the uncertainty is about producers rather
than consumers. I defer a fuller discussion to Sections 3.1.1 and 5, but briefly the two main
differences are that Rogerson (1980) considers ex ante rather than interim welfare; and he
puts no restriction on how policies affect the price distribution. My contribution is to find a
restriction on policies so that expected-surplus-maximizing policies are Pareto Optimal for a
plausible class of preferences. Since the class puts no upper bound on consumer risk aversion,
the result is especially useful for applications in which risk aversion is important.

2 Certainty: Complete Markets Benchmark

I begin with a benchmark economy with no uncertainty and complete markets. My goal here
is to write down sufficient conditions for surplus-maximizing polices to be Pareto Optimal
(Proposition 2), a result I extend to economies with uncertainty and incomplete markets. I
also point out that other simple sufficient conditions cannot easily be extended.

The model is close to the one Radner (1993) uses for local cost-benefit analysis. The
economy has I consumers, L goods (L ≥ 2), and a finite number of firms. Good L is the
numeraire. All consumers face the same prices, which they take as given. My first restriction
on how policies affect prices is in the spirit of partial equilibrium: policies only affect the
price of good 1 (relative to other goods) and incomes. I maintain the restriction throughout.
Consumer i’s income mi > 0 equals the value of i’s endowment plus i’s profit income. Each
consumer’s preferences over goods are represented by a continuous, strongly monotone, and
strictly quasiconcave utility function, so demand is single-valued and satisfies budget balance.
Consumer i’s demand for good 1 is D(p, mi, θi), where θi is a preference parameter and p the
price of good 1. (Since the prices of other goods do not depend on the policy I suppress them
as arguments.) Consumer i’s preferences over price-income pairs (p, mi) are represented by an
indirect utility function V (p, mi, θi).2 I assume that each consumer’s indirect utility function
is C2 and use subscripts on V to denote partial derivatives: Vp is the derivative of V with
respect to the price of good 1, and Vm is the derivative of V with respect to money (income
or wealth, depending on the application). I assume that Vm > 0 globally.

I index policies by a real number α in a set A of available polices; in this section I set
A = [0, 1]. As mentioned, consumers are price-takers, but I do not explicitly model producers
or define equilibrium other than to say that excess demand is nonnegative, and that equilibrium
consumption equals demand for each consumer (no consumer is rationed, though firms might
be). The broad equilibrium concept allows me to cover a large literature with a range of
assumptions about market structure, from competition to monopoly and regulated monopoly.
I assume that for each policy α ∈ A, there is a unique equilibrium price of good 1, p̃(α),
and distribution of income, (m̃1(α), ..., m̃I(α)). The uniqueness assumption is strong, but
consistent with the partial equilibrium applications my results cover. In this section I also
assume that the equilibrium price, incomes, and consumer utility functions are all C1. Since

2The indirect utility gives the maximum utility from the consumer’s budget. Section 3.D of Mas-colell, Whinston,
and Green (1995) briefly review properties of indirect utility functions and demands.
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consumers face the same prices, the allocation of the aggregate consumption is Pareto Optimal,
so the only issue is optimality of the aggregate consumption plan. Consumer i’s preferences
over policies in A are represented by the function α 7→ V (p̃(α), m̃i(α), θi). As is common, I
define the change in consumer i’s surplus between policy 0 and α to be the line integral3

Si(α) = −
∫

[0,α]
D(p̃(v), m̃i(v), θi) · dp̃(v) + m̃i(α)− m̃i(0). (1)

If consumer i’s income does not depend on the policy, then (1) collapses to the familiar “area
to the left of the demand curve.” To see why (1) might be an appropriate extension of the
area definition when policies affect income, differentiate it to find S′

i(α) = m̃′
i − Di p̃ ′. The

expression −S′
i is the local Slutsky compensation for a small policy change, the change in

money income that keeps the original choice just affordable.4 (Up to an additive constant,
(1) is the unique function with the derivative property.) In that sense S′

i is the change in the
consumer’s real income from a small policy change.

Since I only consider a single path of prices and income—the one generated by the policy—
I bypass the usual problem that the change in consumer’s surplus between two price-income
pairs depends on the path chosen. And since I only consider price-income pairs along this
path, I don’t need to recover preferences over all price-income pairs to find an optimal policy.

2.1 Local Policy Preferences: Certainty vs. Uncertainty

Differentiate consumer i’s equilibrium indirect utility with respect to α and use Roy’s Identify
(D = −Vp/Vm) and (1) to find5

d

dα
V (p̃(α), m̃i(α), θi) = V i

p p̃ ′(α) + V i
mm̃′

i(α) = V i
m

[
−Di p̃ ′(α) + m̃′

i(α)
]

= V i
m × d

dα
Si, (2)

where V i = V (p̃(α), m̃i(α), θi) and Di = D(p̃(α), m̃i(α), θi); or in short,

dSi

dα
=

dV i/dα

V i
m

. (3)

Equation (2) just says that the change in utility from a small policy change equals the change
in the marginal utility of money times the change in real income (in the sense of a Slutsky
compensation). Equations (2) and (3) formalize the fact already mentioned, that the change
in consumer i’s surplus locally represents i’s preferences over policies: dV i/dα > 0 if and only
if dSi/dα > 0. It also illustrates a potential problem with expected surplus: with E[·] the
expectations operator, E [dSi/dα] > 0 does not imply that E[dV i/dα] > 0 unless the marginal
utility of money is constant in any variables that are random, as Rogerson (1980) points out. In
other words, with uncertainty and incomplete markets, if expected real income locally increases
with the policy it does not follow that expected utility does.

3Chipman and Moore (1980), equation (9); Silberberg (1972), pages 943-4; Just, Hueth, and Schmitz (2004),
page 116, equation (5.7); and Slesnick (1998), p. 2111, equation (4). When the policy affects incomes, some scholars
define surplus differently, specifically in what to insert into the income argument of demand in the integrand. For
example, Blackorby (1999) uses the final income, m̃(α), while Hammond (1990) uses the initial income, m̃(0). On
either of these definitions both equation (3) and the conclusion of Proposition 1 fail—an argument in favor of (1).

4See Mas-colell, Whinston, and Green (1995), pp. 29-30, 72-3 for discussion of the Slutsky compensation.
5Roy’s Identity holds under my assumptions that preferences are monotone and strictly convex and that the

indirect utility function is C1 with Vm > 0. See for example Mas-colell, Whinston, and Green (1995), p. 73.
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2.2 Optimality of Surplus-Maximizing Policies

Let S(α) =
∑

Si(α) denote aggregate surplus. Sum equation (3) over all consumers to find

S′(α) =
∑ d

dαV (p̃(α), m̃i(α), θi)
Vm(p̃(α), m̃i(α), θi)

. (4)

It is immediate from (4) that if S′(α̂) > 0, then at least one consumer’s preferences are
strictly increasing in α in a neighborhood of α̂. The next result strengthens the conclusion to
a potential Pareto improvement : after a small-enough increase in α from α̂, the new supply
can be allocated so that every consumer prefers the higher policy. Recall that excess demand
is the difference between demand and supply (the sum of production and the endowment).

Proposition 1. Suppose that for every α ∈ A, the equilibrium production plan is unique and
differentiable, equilibrium excess demand is 0, and the equilibrium allocation is interior. If
S′(α̂) > 0 for α̂ ∈ [0, 1), then a small-enough increase in α from α̂ is a potential Pareto
improvement.

The proof (in Appendix A) uses a result in Radner (1993) which gives a sufficient condition
for a small policy change to be a potential Pareto improvement.6

A policy α′ ∈ A is Pareto Optimal if there is no other policy in A that every consumer
weakly prefers to α′ and some consumer strictly prefers to α′. Recall that if a policy maximizes
a positive weighted sum of utilities, then it is Pareto Optimal. Suppose that an interior point α∗

maximizes aggregate surplus S on A, so that S′(α∗) = 0. Consider a weighted sum of indirect
utilities, with weight on consumer i’s indirect utility equal to the reciprocal of the marginal
utility of income, 1/Vm, evaluated at (p̃(α∗), m̃i(α∗), θi). By (4), the derivative of this weighted
sum with respect to α equals 0 at α = α∗: In words, if an interior policy maximizes surplus, then
the first-order condition for maximizing a particular weighted sum of indirect utilities holds.
The coincidence between first-order conditions partly explains why surplus-maximizing policies
are often Pareto Optimal in complete markets. Of course comparing first-order conditions is not
enough to prove that surplus-maximizing policies are Pareto Optimal: to pass rigorously from
local to global optimality, the economy or the policies must be restricted. With uncertainty
and incomplete markets, this line of reasoning seems hopeless, since as noted the analogue of
equation (3) which lies behind the coincidence fails.

If each Si is strongly quasiconcave (S′
i(α) = 0 implies that S′′

i (α) < 0) then any maximizer
of aggregate surplus S is Pareto Optimal (Appendix B, Section 8.1). Unfortunately, there is
also little hope for extending this result to the case of uncertainty and incomplete markets
(unless the same policy maximizes surplus in all states). The result I extend imposes more
than quasiconcavity or even monotonicity of surplus. The next assumption, again in the spirit
of partial equilibrium, restricts policies and the preferences of some consumers so that any
policy-induced income changes do not affect demand.

Assumption 1. (No Income Effects) For some nonnegative integer IC ≤ I we have

(i) for i = 1, ..., IC , consumer i’s income does not depend on the policy;

6It also follows that the change in surplus is locally proportional to the coefficient of resource utilization (Debreu
(1954)), the welfare loss from a policy expressed as a fraction (ρ) of the economy’s endowment: apply (5) in Section
3 of Debreu (1954) to find that ρ′(α) =

∑ dV i/dα
V i

m
× (

∑
m̃i(α))−1, which by equation (4) is proportional to S′.
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(ii) for any i = IC + 1, ..., I, consumer i’s demand for good 1 does not depend on income
(equivalently, i’s indirect utility function is affine in income).

Part (i) holds if consumers i ≤ IC have no endowment of good 1 and own no shares
of any firm whose profit is affected by the policy. The assumption is strong, but is weaker
than the common partial-equilibrium practice of simply dividing agents into “consumers” and
“producers.” Mas-colell (1982) for example splits the economy into two groups (see his Section
3.2), producers, who own the firms and consume only the numeraire good; and consumers
who do not own any share of any firm. The No Income Effects assumption allows ‘producer-
households’ to care about the consumption of all goods, and it allows ‘consumer-households’
to have own shares in some firms. The next result barely requires a proof since Assumption 1
ensures that the change in consumer’s surplus represents each consumer’s policy preferences.
(It follows immediately from Theorems 1 and 2 in Chipman and Moore (1976)).

Proposition 2. If the No Income Effects assumptions holds then any surplus-maximizing
policy is Pareto Optimal.

My main task is to find conditions on preferences and policies which extend the conclusion of
Proposition 2 to economies with uncertainty and incomplete markets.

2.3 Related Results

Facchini, Hammond, and Nakata (2001) consider a competitive production economy with a
tax on a single good, and show that the Pareto Optimal tax of zero can locally minimize
surplus—but not that a surplus-maximizing policy is not Pareto Optimal. Blackorby (1999)
considers a single consumer economy, and finds that aggregate surplus is (locally) maximized
at a Pareto Optimal policy if and only if the consumer has preferences which are quasilinear
in a numeraire good (Theorem 1). There are several differences between his Theorem 1 and
Propositions 1 and 2. First, he considers a single-consumer economy. Second, he allows all
relative prices to change, but defines surplus using a demand function of one good only (any
non-numeraire good, say good 1). Third, as already mentioned (note 3), he defines the change
in surplus to be

∫ α
0 D(p̃(v), m̃(α))dv+m̃(α)−m̃(0), while I define it to be (1): specifically m̃(α)

appears in his integrand, rather than m̃(v) in mine. (The appearance of m̃(α) in his integrand
forces the consumer to have quasilinear preferences.) Of course the two definitions coincide
under the No Income Effects Assumption. I escape the quasilinear implication in Proposition 2
by relaxing the single consumer assumption and imposing the No Income Effects Assumption.

3 Uncertainty: Incomplete Markets

I now turn to the main issue, economies with uncertainty and incomplete markets. Incom-
pleteness is important: With complete markets the analysis of Section 2 applies, with goods
distinguished according to the state of the world as in Debreu (1959), Chapter 7.7 From now
on I allow tastes, incomes, and technologies to depend on the realization of an unknown state

7The assumption in Section 2 that the policy only affects one relative price seems especially limiting if goods are
classified by state of the world. But equation (3) and Proposition 1 both hold if the policy affects all relative prices:
just replace the good-1 price and demand in the derivations by the vector of prices and demands and replace scalar
multiplication of prices and demands by the inner product. The crucial assumption is that markets are complete,
not that the policy only affects one relative price.
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of the world ω ∈ Ω where Ω ⊂ R is a nonempty, bounded set of states. Let F be a cumulative
distribution function (c.d.f.) on Ω. (Some applications require an infinite number of states;
otherwise there is no harm of thinking of Ω as a finite set.) I assume that the policy is chosen
before the state is known. Spot markets open only after the state is realized, hence markets
are incomplete. As before, consumers take prices as given and are not rationed in any state,
though firms might not be price takers and might be rationed. Again in the spirit of partial
equilibrium—and to match the positive predictions of the partial equilibrium Applications I
consider in Section 4—I assume that only the relative price of good 1 is affected by either the
policy or the state of the world. I write p̃(α, ω) for the equilibrium price of good 1 in state
ω under policy α. From now on I assume that, with probability one, the equilibrium price of
good 1 lies in an interval P = [p, p] for every α ∈ A, where 0 < p < p.

I assume that each consumer has expected utility preferences, and interpret the indirect
utility functions as von Neumann-Morgenstern utilities over price-income lotteries. I impose
the maintained assumptions of Section 2 in every state of the world: each vN-M indirect utility
is C2 with a positive income derivative globally. I also impose an extension of the No Income
Effects Assumption to economies with uncertainty. The only difference is that I assume that
consumers i > IC are also risk neutral over money lotteries.

Assumption 2. (No Income Effects-Uncertainty) For some nonnegative integer IC ≤ I:

(i) for i = 1, ..., IC consumer i’s income is constant in the policy α for each state ω;

(ii) for i = IC + 1, ..., I, consumer i’s demand for good 1 is constant in income and i is
risk neutral over money lotteries (equivalently, i’s vN-M indirect utility function is quasilinear
in income).

To repeat, the No Income Effects Assumption is most plausible if consumers i ≤ IC do
not own any shares of firms who produce good 1. Kihlstrom and Laffont (1979) propose a
model of endogenous entrepreneurship which gives a foundation for the risk neutrality part
of Assumption 2. In their model everyone has a labor endowment and access to a risky
technology. In equilibrium only the least risk averse people become entrepreneurs (use the
risky technology); the equilibrium is Pareto Optimal only if all entrepreneurs are risk neutral.

To model demand uncertainty I introduce consumer types. Anticipating my imposition of
Assumption 2, I first consider consumers i = 1, ..., IC . For these consumers a type is a pair
(m, θ) ∈ T = M × Θ, where as before m is income and θ is a taste parameter. M and Θ
are each finite subsets of the real line. The type of consumer i ≤ IC depends on the state
of the world through a function τ i : Ω → T from the set of states into the set of types.
The common prior belief about the state is F and I assume throughout that each consumer’s
preference parameter and income are statistically independent. Once a consumer i learns its
type, i updates beliefs. I denote a type-t consumer i’s posterior c.d.f. by F (· | i, t).8 The policy
preferences of a consumer i who is type t are represented by α 7→

∫
V (p̃(α, ω), t)dF (ω | i, t). I

should stress that these preferences are interim preferences, after i has learned its type t. A
particular type of consumer i is uncertain about price because that type does not know either
the types of other consumers or the technologies of firms.

8By Bayes’s rule, F (ω | i, t) = (1/λi(t))
∫
Λ(ω,i,t)

dF (ξ), where λi(t) is the probability that consumer i is of type
t and Λ(ω, i, t) is the set of states no larger than ω but consistent with consumer i being of type t. Formally,
λi(t) =

∫
{ω∈Ω | τ i(ω)=t} dF (ω) and Λ(ω, i, t) = {ξ ∈ Ω | τ i(ω) = t and ξ ≤ ω}.
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Under the No Income Effects–Uncertainty Assumption, the preferences of each consumer
i = IC + 1, ..., I are represented by the expected consumer’s surplus for i, so these consumers
pose no problem for the optimality of policies which maximize expected surplus. Accordingly I
don’t dwell on the notation for types for these consumers. But formally a type for one of these
consumers is a point t = (e, θ) where e is a vector of the endowment of goods and ownership
shares of firms, and θ is a preference parameter. Such a consumer’s income is a function f(e, p)
of the endowment and the price of good 1. Since the price of good 1 could affect the value of
the endowment, income can depend on both the state and the policy. In what follows I assume
that each consumer type occurs with positive probability for at least one consumer (otherwise
that type can be deleted from the set of types).

My broad notion of equilibrium—simply that consumers are not rationed in any state—
allows me to cover mechanism design problems as well as decentralized market clearing models.
Since the types are determined by the state ω, I can take α to be an index of the mechanism
that a planner implements after eliciting types. In this case p̃(α, ω) is then the price the
planner chooses under mechanism α for the type profile at state ω. The optimal regulation
papers I discuss in Section 4.3 fit this interpretation.

3.1 Optimality and Expected Surplus Maximization

Rogerson (1980) and Turnovsky, Shalit, and Schmitz (1980) show that expected surplus can
be Pareto inconsistent : expected surplus can be higher for policy A than B, even though every
consumer prefers B to A. To illustrate, recall that the consumer’s surplus integral

∫
p D(v)dv

is strictly convex in p if demand is strictly decreasing in price. This fact implies that ex-
pected consumer’s surplus rises with a mean-preserving increase in price risk (Waugh (1944)).
Turnovsky, Shalit, and Schmitz (1980) point out that a consumer’s indirect utility function
can be strictly concave in the price of a single good, implying that that consumer’s expected
utility falls with a mean-preserving increase in price risk. It is easy to use this fact to construct
a single-consumer economy in which income does not depend on either the policy or the state
of the world to illustrate the Pareto inconsistency of expected surplus.

My main theorem on the optimality of expected-surplus-maximizing policies imposes the No
Income Effects-Uncertainty Assumption. I impose two others, one on preferences, the other on
how the policy affects prices. The preference assumption is that each consumer’s indirect utility
function satisfies increasing differences in price and income: the marginal utility of income
Vm(p, m) is increasing in p.9 A C2 indirect utility satisfies increasing differences in (p, m) if
and only if relative risk aversion for money lotteries is at least as large as the budget elasticity
for good 1: Differentiate Roy’s Identity D = −Vp/Vm with respect to income, multiply both
sides by m/D and rearrange to find

rra− εm =
m

D

Vpm

Vm
, (5)

where rra = −mVmm/Vm is relative risk aversion for money lotteries and εm is the income
elasticity of demand for good 1. Intuitively, increasing differences implies that risk aversion is
more important than income effects on demand. The average budget elasticity across all goods

9A function f on the real line is increasing if f(y) ≥ f(x) whenever y ≥ x. A function g on the product I × J
of two subsets of the real line satisfies increasing differences if for all x′′ ≥ x′ in I, the function g(x′′, ·) − g(x′, ·) is
increasing on J . If I and J are intervals and g is C2, then g satisfies increasing differences if and only if the cross
partial derivative gxy is nonnegative on I × J .
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Figure 1: Single-crossing property: policy α∗ leads to prices that are less variable than prices from
policy α.

equals 1 by budget balance. Estimates of relative risk aversion over money lotteries vary, but
they almost always exceed 1, with many much higher. Meyer and Meyer (2005) summarize the
empirical evidence. The estimates vary partly because some take the outcome of the money
lottery to be wealth, others to be income or consumption. For wealth, estimates mostly lie
between 1 and 4; for consumption or income, they are usually much higher.10 Although budget
elasticities vary across goods, surely on average across goods they are less than relative risk
aversion for money lotteries, so increasing differences is surely the typical case.11

The policy restriction is that expected-surplus-maximizing policies generate random prices
that are less variable than other policies in the sense that, if α∗ maximizes expected surplus,
then p̃(α∗, ·) crosses each random price from other policies at most once from above (Figure
1): formally, for each α ∈ A, there is an r ∈ P such that

[p̃(α∗, ω)− p̃(α, ω)] [p̃(α∗, ω)− r] ≤ 0 for all ω ∈ Ω. (6)

If (6) holds, call r a crossing price for α∗ and α. Suppose that the No Income Effects–
Uncertainty holds. For i = 1, ..., IC , a type t = (m, θ) ∈ T consumer i’s interim expected
surplus is (here S(α, ω, t) =

∫ p̄ep(α,ω) D(p, m, θ)dp + m in an abuse of my previous notation)

E[S(α, ω, t) | i, t] =
∫

Ω

[∫ p̄

ep(α,ω)
D(p, t)dp

]
dF (ω | i, t) + m. (7)

Lemma 1. Consider two policies α∗ and α in A. Suppose that

(i) the No Income Effects Assumption–Uncertainty holds;

10In more recent work, Cohen and Einav (2007) use information about insurance demand to estimate absolute
and relative risk aversion with income as the lottery outcome. The estimates vary widely across individuals; the the
mean individual has relative risk aversion equal to 97, the median, less than 0.5. As I explain later, the assumption
that every consumer’s indirect utility satisfies increasing differences can be substantially relaxed.

11Since it is a regulated good, electricity is a natural example for some of the applications I consider in Section 4.
Studies agree that the short-run income elasticity is near 0 and the long-run elasticity is less than 1.
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(ii) p̃(·, α∗) crosses p̃(·, α) at most once from above (i.e. equation (6) holds); and

(iii) Vm(·, t) is increasing in the price of good 1 for t ∈ T (increasing differences).

Consider a consumer i ≤ IC of type t. If expected surplus at α∗ is greater than or equal to
expected surplus at α ( E[S(α∗, ω, t) | i, t] ≥ E[S(α, ω, t) | i, t] ), then a type-t consumer i
weakly prefers α∗ to α. If the inequality is strict, then the preference is strict.

Proof : Appendix A.
To explain the proof informally, recall from equation (2) that the change in utility from the

policy change locally equals the change in real income (= surplus) times the marginal utility of
money: in short, and again informally, ∆V ≈ ∆S×Vm. (The exact expression is the integrand
in the third line of equation (15)). Now suppose that the policy changes from α to α∗. By the
single-crossing property, the price is lower under policy α∗ in states of the world with prices
above r, and higher in states with prices below r (Figure 1). Since the marginal utility of
money is increasing in price, Vm is higher in states in which surplus rises and lower in states
in which surplus falls. If E[∆S] > 0, then it follows that E[∆S × Vm] > 0, so expected utility
is higher at α∗ than at α. It is worth noting that if the mean prices for all the policies are the
same, then condition (ii) implies that the random price under α is a mean-preserving increase
in risk of the random price under α∗. Condition (iii) however does not imply that V is concave
in the price of good 1: the consumer need not be risk averse over price lotteries. Condition
(ii) and the assumption that expected surplus is higher at α∗ rule out the Turnovsky-Shalit-
Schmitz (1980) example at the beginning of Section 3.1 of a mean-preserving increase in price
risk that increases expected surplus but lowers expected utility.

Lemma 1 deals with the relationship between a single consumer type’s interim policy
preferences and interim expected surplus (after types are revealed). Of course a social planner
does not know the types, and I assume that the planner maximizes ex ante expected surplus,
calculated using the common prior F . My main result gives conditions under which a policy
which maximizes ex ante aggregate expected surplus is interim Pareto Optimal.12

Theorem 1. Suppose α∗ maximizes ex ante aggregate expected surplus on A. If

(i) the No Income Effects Assumption–Uncertainty holds;

(ii) for every α ∈ A, p̃(·, α∗) crosses p̃(·, α) at most once from above; and

(iii) Vm(·, t) is increasing in the price of good 1 for every t ∈ T ,

then α∗ is interim Pareto Optimal.

Theorem 1 follows immediately from Lemma 1: If each type of each consumer (weakly) prefers
α ∈ A to α∗ ∈ A, and the preference is strict for at least one consumer-type pair, then
by Lemma 1 aggregate expected surplus is higher at α than at α∗ and α∗ cannot maximize
expected surplus on A.

Equation (5) makes clear that monotonicity of the marginal utility of money in the price
is preserved under a strictly increasing, concave transformation φ: for V = φ(Ṽ ), the income
elasticity is the same and relative risk aversion larger for V than for Ṽ . Indeed differentiate
V = φ(Ṽ ) with respect to m and then p and rearrange to find that

Vmp = φ′
[
φ′′

φ′
ṼmṼp − Ṽmp

]
. (8)

12A policy α∗ ∈ A is interim Pareto Optimal if there is no other policy α′ ∈ A such that each type of each
consumer weakly prefers α′ to α∗, and the inequality is strict for at least one consumer-type pair.
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Recall that the quantity −φ′′/φ′ is the Arrow-Pratt measure of (absolute) risk aversion of the
function φ. Since Ṽp < 0, it follows that if Arrow-Pratt risk aversion is uniformly high enough,
then Vm must be increasing in p on P for every m ∈ M . The condition that Vm is increasing in
price for every consumer type can be replaced by the condition that some consumer types are
sufficiently risk averse if A is finite: as Arrow-Pratt risk aversion uniformly increases without
bound, preferences converge to “max-min” preferences; that is, in the limit, the consumer
ranks lotteries by comparing the worst possible outcome in each. Since the highest possible
price under α∗ is lower than the highest possible price under α when (6) holds, a sufficiently
risk averse consumer would prefer α∗ to α for every α ∈ A.

3.1.1 Related Results

Blackorby (1999) considers a related question. Suppose that some consumer prices are ex-
ogenously related to producer prices—for example, because of distortionary taxes—so that
a competitive equilibrium is not first-best Pareto Optimal. Do second-best Pareto Optimal
policy at least locally maximize surplus? He finds that they do not (Theorem 2). There are
several differences between his Theorem 2 and my Theorem 1. First, the form of market incom-
pleteness differs: in his there is no uncertainty, and some relative prices are exogenously fixed,
whereas in mine there is uncertainty but only spot markets for goods. Second, although his
result is local, he makes no other restrictions on how policies affect prices: all policy directions
are considered. Third, as mentioned, his definition of surplus is different.13

Closer still is Rogerson (1980), who considers the same setting of uncertainty and incom-
plete markets as I do. He asks when expected consumers’ surplus is Pareto Consistent—
expected consumers’ surplus rises whenever all consumers prefer a change—when the price of
a single good is affected by a policy. He finds (Theorem 2) that it is if and only if the marginal
utility of money for each consumer does not depend on the price of the good (or any other
variable that is random). As mentioned, there are at least two important differences between
his Theorem 2 and my Theorem 1: he considers ex ante welfare—expected utility is calculated
before any uncertainty is resolved—rather than interim welfare; and he makes no restrictions
on how policies affect the price of good 1. I consider ex ante optimality in Section 5. But
I should point out if I allow arbitrary policies, the conclusion of Theorem 1 fails: it is easy
to construct a single-consumer economy with an indirect utility function that satisfies strictly
increasing differences in price and income and a pair of price policies so that expected utility
and expected surplus rank the polices differently.14

3.2 Price Variability and Surplus Maximization

Theorem 1 imposes what seem to be two unlikely conditions: one policy generates a random
price that crosses the price from any other policy at most once from above; and that policy

13Duhamel (2006) shows that second-best polices can maximize surplus if surplus is defined as a line integral over
all prices, included those exogenously distorted, rather than over just the price of a single good, as in Blackorby
(1999). Since Duhamel (2006) treats income the same way in the definition of surplus as Blackorby (1999), he too
concludes that preferences must be quasilinear.

14This fact follows from Theorem 1 in Rogerson (1980) which implies that expected surplus represents a consumer’s
preferences over all lotteries on a subset of prices if and only if the marginal utility of money is constant in any variable
that is random. For interim welfare, the only uncertainty a consumer faces is the price of good 1. A counterexample
can be constructed with two policies with equilibrium price distributions such that expected consumer’s surplus and
expected utility rank them differently.
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happens to maximize aggregate expected surplus. Often the conditions are easy to check
directly. But two natural questions arise: first, why should policies generate prices that are
ordered by the single-crossing property; and, second, when does the least variable of these
random prices maximize aggregate expected surplus? In short, when does Theorem 1 apply?

The answer to the first question—why should policies generate random prices which are
ordered by the single-crossing property—depends both on the model and the set of policies,
and I have no general theorems on how scholars choose either. Still, something can be said
about the relationship between the two, since the set of policies a modeler considers sometimes
depends on the source of uncertainty in the model. If the state only affects demand, then the
price of the good will be high in states that consumers value it highly; it is natural in that case
to consider policy changes which increase output in high demand states, possibly by decreasing
output in low-demand states—a change that would generate less variable prices. If the state
only affects the technology, then price is high in states with high marginal cost; it is natural
in that case to consider policy changes which increase output in states with low marginal
cost, possibly by decreasing output in states with high marginal cost—a change which would
generate more variable prices. So a modeler might naturally be led to consider policies ordered
by a single-crossing property (as the Applications in Section 4 amply illustrate).

The next result partly answers the second question, when do policies with the least-variable
prices maximize expected surplus. Let Q(·, ω) be the aggregate demand for good 1 in state ω.
I impose the condition that, at each policy, equilibrium output and price move in the same
direction in response to different state realizations, that is, equilibrium output and price are
comonotonic in the state (see the right panel in Figure 2): Formally, for each α ∈ A,[

Q
(
p̃(α, ω′), ω′)−Q (p̃(α, ω), ω)

]
×

[
p̃(α, ω′)− p̃(α, ω)

]
≥ 0 (9)

for any ω, ω′ in Ω. (If the inequality is strict whenever either of the terms in brackets on the
left is nonzero, then the output and price are strictly comonotonic.) If aggregate demand is
decreasing in price for each state, it follows that demand cannot be constant in ω for every
fixed price: if the equilibrium price is higher in state ω′ than state ω and aggregate demand is
strictly decreasing in price, then aggregate demand cannot be constant in ω. Equation (9) and
the assumption that aggregate demand is decreasing in price imply that aggregate demand
is uncertain, so the case of pure supply uncertainty is precluded. The conclusion is that the
policy with the least variable price maximizes what I call expected Marshallian consumers’
surplus: expected surplus minus expected income, namely,

∫
Ω

∫
[p(α,ω), p] Q(p, ω)dpdF .

Theorem 2. Suppose that

(i) aggregate demand Q(·, ω) is nonincreasing in price for every ω ∈ Ω;

(ii) equilibrium output Q(p̃(α, ·), ·) and price p̃(α, ·) are comonotonic for every α ∈ A; and

(iii) there is a β ∈ A such that for any α ∈ A,

(a) the price p̃(β, ·) crosses p̃(α, ·) at most once from above, and
(b) the mean price under β is no larger than the mean price from any other α ∈ A.

Then β maximizes expected Marshallian consumers’ surplus on A.

Proof : Appendix A.

That the least variable price maximizes expected Marshallian consumers’ surplus might
seem surprising, since as mentioned at the beginning of Section 3.1, expected Marshallian
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Figure 2: Both panels depict a mean-preserving contraction in state prices. The left shows a fixed
demand, the right a variable demand in which demand and equilibrium price are comonotonic.
With a mean preserving contraction in the price distribution, expected consumers’ surplus falls in
the left panel, but rises in the right.

surplus rises with a mean-preserving increase in price risk. The important assumptions are
that the demand and equilibrium price are comonotonic, and that the mean price is lowest for
the policy with the least variable price. To simplify, suppose that the mean price is the same
for all policies. Intuitively, when equilibrium price and quantity demanded are comonotonic,
expected consumers’ surplus rises with a mean-preserving contraction in the price distribution,
since price falls when quantity demanded is high and rises when quantity demanded is low.
The right panel of Figure 2 helps illustrate the point: when price and demand are comonotonic,
the gain in surplus when the high price pH falls exceeds the loss of surplus when the low price
pL rises. On the other hand if the state only affects supply, then then the policy with the
most variable price maximizes expected consumers’ surplus (since consumer surplus is convex
in price). Intuitively, when equilibrium price and minus quantity demanded are comonotonic,
then expected consumers’ surplus rises with a mean-preserving (or mean-reducing) spread,
since price rises when quantity demanded is high and (possibly) falls when quantity demanded
is low. The left panel of Figure 2 illustrates this more familiar point.

By Theorem 2, if the No Income Effects–Uncertainty assumption holds and the mean total
income of consumers i > IC is the same for all policies, then the policy with the least variable
price maximizes aggregate expected surplus. Some applications maximize a weighted average
of expected Marshallian consumers’ surplus and expected profit, usually with more weight
on expected consumers’ surplus. If the weight on consumers is high enough and the set of
policies is finite, Theorem 2 implies that the policy with the least variable price maximizes
this weighted average. If aggregate expected income is not constant and the planner does
not weight expected Marshallian consumers’ surplus heavily enough, then Theorem 2 does
not help us determine what policy maximizes aggregate surplus. If it is possible to set price
equal to marginal cost in every state of the world, then that policy would maximize aggregate
expected surplus, but such a policy is typically not feasible with uncertainty and incomplete
markets. I have not been able to prove a useful general result on what policies maximize
expected aggregate surplus, since applications differ in what policies are feasible.

I instead consider the question in the context of an example, though an important one, a
variant of the model Weitzman (1974) uses to answer his “Prices vs. Quantities” question:
If there is uncertainty about both cost and demand and a planner can regulate either price
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or quantity, then which gives higher expected surplus? I use Weitzman’s notion of a fixed
quantity —the price simply adjusts to clear the market—but I use a different notion of a fixed
price: he requires that firms are price takers and choose output to maximize profit; I require
that firms meet all the demand at the fixed price. My notion of a fixed price is in the spirit
of price regulation of firms. The change in the definition of a fixed price dramatically changes
the conclusion: as in Weitzman (1974), what determines whether it is better to set prices or
quantities is the sum of the slopes of the inverse demand and the marginal cost, but here the
sign is reversed: it’s better to fix prices rather than quantities if and only if the sum is negative.
Example 1 shows that if cost is not too convex, aggregate expected surplus is higher with a
fixed price than with a fixed quantity.

Example 1 (Prices vs. Quantities, after Weitzman (1974)). Let the cost of good 1 in state
ω be A(ω)q + 1

2Bq2 and the inverse demand for good 1 in state ω be a(ω) + bq, for all q ≥ 0
where for all ω ∈ Ω, a(ω) > A(ω) > 0 > b and B > b. Following Weitzman, I assume that
a(·) and A(·) are statistically independent and allow marginal cost and marginal benefit (here
the price) to be negative. Aggregate surplus in state ω is

(a(ω)−A(ω)) q +
1
2

(b−B) q2. (10)

Consider two polices: fix a price and require the firm(s) to sell whatever is demanded at that
price; or fix a quantity which firms must produce and sell, with the price adjusting so that the
market clears. The policy is chosen before the state of the world is realized.

The fixed quantity which maximizes expected surplus is q∗ = E[a − A]/(B − b) and the
maximized expected surplus is

WQ =
1
2

(E[a]− E[A])2

B − b
.

In Appendix B (Section 8.2) I show that the maximized expected surplus for a fixed price is

WP = −b + B

2b2
V ar(a) + WQ,

where V ar(a) is the variance of the inverse demand intercept, a(·). WP exceeds WQ precisely
when B < −b, the slope of marginal cost is less than minus the slope of the inverse demand (the
opposite conclusion from Weitzman’s): in particular, if cost is not too convex, expected
surplus is higher with a fixed price than a fixed quantity.

It turns out that the expected price at q = q∗ equals the expected-surplus-maximizing fixed
price. The conclusion extends to the case of an arbitrary fixed quantity and fixed price that
is set equal to the expected price under the fixed quantity: a fixed price gives higher expected
surplus if and only if the slope of marginal cost is less than minus the slope of the inverse
demand. The extension is important for applications in which the fixed quantity or price does
not maximize expected surplus; for example it could be chosen to maximize profit or the result
of an equilibrium which does not maximize expected surplus. �

To illustrate why I get the opposite result from Weitzman’s, suppose that the inverse
demand is steeply sloped, but that marginal cost is nearly flat (and the intercepts for both
are random). If firms are price takers, fixing a price will result in a highly variable quantity,
though the surplus-maximizing quantity is not very uncertain; so expected surplus is higher
with a fixed quantity. If instead firms must meet all demand at a fixed price, then fixing the
price near the mean marginal cost implies that the outcome is close to maximizing surplus in
every state of the world; so expected surplus is higher with a fixed price.
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The example only compares the extremes of a fixed price and a fixed quantity. Yet as
the applications in Section 4 illustrate, many I.O. papers include these extremes. And since
I.O. applications also often assume concave or linear costs, Theorem 2 and Example 1 broadly
suggest that, when demand is uncertain, polices which maximize expected surplus often result
in prices which are the least variable among feasible policies.

Although I introduce Theorem 2 to help explain when the assumptions of Theorem 1 are
met, it is of independent interest. Scholars often want to know how policies affect consumer
welfare, apart from the affect on profit; Theorems 1 and 2 are useful in answering that question.
As I mention in Section 4.1, Theorem 2 generalizes Theorem 4 in Deneckere, Marvel, and Peck
(1997) to a larger class of models.

4 Applications

I consider several applications, all from Industrial Organization. Except for one they illustrate
that the assumptions of Theorem 1 are more likely to be met if the uncertainty is about
consumers, rather than producers.

4.1 The Logic of Vertical Restraints

Rey and Tirole (1986) emphasize uncertainty and information in their account of how vertical
restraints on retailers affect welfare. A good is produced by a monopolist manufacturer with
a constant unit cost, and sold by two identical retailers with a constant unit cost of retailing;
the final demand is linear in the retail price. The demand intercept and the unit retailing cost
are each possibly random. They consider three policies: competition; resale price maintenance
(RPM); and exclusive territories. In each the monopolist sets a franchise fee for each retailer
and a wholesale price. Under competition the retailers play a Bertrand game; under resale price
maintenance, the monopolist sets a state-independent retail price, a pure fixed-price policy;
under exclusive territories, each retailer is a monopolist selling to exactly half the consumers.
The monopolist imposes the policy terms before any uncertainty is resolved; the retailers order
the quantity and (if allowed) set the price after the uncertainty is resolved. They allow any
degree of retailer risk aversion—from risk neutrality to infinite risk aversion—but assume that
consumers have quasilinear utility, and so are risk neutral.

Being fixed, the equilibrium price under resale price maintenance is less variable than
under the other policies, no matter what the source of uncertainty. Under pure demand
uncertainty, Rey and Tirole (1986) show that RPM has the highest aggregate expected surplus,
consistent with the conclusion of my Theorem 2. So policy restrictions of my Theorem 1 are
met with pure demand uncertainty. But with pure cost uncertainty, both price variability and
equilibrium expected surplus are strictly higher for competition than the other two policies.15

With pure demand uncertainty, their conclusions extend to economies in which consumers
have indirect utilities which satisfy increasing differences and Assumption 2 holds; but with
pure cost uncertainty they do not.

4.2 Minimum Resale Price Maintenance

Deneckere, Marvel, and Peck (1997) propose a theory of ruinous price competition under

15See their Proposition 2, the proofs of Propositions 3 and 7, and Tables 1 and 2. Their Proposition 7 imposes both
demand and cost uncertainty, but the conclusions I list can be extracted from their proof, or derived independently.
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demand uncertainty.16 The model is a variant of Rey and Tirole’s (1986). A good is produced
by a monopolist manufacturer with a constant unit cost and sold by a continuum of risk-neutral
retailers with zero cost. One difference with Rey and Tirole is timing: retailers must order
inventories before the demand uncertainty is resolved; any unsold inventories are worthless.
They consider two polices. The first is flexible pricing : the manufacturer sets a wholesale per-
unit price that each retailer pays at the time that inventories are ordered. After the uncertainty
is resolved, the retail price adjusts so that demand equals aggregate inventory. The second
is minimum resale price maintenance (RPM): the manufacturer sets both a wholesale price
and a minimum price, pmin, below which the retail price cannot fall. If demand equals supply
at a price above pmin, then the market-clearing price prevails; otherwise the retail price is pmin

and consumers are rationed among retailers to equalize the ex ante chance of a sale. Since the
good is produced before demand is realized, the flexible price policy is a pure fixed-quantity
policy; unlike Rey and Tirole’s (1986) RPM, their minimum RPM is not a pure fixed-price
policy, but merely moves towards that extreme.

They find that aggregate expected surplus can be higher under minimum RPM than under
flexible pricing (Theorem 3 on page 632, and Theorems A1 and A2 in the Appendix)—hence
‘ruinous’ price competition. RPM can even raise expected consumers’ surplus (Theorem 4).
Intuitively, minimum RPM leads retailers to order more inventory (Theorem 2); the increased
output means a lower retail price when demand is high. The trade-off for consumers is between
higher prices when demand is low and lower prices when demand is high. Prices are more
variable under flexible pricing than under minimum RPM. We reproduce their Figure 1 (see
Figure 3), which gives the supply for flexible pricing and minimum RPM: the intersection of
the realized demand with supply determines the retail price. If demand is low, the flexible price
is lower and if demand is high, it is higher than the price from minimum RPM: the random
price from RPM crosses the flexible price once from above. By Theorem 1, if the No Income
Effects Assumption holds and each consumer’s indirect utility satisfies increasing differences,
the conclusion of Deneckere, Marvel, and Peck (1997)’s Theorems 3 and 4 continue to hold:
minimum RPM is (interim) Pareto Optimal.

Deneckere, Marvel, and Peck (1997)’s Theorem 4 shows that if expected price under min-
imum RPM is not larger than the expected price under flexible pricing, then expected con-
sumers’ surplus is higher under minimum RPM. My Theorem 2 extends their result to a
much larger set of economies and clarifies the source of the conclusion: that prices satisfy the
single-crossing property and that equilibrium demand and price are comonotonic.

Minimum RPM and competition; connection to Cho and Meyn (2010)

Deneckere, Marvel, and Peck (1997) briefly consider the case in which the manufacturing mar-
ket is competitive, rather than a monopolist (p. 634). They point out that a competitive
equilibrium (flexible prices) maximizes aggregate expected surplus, and so is Pareto Optimal
if consumers have quasilinear utility. For concreteness suppose that the unit cost in manufac-
turing equals a constant k. Since equilibrium expected profit is always 0 under competition,
it seems my Theorem 2 should imply that there is a sometimes-binding price floor with higher
aggregate expected surplus than a floor of 0. Theorem 2, however, does not apply in this case,
since the competitive version of the model violates the assumption that mean price is lowest
for the least-variable price: a sometimes-binding price floor implies that the expected price ex-
ceeds k. (Firms are rationed when the price floor binds, so if expected marginal revenue equals

16See also Deneckere, Marvel, and Peck (1996).
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Figure 3: Figure 1 from Deneckere, Marvel, and Peck (1997): The intersection of the realized
demand with the output function determines the price; the output function for flexible pricing is
SFL(·) and for minimum RPM it is SRPM(·).

k, then expected price exceeds k, since some output goes unsold when the floor binds.) Indeed,
one can show that if consumers are sufficiently risk averse, rather than risk neutral, then the
competitive equilibrium of their model may not be Pareto Optimal: a sometimes-binding price
floor can make some consumer types better off, while hurting no type of consumer or firms,
the last since expected profit is always 0.

During the crisis in the California electricity market in the late 1990’s retail electricity
prices fluctuated widely, and conventional wisdom held that the outcome was not optimal
(Borenstein (2002)). Motivated in part by this episode Cho and Meyn (2010) prove the striking
result that a competitive equilibrium can involve fluctuating prices that almost always diverge
from marginal cost, and yet maximize aggregate expected surplus (so is Pareto Optimal if
consumers have quasilinear utility). They prove this in the context of a dynamic competitive
model with costly capacity adjustment and demand uncertainty. If their model is specialized
to a static model with an infinite cost of capacity adjustment, then it collapses to a special case
of the flexible-price model just described. As with that model, the competitive equilibrium
maximizes aggregate expected consumers’ surplus, and so is Pareto Optimal if consumers
have quasilinear utility. Also as with that model, it is possible to construct an economy
with risk averse consumers which generates the same aggregate demand and equilibrium as
the quasilinear economy, but with a competitive equilibrium that is not Pareto Optimal. (I
construct such an example in Appendix B, Section 7.3 for the interested reader.) Again the
sufficient conditions of Theorem 1 fail, and one reason why is that the sufficient conditions of
Theorem 2 fail.

4.3 Regulating a Monopolist with Private Information

Consider a regulator and a firm who produces a single good. The firm has private information
about either its cost or its demand. The regulator’s objective is a weighted sum of expected
consumers’ surplus and expected profit, with more weight on consumers’s surplus.
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4.3.1 Cost Uncertainty

Baron and Myerson (1982) consider a firm whose technology exhibits nondecreasing returns to
scale with constant marginal cost. The cost function is private information to the firm, but both
the firm and regulator know the demand. The firm reports a cost type to the regulator and the
regulator offers a menu of type-contingent prices, quantities and transfers between consumers
and the firm to maximize aggregate expected surplus subject to incentive compatibility and
participation constraints for the firm. As Baron and Myerson point out, the expected-surplus-
maximizing policy may involve setting prices for some cost types which are higher than the
highest possible monopoly price in the absence of regulation. Now compare this policy with an
unregulated monopoly (so transfer payments are zero). The sufficient condition of Theorem 1
fails here. Indeed, since the worst outcome for consumers can occur under the policy which
maximizes aggregate expected surplus, it can happen that all consumers and the firm can
prefer no regulation at all to the policy which maximizes aggregate expected surplus.17

4.3.2 Demand Uncertainty

Lewis and Sappington (1988) consider the case in which both the firm and regulator know the
cost function, but the demand function is private information to the firm. They show that,
if the cost function is strictly concave, then the policy which maximizes aggregate surplus
(subject to incentive and participation constraints) is to set a price which is constant in the
demand report of the firm (Proposition 2), a pure fixed price policy. If the no income effects
assumption (for the uncertainty case) holds, and each consumer’s indirect utility function
satisfies increasing differences in the price and income, then Theorem 1 implies that this
policy is interim Pareto Optimal.18

4.4 Information Acquisition

Suppose firms can acquire information about either demand or cost. Does maximizing aggre-
gate expected surplus result in Pareto Optimal information acquisition? Vives (1999), Section
8.3.3 considers a constant-returns monopolist which is uncertain about the intercept of its
linear demand curve. Before it chooses either price or quantity, it can choose the informa-
tiveness (precision) of a signal correlated with a demand parameter, with more informative
signals costing more.19 Vives (1999) shows that if the monopolist is a quantity setter (letting
price be determined by the realized demand) expected consumer surplus rises with a more
informative signal, so aggregate expected surplus rises as well. Since the firm produces more
after a good signal, and less after a bad, than it would with less information, prices become less
variable with better information. By Theorem 1, choosing a more to a less informative signal

17Consider zero fixed-cost case with demand such that an unregulated firm always produces. Suppose regulated
firm shuts down for some cost types. In case case the worst outcome for consumers occurs under regulation, since
the transfer from consumers is zero (equation (28) on page 920) when the firm shuts down. The same phenomenon
can also occur if the firm does not shut down: p̄(θ) > pM (θ1) ≥ pM (θ) for some θ, but the firm stays in business.

18If the cost function is strictly convex, the optimal regulatory policy is set price equal to marginal cost where
demand crosses it. That policy is first-best for every state of the world, and is interim Pareto Optimal in a repre-
sentative consumer economy even without the no-income effects assumption. Absent a representative consumer, the
policy might not be interim Pareto Optimal.

19Vives (1999) uses the monopoly case to introduce the larger issue of information acquisition and sharing in
oligopoly, a question going back to at least to Novshek and Sonnenschein (1982). It’s clear that if aggregate expected
surplus cannot lead to optimal policies for a monopoly it will not in general do so for an oligopoly.
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is interim Pareto Optimal if consumers have indirect utilities satisfying increasing differences.
But he shows that if the monopolist is a price setter, both aggregate expected and expected
consumers’ surplus fall with better information, so a planner interested in expected surplus,
but who cannot control the monopolist’s pricing decision would prefer zero information to be
acquired. Since information acquisition makes prices more variable, this conclusion again fits
Theorem 1: every consumer with a increasing-differences indirect utility agrees that no infor-
mation is the best policy. What if the uncertainty is about cost instead of demand? Schlee
(2008), Section 4.1, shows that if uncertainty is about cost, expected consumers’ surplus rises
with better information for a price (or quantity) setter, but if consumers are sufficiently risk
averse, all consumers prefer the less informative signal. If information and costly and the firm
is just indifferent between acquiring it and not, then the Pareto optimal decision would be not
to acquire it, even though aggregate expected surplus is higher with information.

If the planner can control output, it now always prefers more information to less. Per-
sico (1996), Section 6.1, considers information about unknown demand and Athey and Levin
(2001), Section 4.1, consider information about unknown cost. They each find that under
mild conditions the firm acquires less information than would a planner whose objective is
aggregate expected surplus. Let the inverse demand function be P (q, ω) and cost function
be c(q, ω). A planner would set output so that expected price equals expected marginal cost:
E[P (q, ω)] = E[c′(q, ω)]. If only cost is unknown, it is clear that information can make con-
sumers with increasing-differences indirect utilities worse off: with known demand, price varies
only when output varies, and information makes output vary more; indeed if information is
costly, it can happen that no one prefers and some consumers are strictly worse off with better
information, even though aggregate expected surplus rises. Suppose instead that cost is known
but demand is uncertain and increases in the state increase the demand. Price now becomes
less variable with better information since the planner adjusts output in the same direction
as demand after a signal is observed (provided the mild stability condition p′ − c′′ < 0 holds).
Summing up, suppose for concreteness that the planner chooses between no information and
some information and suppose that the planner chooses output to maximize expected sur-
plus (so the planner always prefers some information to none if it is costless). Once again,
when consumers have increasing-differences indirect utilities: If demand is uncertain, then the
planner’s information choice is interim Pareto Optimal; if cost is uncertain it might not be.

4.5 Price Caps with Demand Uncertainty

Earle, Schmedders, and Tatur (2007) consider an oligopoly model with identical firms produc-
ing under constant returns and uncertain demand. There is a legal maximum price that firms
may charge, the price cap. The timing is the same as Deneckere, Marvel, and Peck (1997):
Firms choose production before demand is realized; after it is realized price adjusts to the lower
of two numbers, the market-clearing price and the price cap. They give sufficient conditions for
an increase in the price cap to raise equilibrium output and aggregate expected surplus. Their
model seems to fit the framework of Theorems 1 and 2. But with price caps and production in
advance of the demand realization, consumers are rationed, putting it outside the scope of my
model. Indeed, raising the cap price makes price even higher when demand is high, but even
lower when demand is low: raising a price cap makes the random price more variable, not less,
yet increases expected surplus. Nonetheless it is easy to see that their main conclusion—that
raising price caps can raise welfare when demand is uncertain—extends beyond quasilinear
utility. If the price cap is set at the unit cost of production, then firms would produce the
competitive output for the lowest demand realization. If this output is zero, then the price
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cap causes firms to shut down. If the cap is removed altogether, and firms produce positive
output in some states of the world, then no consumer is hurt by removing the price cap, and
some of them are strictly better off (as are the firms). If we interpret shut-down as a price
so high that demand is zero in each state, raising the price cap in this example results in a
first-order stochastic dominance shift in the price distribution.

5 Ex ante Optimality

As mentioned Rogerson (1980) considers ex ante welfare, while I consider interim welfare.
The usual argument is that which is more suitable depends on what people know when the
policy is chosen: if everyone knows their own attributes (but maybe not those of others), then
interim welfare is more suitable; if no one knows their attributes then ex ante is. For example,
in the optimal regulation and nonlinear pricing literatures, demand is uncertain because of
private preference information, so interim optimality seems best there. If demand is uncertain
because of business cycles or weather, then ex ante optimality seems best.20

Rogerson (1980) proves that expected surplus is ex ante Pareto Consistent—ex ante ex-
pected surplus rises whenever all consumers prefer the change—if and only if the indirect util-
ity function of each consumer is additively separable in income any variables that are random
(Theorem 1). He proves the “only if” part by considering all distributions over the variables
which are random. His Theorems 3 and 4 then suggest that expected surplus is more likely to
be a good welfare measure if uncertainty concerns producers rather than consumers. In this
section I do not aim for full generality; I simply show that by restricting the set of policies and
preferences, expected surplus maximizing policies can be ex ante Pareto Optimal. I consider
two polar cases, a common values model in which consumer demands are comonotonic, and
an independent private values model. The common values model might be apt when demand
is unknown because of business cycle uncertainty or uncertainty about the quality of a newly
introduced product; the private values model might be apt when the uncertainty is not about
a good’s quality, but how well the good matches each consumer’s tastes.

In this section I allow for both income and preference uncertainty but each result includes
as important special cases pure preference or pure income uncertainty. Consumer i’s ex ante
preference over policies are represented by

α 7→
∫

V (p̃(α, ω), τ i(ω))dF (ω),

and i’s ex ante expected surplus is
∫
Ω

[∫ p̄ep(α,ω) D(p, mi, τ
i(ω))dp + τ i

1(ω)
]
dF (ω), where τ i

1 is
the income component of the consumer’s type. A policy α∗ ∈ A is ex ante Pareto Optimal if
there is no α′ ∈ A such that every consumer i ∈ {1, ..., I} ex ante weakly prefers α∗ to α′, and
the inequality is strict for at least one i.

In both results which follow I impose all the assumptions of Theorem 1 on interim Pareto
Optimality. Recall from the discussion of Lemma 1 that a crucial step in the argument for
interim optimality is to show that the marginal utility of money is higher in states of the world
with high prices than it is in states with low prices. From an interim perspective, after types
are revealed, the property follows from the single crossing property and that Vm is increasing
in p for each type. From an ex ante perspective, a consumer is uncertain of its type as well as

20The two welfare concepts are discussed in Mas-colell, Whinston, and Green (1995), pp. 898-99.
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the price. The additional assumptions I impose ensure that the marginal utility of money is
still higher in states of the world in which price is high.

In the next Theorem I assume that demand uncertainty is common values: consumer types
are comonotonic (implying that they are positively correlated), and demand is increasing
in the types (Assumptions (ii) and (iii)). I also impose the assumption from Theorem 2
that equilibrium price is positively correlated with aggregate demand (Assumption (i)). The
three assumptions together imply that each consumer’s type and the equilibrium price are
comonotonic. Finally I assume that the indirect utility function satisfies increasing differences
in income and both the price and the type. Together these assumptions ensure that each
consumer’s marginal utility of money is higher in states of the world with high prices.

Proposition 3 (Ex ante Optimality: Common Values). Let all the hypotheses of Theorem 1
hold. In addition suppose that

(i) aggregate demand Q(·, ω) is strictly decreasing in price on [p, p) and equilibrium aggregate
demand and equilibrium price are comonotonic;

(ii) consumer preference types are pairwise comonotonic: for every i, j in {1, ..., I}, and every
ω, ω′ in Ω [τ i(ω)− τ i(ω′)] · [τ j(ω)− τ j(ω′)] ≥ 0;

and for each consumer i ∈ {1, ..., I},
(iii) at each price p ∈ P , demand D(p, t) is increasing in the type t; and

(iv) Vm(p, t) is increasing in t on Range(τ i(·)) for every p ∈ P .

Then the expected surplus maximizing policy α∗ on A is ex ante Pareto Optimal.

Proof : Appendix A.

Assumption (iv)—the marginal utility of money is increasing in the type—deserves com-
ment. I discuss it more fully after Proposition 4, but for now note that Proposition 3 includes
the case in which income is ex ante uncertain (when the range of τ1, the income component
of the type, is not a singleton). But then (iv) implies that V is convex in income—which is
incompatible with strict risk aversion. Proposition 3 just gives sufficient conditions for the
conclusion. Yet it is hard to imagine how (iv) could be weakened in an economy in which
good 1 is normal, consumer incomes are positively correlated, and demand and price are pos-
itively correlated. As mentioned a major example of ex ante income uncertainty as a source
of demand uncertainty with common values is business cycle risk. One implication of Propo-
sition 3 is negative: if the main source of demand uncertainty is business cycle fluctuations,
and policies change less often than the fluctuations, then aggregate expected surplus has little
justification in an economy with risk averse consumers. This implication agrees with the spirit
of Rogerson’s Theorem 3, which deals with pure income uncertainty.21

Rogerson’s Theorem 4 deals with pure preference uncertainty (his case of ` = 1 fits my
partial equilibrium framework). He shows that if the marginal utility of money does not depend
on the preference type and the demand for good 1 is strictly increasing in the preference type,
then the marginal utility of money must depend on the price of good 1—violating the sufficient
condition of his Theorem 1. My Proposition 3 includes the case of pure preference uncertainty.

21Rogerson’s Theorem 3 shows that Vpm = 0 and Vmm = 0—his sufficient and necessary conditions for ex ante
expected consumer’s surplus to represent ex ante preferences over all policies which affect the price of good 1 and
income—implies that Dm = 0 (so if Vpm = 0 = Vmm for all consumers, then income changes can’t be a source of
demand changes).
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It shows that aggregate expected surplus can be justified as an ex ante guide to policies in
the case of pure preference uncertainty if the Assumptions of Theorems 1 and 2 hold, demand
uncertainty is common values, and Vm is increasing in the preference type.

I now consider the polar opposite case, independent private values. I must now also re-
strict how the shape of the demand varies with the type, and I assume that each consumer
is “informationally small” in the sense that each consumer’s beliefs about the equilibrium
price distribution does not depend on that consumer’s type realization (an assumption that is
inconsistent with a finite number of consumers, just as the price-taking assumption is).

Proposition 4 (Ex Ante Optimality: Independent Private Values). Let all the hypotheses of
Theorem 1 hold, suppose that α∗ maximizes aggregate expected surplus on A, and suppose that

(i) Consumer types are independently distributed; and each consumer i’s belief about the
equilibrium price distribution does not depend on i’s type realization, τ i(ω);

(ii) D(p, ·) is increasing in t on T for every p ∈ P and V (p, ·, θ) is concave in m on R++ for
every (p, θ) ∈ P ×Θ.

(iii) At least one of the following holds for every i ≤ IC and α ∈ A.

(iii-a) Vm(p, ·) is increasing in t on Range(τ i(·)); the demand D satisfies increasing differ-
ences in p and t on P ×Range(τ i(·)); and

∫
Ω p̃(α, ω)dF (ω) ≥

∫
Ω p̃(α∗, ω)dF (ω);

(iii-b) Vm(p, ·) is increasing in −t on Range(τ i(·)); the demand D satisfies increasing dif-
ferences in p and −t on P ×Range(τ i(·)); and

∫
Ω p̃(α, ω)dF (ω) ≤

∫
Ω p̃(α∗, ω)dF (ω);

or
(iii-c) Demand is additively separable in p and t and

∫
Ω p̃(α, ω)dF (ω) =

∫
Ω p̃(α∗, ω)dF (ω).

Then α∗ is ex ante Pareto Optimal.

Proof : Appendix A.

Except for the important special case of (iii-c), both Propositions 3 and 4 assume mono-
tonicity of Vm in the preference type θ (increasing or decreasing). To pin down each possibility
from preferences, suppose that the indirect utility function is C2 and that the demand is C1.
Write the direct utility function as u(x, y, θ), where x is consumption of good 1 and y is spend-
ing on all other goods, and assume that it is strongly quasiconcave. Routine calculation reveals
that (subscripts denote partial derivative)

Vθm = DmDθH + uyθ (11)

where H = −uxx+2uxyp−uyyp
2 > 0 and p is the price of good 1. So if demand is increasing in

both income and the preference type and uyθ ≥ 0, then Vm is increasing in θ. These conditions
are satisfied, for example, if u is additively separable and strongly concave, and θ enters only
the good-1 component function—u(x, y, θ) = f(x, θ)+g(y). On the other hand, if demand does
not depend on income (quasilinear preferences) but the consumer is risk averse over money
lotteries, then Vm is decreasing in θ (since uyθ ≤ 0 in that case).

The case of high consumer risk aversion is of special interest. In particular suppose that
the indirect utility is of the form V (p, m, θ) = φ(Ṽ (p, m, θ)), where φ is strictly increasing and
strictly concave with φ′ > 0. Differentiate with respect to m and θ and rearrange to find that

Vmθ = φ′
[
φ′′

φ′
ṼmṼθ − Ṽmθ

]
.
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As with equation (8), the equation immediately implies that if Arrow-Pratt risk aversion is
uniformly high enough and Vθ < 0, then Vm is increasing in θ; if risk aversion is high enough
and Vθ > 0, then Vm is decreasing in θ. Since demand is increasing in the preference type,
the conclusion can be rephrased: if the consumer is risk averse enough, then Vm is increasing
in θ if demand and utility move in opposite directions in response to changes in θ; and Vm is
decreasing in θ if demand and utility move in same direction in response to changes in θ.

Examples abound for each possibility. Suppose the uncertain state of the world affects
the weather. Demand for heating and cooling is highest when the weather is extreme; and
since most prefer moderate to extreme weather, a consumer’s utility and demand for climate
control and move in opposite directions. But demand for many outdoor recreation activities
is highest when weather is moderate. If the uncertainty is about the quality of a substitute
for the good, then utility and the demand for the good move in opposition directions—for
example car gas mileage and the demand for gasoline; and possibly health care quality and
the demand for hospital days (Feldstein (1977)). If the uncertainty is about the quality of
the good itself—with ‘higher’ quality defined as something everyone prefers—then utility is by
construction increasing in quality, but the demand for the good could be either increasing or
decreasing in quality: if the durability of a firm’s product increases, then its demand might
increase if it has competitors, but might decrease if the firm is a (protected) monopolist.

Propositions 3 and 4 contain a long list of assumptions, so it might not be obvious how
to apply them. Here I only consider pure preference uncertainty. Suppose first that the
demand uncertainty is common values, as in Proposition 3. If one adds the assumption that
Vm is increasing in the preference type θ, then the results in Lewis and Sappington (1988),
Deneckere, Marvel, and Peck (1997), and Rey and Tirole (1986) that were shown to be interim
Pareto Optimal in Section 4 are also ex ante optimal for common-values demand uncertainty.

For private values, notice that condition (iii-c) includes the familiar case of linear demand
with intercept uncertainty: D(p, m, θ) = g(θ, m)− p. Rey and Tirole (1986) impose this form
in their main theorem on vertical restraints and welfare (Proposition 7). If retailers are risk
neutral or infinitely risk averse, then the expected retail price is the same across the three
policies for pure demand uncertainty and condition (iii-c) holds, so by Proposition 4, RPM is
ex ante Pareto Optimal for private-values demand uncertainty. If retailers have intermediate
risk aversion, then the expected retail price for exclusive territories can be higher than for RPM
and competition, so that conclusion extends if we add the assumption that Vm is increasing
in θ. Deneckere, Marvel, and Peck’s (1997) Theorem A.2 imposes linear demand. They prove
that the mean price is the same for flexible pricing and minimum RPM, so again condition
(iii-c) holds. Deneckere, Marvel, and Peck (1997) also consider nonlinear demand. Their
maintained assumptions on the curvature on the inverse demand are in general consistent with
D satisfying increasing differences in either p and θ or p and minus θ but in some important
special cases, the second must hold. They also point out that expected price under minimum
RPM can be either higher or lower than under flexible prices, but for important classes of
demands and costs, the mean price for flexible prices is no less than the mean price under
minimum RPM. Thus assumption (iii-b) of Proposition 4 fits best for nonlinear demand when
the demand uncertainty is iid in their model.

Finally consider Lewis and Sappington (1988) and private values. Although linear demand
is their leading example of a functional form which fits their assumptions, Proposition 4 requires
that the mean price from the policy which maximizes aggregate expected surplus be higher or
lower than the mean price from every other policy. That part of the sufficient condition fails
in Lewis and Sappington (1988): the best hope for extending their results beyond quasilinear
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utility is for interim optimality, or common-values uncertainty for ex ante optimality.

6 What is to be done?

I extend important welfare conclusions under uncertainty and incomplete markets substantially
beyond the knife edge case of quasilinear utility often assumed in applied microeconomics. For
interim optimality I argue the conditions are plausible if uncertainty is about consumers rather
than producers; for ex ante optimality they are less so, but still applicable to some welfare
conclusions. I do not intend the paper to be an apology for misspecified welfare functions.
Rather I encourage applied researchers to examine the robustness of their welfare conclusions,
especially to consumer risk aversion; and encourage theorists to prove theorems about welfare
from limited information, in the spirit of Willig (1976), Radner (1993), and Vives (1987). To
illustrate, my model is a partial equilibrium one. I imposed this restriction mainly to replicate
the positive predictions of the partial equilibrium applications I consider in Section 4. Still, a
natural and important extension is to determine when an optimal partial-equilibrium policy
remains optimal in general equilibrium. The existing literature on ‘piecemeal’ second-best
policy—for example, Jewitt (1981)—is not directly applicable because it considers second-best
economies in which some relative prices are fixed exogenously; but in many applied microe-
conomics models, markets under uncertainty are incomplete. An important open question
is: if markets are incomplete—in particular only spot markets exist, as here—then when is
piecemeal second-best policy Pareto Optimal?

7 Appendix A: Proofs

The proofs appear in the same order as the results in the text.

7.1 Proof of Proposition 1

Let y(α) ∈ RL be the equilibrium production plan, y′(α) its derivative, eg the aggregate
endowment of goods, and p̃(α) ∈ RL

++ the equilibrium price vector at policy α. (I follow the
usual sign convention for production plans that positive coordinates represent net outputs and
negative ones net inputs.) Under my partial equilibrium assumption α only affects the first
coordinate of p̃(α). With the equilibrium production plan, equilibrium prices, and consumer
utility all differentiable, and the equilibrium allocation interior, the economy fits the framework
of Radner (1993). His main result is if p̃(α̂) · y′(α̂) > 0—the value of the change in the
equilibrium production plan from a small increase in α from α̂ is positive—then a small-enough
increase in α is a potential Pareto improvement.22 I will show that S′(α) = p̃(α) · y′(α), from
which the result follows. Equilibrium aggregate income is

∑
i mi(α) = p̃(α) · (eg + y(α)), the

value of the aggregate endowment plus profit. Differentiate with respect to α to find that∑
i

m′
i(α) = p̃′(α) · (eg + y(α)) + p̃(α) · y′(α), (12)

22Intuitively, the allocation of the total supply eg + y(α̂) to consumers is a competitive equilibrium allocation
with respect to the price vector p̃(α̂). Since the allocation is interior, the first order condition implies that the price
vector equals the vector of marginal utilities divided by the marginal utility of money for each consumer. If each
consumer’s share of the new supply is proportional to the reciprocal of that consumer’s marginal utility of money,
then each consumer’s utility rises with a small increase in α starting from α̂.
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and differentiate equation (1) with respect to α and sum over consumers to find (recall that
p̃(α) is the equilibrium price of just good 1)

S′(α) = −p̃′(α)
∑

i

D(p̃(α), m̃i(α), θi) +
∑

i

m̃′
i(α). (13)

Insert (12) into (13), and use market clearing and the assumption that the policy only affects
the price of good 1 to conclude that S′(α) = p̃(α) · y′(α). If S′(α̂) > 0, and the conclusion
now follows from in Radner (1993). �

7.2 Proof of Lemma 1

Let the hypotheses of Lemma 1 hold. The conclusions hold for any type of consumer i > IC by
assumption, so fix a consumer i ≤ IC of type t = (m, θ). Let Ω+ = {ω ∈ Ω | p̃(α, ω) > p̃(α∗, ω)}
and let Ω− = {ω ∈ Ω | p̃(α, ω) < p̃(α∗, ω)}. If Ω− has 0 measure, namely

∫
Ω−

dF = 0, then
a type t consumer i weakly prefers α∗ to α, since the policy does not affect that consumer’s
income; and if that type’s expected surplus is strictly higher at α∗, then the preference is strict.
If Ω+ has 0 measure then, since expected surplus at α∗ is at least equal to expected surplus
at α for a type t consumer i—and that consumer’s surplus in each state is decreasing in the
price of good 1—the price at α must equal the price at α∗ F -almost everywhere, so a type-t
consumer i is indifferent between α and α∗.

For the rest of the proof suppose that both Ω+ and Ω− have positive measure and let r be
a crossing price for the two policies (that is, r satisfies (15)). Since Vm(·, t) is increasing in p,

Vm(p+, t) ≥ Vm(r, t) ≥ Vm(p−, t) (14)

for every p+ ∈ [p̃(α∗, ω+) , p̃(α, ω+)] and p− ∈ [p̃(α, ω−) , p̃(α∗, ω−)] where ω+ ∈ Ω+ and
ω− ∈ Ω−. It follows that∫ (

V i(p̃(α∗, ω), t)− V i(p̃(α, ω), t)
)
dF (ω | i, t)

=
∫

Ω

[∫ ep(α∗,ω)

ep(α,ω)
Vp(p, t)dp

]
dF (ω | i, t)

=
∫

Ω

[∫ ep(α,ω)

ep(α∗,ω)
D(p, t)Vm(p, t) dp

]
dF (ω | i, t)

=
∫

Ω+

[∫ ep(α,ω)

ep(α∗,ω)
D(p, t)Vm(p, t) dp

]
dF (ω | i, t) +

∫
Ω−

[∫ ep(α,ω)

ep(α∗,ω)
D(p, t)Vm(p, t) dp

]
dF (ω | i, t)

≥ Vm(r, t)
∫

Ω

[∫ ep(α,ω)

ep(α∗,ω)
D(p, t) dp

]
dF (ω | i, t)

= Vm(r, t)
(
E[S(α∗, ω, t) | i, t]− E[S(α, ω, t) | i, t]

)
. (15)

The second equality uses Roy’s Identity, D = −Vp/Vm, and the inequality follows from (14). If
the difference in expected surplus (12) is nonnegative, so is the difference in expected utility;
if the difference in expected surplus is positive, then so is the difference in expected utility. �
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7.3 Proof of Theorem 2

Suppose that the hypotheses of the theorem hold and let β ∈ A be the policy which is least
variable and has the lowest mean: for any α ∈ A, p̃(β, ·) crosses p̃(α, ·) at most once from
above—equation (6) holds with α∗ = β—and

∫
Ω p̃(α, ω)dω ≥

∫
Ω p̃(β, ω)dω. Let Q(p̃(α, ω), ω)

be the equilibrium aggregate demand for good 1 in state ω under policy α. Fix α′ ∈ A , let r
be a crossing price between polices β and α′, and let Q = infω∈Ω{Q(p̃(α′, ω), ω) | p̃(α′, ω) ≥ r}.
The difference in expected surplus between policy β and some α′ ∈ A is∫

Ω

[∫ ep(α′,ω)

ep(β,ω)
Q(p, ω)dp

]
dF (ω)

≥
∫

Ω

(
p̃(α′, ω)− p̃(β, ω)

)
Q(p̃(α′, ω), ω)dF (ω)

≥ Q

∫
Ω

(
p̃(α′, ω)− p̃(β, ω)

)
dF (ω) ≥ 0. (16)

The first inequality holds since Q(p, ω) ≥ Q(p̃(α′, ω), ω) for states with p̃(α′, ω) ≥ r and prices
p ≥ p̃(β, ω); and Q(p, ω) ≤ Q(p̃(α′, ω), ω) for states with p̃(α′, ω) ≤ r and and prices p ≤
p̃(α′, ω). The second inequality follows from the single-crossing property and comonotonicity
of equilibrium demand and price at α′: Q(p̃(α′, ω), ω) > Q only if p̃(α′, ω) ≥ r (hence p̃(α′, ω) ≥
p̃(β, ω)). The last inequality follows from the assumption that β has the lowest mean price. �

7.4 Proof of Proposition 3

First, I show that Assumptions (i)-(iii) of Proposition 3 imply that for each consumer i ∈
{1, ..., I} and every policy α ∈ A, the equilibrium price and i’s preference type are comonotonic:
for all ω, ω′ in Ω,

[τ i(ω′)− τ i(ω)][p̃(α, ω′)− p̃(α, ω)] ≥ 0. (17)

Fix a policy α ∈ A, a consumer j ∈ {1, ..., I} and a pair of states ω and ω′ in Ω. Suppose that
p̃(α, ω′)− p̃(α, ω) > 0. (If the prices are equal, (17) holds.) Since by (i),[

Q
(
p̃(α, ω′), ω′)−Q (p̃(α, ω), ω)

]
×

[
p̃(α, ω′)− p̃(α, ω)

]
≥ 0

it follows that Q (p̃(α, ω′), ω′) ≥ Q (p̃(α, ω), ω). Since aggregate demand is strictly decreasing
in price at each state and the price is higher in state ω′, it must be that τ j(ω′) > τ j(ω) for
at least one consumer j ∈ {1, ..., I} (aggregate demand must be higher in state ω′ than in
state ω at price p̃(α, ω), and each consumer’s demand is increasing in θ). But then by (iii),
τ i(ω′) ≥ τ i(ω) for every i ∈ {1, ..., I} and (17) holds.

Now I use (17), Assumption (iv), and the Assumptions imposed in Theorem 1 to prove
Proposition 3. Suppose that α∗ maximizes expected surplus on A, and consider α ∈ A. As in
the proof of Lemma 1, let Ω+ = {ω ∈ Ω | p̃(α, ω) > p̃(α∗, ω)} and Ω− be the set of states for
which the inequality is reversed. If Ω− has 0 measure, then every consumer i ≤ IC at least
weakly prefers α∗ to α and the conclusion holds. If Ω+ has 0 measure, then expected surplus
of every consumer i ≤ IC under α∗ is less than or equal to its expected surplus under α. Since
α∗ maximizes aggregate expected surplus, at least one consumer i > IC weakly prefers α∗ to
α and the conclusion holds.

For the rest of the proof suppose that Ω+ and Ω− have positive measure and let r be a
crossing price (that is, r satisfies (15).) Now consider a consumer i ≤ IC . Let

K = inf{Vm(p̃(α∗, ω),mi, τ
i(ω)) |ω ∈ Ω+}.
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By (17) and the assumption that Vm is increasing in (p, θ), it follows that Vm(p̃(α, ω),mi, τ
i(ω)) ≤

K for every ω ∈ Ω−. Use this fact and Roy’s Identity to find that∫ (
V (p̃(α∗, ω),mi, τ

i(ω))− V (p̃(α, ω),mi, τ
i(ω))

)
dF (ω)

=
∫

Ω

( ∫ ep(α∗ω)

ep(α,ω)
Vp(p, mi, τ

i(ω))
)
dF (ω)

=
∫

Ω

( ∫ ep(α,ω)

ep(α∗,ω)
Vm(p, mi, τ

i(ω))(D(p, mi, τ
i(ω)))

)
dF (ω)

≥ K

∫
Ω

[∫ ep(α,ω)

ep(α∗,ω)
D(p, mi, θ) dp

]
dF (ω). (18)

The inequality gives a version of Lemma 1 for ex ante welfare: if for consumer i ≤ IC , α∗

has ex ante expected surplus no lower than at α, then i weakly prefers α∗ to α. Since this
statement is also true for any consumer i > IC , it follows that any policy which maximizes ex
ante aggregate expected surplus is Pareto Optimal. �

7.5 Proof of Proposition 4

Suppose that (i) and (ii) hold and consider inequality (15). By (i) F (ω) can replace F (ω | i, t)
in (15). Multiply by λi(t)—the probability that consumer i is type t—and sum over types to
find that ∑

t

∫ (
V i(p̃(α∗, ω), t)− V i(p̃(α, ω), t)

)
dF (ω)λi(t)

≥
∑

t

[
Vm(r, t)×

∫
Ω

( ∫ ep(α,ω)

ep(α∗,ω)
D(p, t) dp

)
dF (ω)

]
λi(t) (19)

Now impose Assumption (iii-a), so Vm is increasing in t. The other term in brackets is the
change in expected surplus for a type-t consumer. If that term is increasing in t then the
conclusion follows since the second line of (19) would be at least as large as∑

t

[
Vm(r, t)λi(t)

]
×

∑
t

∫
Ω

( ∫ ep(α,ω)

ep(α∗,ω)
D(p, t) dp

)
dF (ω)λi(t).

which equals ∑
t

[
Vm(r, t)λi(t)

]
×

∑
t

(
E[S(α∗, ω, t)]− E[S(α, ω, t)]

)
λi(t).

To confirm that the change in expected surplus is increasing in t under (ii) and (iii-a), let t′′

and t′ be any points in the range of τ i(·) with t′′ > t′ and consider the difference in expected
surplus

∆ =
∫

Ω

( ∫ ep(α,ω)

ep(α∗,ω)
[D(p, t′′)−D(p, t′)] dp

)
dF (ω). (20)

It suffices to show that ∆ ≥ 0. If r be a crossing price for α∗ and α (that is, r satisfies (15),
then for any p− ≤ r ≤ p+ we have

D(p−, t′′)−D(p−, t′) ≤ D(r, t′′)−D(r, t′) ≤ D(p+, t′′)−D(p+, t′),
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which implies that

∆ ≥ [D(r, t′′)−D(r, t′)]×
∫

Ω
p̃(α, ω)− p̃(α∗, ω)dF (ω).

By (ii) the bracketed term is nonnegative and by (iii-a) expected price difference is nonnega-
tive, so ∆ ≥ 0 and the change in expected surplus is increasing in the preference type. This
completes the proof for the case of (iii-a). The proof in the case of (iii-b) is similar. For (iii-c),
note that if demand is additively separable in p and (m, θ), then ∆ in (20) is 0 if the mean
prices are the same for policies α and α∗. �

8 Appendix B: Supplementary Derivations

In this appendix I gather together derivations and proofs omitted in the text.

8.1 Strong Quasiconcavity implies optimality of surplus-maximizing
policies in complete markets

In Section 2.2, I asserted that, if each Si is strongly quasiconcave, then any surplus-maximizing
policy is Pareto Optimal. I now prove that assertion. Suppose each Si is strongly quasiconcave.
Then by equation (3) each consumer i’s equilibrium indirect utility Wi(α) = V (p̃(α), m̃i(α), θi)
is also strongly quasiconcave in α on A. Suppose that α0 ∈ A = [0, 1] is not Pareto Optimal:
there is an α1 ∈ A with Wi(α1) ≥ Wi(α0) for all i, with the inequality strict for at least one
consumer j. I will show that α0 cannot maximize aggregate surplus on A. There are two cases.
First suppose that α1 > α0. Then by strong quasiconcavity, W ′

i (α0) ≥ 0 for every consumer
i with a strict inequality for consumer j, and so S′(α0) > 0 by (3). Since α0 < 1, it cannot
maximize surplus on A. If α1 < α0, then W ′

i (α0) ≤ 0 for every i with a strict inequality for
consumer j, and so S′(α0) < 0; since α0 > 0, it cannot maximize S on A. �

8.2 Prices vs Quantities (Example 1)

Here I calculate the maximized expected surplus under a fixed-price policy. If price is fixed
at p, then output in state ω is a(ω)−p

−b . Insert this expression into (10) to find that expected
surplus at price p is

E
[
(a(ω)−A(ω))

(
a(ω)− p

−b

)
+

1
2

(b−B)
(

a(ω)− p

−b

)2 ]
. (21)

Differentiate with respect to p and set equal to 0 to find

E[a(ω)]− E[A(ω)]− (E[a(ω)]− p))
b−B

b
= 0,

so the expected surplus maximizing price is

p = E[a(ω)] +
b(E[a(ω)]− E[A(ω)])

B − b
.

Insert this expression into (21) and rearrange to find that

WP = −b + B

2b2
V ar(a) + WQ, (22)
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as asserted in the text.
To demonstrate the assertion of the last paragraph of Example 1, note that for an arbitrary

fixed quantity q, the expected price is E[a(ω)] + bq. Substitute this expression for p in (21)
and simplify to find that the the difference between expected surplus with a fixed price of
E[a(ω)] + bq and a fixed quantity of q is −(b + B)/2b2, exactly as in (22).

8.3 Calculations for Cho and Meyn (2010)

I now construct an example which generates the same aggregate demand and supply as the
static version of Cho and Meyn (2010) which has a competitive equilibrium that is not Pareto
Optimal. Following Cho and Meyn (2010), I suppose that aggregate demand in state ω ∈
Ω = [0, 1] is vω if p ≤ ω and is 0, otherwise, where v > 0. Before the demand is realized a
production capacity q ≥ 0 is installed. As before the distribution of the state ω is given by a
c.d.f. F . There is a continuum of identical firms. Before the demand uncertainty is realized
each firm installs a production capacity, which cannot later be changed. The cost of capacity q
for any firm is c(q) = kq, where 0 < k < v. After the capacity is installed, the demand state ω
is realized. In state ω with capacity q the equilibrium price, P̃ (q, ω), is given by the intersection
of the aggregate demand with the inelastic supply: P̃ (q, ω) = 0 if ω < q, P̃ (q, ω) = v if ω > q
(and anything in the interval [0, v] if ω = q). The static version of the model with no capacity
adjustments is just a special case of the competitive version of Deneckere, Marvel, and Peck
(1997) with flexible prices, and corresponds to a pure fixed quantity policy. As with that
model, Theorem 2 does not apply, so it remains an open question whether the conditions of
Theorem 1 are satisfied.

In a competitive equilibrium the expected price equals k: v(1 − F (q)) = k. Expected
aggregate surplus for a given q is

v

∫ q

0
ωdF (ω) + qv(1− F (q))− kq (23)

which is maximized when v(1−F (q)) = k, so the competitive equilibrium choice of q is Pareto
Optimal whenever each consumer has quasilinear utility. The competitive equilibrium quantity
equals the fixed quantity that social planner who maximizes expected surplus.

Now let I = [0, 1] be the set of consumers. Each consumer i has a unit demand for the good
and is one of two types: type 1 values the good at v dollars, type 2 values the good at 0 dollars.
Let the mapping from consumer labels to types be the indicator function χ[0,ω] for ω ∈ [0, 1]:
if consumer i learns that he is of type 1, then he knows that all consumers with labels less
than i are type 1: consumer i however is uncertain about the types above i; if i < q then a
type-1 consumer i is uncertain about the equilibrium price. If i > q, then both potential types
of consumer i know that the equilibrium price is v. Consumer i’s vN-M utility in state ω is
u(x, y; i, ω) = φ(xvθi(ω) + y), where x ∈ {0, 1} is consumption of good 1, y is consumption of
good L = 2, and θi(ω) = 1 if i < ω and 0 otherwise. The function φ is concave and strictly
increasing. Normalize it so that φ(m) = 0. When the capacity is q > i and consumer i’s type
is 1, then its equilibrium interim expected utility is

φ(v + m)
F (q)− F (i)

1− F (i)

Now consider the following policy of minimum RPM: a price floor pF ≥ 0 is set so that if the
market-clearing price is below pF , then the actual price is held at pF , and each firm only sells
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a fraction of its capacity (the same for all firms). The equilibrium output Q(pF ) is

pF

∫ Q(pF )

0
ωdF (ω) + v(1− F (Q(pF ))) = k.

It follows immediately that the equilibrium output is increasing in pF . Equilibrium interim
expected utility for a type 1 consumer i in this economy is

φ(v − pF + m)
F (Q(pF ))− F (i)

1− F (i)
.

The tradeoff in raising pF from 0 is that each consumer pays more the good, but is more likely
to get some gains to trade. Differentiate this last expression with respect to pF to find that

−φ′(v − pF + m)
F (Q(pF ))− F (i)

1− F (i)
+ φ(v − pF + m)

f(Q(pF ))
1− F (i)

Q′(pF ).

Evaluate at pF = 0 to find that

−φ′(v + m)
F (Q(0))− F (i)

1− F (i)
+ φ(v + m)

f(Q(0))
1− F (i)

Q′(0).

Now normalize φ so that φ(v + m) = 1 and φ(m) = 0. As risk aversion increases uniformly
without bound φ′(v + m) tends to zero, so that consumer i preferences are strictly increasing
in pF in a neighborhood of 0: all consumer types weakly prefer a small price floor to none,
and a positive mass of type one consumers strictly prefer it.
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