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Abstract

The problem of allocating children to public daycares differs from the

school choice problem in two fundamental ways: there is entry and exit of

agents over time, and the priorities of schools over children are history depen-

dent. We illustrate with the Danish case and show that there is no mechanism

that is strategy-proof and yields a stable matching. We propose an algorithm

in which parents sequentially choose menus of schools, ordered by the child’s

birth date. This mechanism is strategy-proof, Pareto efficient, eliminates ex-

post uncertainty, and may be considered fair: parents face similar choice sets,

which increase over time.

JEL classification: C78, D61, D78, I20.
KEYWORDS: daycare assignment, matching, strong stability, efficiency.
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1 Introduction

The decision of which daycare to enroll a child is an important and difficult one.
This caution is justified by mounting evidence that early childhood care facilities
are heterogeneous and crucial to the development of important non-cognitive skills
that have a significant impact on the child’s future career and social opportunities
(Chetty et al., 2010; Heckman, 2008). In addition, important risks are associated
with opting out of a daycare facility in favor of home care. For example, Goldin
(1994) argues that home care is a major barrier to the advancement of female ca-
reers because it undermines mothers’ time at work during those years when the
possibilities for career advancement are at their fullest.

Many daycare systems are publicly funded and centrally administered, partic-
ularly in European countries. Our lead example is the case of Denmark. Copen-
hagen has more than 400 independently managed daycare facilities and parents can,
in principle, choose to have their children assigned to any one of these facilities.
However, each facility has strict capacity constraints due to the mandated number
of children per pedagogue as well as inherent space restrictions. As such, parents
may sign up for a particular daycare, but they are not guaranteed to have their chil-
dren accepted into it. In practice, some daycares are very popular and difficult to
enter while other daycares are less popular and easier to enter.1

A centralized daycare system attempts to balance parental choice with the pri-
orities of the public daycares regarding the various children. A general sense exists
that daycares are a useful tool for social integration via the non-cognitive skill de-
velopment of less fortunate children (see Warren (2010)). Therefore, the priorities
of public daycares are often set to accommodate disadvantaged groups. Other crite-
ria for priorities might exist, for example the assignment system currently in place
in Denmark is such that the oldest unassigned child is given high priority in a day-
care where presently no capacity restriction exists– a concept called “child care
guarantee.”

In the current paper, we study the problem of the centralized assignment of

1For example, there is much heterogeneity in the wait list lengths of each day-
care in Copenhagen, as is evidenced by current statistics published (in Danish) at
http://www.kk.dk/Redirections/daginstitutioner.aspx
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children to daycares. Parents report their preferences concerning institutional and
home daycare. Given these reports and the priorities of each daycare, the central
authorities decide on the assignment. Our goal is three-fold: illustrate the problem
by presenting what is currently done in Denmark; extend well-known concepts from
the static problem to a dynamic one; and, finally, propose an algorithm that has
several advantages over the current one and other commonly used mechanisms.
Most importantly, in the process of doing this, we believe that some of the concepts
developed in this paper will be useful to other applications and to the theory of
dynamic matching in general.

In the static problem known as school choice problem, children of a specific
age are assigned to different schools.2 The problem proposed in this paper extends
the school choice problem in two fundamental ways.3 First, the daycare assignment
problem has a dynamic structure: each child may attend daycare for several periods,
but not necessarily the same facility. Moreover, in any given period, children of
different ages may be allocated to the same daycare. For example, in Denmark,
children attending the same daycare range in age from 6 months to 3 years. Every
month, a group of young children start daycare while those children who turn 3
years leave for the next level of pre-school. The second defining feature of the
daycare assignment problem is that the schools’ priorities are history dependent: a
school gives priority to children previously allocated to it. In Denmark, it is also the
case that children that were not assigned to any school in a given period are given
high priority in all schools in the subsequent period.

One of the main objectives in the school choice literature has been to identify
mechanisms that satisfy one or more well-defined positive properties, such as sta-
bility, Pareto efficiency, and strategy-proofness. Stability has been interpreted as
eliminating “justified envy”: a mechanism that leads to an allocation in which no
child would prefer a different school to her current one and, at the same time, find
a student in that preferred school with a lower priority than her. Pareto efficiency,
on the other hand, refers to the preferences of the students, and, thus, ignores the

2See Abdulkadiroğlu and Sönmez (2003) for an important paper in the area, and also Pathak
(2011) for a recent survey.

3Henceforth, we will refer to our problem as the daycare assignment problem mainly due to what
we see as its prototypical application.
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schools’ priorities. Finally, an algorithm is said to be strategy-proof if reporting the
true preference profile is a weakly dominant strategy. Abdulkadiroğlu and Sönmez
(2003) discuss two important mechanisms to be used in this allocation problem: the
Gale-Shapley Deferred Acceptance algorithm, which is shown to be strategy-proof
and to yield a stable algorithm; and the Top-Trading Cycles, which is strategy-proof
and yields an efficient matching. Here, we extend the above mentioned concepts to
the daycare assignment problem and study whether these concepts are compatible
with one another in this new– dynamic– environment.

In our setting, the concept of stability must be strengthened to be meaningful.
The main intuition here is that justified envy becomes harder to define when the
priorities of each school depend on the allocation of the previous year. For example,
a child who stays home in period t might have a higher priority in her preferred
daycare in period t+1 (in particular, this is true under the assignment mechanism
currently in place in Denmark). Thus, in the discussion of the concept of justified
envy for period t+1, it is not clear whether the allocation to which it should be
analyzed is the one in t or the one in t+1.

To account for issues such as the ones raised in the previous paragraph, we
propose a refinement for the concept of stability, which we denote strong stability.
A strongly stable matching is one in which there is no profile of schools such that
an agent that prefers this profile over her assigned profile has higher priorities in
these schools even if she were to move to these referred schools. To find a strongly
stable matching we show that one can treat the daycare assignment problem as
separate school choice problems in different periods and find stable matchings in
each period, sequentially starting from period 0. The well known Gale-Shapley
deferred acceptance algorithm satisfies strong stability. We also show that it is not
Pareto dominated by any other mechanism that satisfies strong stability, and, if there
exists an efficient and strongly stable matching, it must be the Gale-Shapley one.

Importantly, though, we show that the mechanism described above is not strat-
egy proof: parents might have incentives to misreport their true preferences. This
negative result holds even if we restrict attention to a restricted domain of pref-
erences and priorities. Specifically, for the most part we assume that priorities of
schools are history dependent in only a rather weak sense: the priority ranking of
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each school will only change for children previously allocated to it, while for all
other children, the priorities will remain the same. We denote this condition by
independence of previous assignment. Moreover, we also consider a restriction on
preferences, which we call separability. This restriction implies that preferences
over schools are somehow stable and consistent; in particular, there are no comple-
mentarities. Even with only this weak link between periods, the problem becomes
substantially different from the static case and the Gale-Shapley is not strategy-
proof.

The result above raises the question of whether there is any mechanism that
would be strategy-proof and stable (even if only weakly). This question is a very
important one in the context of the school choice literature, where much attention
has been given to stability and the Gale-Shapley mechanism (which has since been
adopted in New York and Boston). However, the search for a stable and strategy-
proof mechanism is not straightforward, since the class of all possible mechanisms
is, of course, very large. Here we prove an impossibility result: there does not exist
a mechanism that is both strategy-proof and stable.

To prove the result above (Theorem 3), we construct an example in which for
different preference profiles there is a unique stable outcome. Thus, if there is
a strategy-proof and stable mechanism, it must yield the unique stable allocation
for each reported preference profile. We then proceed to show that a player may
benefit from a unilateral deviation in her reported preference profile–which must
yield the unique stable matching for that reported profile. This impossibility result
does not rely on the concept of strong-stability, but it holds even with the weaker
concept of static stability. Moreover, the result is true even in the restricted domain
of preferences and priorities referred above.

We turn the focus to finding a strategy-proof and Pareto efficient mechanism.
Unlike the case of stability, extending the concept of efficiency in the daycare as-
signment problem is straightforward– at least conceptually. However, although in
static settings it is impossible to find a child who would agree to trade her place-
ment for a worse one, in a dynamic setting this may be possible as long as the child
obtains a better placement in the other period. Hence, as long as there are two or
more “willing” participants of such a trade, there is room for Pareto improvement

5



even if none exists by changing one period matchings only. We show that due to this
motive, the Top Trading Cycles is not efficient. We also show that it is not strategy-
proof and that even a variation of this algorithm, which we call Top Trading Cycles
by cohort, is not strategy-proof.

Strategy-proofness is more difficult to achieve in the dynamic environment that
we consider since there is an additional potential benefit for a player from misre-
porting her true preferences: to affect the priority rankings of schools in the subse-
quent period. This motive is indeed very strong and is the driving force of some of
our negative results. In addition, note that if an assignment algorithm in place is not
strategy-proof, then computing the optimal strategy for the parents is substantially
more complicated in a dynamic problem than it is in a static one.4

We propose a mechanism and denote it the Sequential Choice Mechanism. In
this mechanism, which is a version of the well-known Serial Dictatorship, chil-
dren are exogenously ordered by the planner and they choose a menu of schools
over time according to their position in the queue. The Serial Dictatorship is not
strategy-proof nor efficient in our problem if applied period-by-period, but this ex-
tended version satisfies both properties. Moreover, as Pathak (2011) argued, in the
school choice problem there is no natural way of ordering the agents, so the Serial
Dictatorship mechanism may seem “unfair.” In contrast, our dynamic problem has
a natural way of ordering the agents: each child’s date of birth. If the Sequential
Choice Mechanism is used in practice, each child has the right to choose at some
point in time, over all menus available at that moment.5 This proposed mechanism
has the advantage of being simple and transparent. In addition, once parents make
their choices, they know the daycares that their child will attend at each different
period. In contrast, in the mechanism currently in place in Denmark, parents sign up

4Our problem is not part of the literature on multi-unit allocation. Papai (2001), and Ehlers
and Klaus (2003), for example, have obtained negative results concerning strategy-proofness and
efficiency, however, the problem here is substantially different and their results do not apply to our
setting. Many of the results in that literature depend on the feature that each agent might consume
several goods. In contrast, here, each agent consumes only a fixed number of goods (one per period).
In addition, due to the overlapping generations, some goods are only available in future periods.

5Our model is discrete and each child attends daycares for two periods only. This is not important
for the results, though: a more general model with each child living for n periods would still give us
the same results.
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to multiple waiting lists, but they have little idea of how these choices will translate
into dates of acceptance.

We should highlight that although our problem is motivated by the assignment
of children to daycares, it has many other applications. A firm with offices in differ-
ent cities must also solve a dynamic allocation problem; workers must be allocated
according to their preferences and the priorities of each office.6

Other interesting applications are the assignment of teachers to public schools,
diplomats to different embassies, or high-level bureaucrats to different regions (see
Bloch and Cantala (2008)). A problem related to this one is the market for new
physicians in the United Kingdom, where each doctor is allocated to two six-month
positions, a medical post and a surgical post (see Roth (1991) and I. (1998)).

Since the work of Abdulkadiroğlu and Sönmez (2003), mechanism design has
been used by many researchers to design new algorithms for the assignment of
children to schools. This literature has shown that some of the systems currently
in place have many shortcomings, and new systems that overcome some of these
problems have been proposed. In particular, as we have mentioned before, special
attention has been given to the Gale-Shapley Deferred Acceptance algorithm and
the Top-Trading Cycles. These new mechanisms were recently adopted in Boston
and New York school systems, and the early evidence suggests that these mecha-
nisms are an improvement over the previous systems. See Abdulkadiroğlu et al.
(2009) and Abdulkadiroğlu et al. (2005) for a discussion of the practical considera-
tions in the student assignment mechanisms in these two cities.

The theory of market design and dynamic allocation is very recent. Ünver
(2010) extends the literature on centralized matching for kidney exchanges to a
dynamic environment in which the pool of agents evolves over time. Kurino (2009)
studied the housing allocation problem with an overlapping generations structure.
There, stability is not discussed, since there is no concept of priorities in the housing
allocation model. Bloch and Cantala (2008) consider a dynamic matching problem,
but their focus is on the long-run properties of different assignment rules, which

6This is exemplified by the following excerpt from a McKinsey quarterly report:
“It is thus no surprise that a systematic and continuous approach to fitting the right person to the

right job at the right time has long been the Holy Grail of workforce organization.” (Agrawal et al.
(2003)).
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makes their analysis substantially different from ours.
The structure of this paper is as follows. In Section 2, we present a short de-

scription of the daycare system currently in place in Denmark. In Section 3, we
describe the model in detail. In Section 4, we study stable matchings and their
properties. In Section 5, we prove an impossibility result relating strong stability
and strategy-proofness. In Section 6, we study efficiency and propose an algorithm
that yields efficiency and strategy-proofness. In Section 7, we provide a brief con-
clusion. Longer proofs are left in the appendix.

2 The Danish Daycare System

The local municipalities in Denmark use broadly similar mechanisms to assign chil-
dren to daycares. For specificity, below we highlight the essential features of the
Aarhus mechanism, which are also common to most municipalities in Denmark,
including Copenhagen.

Children can start a daycare at the age of 6 months and when she turns 3 years
she must exit, moving to the next level of pre-schooling. The assignment algorithm
runs once a month and each parent reports the preference for her top 3 choices
among all daycares. They also report whether they want the option for what is
called as a “guaranteed spot,” in case the child is currently unassigned. The parents
can enroll their child any time after birth. Even if a child has a spot in some daycare
she can participate in the assignment algorithm without having to give up her spot,
i.e. she may sign up for two different daycares and will be placed in a waiting list
for these two daycares. It is important to highlight that children currently allocated
to a daycare, will not be displaced from that daycare involuntarily.

When a spot opens in a daycare, a child will be allocated according to a general
priority ordering. Below is brief description of the priority orderings of the daycares
from the assignment algorithm currently in place in the Aarhus Municipality.7 Once
a spot opens, it is offered to a child according to the following order:

1. Children with special needs, e.g., children with disabilities.
7For the original document see:

https://www.borger.dk/selvbetjening/sider/fakta.aspx?sbid=8632
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2. Children with siblings in the same daycare.

3. Immigrant children who after expert evaluations are considered in need of
special assistance in daycare.

4. The oldest child who is listed for a guaranteed place in his or her own district
i.e., not at a particular daycare.8

5. The oldest child who is listed for a guaranteed place in the local warranty
district. Aarhus Municipality is divided into 8 major warranty districts. A
warranty district consists of one to several districts.

6. The oldest child listed for a guaranteed place from a different warranty dis-
trict.

7. The oldest child from the waiting list of a particular daycare. This offer is
also made to a child already in a daycare (unless the child was assigned to a
guaranteed place under rules 4-6).

With this mechanism, it is not clear what is the best way to report the prefer-
ences from the point of view of the parents. A very popular daycare will take longer
to open a position, so it may be desirable to choose a less popular daycare. More-
over, the guaranteed place may be used strategically as illustrated in the following
example. Suppose that a parent knows (by talking to a principal, for example) that
a spot is likely to open in her preferred daycare 5 months from now. In this case,
she may be inclined to wait for 2 months before asking for the guaranteed spot.
This way, when the spot opens in 5 months, chances are that she will be in need
of a place according to the guaranteed spot concept. Thus, this mechanism is not

8“You can choose a guaranteed place and also a desired place with one or more specific institu-
tions. These requests will be taken into account when we find a place for you. However, we cannot
guarantee your desired institution. If your desired institutions does not have an opening, you will
be offered a “guaranteed place. A guaranteed place is a place within the district you live in, or at
a distance from your home which involves no more than half an hour of extra transport each way
to and from work. The municipal placement guarantee is satisfied when you have been offered a
place. To be assigned a guaranteed seat at a desired time, the application must be received by the
placement guarantee office no later than 3 months before the place is desired.” (Translated from
https://www.borger.dk)
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strategy-proof. Also the Aarhus mechanism fails efficiency and stability. However,
we present the formal proof in Section 3.4 because we need to adapt the concepts
of efficiency and stability to our setting.

The Aarhus mechanism is also not fully transparent: parents sign up to day-
care wait lists, but have very little information about the waiting time. Moreover,
given that it is not clear where and when a new spot will be offered to a child, the
mechanism generates uncertainty from the parents’ point of view.

3 Model

In Section 3.1 we define the concept of matching in our setting. Moreover, we
define the preference relation of the children over the different profiles of daycares
and the priority orderings of the daycares over the set of children. In Section 3.2 we
define the concepts of a Pareto efficient matching and (weak) stability. Further, we
extend the well known concept of stability, and denote it strong stability. In Section
3.3 we define a mechanism and its properties. In particular, we define strategy-
proofness. Finally in Section 3.4, we revisit the Aarhus mechanism and show its
weaknesses.

3.1 Setup

Time is discrete and t = −1,0, · · · ,∞. There are a finite number of infinitely lived
schools/daycares. Let S = {s1, · · · ,sm} be the set of schools. Each school s ∈ S has
a maximal capacity rs which we assume is constant. Children can attend school
when they are 1 and 2 years old. School attendance is not mandatory. Let h stand
for the option of staying home. Let S̄ = S∪{h}. For technical convenience, we treat
h as a school with unbounded capacity. In each period t, a new set of 1-year old
children It = {1, · · · ,nt} arrives. Consequently, at any period t the set of school-age
children is It−1 ∪ It . As time passes the set of school-age children evolves in the
“overlapping generations” (OLG) fashion. The set of all children is I = ∪tIt .

First, we extend the definition of matching to a dynamic context. For the static
problem, matching maps the set of children to the set of schools. Here, a matching
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is a collection of functions indicating which school-age child is assigned to which
school at every period.

Definition 1 (Matching). A period t matching µt is a function µt : It ∪ It−1× S̄→
{0,1} such that

1. For all i ∈ It−1∪ It , ∑s∈S̄ µt(i,s) = 1,

2. For all s ∈ S, ∑i∈It−1∪It µt(i,s)≤ rs.

A matching µ is a collection of period matchings µ = (µ−1,µ0, · · · ,µt , · · ·).

If child i is placed at school s in period t, then µt(i,s) = 1. Requirement (1)
above says that each child is placed at one school, while requirement (2) says that
each school cannot house more children than its capacity. We assume that at time
t =−1 the matching is exogenously given (for example, it may be that these initial
children stay at home in their first year). In other words, each matching we consider
has a common period -1 matching.

With slight abuse of notation, µt(i) denotes the school at which child i is placed
under µt , i.e., µt(i) = s whenever µt(i,s) = 1, for each i ∈ It−1∪ It . Similarly, µt(s)

denotes the set of children who are placed at school s under µt , i.e., µt(s) = {i ∈
It−1∪ It : µt(i,s) = 1}.

Children’s Preferences

Each child is characterized by a strict preference relation �i over S̄2. The nota-
tion (s,s′) denotes the allocation in which a child is placed at school s at age 1 and at
school s′ at age 2. We write (s,s′)�i (s̄, s̄′) if either (s,s′)�i (s̄, s̄′) or (s̄, s̄′) = (s,s′).
Throughout the paper, we maintain the following assumptions on preferences:

Assumption 1 (Preferences). Each child i’s preferences satisfy:

1. (No complementarities) If (s,s) �i (s′,s′) for some s,s′ ∈ S̄, then (s,s) �i

(s,s′) and (s,s)�i (s′,s).
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2. (Weak separability) If (s,s)�i (s′,s′) for some s,s′ ∈ S̄, then (s,s′′)�i (s′,s′′)

and (s′′,s)�i (s′′,s′) for any s′′ 6= s′.

No complementarities and the strictness of preferences yield that for any s,s′ ∈ S̄

and i, at least one of the following conditions is satisfied

(i) (s,s) �i (s,s′) and (s,s) �i (s′,s); or

(ii) (s′,s′) �i (s,s′) and (s′,s′) �i (s′,s).

Moreover, the two conditions above may be satisfied at the same time. This would
be the case, for example, if a child incurs a large enough cost (not necessarily
monetary) from changing schools.

In this paper, we often consider a stronger version of the weak separability as-
sumption which we call separability. Recall that if child’s preferences satisfy weak
separability, then whenever attending school s in both periods is preferred to attend-
ing school s′ in both periods, attending s and a third school s′′ must be better than
attending s′ and s′′. However, weak separability does not rule out the possibility
that the child prefers attending school s′ in both periods to attending s in one period
and s′ in the other. Separability, however, rules out this possibility.

Definition 2 (Separability). Child i’s preferences are separable if, for any s,s′ ∈ S̄

(s,s)�i (s′,s′)⇐⇒ (s,s′′)�i (s′,s′′) and (s′′,s)�i (s′′,s′) for all s′′ ∈ S̄.

Schools’ Priorities

At any time t ≥ 0, each school ranks all the school-age children by priority.
Priorities do not represent school preferences but rather, they are imposed by local
municipality. For example, in the existing assignment mechanism in Denmark, all
schools give priority to their currently enrolled children. Similarly, the children
with special needs are given higher priority by the schools tailored to meet those
needs.

Henceforth, we assume that each institution gives the highest priority to its cur-
rently enrolled children, which is a feature of the assignment mechanism currently
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in place in Denmark. A rationale behind this priority is that no school forces its
current enrollee out in order to free a spot for some other child. Because of this
assumption, the priority ranking of each school is history dependent, i.e., a school’s
priority ranking depends on its attendees of the previous period.

One could argue that even in the school choice problem, the schools’ priorities
are history dependent because a typical school gives priority to children whose sib-
lings are in it. In other words, the matchings of the previous periods affect how
the schools rank the new applicants. However, in the school choice literature,
this history dependence of the schools’ priorities is not modelled explicitly. This
omission is justified if the older siblings make decision without caring about the
younger ones, i.e., one sibling’s well-being is not dependent on another’s. How-
ever, in our model, the children participate in the assignment mechanism twice and
of course, any child’s well being depends on the schools she attends in different
periods. Therefore, in our model, we have to take the history dependence of the
schools’ priorities seriously.

We will denote the strict, binary relation which generates the priority ranking
of school s at period t by Bt

s(µ
t−1). That is, if at period t child i has a higher

priority than child j at school s given the period t−1 matching µt−1, then we denote
iBt

s
(
µt−1) j. We write iDt

s
(
µt−1) j if either iBt

s
(
µt−1) j or i = j.

We impose the following assumptions on the schools’ priorities.

Assumption 2 (Priorities). Each school’s priorities satisfy:

1. (Priority for currently enrolled children) If i ∈ It−1 and i ∈ µt−1(s) for some

s ∈ S, then iBt
s (µ

t−1) j for all j /∈ µt−1(s).

2. (Weak consistency of different period rankings) If i Bt−1
s (µt−2) j for some

i, j ∈ It−1, s ∈ S and µ, then iBt
s
(
µt−1) j in any of the following cases:

• µt−1(i) = µt−1( j) = s

• µt−1(i) = s,h and µt−1( j) = h

• µt−1( j) 6= s,h
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3. (Weak irrelevance of previous assignment) If iBt
s (µ

t−1) j for some i, j ∈ It−1,

s ∈ S, and µ with µt−1(i) 6= s,h and µt−1( j) 6= s,h, then iBt
s
(
µ̄t−1) j for any

µ̄ satisfying one of the following conditions.

• µ̄t−1(i) = µ̄t−1( j) = s

• µ̄t−1(i) = s,h and µ̄t−1( j) = h

• µ̄t−1( j) 6= s,h

4. (Weak irrelevance of difference in age) If iBt
s (µ

t−1) j for some i ∈ It−1, j ∈ It ,

s ∈ S, and µ with µt−1(i) 6= s,h, then iBt
s
(
µ̄t−1) j for all µ̄. In addition, if

j Bt
s (µ

t−1)i for some i ∈ It−1, j ∈ It , s ∈ S, and µ with µt−1(i) 6= s,h, then

jBt
s
(
µ̄t−1) i for all µ̄ with µ̄t−1(i) 6= s,h.

Loosely speaking, the last three assumptions mean that the priorities of any
school do not depend on the attendees of other schools (excluding staying home).
Specifically, the second one says that if child i has higher priority than child j at
school s in period t−1, then child i keeps her advantage over child j in the following
period unless child j attends school s (h) while child i does not attend s (s or h). The
third one says that at any period, school s’s relative ranking of any two children is
not affected by the fact that one child has attended school s′ 6= s and the other s′′ 6= s.
The fourth assumption says that at any period school s’s relative ranking of any two
children is not affected by the fact that one child has attended school s′ 6= s at period
t−1 while the other is one year old at period t. Here we remark that Assumption 2
does not rule out the possibility that a school s gives priorities to the children who
have not attended any school over the ones who have attended some school other
than s in the previous period. This possibility is ruled out if the schools’ priorities
satisfy the Independence of Past Attendance property which we define below.

Definition 3 (Independence of Past Attendance). School s’s priorities satisfy the In-
dependence of Past Attendance (IPA) property if the conditions below are satisfied:

2a. (Consistency of different period rankings) If iBt−1
s (µt−2) j for some i, j∈ It−1,

s ∈ S and µ, then iBt
s
(
µt−1) j in any of the following cases:
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– µt−1(i) = µt−1( j) = s

– µt−1( j) 6= s

3a. (Irrelevance of previous assignment) If iBt
s (µ

t−1) j for some i, j ∈ It−1, s ∈ S,

and µ with µt−1(i) 6= s and µt−1( j) 6= s, then iBt
s
(
µ̄t−1) j for any µ̄ satisfying

one of the following conditions.

– µ̄t−1(i) = µ̄t−1( j) = s

– µ̄t−1( j) 6= s

4a. (Irrelevance of difference in age) If iBt
s (µ

t−1) j for some i∈ It−1, j ∈ It , s∈ S,

and µ with µt−1(i) 6= s, then iBt
s
(
µ̄t−1) j for all µ̄. In addition, if jBt

s (µ
t−1)i

for some i ∈ It−1, j ∈ It , s ∈ S, and µ with µt−1(i) 6= s, then jBt
s
(
µ̄t−1) i for

all µ̄ with µ̄t−1(i) 6= s.

In practice, IPA is often not satisfied: many schools give priority to two year
old children who have not attended any school in the previous period over one year
old children and the two year old children who have attended school in the previous
period. In particular, given a concept called “guaranteed spots,” IPA is not satisfied
in the current Danish daycare assignment mechanism, but Assumption 2 is satisfied.

The school choice problem is a special case of the daycare assignment problem.
To see this, suppose that each child is one at period −1 when they stay home. The
schools’ priorities are well defined at period 0. In addition, the children rank the
schools at period 0 fixing that their period −1 matches are h. Now one can see that
this special case of our daycare assignment problem is a school choice problem.

The OLG structure of the daycare assignment problem is one of its distinguish-
ing features from the school choice problem. To be specific, due to the OLG struc-
ture, schools could have different number of open slots in different periods. Hence,
a child may face a situation in which her preferred school does not have any open
slot when she is one but does have one when she is two. This type of possibility
must affect the child’s decision. To illustrate why the OLG structure is crucial,
let us consider the following dynamic model. Let all the children in the model be
born at the same time and attend school for two periods. Given Assumption 1, the
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children can rank schools by their preferences under the assumption that they will
attend the same school in both periods. We can treat the problem as a static problem
in which each child is assigned to the same school in both periods. Consequently,
all the results from the school choice problem will extend to this special case.

We also remark that the history dependence of the schools’ priorities plays a
crucial role in our analysis. However, let us postpone this discussion until we study
strategy-proofness.

3.2 Properties of a Matching: Efficiency and Stability

The matching literature has identified Pareto efficiency and stability as the two main
desirable properties. The main goal of this subsection is to adapt these concepts to
our daycare assignment problem.

The definition of Pareto efficiency in our setting coincides with the one in the
school assignment problem: a matching µ is Pareto efficient if no other matching
strictly improves at least one child without hurting the others.

Definition 4 (Pareto Efficiency). A matching µ̄ Pareto dominates µ if for some t ≥ 0
and some i ∈ I, (

µ̄t (i) , µ̄t+1 (i)
)
�i

(
µt (i) ,µt+1 (i)

)
and for ∀ j ∈ I, (

µ̄t ( j) , µ̄t+1 ( j)
)
� j

(
µt ( j) ,µt+1 ( j)

)
.

A matching µ is Pareto efficient if no matching µ̄ Pareto dominates µ.

Adapting the definition of stable matching in our setting is much less straight-
forward as the dynamic nature of our setting presents some challenges, absent in
the school choice problem. We propose two stability concepts based on the idea
of justified envy freeness9: weak stability and the strong stability. A matching is
weakly stable if no child can justify her envy of another child at some period, i.e., at
any period t, if child i improves by moving to school s from her currently matched

9In static settings in which one side of the market has priorities but not preferences, stable match-
ings are defined as the ones free of justified envy. See Balinski and Sonmez (1999) and Abdulka-
diroğlu and Sönmez (2003) for examples.
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school only at t while keeping her past/future then s must not assign a seat to any
child who has lower priority than i. In a way, for weak stability, we are analyz-
ing the problem at fixed period t, assuming that the matching of every other period
t ′ 6= t is fixed. In this sense, the weak stability concept is analogous to the stability
concept in the school choice problem.

Definition 5 (Weak Stability). A matching µ is weakly stable if at any period t ≥ 0,

there does not exist a school-child pair (s, i) such that (1) and (2) below hold at the

same time

1. (a) (s,µt+1(i))�i (µt(i),µt+1(i)), or

(b) (µt−1(i),s)�i (µt−1(i),µt(i)),

2. |µt(s)|< rs or/and iBt
s (µ

t−1) j for some j ∈ µt(s).

Condition (1) above refers to the fact that child i would be strictly better off by
switching to some school s rather than the school specified by the matching µ. On
top of that, condition (2) implies that either there are unfilled spots at the preferred
school s of child i, or the school is in full capacity but some child j placed at this
school under the matching µ has lower priority than child i.

In the definition of weak stability, one considers only the one period deviations
which has two shortcomings: (1) because the children can attend school for two
periods, a child can imagine situations in which she changes her match in both
periods and (2) the schools’ priorities, which have to be considered for stability,
evolve depending on the past matchings.

To account for the issues raised above, we define a stronger concept of stability.
Mainly, under strong stability a child takes into consideration that priorities are
history-dependent, so that justified envy is not simply based on the current period’s
matching. Before formally defining the concept, we need to define the following
notation.

For any i, j ∈ It , s ∈ S̄ and µ such that µ(i) 6= µ( j) and µ( j) ∈ S, let

M̄t(i, j,µ)≡
{

µ̄t : µ̄t(i) = µt( j), µ̄t( j) 6= µt( j)& µ̄t(i′) = µt(i′)∀ i′ 6= i, j ∈ It−1∪ It
}
.
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That is, the set M̄t(i, j,µ) is a set of matchings at period t such that j is replaced
by i in the allocation specified by the matching µt , j is placed at a different school
and all other children’s placements remain unchanged. One may think of this as
the set of all hypothetical matchings at time t such that i replaces j who then finds
a school somewhere else — perhaps home, or some other school — and all other
children remain in the same school. Implicit in the solution concept of strong sta-
bility and the construction of the set M̄t(i, j,µ) is the assumption that children are
not “farsighted.” Under this view, an allocation of a particular period is considered
“unfair” (or subject to justified envy) if the child takes the matching of all other
children at all other periods as given. In particular, when the child “feels” that she
has justified envy over some child in a particular school, for the following period,
she imagines that this child over whom she had priority will either stay at home, or
be placed in some other school that will not affect the next period’s matching and
all other children remain matched as originally. When evaluating that the matching
µ is subject to justified envy, the child does not evaluate the entire general equilib-
rium effect of a new allocation that would take into consideration her justified envy
and possibly everyone else’s.

Definition 6 (Strong Stability). Matching µ is strongly stable if it is weakly stable

and at any period t ≥ 0, there does not exist a triplet (s,s′, i) such that

(s,s′)�i (µt(i),µt+1(i)),

for s 6= µt(i), s′ 6= µt+1(i) and one of the following conditions holds:

1. |µt(s)|< rs and
∣∣µt+1(s′)

∣∣< rs′,

2. |µt(s)| < rs,
∣∣µt+1(s′)

∣∣ = rs′ , and, for some j′ ∈ µt+1(s′), iBt+1
s′ (µ̄t) j′ where

µ̄t is the period t matching with µ̄t(i) = s and µ̄t(i′) = µt(i′) for all i′ 6= i ∈
It−1∪ It ,

3. |µt(s)|= rs,
∣∣µt+1(s′)

∣∣< rs′ , and, for some j ∈ µt(s), iBt
s (µ

t−1) j,

4. |µt(s)| = rs,
∣∣µt+1(s′)

∣∣ = rs′ , for some j ∈ µt(s), j′ ∈ µt+1(s′) and for any
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µ̄t ∈ M̄(i, j,µ), iBt
s (µ

t−1) j and iBt+1
s′ (µ̄t) j′.10

We interpret justified envy in the dynamic context as the existence of a pair of
schools for which a child prefers to its current match and such that in some “rea-
sonable” way it would be “fair” for her to go to the preferred schools. Specifically,
a reasonable way may mean one the four cases: (1) both of these schools have
unassigned spots; (2) in the first period a preferred school has an unassigned spot
and in the second, the child has a higher priority over another child allocated at a
preferred school; (3) a preferred school in the second period is operating with less
than full capacity and in the first period the child is placed on a higher priority than
some other child already allocated there, and finally (4) in the first year the child
has a higher priority than some other child in a particular school and in the second
year, the child has a higher priority than some other child even if there had been a
reallocation in the first period, in which she replaced some child in year 1, as long
as in this new allocation, all other children remained in the same school.

To further illustrate the need for the concept of strong stability, we consider the
following two examples.

Example 1 (Justified Envy under Failure of Separability). Consider a matching

that places child i at school s′ when she is both 1 and 2 years old. However, there is

another school s such that child i improves only if she switches to school s in both

periods. Observe that child i’s preferences are not separable. Moreover, suppose

that when child i is 1 year old, at school s she has priority over another child i′

who is placed at school s at that time. With this information, we cannot rule out

the possibility that the matching is weakly stable. This is because child i prefers

attending s′ for 2 periods to attending school s when she is 1 and s′ when she is 2.

However, one can argue that child i’s envy of i′ is justified: she has a right to

attend school s ahead of i′ at age 1. Then, in the following period, she will be in the

highest priority group at school s. This gives her a right to attend school s when she

is 2. This argument is captured in requirement 4 in the strong stability definition. �

Example 2 (Justified Envy under Failure of IPA). Suppose there are 2 schools, s

and s′, with respective capacities of 1 and 2 children. Children i and i′ are born
10Observe that µt( j) = s 6= h as h has an unlimited capacity. Hence, Mt(i, j,µ) is well defined.
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at the same period and their preferences satisfy the following property: (s,s) �
(s′,s) � (h,s) � (s′,s′). Suppose that school s gives higher priority to child i than

i′ at period t when the children are 1 year old. However, i′ is given higher priority

over child i by school s at period t + 1 if at period t, i′ does not attend any school

while i attends s′. Observe that school s’s priorities do not satisfy IPA.

Consider a matching which places both children at school s′ in period t but

places child i at school s and child i′ at school s′ in period t + 1. Implicitly, the

period t spot of school s is assigned to some other child who has higher priority at

school s over both children. With this information only, we cannot prove that the

matching is not weakly stable.

However, one can argue that child i′ envies i in a justified manner: if she is

stays home at period t and attends school s at period t+1, then she would definitely

improve. In addition, she would have had priority over i at school s in period t +1.

This argument is captured in requirement 2 of the strong stability definition. �

Strong stability is a refinement of weak stability and we believe that it is a
natural concept that captures the meaning of justified envy in our setting. Yet we
must remark that the definition of strong stability is stronger than what Examples
1 and 2 call for. In other words, one can slightly weaken definition 6 so that a
matching is strongly stable if it is weakly stable and free of justified envy discussed
in Examples 1 and 2. However, this does not change any of the results in the next
section. Given this, weakening the definition of strong stability is not beneficial
from a technical perspective.

Examples 1 and 2 show that the strong and weak stability concepts are not
equivalent if one of separability or IPA is not satisfied. But what if both of them
are satisfied? Indeed in this case, it turns out that two concepts of stability are
equivalent. As this result is somewhat technical, we refer the interested readers to
Appendix A.

3.3 Mechanism and Its Properties

Let Pi denote the reported preference ordering of child i ∈ I and P be the product
of the reported preferences of every child i. A mechanism ϕ is an algorithm that
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constructs, sequentially, a matching for the daycare assignment problem, given the
reported preferences and the priorities. That is, mechanism ϕ maps the reported
preferences P and the function Bt (·) to a matching µ. Let ϕi (P,Bt (·)) denote
the pair of schools in which child i is placed. Strategy-proofness is defined as an
incentive for reporting the true preferences. Formally, reporting the true preferences
is a weakly dominant strategy for the children.

Definition 7 (Strategy-Proofness). A mechanism ϕ is strategy-proof if for all i ∈ I,

all Bt (·), all Pi, all t ≥ 0, all P̂i, and all P̂−i,

ϕi
(
Pi, P̂−i,B

t (·)
)
�i ϕi

(
P̂i, P̂−i,B

t (·)
)

where Pi is i’s true preferences while P̂i and P̂−i are the reported preferences of i

and the others.

Definition 8 (Stability and Efficiency). A mechanism ϕ is efficient (strongly/weakly
stable), if for all P and Bt (·), it yields an efficient (strongly/weakly stable) matching.

3.4 Danish Mechanism Revisited

In this subsection, we revisit the Danish mechanism. For specificity, we focus on
the Aarhus mechanism presented in section 2 and show that the mechanism does
not satisfy any of the desirable properties discussed in the previous subsection.

Example 3 (Aarhus Mechanism). Suppose there are 2 schools, {s1,s2} and each

school has a capacity of one child. In each period, 1 child is born, but children

are identical in all other aspects. Their preferences satisfy the following property:

(s1,s1)� (s2,s1)� (h,s1)� (s2,s2).

Consider the following strategy: each child participates in the Aarhus mecha-

nism when she is 2. Each child also participates in the Aarhus mechanism when

she is one if and only if the child from the previous generation attended school s2 in

the previous period. Whenever a child participates her reported preferences rank

the schools as follows: s1,h,s2.

The resulting matching from the strategy described above is that (h,s1) for each

child. It is easy to see that this strategy profile is an (subgame perfect) equilibrium:
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no child wants to deviate because she cannot attend school s1 when she is 1. If she

attends school s2 when she is 1, then she cannot attend s1 when she is 2 because

she will lose her priority over the younger child in that period.

Clearly, the Aarhus mechanism is not efficient as each child matching with

(s2,s1) Pareto dominates (h,s1). Furthermore, in each period, the younger child

can attend school s2 as it has an unfilled spot. Consequently, the Aarhus alloca-

tion mechanism is not weakly stable. Finally, in the Aarhus mechanism, each child

reports that h is preferred to s2. Thus, the mechanism fails strategy-proofness too.

4 Stable Matchings

Now we turn our attention to the question of whether strongly stable matchings
exist. We first show that if the schools’ priority rankings do not satisfy IPA, then
a strongly stable matching might not exist. Later, we show that IPA is a sufficient
condition for existence of strongly stable matchings.

Theorem 1. If the schools’ priorities do not satisfy IPA, then the existence of

strongly stable matchings is not guaranteed.

Proof. Consider the following example in which IPA is violated. There are 2
schools, s and s′ with respective capacities of 1 and 3. In each period, there are
two identical one-year old children. Their preferences are separable and satisfy the
following property: (s,s)� (h,s)� (s′,s′)� (h,h).

Each period, the schools rank the children in which the highest priority groups
are: (1) the previous period’s attendees (2) two year old children who have not
attended any school in the previous period. (Note that condition (2) violates IPA).
Now we show that strongly stable matchings do not exist in this example. On
contrary, suppose µ be a strongly stable matching.

1. Suppose there exist i and t such that µt(i)= h. Then because there are 4 school
age children and 4 school spots at period t, at least one unassigned spot must
exist. Child i improves if she claims this spot at t, which is a contradiction.
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2. Suppose for some i and t, (µt(i),µt+1(i)) = (s,s′). Clearly, i has the highest
priority at school s in period t + 1. In addition, as (s,s) �i (s,s′) by separa-
bility, child i can be improved in a justified manner. This is a contradiction.

3. Suppose for i ∈ It , µt+1(i) = s. Then one of the following happens: (1)
µt+2(s) = j for some j ∈ It+1 or (2) µt+2(s) 6= j for all j ∈ It+1. In the former
case, the matching of j is (s′,s); otherwise, we are back to case 1. Conse-
quently, the matching of j̄ 6= j ∈ It+1 is (s′,s′). If j̄ stays home at t + 1, at
t + 2 she has priority over any one-year old or j (who attended s′ at t + 1).
In addition, j̄ prefers (h,s) to (s′,s′). Hence, j̄ can be improved in a justified
manner. In case (2), either we are back to case 1 or both children born at It+1

match with (s′,s′). At t +2 both of these children have priority over any one
year old at school s. In addition, (s′,s) is preferred to (s′,s′). Hence, both
children child can be improved in a justified manner.

In the proof of Theorem 1, we use a counter example with separable preferences
of the children. However, separability has no role in Theorem 1, i.e., one can
construct an example needed for Theorem 1 in which the children’s preferences are

not separable. Hence, we conclude that the existence of strongly stable matchings
is not guaranteed without IPA regardless of whether separability is satisfied or not.
But with IPA, is the existence guaranteed? The answer to this question is positive,
but first let us introduce the algorithm used for the existence result.

The Gale-Shapley Deferred Acceptance Algorithm and Its Properties

The Gale and Shapley deferred acceptance algorithm (GS algorithm) was orig-
inally designed to deal with static two-sided matching problems. To run this algo-
rithm at certain period t, one needs to know the schools’ priorities over all school-
age children as well as the children’s preferences over schools. In our setting, the
schools’ priorities are well defined given the previous period’s matching. However,
the children’s preferences are defined over the pairs of schools. Hence, to run the
original GS mechanism, one needs to derive one period preferences for each child
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at a given period, based on the past matchings and the original preferences of the
children over the pairs of schools; we do not want to derive one period preferences
based on the future matchings as the current matchings affect next period’s priority
rankings of the schools.

For now, let us assume that at period t, we have derived the one period pref-
erence relation Pi(µt−1) for each i ∈ It−1 ∪ It depending on µt−1 matchings. Let
P (µt−1) =

{
Pi(µt−1)

}
i∈It−1∪It

. Thus, sPi(µt−1)s′ means that at time t, player i

prefers school s to s′ given the period t − 1 matching µt−1. Now we define sta-
bility in a static context that will be used in some of our proofs.

Definition 9 (Static Stability). Period t matching µt is statically stable under pref-

erences P (µt−1) and µt−1, if there exists no school-child pair (s, i) such that

1. sPi(µt−1)µt(i),

2. |µt(s)|< rs or/and iBt
s (µ

t−1) j for some j ∈ µt(s)

Now we will define the one-period preferences that we will use for the GS
algorithm.

Definition 10 (Isolated Preference Relation). For given µt−1,

1. the isolated preference relation for i ∈ It is the preference relation �1
i such

that s′ �1
i s′′ if and only if (s′,s′)�i (s′′,s′′) for any s′ 6= s′′ ∈ S̄,

2. the isolated preference relation for i∈ It−1 is the preference relation�2
i (µ

t−1)

depending on previous period’s matching and such that s′ �2
i (µ

t−1)s′′ if and

only if (µt−1(i),s′)�i (µt−1(i),s′′) for any s′ 6= s′′ ∈ S̄.

Now we will state the formal definition of the Gale and Shapley deferred ac-
ceptance algorithm. The algorithm is the same in each period, and it only uses the
matching of the preceding period. In period t ≥ 1, assume that the previous pe-
riod’s matching is obtained by using the GS algorithm. At period t, the schools
assign their spots to the all school-age children in finite rounds as follows:

Round 1: Each child proposes to her first choice according to her isolated prefer-
ences. Each school tentatively assigns its spots to the proposers according to its
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priority ranking. If the number of proposers to school s is greater than the number
of available spots rs, then the remaining proposers are rejected.

In general, at:
Round k: Each child who was rejected in the previous round proposes to her next
choice according to her isolated preferences. Each school considers the pool of chil-
dren who it had been holding plus the current proposers. Then it tentatively assigns
its spots to this pool of children according to its priority ranking. The remaining
proposers are rejected.

The algorithm terminates when no proposal is rejected and each child is assigned
her final tentative assignment.

Given that the children’s preferences as well as schools’ priority rankings are
strict, it is easy to see that the GS algorithm yields a unique matching. We refer to
this matching as the GS matching and use the notation µGS for it.

With the next result we show that when assuming IPA, strong stability is equiv-
alent to static stability under isolated preferences.

Lemma 1. If µ is strongly stable then for all t ≥ 0, µt is statically stable under

isolated preferences and µt−1. If for all t ≥ 0, µt is statically stable under isolated

preferences and µt−1, then µ = (µ−1, · · · ,µt , · · ·) is

1. weakly stable.

2. strongly stable if each school’s preferences satisfy IPA.

Proof. See Appendix C.

Lemma 1 implies that to find a strongly stable matching, it suffices to find a sta-
ble matching under isolated preferences in each period, sequentially starting from
period 0. In other words, for the purpose of finding a stable matching, one can treat
the daycare assignment problem as separate school choice problems in different pe-
riods. Consequently, the GS matching is strongly stable as Gale and Shapley (1962)
shows that the GS algorithm yields a stable matching in a static setting. We state
the result below.
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Theorem 2 (Existence of Strongly Stable Matching). The GS matching is weakly

stable. Furthermore, if the priority ranking of each school satisfies IPA, then the

GS matching is strongly stable.

As we already mentioned, examples 1 and 2 illustrate the need of strengthening
the weak stability concept into the strong stability one if separability or IPA is
not satisfied. However, Theorem 2 demonstrates that IPA is a sufficient condition
for the existence of strongly stable matchings even if separability is not satisfied.
In addition, Theorem 1 shows that with or without separability, the existence of
strongly stable matchings is not guaranteed without IPA. In this sense, IPA might be
considered a more critical condition than separability for the existence of strongly
stable matchings.

One of the most important results in the matching literature is that the GS match-
ing Pareto dominates all other stable matching. We study how GS matching com-
pares to the other stable matchings in more detail in Appendix B as these result are
somewhat technical. We summarize our findings in the following proposition.

Proposition 1. The GS is matching does not necessarily Pareto dominate all other

stable matchings. However, it is not Pareto dominated by any stable matching.

Moreover, if any matching is stable and efficient, then it must be the GS matching.

Henceforth, we will always assume that the children’s preferences satisfy sepa-

rability and the schools’ priorities satisfy IPA because these assumptions do not play
any role in the results we will present next. In other words, we are concentrating on
the cases with a minimal history dependence.

5 Strategy-Proofness and Stability

It is well known that in static settings, when the GS mechanism is strategy-proof.
We show below, that in a our setting this no longer holds. In fact, the result below
is much stronger: there is no mechanism that is strategy-proof and strongly stable.

Theorem 3 (Impossibility Result). Weakly stable and strategy proof mechanism

may not exist.
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Proof. Consider the following example: there are 4 schools {s, s̄,s1,s2} and each
school have a capacity of one child. There is no school-age child until period t−1.
Suppose It−1 = {i, ı̄}, It = {i1, i2}, It+1 = {i′} and Iτ = /0 for all τ≥ t+2. In addition,
school s′ = s, s̄,s1,s2 prioritizes the children as follows under the assumption that
no child attended s′ in the previous period:

i Bs i′ Bs i1 Bs i2 Bs ı̄

i Bs1 i1 Bs1 i2 Bs1 i′ Bs1 ı̄

i Bs2 i1 Bs2 i′ Bs2 i2 Bs2 ı̄

ı̄ Bs̄ i1 Bs̄ i′ Bs̄ i2 Bs̄ i

We consider two preference profiles which differ from each other in child i1’s
preferences. Child i’s top choice is (s,s) while child ı̄’s is (s̄, s̄). The preferences of
children i2 and i′ satisfy the following conditions:

(s2,s2) �i2 (s1,s1) �i2 (s,s) �i2 (s̄, s̄)

(s2,s2) �i′ (s,s) �i′ (s1,s1) �i2 (s̄, s̄)

Child i1’s preference ordering is �1
i1 under preference profile 1 and is �2

i1 under
profile 2. These preferences are given as follows:

(s,s) �1
i1 (s1,s1) �1

i1 (s2,s2) �1
i1 (s̄, s̄)

(s,s) �2
i1 (s̄, s̄) �2

i1 (s2,s2) �2
i1 (s1,s1)

In addition, suppose (s2,s)�1
i1 (s1,s1).

Here we prove a weaker version of the theorem: that the GS mechanism is
not strategy-proof in the above example. We leave the formal proof in Appendix C.
Under profile 1, the GS matching is as follows: µt−1(i)= µt(i)= s, µt−1(ı̄)= µt(ı̄)=

s̄, µt(i1) = µt+1(i1) = s1, µt(i2) = µt+1(i2) = s2, µt+1(i′) = s and µt+2(i′) = s2. (In
fact, it is the unique weakly stable matching here).

Under profile 2, the GS matching µ̄ is as follows: µ̄t−1(i) = µ̄t(i) = s, µ̄t−1(ı̄) =

µ̄t(ı̄) = s̄, µ̄t(i1) = s2, µ̄t(i2) = s1, µ̄t+1(i1) = s, µ̄t+1(i2) = s1, µ̄t+1(i′) = s2 and
µ̄t+2(i′) = s2.

Under profile 1, child i1’s matching is (s1,s1) if she reports her preference truth-
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fully but it is (s2,s) if she misreports her preference as if under profile 2. But
(s2,s) �1

i1 (s1,s1). Consequently, child i1 misreports her preferences under profile
1. Hence, the GS mechanism is not strategy-proof.

Even when separability and IPA are satisfied, strategy-proofness is more diffi-
cult to achieve in the daycare assignment problem. In static problems, a child has a
motive to misreport her preferences only if she can obtain a better placement. This
motive is also present in the daycare assignment problem. To be specific, a child
will misreport her preferences if she can improve her present placement without
hurting her placement in the other period. This motive, as known from the school
choice literature, is eliminated if the mechanism is the GS or Top Trading Cycles
mechanism. However, in our setting, there is an extra motive absent in the school
choice problem: one might misrepresent her preferences to affect the schools’ prior-
ities in the subsequent period. This way, she could obtain a better future placement
by sacrificing her current one.

In the example used for the proof of Theorem 3, type 1 child i1 likes school s

better than any other school, but attending s in period t is impossible for her. Again,
in period t +1, she cannot attend s because child i′ attends s. But observe that child
i′ wants to attend school s2 but cannot do so because child i2 attends s2. The most
important aspect is that child i2 has higher priority over child i′ at school s2 in period
t+1 only because she attends school s2 in period t. Child i1 can eliminate child i2’s
advantage over i′ if she attends school s2 in period t. By doing this, i1 enables i′ to
attend s2 at t +1. Ultimately, she frees a spot at school s for herself at t +1. This is
the reason why type 1 child i1 has an incentive to misreport her preferences.

Remark 1. For Theorem 3, both the OLG structure and the history dependence of

the schools’ priorities play indispensable roles. We have already mentioned that

without OLG structure, all the existing results in the school choice problem will

be valid. Now let us discuss why the history dependence of the schools’ priori-

ties is critical for Theorem 3 even with the OLG structure. To see this, suppose

that the children’s preferences are separable and somehow the schools’ priorities

at any period are independent of the previous period’s matching–in particular, at

some school, a child who did not attend the school in the previous period can have
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priority over some other child who did attend the school. In this case, the GS al-

gorithm must be strategy-proof. Let us discuss why this is the case. For the GS

algorithm, one has to report her preferences over the pairs of schools. But this, in

fact, is equivalent to the case in which the school-age children report their isolated

preferences in each period and the algorithm is run sequentially because the GS

algorithm uses the isolated preference. As the preferences satisfy separability and

the schools’ preferences are independent of history, any child’s reported isolated

preferences in one period do not affect her placement in the other period. Now

recall that the GS algorithm is strategy-proof in the static settings. Hence, by mis-

reporting one’s isolated preferences in some period, she is worse off in that period

without affecting her placement in the other period. Accordingly, no one misreports

her isolated preferences. Thus, the GS mechanism is strategy-proof.11

Remark 2. In the previous remark, we argued that the history dependence of the

schools’ priorities is crucial for Theorem 3. However, if schools’ priorities are

history independent, then in some cases, some children will be forced out of the

schools they attended in the previous period. For example, in the example used

in the proof of Theorem 3, child i2 is forced out of school s2 at period t + 1. We

firmly believe that this should be avoided. Therefore, under the restriction that no

2-year old child can be forced out of the school she attended in the previous period,

Theorem 3 is valid even when the schools’ priorities are independent of the previous

period’s matching.

Theorem 3 has two important, direct consequences which we present next.

Corollary 1. 1. Strategy proof and strongly stable mechanism may not exist.

2. The GS mechanism is not necessarily strategy-proof.

Proof. Recall that each strongly stable matching is weakly stable. This and Theo-
rem 3 prove item 1 of the corollary.

11For this argument, the assumption that children’s preferences are separable plays an important
role. In fact, if the children’s preferences do not satisfy separability, then an impossibility result
similar to Theorem 3 arises even if the schools’ priorities are independent of history. This result can
be obtained from the authors.
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6 Efficiency and Strategy-Proofness

In this section, we first define the concept of efficiency in a static sense, which
we denote Autarkic Efficiency. We show that a matching that satisfies autarkic
efficiency may exhibit opportunities for Pareto improving trades across members of
the same cohort or across members of different cohorts. Then, in Section 6.2 we
study the Top-Trading Cycles in detail. We show that it is neither Pareto efficient
nor strategy-proof. Finally, in Section 6.3 we propose a new mechanism, which is
both strategy-proof and efficient.

6.1 Efficient Matchings

We have shown that stability and strategy-proofness may be incompatible for the
daycare assignment problem. In the remaining sections of this paper, we investigate
whether strategy-proofness is compatible with efficiency. However, before doing
so, let us consider some properties of efficient matchings.

From the school choice literature, we know that the Top Trading Cycles (TTC)
or the Serial Dictatorship mechanisms yield stable matchings. Hence, one might
expect that these algorithms using the isolated preferences of the children yield
efficient matchings. In other words, one may expect that a result analogous to the
result of Lemma 2 will hold for efficiency as well. We will demonstrate that this is
not necessarily the case. But first, let us define the Autarkic efficiency concept.

Definition 11 (Autarkic Efficiency). Matching µ is Autarkic Efficient if for any t ≥
0, there does not exist period t matching µ̄t such that (µ−1, · · · ,µt−1, µ̄t ,µt+1, · · ·)
Pareto dominates µ.

For Autarkic efficiency, one considers only one period deviations. Hence, it is
clear that all efficient matchings satisfy Autarkic efficiency. We present two ex-
amples to show that Autarkic efficiency is not equivalent to efficiency. The first
example shows that a matching might satisfy Autarkic efficiency but fail to be effi-
cient because of the intergenerational trades. We demonstrate this point below. The
second example, more standard, shows that a matching may fail to be efficient due
to intra-generational trades, and we present it in Appendix C.

30



Example 4 (Pareto Improving Trade Across Cohorts). In each period, there are two

1-year old children in each period {it , jt} and there are four schools {s1,s2,s3,s4}
with each having a capacity of 1 child. For this example, we will only specify the

schools’ top ranked school-age child if all of them stayed home in the previous

period. School s1 and s2 give their respective highest priorities to children i and j

who are 1 in odd periods. On the other hand, school s3 and s4 give their respective

highest priorities to children i and j who are 1 in even periods. In the following

table we summarize each school’s top ranked child:
s1 s2 s3 s4

ik jk ik+1 jk+1

where k is odd. The children’s preferences are as follows.

• Child i−1’s top choice is s1 while for child j−1, s3 �1
j−1 s2 �1

j−1 s4.

• For child i0,s1 �1
i0 s3 �1

i0 s2,while child j0’s top choice is s4.

• For child i1, s4 �1
i1 s1 �1

i1 s3, while child j1’s top choice is s2.

• Child i2’s top choice is s3 while for child j2, s2 �1
j2 s4 �1

j2 s1.

• For t ≥ 3, child it ( jt) has the same preferences as child it−4 ( jt−4).

In addition, each child prefers being placed at the school of her third choice

when she is 1 and at her most preferred school when she is two to being placed at

the school of her second choice for 2 periods.

Consider the following matching µ: in any period, school s1 matches with the

school-age child i who is 1 in an odd period, s2 with j who is 1 in an odd period, s3

with i who is 1 in an even period, and school s4 with j who is 1 in an even period.

Observe that in each period exactly 1 younger and 1 older children match with their

second choice school. The others match with their top choice. It is easy to see that µ

satisfies Autarkic efficiency. Now let us alter µ in the following way: in each period,

the two children who are placed at her second choice school trades their schools.

This way the older of the two children is placed at her first choice school while the

younger one is placed at her third choice school. One can easily see that the new

altered matching Pareto dominates µ.
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Observe that in the above example, the infiniteness of time plays an important
role. To see this, let us check why µ is not efficient. Matching µ places one younger
and one older children at their second choice schools in each period. Each of these
child prefers being placed in her third choice school when she is one and at her most
preferred school in the following period to being placed at her second choice school
in both periods. Hence, the younger child would agree to give her spot away and
obtain a spot at a worse school as long as she obtains a spot at her most preferred
school in the following period. Accordingly, µ is not efficient because one younger
child can trade her spot with an older child in each period. If time stops at some
point, then the younger child at that time would not agree to this trade. This is why
the infiniteness of time is crucial in Example 4. This phenomenon is also observed
in the standard overlapping generations models.

The examples 4, presented above, and 7, presented in Appendix C, have an im-
portant implication: not all mechanisms that deliver matchings satisfying Autarkic
efficiency are necessarily efficient even if the children’s preferences are separable.
For example, the TTC mechanism using isolated preferences does not necessarily
yield an efficient matching. As we will discuss whether the TTC mechanism is
strategy-proof, let us consider the TTC mechanism in the next subsection.

6.2 The Top Trading Cycles Mechanism

The TTC mechanism was introduced in Abdulkadiroğlu and Sönmez (2003).12

Next we will state the formal definition of the TTC mechanism.

In each period, we assume that the preceding period’s matching is produced by
the TTC mechanism according to the isolated preferences of children. In period t:

Round 1: Each child points to her preferred school. Each school points to its
highest ranked child. The process goes on, until it reaches a cycle, which it eventu-
ally will. A cycle can be written as {i1,s1, i2,s2, · · · , ik,sk}, where here, s j is child
i′js preferred school, whereas child il is the highest ranked child in school sl−1, for

12The TTC mechanism is inspired by Shapley and Scarf (1974) and Roth and Postlewaite (1977).
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l = 2, ...,k; and child i1 is the highest ranked child at school sk. All children in the
cycle are allocated to their preferred school.

In general, at:
Round k: All children allocated in rounds 1,...,k− 1 do not participate in step k.
Each remaining child points to its preferred school, among the set of schools with
remaining spots. Each pointed school points to the highest priority child among the
remaining children. The process goes on until it reaches a cycle, which it eventually
will. All children in the cycle are allocated to the schools that they have pointed to.

The process continues until all children are allocated.
We point out that the version of TTC we use is similar to the one Abdulkadiroğlu

and Sönmez (1999) use in the housing allocation problem with existing tenants
in the sense that in both versions, the object to be assigned points to its current
owner unless s/he already obtained another object: in the case of Abdulkadiroğlu
and Sönmez (1999), each house points to its current tenant unless she is already
assigned a house while in our model, due to the fact that the schools give their
highest priorities to its current enrollees, each school points to one of these children
unless all of them are assigned to a school. However, the two versions of TTC
are different in the sense that in Abdulkadiroğlu and Sönmez (1999), no house
prioritizes the (non existing) tenants but in our model, each school prioritizes the
children in different ways.

As we already hinted, the top trading cycle mechanism is not necessarily effi-
cient. Given the importance of the TTC mechanism in the school choice problem,
let us state this result in the following proposition.

Proposition 2 (TTC is not necessarily Pareto Efficient). The TTC mechanism is not

necessarily Pareto efficient.

Proof. Consider Example 4 and observe that µ is the matching from the TTC mech-
anism. As we mentioned µ is not efficient.

Note that in Example 4, not only the TTC mechanism is not necessarily effi-
cient, but also a variation of it, done by cohorts. Precisely, consider the following
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mechanism. At any period t, the children born in period t−1 are allocated accord-
ing to the TTC mechanism (see Abdulkadiroğlu and Sönmez (2003)). Once every
children i ∈ It−1 is allocated, most schools will have less, if any, spots available.
Consider only the schools with open spots and use the TTC mechanism for the gen-
eration born in period t, where from the initial number of spots for each school,
we have subtracted the number of 2-year-old children already allocated. For this
round, consider only the priority of schools over the children of generation t. i.e., a
young child cannot replace an already allocated 2-year-old child. This variation of
the TTC mechanism is also is not Pareto efficient.

In the example below, we show that the TTC mechanism (using isolated prefer-
ences) may not be strategy-proof.

Example 5 (TTC may not be Strategy-Proof). Assume that there are 4 schools

{s,s1,s2,s3}, and 4 children: {i, i1, i2, i3}, with i ∈ I−1 and {i1, i2, i3} ∈ I0. Assume

also that It = ∅ for all t ≥ 1. School s̄ = s,s1,s2,s3 prioritizes the children as

follows assuming that these children has not attended s̄ in the previous period:

i Bs i2 Bs i1
i1 Bs1 j, ∀ j 6= i1
i2 Bs2 j, ∀ j 6= i2
i1 Bs3 i3 Bs3 j, ∀ j 6= i1, i3

The children’s preferences are:

s �i s1 �i s2 �i s3

s �i1 s1 �i1 s2 �i1 s3

s3 �i2 s �i2 s2 �i2 s1

s3 �i3 s1 �i3 s2 �i3 s

In addition, child i1 prefers (s′,s) to (s1,s1).

The matching resulting from the TTC is: µ0 (i) = s, µ0 (i1) = s1, µ0(i2) = s2,

µ0 (i3) = s3, µ1 (i1) = s1, µ1 (i2) = s and µ1 (i3) = s3. However, if i1 misreports its

preferences as s�i1 s2 �i1 s1 �i1 s3, while all others report truthfully. The resulting

matching is: µ̄0 (i) = s, µ̄0 (i1) = s2 , µ̄0 (i2) = s3, µ̄0 (i3) = s1, µ̄1 (i1) = s, µ̄1 (i2) = s3
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and µ̄1 (i3) = s1.

Note that under truth-telling, i1’s allocation was: (s1,s1), while after misreport-

ing it is (s2,s). Thus, i1 has improve herself by misreporting. �

Observe that the example above shows that a variation of the TTC which is done
by cohorts is not strategy-proof.

6.3 Sequential Choice Mechanism

We propose an algorithm to be used in this problem of matching with entry and exit
of agents, which we denote the Sequential Choice Mechanism. This is a version of
the Serial Dictatorship algorithm, but uses an order of choices naturally provided
the birth date of the children.

Formally, recall that at period t, there are nt children who are 1-year-old and
we exogenously label them from 1 through nt . The algorithm runs as follows: at
period 0, the 2-year-old children choose sequentially–according to their indices–
one school from the set of schools that have available spots. Once all 2-year-old
children have chosen, the 1-year old children choose sequentially a pair of schools
following a restriction that a child can only choose a different school in period 2
if that school was not available to the child in period 1.13 That is, the 1-year-old
children choose a school s in the first period (from the set of schools with open
slots) and a school for period 2. In period 2, the school can either be the same
school s or a different school s′ if s′ was not available for this child in period 1 and
not chosen by any child of the same age with a lower index.

At any given period there is a finite number of school-age children, therefore this
is a well-defined mechanism that always converges to a unique matching. More-
over, this algorithm is strategy-proof and efficient. It is strategy-proof since each
child can be allocated to the best available menu. Moreover, it is efficient since the

13Given our assumption of separability this restriction is not binding. Formally, if a child chooses
the following menu: (s,s′) , then it must be the case that s′ was not available in period 1. To illustrate,
consider a case in which s was chosen for the first period and the bundles (s,s) and (s′,s′) were
available. If (s,s′) was chosen, it implies that (s,s′) � (s,s) and (s,s′) � (s′,s′). This violates
separability. We make this restriction on the menu of choices to avoid the possibility that assumption
2 is violated in some history “off-equilibrium path,” i.e. some history inconsistent with undominated
strategies.
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first child to choose in a given cohort can only improve if there is a school chosen
by another child in the previous cohort that would make her better off. No child
in the previous cohort would engage in such a trade, since all open schools were
available to the older cohort and not chosen by them. The child with an index 2 of
the young cohort cannot improve by trading with the first child, since the first child
is already choosing the best available option for her. A similar argument holds for
any other indexed child.

Our analysis suggests that the Sequential Choice Mechanism may be the ideal
method to assign children to public daycares. Besides being strategy-proof and
Pareto efficient, the benefits of this mechanism over alternatives include fairness,
and the resolution of uncertainty. We also believe that the mechanism is sufficiently
flexible that it can accommodate the priorities of public authorities. In the remaining
of this section, we provide some remarks about the practical benefits of improving
the daycare assignment mechanism.

Fairness
A very important, but less obvious, advantage of the sequential choice mechanism
is fairness. In the standard static school choice problem, the serial dictatorship
mechanism might be considered unfair because parents listed last are at a clear
disadvantage than parents listed first. This problem with serial dictatorship is mit-
igated in a dynamic assignment problem. To illustrate this point, consider the case
in which the number of children born at every period is the same. The child who
chooses last in her cohort will have at least half of the daycare-spots available to
her in period 2, whereas in the static problem, the last child to choose in the serial
dictatorship mechanism might have only one option.14

Our sequential choice mechanism can be easily adapted to a dynamic model in
which children go to school for m > 2 consecutive periods. In this case, if the same
number of children is born at every period, the last child to choose in her cohort
will have her choice set increased over time. For large m, at the last period the

14This assumes that there is at least the same number of spots as there are children in a given
period. Formally, consider the case in which there are 2n children at every period (with n children
being born every period) and 2n daycare spots available. The last child choosing in her cohort, will
have n+ 1 options in her second period. In the static case with 2n children and 2n spots, the last
child to choose in the serial dictatorship mechanism might have only one spot available.
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fraction of daycare spots available is close to 1. Therefore, the Sequential Choice
Mechanism is perhaps more fair because the difficulties of assignment are spread
more or less evenly across all parents.

Transparency and resolution of uncertainty
A central problem of the current daycare assignment mechanism used in Denmark is
lack of transparency. In the city of Copenhagen, parents sign up to several wait lists
and they have little idea of how these choices will translate into dates of acceptance.
For example, it is extremely difficult to guess whether a child of another parent
who is listed earlier will drop out of this list in favor of choosing another daycare
for which they are also listed. This means that parents are generally forced to
make conjectures about the expected behavior of other parents when they choose a
daycare for their own child.

The Sequential Choice Mechanism can in principle remove all sources of uncer-
tainty connected with choosing a daycare. The parents look at the set of available
options and make the choices of when and where their child will go to daycare well
before the child is able to attend daycare. This has obvious advantages of plan-
ning. The parent’s employers can be given precise plans about parental absence.
Consequently parents can better plan their careers and make various beneficial ar-
rangements that require early commitment to a plan.

Priorities
There is some flexibility to incorporate priorities by affecting the order of parental
choice. For example, there are several thousand children entering daycare in Copen-
hagen each month. Clearly, a large advantage in choice can be given to parent with
a special need simply by allowing this child to choose first within the set of children
in a monthly cohort. Moreover, the mechanism remains strategy-proof, efficient and
free of ex-post uncertainty.

7 Conclusion

In this paper we introduced the daycare assignment problem. This problem dif-
fers from the school choice problem due to its dynamic structure and the fact that
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schools’ priorities are history dependent. We showed that the Gale-Shapley de-
ferred acceptance algorithm and the Top-Trading Cycles mechanisms– both com-
monly used in the school choice problem– are not strategy-proof in the daycare
assignment problem. These negative results hold even when preferences satisfy
consistency across periods, and when schools’ priorities are linked across time in
only a very weak sense (priorities are history dependent only through currently al-
located children; otherwise, they are the same).

The endogeneity of the priorities gives an incentive for manipulation and this
motive is indeed strong. We showed that no stable and strategy-proof mechanism
exists for this class of dynamic matching. This is particularly important in the con-
text of the school choice problem, where much attention has been given to stability
and, in particular, to the Gale-Shapley algorithm (which has been adopted in New
York and Boston).

The problem of allocating children to public daycares differs from the school
choice problem in two fundamental ways: there is entry and exit of agents over time,
and the priorities of schools over children are history dependent. Our lead example
is the case of Denmark. We show that no mechanism is strategy-proof and stable.
We propose a strategy-proof, and Pareto efficient mechanism in which parents se-
quentially choose menus of schools, ordered by the childs birth date. Moreover,
this mechanism eliminates ex-post uncertainty, and may be considered fair: parents
face similar choice sets, which increase over time.
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Appendix A: The Relation between Strong and Weak
Stability

Now we will explore under what conditions, the concepts of weakly and strongly
stable matchings will coincide. From examples 1 and 2, one could conjecture that
weakly and strongly stable matchings may be equivalent if the children’s prefer-
ences are separable and the schools’ priority rankings satisfy IPA. Indeed this is the
case, as we will show in the next two lemmas.

Lemma 2. Suppose that all schools’ priorities satisfy IPA. If µ is weakly but not

strongly stable, then for some period t and some school-child pair (s, i),

1. µt(i) = µt+1(i),

2. (s,s)�i (µt(i),µt+1(i)),

3. |µt(s)|< rs or/and iBt
s (µ

t−1) j for some j ∈ µt(s).

Proof. Since µ is not strongly but weakly stable, for some t ≥ 0, there must exist
(s,s′, i) such that (s,s′) �i (µt(i),µt+1(i)), s 6= µt(i), s′ 6= µt+1(i) and one of the
following conditions are satisfied:

1. |µt(s)|< rs and
∣∣µt+1(s′)

∣∣< rs′ ,

2. |µt(s)| < rs,
∣∣µt+1(s′)

∣∣ = rs′ , and, for some j′ ∈ µt+1(s′), iBt+1
s′ (µ̄t) j′ where

µ̄t is the period t matching with µ̄t(i) = s and µ̄t(i′) = µt(i′) for all i′ 6= i ∈
It−1∪ It ,

3. |µt(s)|= rs,
∣∣µt+1(s′)

∣∣< rs′ , and, for some j ∈ µt(s), iBt
s (µ

t−1) j,

4. |µt(s)| = rs,
∣∣µt+1(s′)

∣∣ = rs′ , for some j ∈ µt(s), j′ ∈ µt+1(s′) and for any
µ̄t ∈M(i, j,µ), iBt

s (µ
t−1) j and iBt+1

s′ (µ̄t) j′.

Case 1. s = s′. Consequently, (s,s) �i (µt(i),µt+1(i)). In addition, |µt(s)| < rs

(conditions 1 or 2) or/and i Bt
s (µ

t−1) j for some j ∈ µt(s) (conditions 3 or 4).
Combining this with µ being weakly stable, one obtains that (µt(i),µt+1(i)) �i
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(s,µt+1(i)). Given weak separability, this, in turn, implies that if µt(i) 6= µt+1(i)

then (µt(i),µt(i)) �i (s,s). Then, by transitivity of preferences, (µt(i),µt(i)) �i

(µt(i),µt+1(i)). This implies that µ is not weakly stable because child i has the
highest priority at school s at period t +1, hence, at t +1, she has a right to attend
school s ahead of any other child. Therefore, µt(i) = µt+1(i). This is the condition
we seek.
Case 2. s 6= s′ and µt(i) = µt+1(i). Consequently, (s,s′) �i (µt(i),µt(i)). In ad-
dition, |µt(s)| < rs or/and iBt

s (µ
t−1) j for some j ∈ µt(s). Combining this with

µ being weakly stable, one obtains (µt(i),µt(i)) �i (s,µt(i)). Recall that (s,s′) �i

(µt(i),µt(i)). Hence, by transitivity, (s,s′)�i (s,µt(i)). Then, by weak separability,
(s′,s′) �i (µt(i),µt(i)). Suppose (s,s) �i (s′,s′). Then (s,s) �i (µt(i),µt(i)) and,
by assumption, |µt(s)|< rs or/and iBt

s (µ
t−1) j for some j ∈ µt(s). Hence, we have

identified a pair (s, i) asked in the lemma.
Now suppose (s′,s′) �i (s,s). Since µ is weakly stable, at least one of the two

conditions must hold: (a) (µt(i),µt(i)) �i (µt(i),s′) or/and (b) |µt+1(s′)| = rs′ and
there exists no j′ ∈ µt+1(s′) such that iBt+1

s′ (µt) j′.
Suppose (a) occurs. Recall (s,s′) �i (µt(i),µt(i)), hence, (s,s′) �i (µt(i),s′).

Then weak separability implies that (s,s) �i (µt(i),µt(i)) because s 6= s′. Observe
that the pair (s, i) is the pair asked in the lemma as we already pointed out that
(s,s)�i (µt(i),µt(i)), |µt(s)|< rs or/and iBt

s (µ
t−1) j for some j ∈ µt(s).

Suppose now (b) occurs but not (a). Recall that one of the 4 conditions listed
in the beginning of the proof must be satisfied. Since |µt+1(s′)| = rs′ , 1 and 3 are
ruled out. If condition 2 is satisfied, then iBt+1

s′ (µ̄t) j′ for some j′ ∈ µt+1(s′). Fur-
thermore, µ̄t differs from µt only in that µ̄t(i) = s. Then, by IPA, iBt+1

s′ (µt) j′. This
a contradiction with b occurring. If condition 4 is satisfied, then there must exist
j, j′ such that, for any µ̄t ∈M(i, j,µ), iBt

s (µ
t−1) j and iBt+1

s′ (µ̄t) j′. In particular, it
must be true for µ̄t such that µ̄t( j) = h. Observe that µ̄t differs from µt only in that
µ̄t(i) = s and µ̄t( j) = h. By IPA, iBt+1

s′ (µt) j′. This a contradiction with b occurring.
Case 3. s 6= s′ and µt(i) 6= µt+1(i). Consequently, (s,s′)�i (µt(i),µt+1(i)). Since µ is
weakly stable, one of the two conditions must hold: (a) (µt(i),µt+1(i))�i (µt(i),s′)

or/and (b) |µt+1(s′)|= rs′ and no j′ ∈ µt+1(s′) with iBt+1
s′ (µt) j′ exists.

Suppose (a) occurs. Recall that by assumption, in case 3, (s,s′) �i (µt(i),µt+1(i)),
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hence, (s,s′) �i (µt(i),s′). Weak separability and this imply (s,s) �i (µt(i),µt(i)).
Then, (s,µt+1(i)) �i (µt(i),µt+1(i)) by weak separability. Consider the pair (s, i).
As pointed out earlier, |µt(s)| < rs or/and iBt

s (µ
t−1) j for some j ∈ µt(s). This

means that µ is not weakly stable which is a contradiction.
Suppose now (b) occurs but not (a), therefore (µt (i) ,s′)�i (µt(i),µt+1(i)). Re-

call that (s,s′) �i (µt(i),µt+1(i)). In addition, one of the 4 conditions listed in the
beginning of the proof must be satisfied. Since |µt+1(s′)|= rs′ , 1 and 3 are ruled out.
If condition 2 is satisfied, then iBt+1

s′ (µ̄t) j′ for some j′ ∈ µt+1(s′). Furthermore, µ̄t

differs from µt only in that µ̄t(i) = s. By IPA, iBt+1
s′ (µt) j′. This is a contradiction

with (b) occurring. If condition 4 is satisfied, then there must exist j, j′ such that, for
any µ̄t ∈M(i, j,µ), iBt

s (µ
t−1) j and iBt+1

s′ (µ̄t) j′. Fix µ̄t such that µ̄t( j) = h. Observe
that µ̄t differs from µt only in that µ̄t(i) = s and µ̄t( j) = h. By IPA, iBt+1

s′ (µt) j′.
This is a contradiction with (b) occurring.

Next we show that the solution concept for the daycare assignment problem,
the strong stability, is in fact equivalent to the static concept of weak stability for a
large class of problems. Precisely, if the children’s preferences are separable and
the schools’ priorities satisfy IPA, the two concepts are equivalent.

Theorem 4 (Equivalence of Weak and Strong Stability). Suppose every child’s pref-

erences satisfy separability and every school’s priorities satisfy IPA. Then matching

µ is strongly stable if and only if it is weakly stable.

Proof. By definition, any strongly stable matching is weakly stable. Hence, we
need to show that any weakly stable matching is strongly stable. Suppose otherwise,
i.e., there exists a weakly stable matching µ which is not strongly stable. By Lemma
2, if µ is weakly but not strongly stable, then for some period t and some school-
child pair (s, i),

1. µt(i) = µt+1(i),

2. (s,s)�i (µt(i),µt+1(i)),

3. |µt(s)|< rs or/and iBt
s (µ

t−1) j for some j ∈ µt(s).
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Clearly, (s,s) �i (µt(i),µt(i)). In addition, each child’s preferences are sepa-

rable, hence, (s,µt(i)) �i (µt(i),µt(i)). By combining this with the 3rd condition
above, one obtains that µ is not weakly stable.

8 Appendix B: Properties of the Gale and Shapley
Matching

In static settings, one of the most significant results is that the GS matching Pareto
dominates all other stable matchings.15 This result is no longer valid in our daycare
assignment problem. In fact, there could be multiple weakly/strongly stable match-
ings that do not Pareto dominate one another. The following example illustrates this
point.

Example 6 (GS matching might not Pareto dominate other stable matchings). There

are 3 schools {s,s1,s2}. All schools have a capacity of one child. There is no

school-age child until period t− 1. At period t− 1, only one child i is 1 year old.

At period t, there are 2 one-year old children {i1, i2}. At period t + 1, child i′ is 1

year old. If children ı̄ 6= ı̄′ ∈ {i, i1, i2, i′} have not attended school s̄ = s,s1,s2 in the

previous period, then school s̄ ranks child ı̄ and child ı̄′ according to the following

rankings.
i Bs i1 Bs i2 Bs i′

i Bs1 i′ Bs1 i2 Bs1 i1
i Bs2 i1 Bs2 i2 Bs2 i′

Each child’s preferences are separable. Child i’s top choice is (s,s). The pref-

erences of children i1, i2 and i′ satisfy the following conditions:

(s1,s1) �i1 (s2,s2) �i1 (s,s),

(s,s) �i2 (s2,s2) �i2 (s1,s1),

(s1,s1) �i′ (s2,s2) �i′ (s,s).

The GS matching µGS is as follows: µt−1
GS (i) = µt

GS(i) = s, µt
GS(i1) = µt+1

GS (i1) =

15See Gale and Shapley (1962).
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s1, µt
GS(i2) = s2, µt+1

GS (i2) = s, µt+1
GS (i′) = s2 and µt+2

GS (i′) = s1. Thanks to Theorem

2, µGS is weakly stable.

Now let us consider the following matching µ̄: µ̄t−1(i) = µ̄t(i) = s, µ̄t(i1) =

µ̄t+1(i1) = s2, µ̄t(i2) = s1, µ̄t+1(i2) = s, µ̄t+1(i′) = s1 and µ̄t+2(i′) = s1. It easy to

check µ̄ is strongly stable.

Now observe that matching µGS does not Pareto dominate matching µ̄ because

child i′ prefers µ̄ to µ. In fact, µ̄ is not Pareto dominated by any strongly stable

matching. To see this, observe that the only matching that Pareto dominates µ̄ is

the one in which children 1 and 2 switch their matches in period t. But this is not

strongly stable because child i1 justifiably envies child i′ at t +1. �

First observe that in Example 6 both IPA and separability are satisfied. Hence,
the weakly and strongly stable matchings coincide. Hence, the example above
shows that there may exist mechanisms that produce strongly/weakly stable match-
ings not Pareto dominated by the GS matching. This is the first main distinction
between the matching produced by the GS algorithm in the school choice problem
versus the daycare assignment problem.

Given the importance of this result when compared to the static case, we state
the result below.

Theorem 5 (The GS matching does not necessarily Pareto dominate all stable
matchings). The GS matching does not necessarily Pareto dominate all weakly and

strongly stable matchings.

In the light of Example 6, one must explore whether any strongly stable match-
ing Pareto dominates the GS matching. This, indeed, is impossible which we show
in the following proposition.

Proposition 3 (The GS matching is not Pareto dominated by any strongly stable
matching). If each school’s priority rankings satisfy IPA, then the GS matching is

not Pareto dominated by any other strongly stable matchings.

Proof. Recall that time −1 matching µ−1 is fixed for all matchings we consider.
On contrary to the proposition, suppose that some strongly stable matching µ

Pareto dominates matching µGS.
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Step 1. If i ∈ I−1, then µ0
GS(i) = µ0(i).

Proof of Step 1. For any 2 year old child, her isolated preference is �2
i (µ−1).

From Lemma 1, we have that µ0
GS and µ0 are stable period 0 matchings under iso-

lated preferences and µ−1. Gale and Shapley (1962) show that µ0
GS Pareto dom-

inates every other statically stable period 0 matchings under isolated preferences
and µ−1 in terms of isolated preferences. This means µ0

GS(i) �2
i (µ−1)µ0(i) if

µ0
GS(i) 6= µ0(i). By definition of �2

i (µ−1), (µ−1(i),µ0
GS(i)) �i (µ−1(i),µ0(i)) if

µ0
GS(i) 6= µ0(i). Hence, if µ Pareto dominates µGS, then µ0

GS(i) = µ0(i).
Step 2. If i ∈ I0, then µ0

GS(i) = µ0(i).
Proof of Step 2. Suppose µ0

GS(i) 6= µ0(i) for some i ∈ I0. Then, as in the proof of
step 1, we obtain that µ0

GS(i)�1
i µ0(i) or equivalently,

(µ0
GS(i),µ

0
GS(i))�i (µ0(i),µ0(i)). (1)

The strong stability of µGS implies (µ0
GS(i),µ

1
GS(i)) �i (µ0

GS(i),µ
0
GS(i)); otherwise,

µGS is not even weakly stable as child i is in the highest priority group in time 1.
Now weak separability yields (µ1

GS(i),µ
1
GS(i))�i (µ0

GS(i),µ
0
GS(i)). Now it is easy to

see that
(µ1

GS(i),µ
1
GS(i))�i (µ0

GS(i),µ
1
GS(i))�i (µ0

GS(i),µ
0
GS(i)). (2)

Similarly, as µ is strongly stable, we obtain

(µ1(i),µ1(i))�i (µ0(i),µ1(i))�i (µ0(i),µ0(i)). (3)

Now let us show that µ0(i) 6= µ1(i). Suppose otherwise. Then relations 1 and 2
yield that (µ0

GS(i),µ
1
GS(i))�i (µ0(i),µ0(i)). This contradicts with µ Pareto dominat-

ing µGS. Hence, µ0(i) 6= µ1(i). Consequently, the preference relations in 3 must be
strict. Also observe that µ0(i) 6= µ1

GS(i) thanks to relations 1 and 3.
Now let us show that (µ1(i),µ1(i))�i (µ1

GS(i),µ
1
GS(i)). If not, weak separability

and relation 1 yield that (µ0
GS(i),µ

1
GS(i)) �i (µ0(i),µ1

GS(i)) and (µ0(i),µ1
GS(i)) �i

(µ0(i),µ1(i)) as µ0(i) 6= µ1
GS(i) and µ0(i) 6= µ1(i). Consequently, (µ0

GS(i),µ
1
GS(i))�i

(µ0(i),µ1(i)) which contradicts that µ Pareto dominates µGS. Now let us summarize
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the preference relation we found so far.

(µ1(i),µ1(i))�i (µ1
GS(i),µ

1
GS(i))�i (µ0

GS(i),µ
0
GS(i))�i (µ0(i)),µ0(i)) (4)

From Lemma 1, we know that µ1 is statically stable under isolated preferences
and µ0. Now suppose we ran the GS algorithm at period 1 under isolated preferences
and µ0. Let us denote the resulting matching µ̄1. From Gale and Shapley (1962), we
know that if µ̄1(i) 6= µ1(i), then µ̄1(i)�2

i (µ
0)µ1(i). In other words, (µ0(i), µ̄1(i))�i

(µ0(i),µ1(i)). This along with relation 1 and µ0(i) 6= µ1(i) implies that µ̄1(i) 6= µ0(i).
Then by weak separability, (µ0(i), µ̄1(i)) �i (µ0(i),µ1(i)) implies (µ̄1(i), µ̄1(i)) �i

(µ1(i),µ1(i)). Now let us update relation 4.

(µ̄1(i), µ̄1(i))�i (µ1(i),µ1(i))

�i (µ1
GS(i),µ

1
GS(i))�i (µ0

GS(i),µ
0
GS(i))�i (µ0(i)),µ0(i)) (5)

Next we will proceed to show that µ̄1 is statically stable under isolated prefer-
ences and µ0

GS. Let us postpone the proof momentarily to discuss its implications.
From Lemma 1, we know that µ1

GS is a stable matching under isolated preferences
and µ0

GS. In addition, it must Pareto dominate µ̄1 in terms of the isolated preferences,
since µ̄1 is statically stable and the µ1

GS must Pareto dominate all stable matchings
(see Gale and Shapley (1962)). Hence, if µ1

GS(i) 6= µ̄1(i), then µ1
GS(i)�2

i (µ
0
GS)µ̄

1(i).
By the definition of �2

i (µ0
GS) , (µ0

GS(i),µ
1
GS(i)) �i (µ0

GS(i), µ̄
1(i)). Recalling that

(µ0
GS(i),µ

0
GS(i))�i (µ0(i),µ0(i)), we find that (µ0

GS(i), µ̄
1(i))�i (µ0(i), µ̄1(i)). Weak

separability and (µ̄1(i), µ̄1(i)) �i (µ1(i),µ1(i)) yield (µ0(i), µ̄1(i)) �i (µ0(i),µ1(i)).
The previous three relations yield (µ0

GS(i),µ
1
GS(i))�i (µ0(i),µ1(i)). However, recall

that µ Pareto dominates µGS. This is the contradiction we are looking for. Thus,
to complete the proof, it is left to show that µ̄1 is statically stable under isolated
preferences and µ0

GS.
We now proceed to show that µ̄1 is indeed a stable matching under isolated

preferences and µ0
GS. We already know from Assumption 1 and (5) that, for all i∈ I0,

µ̄1(i) �2
i (µ

0)µ1(i) if µ̄1(i) 6= µ1(i). Also, from Gale and Shapley (1962), we know
that, for all i ∈ I1, µ̄1(i) �1

i µ1(i) if µ̄1(i) 6= µ1(i). Recall that µ̄1 is statically stable
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matching under isolated preferences and µ0. Now consider the isolated preferences
in period 1 from µ0

GS and suppose, under these isolated preferences, µ̄1 is not stable.
Therefore, there must exist a school-child pair (s, i) such that both conditions are
satisfied:

I. – if i ∈ I0, then s�2
i (µ

0
GS)µ̄

1(i), or

– if i ∈ I1, then s�1
i µ̄1(i);

II. |µ̄1(s)|< |rs| or/and iB1
s (µ

0
GS) j for some j ∈ µ̄1(s).

Because µ̄1 statically stable under the isolated preferences and µ0, the conditions
1 and 2 below cannot be satisfied at the same time.

1. (a) if i ∈ I0, then s�2
i (µ

0)µ̄1(i), or

(b) if i ∈ I1, then s�1
i µ̄1(i).

2. |µ̄1(s)|< rs or/and iB1
s (µ

0) j for some j ∈ µ̄1(s).

Suppose i ∈ I0. Then s�2
i (µ

0
GS)µ̄

1(i). We show that in this case condition 1(a)
is satisfied. By the definition of �2

i (µ
0
GS),

(µ0
GS(i),s)�i (µ0

GS(i), µ̄
1(i)).

If µ0(i) = µ0
GS, then

(µ0(i),s)�i (µ0(i), µ̄1(i)).

This means that condition 1a is satisfied. Let µ0(i) 6= µ0
GS. Then preference relations

given in (5), Assumption 1,

(µ0
GS(i),s)�i (µ0

GS(i), µ̄
1(i))

and the fact that
(s,s)�i

(
µ̄1 (i) , µ̄1 (i)

)
imply that

(µ0(i),s)�i (µ0(i), µ̄1(i)).
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Hence, condition 1(a) is satisfied. Suppose i ∈ I1. Then s�1
i µ̄1(i). Since �1 does

not depend on the last period’s matching, condition 1(b) is satisfied. Therefore,
we find that either 1(a) or 1(b) is satisfied. This means that 2 cannot be satisfied.
Clearly, it must be that |µ̄1(s)| = rs. This implies that school s’s priority ranking
must satisfy iB1

s (µ
0
GS) j and j B1

s (µ
0)i, for at least some j ∈ µ̄1 (s). There are 2

cases consider:

(i) i /∈ µ0
GS(s), or

(ii) i ∈ µ0
GS(s) and i ∈ I0.

If case (i) happens, this implies that j /∈ µ0
GS(s); otherwise, j would have the

highest priority at school s, hence, we reach a contradiction with iB1
s (µ

0
GS) j. There-

fore, j /∈ µ0
GS(s). Since school s’s priority ranking satisfies IPA, given that iB1

s

(µ0
GS) j it must be that j ∈ µ0(s) and j ∈ I0 to have the required reversal of school s’s

priority ranking. Then µ0
GS( j) 6= µ0( j). This, as argued earlier in step 1, implies that

(µ0
GS( j),µ0

GS( j)) � j (µ0( j),µ0( j)) = (s,s), where the last equality comes from the
fact above, that if j /∈ µ0

GS(s), it must be that j ∈ µ0(s). Now recall that j ∈ µ̄1(s).
Therefore,

(µ0
GS( j),µ0

GS( j))� j (µ0( j), µ̄1( j))

which is a contradiction (see preference relation 5).
Suppose (ii) happens, i ∈ µ0

GS(s), i.e., s = µ0
GS(i). We know s �2

i (µ0
GS)µ̄

1(i).
These conditions yield

(µ0
GS(i),µ

0
GS(i))�i (µ0

GS(i), µ̄
1(i)).

This is a contradiction which we are looking for.
This completes the proof of step 2.

Step 3. The GS algorithm yields a strongly stable matching that is not Pareto dom-
inated by any other strongly stable matchings.
Proof of Step 3. Proving step 3 is just a matter of reiterating the arguments of steps
1 and 2 assuming previous periods’ matchings are identical with the ones resulted
from the GS algorithm.
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Now we study if any strongly stable matching is efficient. The next proposition
yields that unless one follows the GS algorithm, then any strongly stable matching
is not efficient.

Proposition 4. Suppose that the priority rankings of all schools satisfy IPA. Then

any strongly stable matching different from the GS matching is not efficient.

Proof. Consider any strongly stable matching µ with some period t matching that
is different from the one that the GS algorithm under isolated preferences and µt−1

yields. Consider any i ∈ It . Then µt(i) = µt+1(i) or

(µt+1(i),µt+1(i))�i (µt(i),µt(i));

otherwise, µ is not strongly stable because, in this case, child i would have the
higher priority at school µt(i) and

(µt(i),µt(i))�i (µt(i),µt+1(i))

by Assumption 1.
For each child i∈ It−1∪ It , define her preference relation to be P t

i such that sP t
i s′

if and only if
(µt−1(i),s)�i (µt−1(i),s′) whenever i ∈ It−1

(s,µt+1(i))�i (s′,µt+1(i)) whenever i ∈ It

Because µ is strongly stable, there cannot exist any school-child pair (s, i) such that

1. (µt−1(i),s)�i (µt−1(i),µt(i)) or (s,µt+1(i))�i (µt(i),µt+1(i)),

2. |µt(s)|< rs or/and iBt
s (µ

t−1) j for some j ∈ µt(s).

In terms of P , these conditions mean that there is no school-child pair (s, i) such
that

1. sP t
i µt(i),

2. |µt(s)|< rs or/and iBt
s (µ

t−1) j for some j ∈ µt(s).
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In other words, µt is a statically stable matching under P and µt−1.
Consider matching µ̄ such that µ̄τ = µτ for all τ 6= t but µ̄t is the resulting match-

ing from the GS algorithm under P and µt−1.
From Gale and Shapley (1962), we know that µ̄t must Pareto dominate every

other stable matching under P and µt−1. This and that µt is a statically stable match-
ing under P and µt−1 imply that µ̄t(i)Piµt(i) for all i ∈ It−1∪ It if µ̄t(i) 6= µt(i). Con-
sequently, if µ̄t(i) 6= µt(i) for some i ∈ It−1, then (µt−1(i), µ̄t(i)) �i (µt−1(i),µt(i)).
Similarly, if µ̄t(i) 6= µt(i) for some i ∈ It then

(µ̄t(i),µt+1(i))�i (µt(i),µt+1(i)).

Now consider µ̄ and µ. Clearly, µ̄ Pareto dominates µ if µ̄t(i) 6= µt(i) for some
i ∈ It−1∪ It . Hence, it must be that µ̄t(i) = µt(i) for all i ∈ It−1∪ It .

Consider µ̂ such that µ̂τ = µτ for all τ 6= t but µ̂t is the resulting matching from
the GS algorithm under isolated preferences and µ̂t−1. Clearly, µ̄t−1 = µ̂t−1, hence,
the priority rankings of the schools are the same under both µ̄ and µ̂. In addition, for
each j ∈ It−1, the isolated preference relation �2

j (µ
t−1) is equivalent to P j. Now

consider any child j ∈ It . Then under P , the relative ranking of µt+1( j) weakly
improves from the one under�1

j . In all other aspects, P j and�1
j are the same. Now

recall that µ̄t(i) = µt(i) for all i ∈ It−1∪ It . In addition, recall that µt(i) = µt+1(i) or

(µt+1(i),µt+1(i))�i (µt(i),µt(i)).

Therefore, under both P j and �1
j , the set of schools that are strictly preferred to

µt( j) is the same. Consequently, we obtain that under P and isolated preferences,
for each j∈ It−1∪It , the set of schools that are strictly preferred to µt( j) is the same.
In addition, because the GS algorithm is used for both cases and µ̄t( j) = µt( j) for
all j ∈ It−1 ∪ It , it must be µ̄t = µ̂t thanks to Theorem 9 in Dubins and Freedman.
Consequently, µt = µ̂t , which contradicts that µt differs from the matching that the
GS algorithm yields.

Proposition 4 means that if any strongly stable matching is efficient, then it must
be the GS matching. However, from Roth, it is well known that the GS matching (in
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static settings) is not necessarily Pareto efficient. This is still the case in our setting
because the school choice problem is a special case of our problem as we pointed
out earlier.

Appendix C: Proofs

Proof of Lemma 1. Necessity. Assume µ is strongly stable. We need to show that
for all t, µt is statically stable under isolated preferences and µt−1. Suppose other-
wise. Then there must exist, t, and a school-child pair (s, i) such that

1. if i ∈ It , then s�1
i µt(i) and at least one of the following is satisfied: |µt(s)|<

rs or/and iBt
s (µ

t−1) j for some j ∈ µt(s),

2. if i ∈ It−1, then s�2
i
(
µt−1)µt(i) and at least one of the following is satisfied:

|µt(s)|< rs or/and iBt
s (µ

t−1) j for some j ∈ µt(s).

Suppose i ∈ It . Then we are in case 1. Since µ is weakly stable, the following
2 conditions cannot be satisfied at the same time: (a) (s,µt+1(i))�i (µt(i),µt+1(i))

and (b) |µt(s)| < rs and/or iBt
s (µ

t−1) j for some j ∈ µt(s). If (b) is not true, then
this is a contradiction because (s, i) must satisfy the conditions given in case 1.
Hence, assume that (b) is satisfied but (a) is not, i.e., (µt(i),µt+1(i))�i (s,µt+1(i)).
If µt(i) 6= µt+1(i), Assumption 1 implies that (µt(i),µt(i))�i (s,s). By the definition
of �1, µt(i) �1

i s which contradicts with the assumption that s �1
i µt(i). Suppose

µt(i) = µt+1(i). Recall that s �1
i µt(i), hence, (s,s) �i (µt(i),µt+1(i)). Recall that

(b) is satisfied. Thus, by moving to school s in period t, child i would have the
highest priority at school s at time t + 1. Hence, µ is not strongly stable. Hence,
i /∈ It .

Suppose i ∈ It−1. Then we are in case 2. Because µ is weakly stable, the
following 2 conditions cannot be satisfied at the same time: (a) (µt−1(i),s) �i

(µt−1(i),µt(i)) and (b) |µt(s)|< rs and/or iBt
s (µ

t−1) j for some j ∈ µt(s). If (b) is not
true, then this is a contradiction because (s, i) must satisfy the conditions given in
case 2. Hence, (b) must be satisfied but (a) is not, i.e., (µt−1(i),µt(i))�i (µt−1(i),s).
By the definition of�2

i (µ
t−1), we have that µt(i)�2

i (µ
t−1)s which contradicts with
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the assumption that s �2
i
(
µt−1)µt(i). Hence, i /∈ It−1. Therefore, for all t, µt is

statically stable under isolated preferences and µt−1.
Sufficiency. For any t, µt is statically stable under isolated preferences and µt−1.
First let us show that µ is weakly stable. Suppose otherwise. Then, at some period
t, there must exist a pair (s, i) such that one of the two conditions below is satisfied:

1. (a) (s,µt+1(i))�i (µt(i),µt+1(i)), and

(b) |µt(s)|< rs or/and iBt
s (µ

t−1) j for some j ∈ µt(s).

or

2. (a) (µt−1(i),s)�i (µt−1(i),µt(i)), and

(b) |µt(s)|< rs or/and iBt
s (µ

t−1) j for some j ∈ µt(s).

Suppose case 1 occurs. If s 6= µt+1(i), then weak separability and

(s,µt+1(i))�i
(
µt(i),µt+1(i)

)
yield (s,s) �i (µt(i),µt(i)). By definition of �1

i , we have that s �1
i µt(i). This and

1b mean that µt is not statically stable under isolated preferences and µt−1. This is
a contradiction. Suppose, on the other hand, that s = µt+1(i). If

(µt+1(i),µt+1(i))�i (µt(i),µt(i)),

then the definition of �1
i yields µt+1(i) �1

i µt(i). This and 1b mean that µt is not
statically stable under isolated preferences and µt−1.

Suppose (µt(i),µt(i))�i (µt+1(i),µt+1(i)). This and Assumption 1 yield

(µt(i),µt(i))�i
(
µt(i),µt+1(i)

)
.

Consider period t + 1. Then by the definition of �2
i (µt), we have that µt(i) �2

i

(µt)µt+1(i). In addition, observe that child i has the highest priority at school µt(i).
The last 2 conditions contradict that µt+1 is statically stable under isolated prefer-
ences and µt .
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Suppose case 2 occurs. By the definition of �2
i (µt−1), we have that s �2

i

(µt−1)µt(i) since (µt−1(i),s) �i (µt−1(i),µt(i)). But this and 2b directly imply that
µt is not statically stable under isolated preferences and µt−1. This is a contradic-
tion.

We have shown that µ is weakly stable. Now we are left to show that µ is
strongly stable if IPA is satisfied. Suppose otherwise. Then by Lemma 2, for some
period t and some school-child pair (s, i),

1. µt(i) = µt+1(i)

2. (s,s)�i (µt(i),µt+1(i))

3. |µt(s)|< rs or/and iBt
s (µ

t−1) j for some j ∈ µt(s)

The first 2 conditions and the definition of �1
i yield s �1

i µt(i). This and the
third condition imply that µt is not statically stable under isolated preferences and
µt−1.

Proof of Theorem 3. Here we provide the formal proof, using the example given in
the text. All we need for this proof is to show that weakly stable matchings under
profile 1 and 2 are unique and the ones shown in steps 1 and 2 respectively.
Step 1. Under profile 1, the only weakly stable matching µ is: µt−1(i) = µt(i) = s,
µt−1(ı̄) = µt(ı̄) = s̄, µt(i1) = µt+1(i1) = s1, µt(i2) = µt+1(i2) = s2, µt+1(i′) = s and
µt+2(i′) = s2.
Proof of Step 1. Let µ̂ be weakly stable. It is clear that µ̂t−1(i) = µ̂t(i) = s, µ̂t−1(ı̄) =

µ̂t(ı̄) = s̄ and µ̂t+2(i′) = s2. Consequently, we obtain that µ̂t(i1) = s1 because child
i1 has higher priority in school s1 at period t than anyone but i. However, i must
match with s at period t. Hence, µ̂t(i1) = s1. This implies that µ̂t(i2) = s2. Then i2
has the highest priority at school s2 at period t +1. Since s2 is the top choice for i2,
µ̂t+1(i2) = s2. Consequently, µ̂t+1(i′) = s which means µ̂t+1(i1) = s1. Now we have
shown that µ̂ = µ.
Step 2. Under profile 2, the only weakly stable matching µ̄ is as follows: µ̄t−1(i) =

µ̄t(i) = s, µ̄t−1(ı̄) = µ̄t(ı̄) = s̄, µ̄t(i1) = s2, µ̄t(i2) = s1, µ̄t+1(i1) = s, µ̄t+1(i2) = s1,
µ̄t+1(i′) = s2 and µ̄t+2(i′) = s2.
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Proof of Step 2. Let µ̂ be a weakly stable matching. It is clear that µ̂t−1(i) = µ̂t(i) =

s, µ̂t−1(ı̄) = µ̂t(ı̄) = s̄ and µ̂t+2(i′) = s2. Consequently, we obtain that µ̂t(i1) = s2

because child i1 has higher priority in school s2 at period t than i2. This means that
µ̂t(i2) = s1.

Now let us argue that µ̂t+1(i′) = s2. If not, µ̂t+1(i1) = s2; otherwise, child i′

has higher priority than child i2 at school s2 and s2 is the top choice of child i′.
Hence, this contradicts with µ̂ being weakly stable. Thus, µ̂t+1(i1) = s2. But be-
cause (s2, s̄)�2

i1 (s2,s2) and child i1 has higher priority at school s̄ than anyone but
ı̄, µ̂ is weakly stable. This is a contradiction. Hence, µ̂t+1(i′) = s2.

Because µ̂t+1(i′) = s2, µ̂t+1(i1) = s as i1 has higher priority at school s than i2.
Consequently, µ̂t+1(i2) = s1. This means µ̂ = µ̄.

Following the discussion of Section 6.1, we present an example in which a
matching satisfies Autarkic efficiency but fails to be efficient because of the poten-
tial trades within a generation.

Example 7 (Pareto Improving Trade Within Cohort). Suppose in period 0, two

children i1 and i2 are two years old and two children j1 and j2 are one year old.

There are 4 schools s1,s2,s3 and s4 and each school has a capacity of 1 child. The

schools’ priorities are given as follows under the assumption that the children have

not attended any school in the previous period:

i1 Bs1 i2 Bs1 j1 Bs1 j2

i2 Bs2 i1 Bs2 j2 Bs2 j1

i1 Bs3 i2 Bs3 j1 Bs3 j2

i1 Bs4 i2 Bs4 j2 Bs4 j1

Child i1’s top choice is s1 while child i2’s is s2. The other two children’s prefer-

ences satisfy the following conditions:

(s2,s2)� j1 (s1,s1)� j1 (s4,s2)� j1 (s3,s1)� j1 (s3,s3)� j1 (s4,s4)

(s2,s2)� j2 (s1,s1)� j2 (s3,s1)� j2 (s4,s2)� j2 (s3,s3)� j2 (s4,s4)
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Now consider the following matching µ: µ0(i1) = s1, µ0(i2) = s2, µ0( j1) = s3,

µ0( j2) = s4, µ1( j1) = s1, µ1( j2) = s2. Matching µ satisfies Autarkic efficiency.

However, µ is not Pareto efficient as it is dominated by the matching µ̄: µ̄0(i1) = s1,

µ̄0(i2) = s2, µ̄0( j1) = s4, µ̄0( j2) = s3, µ̄1( j1) = s2, µ̄1( j2) = s1.

Loosely speaking, in Example 7, children j1 and j2 are assigned “extreme”
allocations under matching µ. Hence, these children j1 and j2 can hedge against the
extreme allocations by “trading” their allocations. This is one reason why Autarkic
efficiency is not equivalent to efficiency. One should observe that in this case trade
happens between the children from the same generation. Hence, the infiniteness of
time does not play any significant role in Example 7.
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